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Abstract. The paper deals with the question of recognizing the mutual po-
sitions of the connected components of a non-singular real projective surface
S in the real projective 3-space. We present an algorithm that answers this
question through the computation of the adjacency graph of the surface; it also
allows to decide whether each connected component is contractible or not. The
algorithm, combined with a previous one returning as an output the topology
of the surface, computes a set of data invariant up to ambient-homeomorphism
which, though not sufficient to determine the pair (

���
3, S), give information

about the nature of the surface as an embedded object.

Real algebraic surfaces – adjacency graph – algorithms.

1. Introduction

Recognizing a surface up to homeomorphism means to determine a topological
model for each of its connected components. In [4] and [3] this question is addressed
from a constructive point of view for a non-singular real algebraic surface in the
real projective space RP

3; the authors give an algorithm to count the number of
connected components of the surface and to compute the Euler characteristic of
each of them, which determines them topologically.

In those papers the surface is considered as an abstract topological space, with-
out taking into any account how it is situated in RP

3, but a surface can be em-
bedded in the real projective space in different ways, with possible self-knotting
of a connected component and linking of distinct components. Thus it may hap-
pen that for two homeomorphic surfaces S, S ′ the pairs (RP

3, S) and (RP
3, S′) are

not homeomorphic, i.e. there exists no homeomorphism ϕ : RP
3 → RP

3 such
that ϕ(S) = S′. As a simple example one can take as S the torus of equation
(x2

1 + x2
2 + x2

3 + 3x2
0)

2 − 16(x2
1 + x2

3)x
2
0 = 0, and as S′ the one-sheeted hyperboloid

x2
0 − x2

1 − x2
2 + x2

3 = 0. When the pairs (RP
3, S) and (RP

3, S′) are homeomorphic
we will say that the surfaces S and S ′ are ambient-homeomorphic.

One classical question concerning algebraic surfaces seen as embedded objects
in RP3 is the celebrated Hilbert’s Ambient Topological Classification Problem([5]):

“Up to homeomorphism, what are the possible pairs (RP
3, S), where S is a non-

singular real algebraic surface of degree d in RP
3?”

This problem has been solved only for d ≤ 4, and for d ≤ 3 its solution coincides
with the answer to the Topological Classification Problem, which requires to deter-
mine, up to homeomorphism, the possible distinct models for a non-singular real
algebraic surface of degree d. Namely, any projective surface of degree 1 in RP3 is
a projective plane and two planes can be transformed each into the other by means
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of a projective isomorphism of RP
3. By the well known theorem of projective clas-

sification of quadrics, any non-singular non-empty real projective surface of degree
2 can be transformed by means of a projective isomorphism of RP3 either into the
sphere x2

0−x2
1−x2

2−x2
3 = 0 or into the one-sheeted hyperboloid x2

0−x2
1−x2

2+x2
3 = 0,

which is homeomorphic to a torus. Also for non-singular cubics the two types of
classification are equivalent and classical results prove the existence of exactly five
distinct models. The degree 4 is the lowest degree in which there exist pairs of
homeomorphic surfaces S, S ′ such that (RP3, S) and (RP3, S′) are not homeomor-
phic. The classification of degree 4 surfaces up to ambient-homeomorphism, begun
by Hilbert, Rohn and Utkin and completed by Kharlamov, shows the existence of
66 topologically distinct models and 113 non-homeomorphic pairs (RP3, S).

For a non-singular real algebraic curve C in the real projective plane the pair
(RP

2, C) is completely determined by the knowledge of the mutual position of the
ovals of the curve, which can be given either by means of the list of the nests of C or
through its adjacency graph, whose vertices are the connected components of RP

2 \
C and in which two distinct vertices are joined by an edge if and only if they share a
common boundary. In the case of surfaces the situation is more complicated, since
the knowledge of the mutual position of its connected components is an invariant
up to ambient-homeomorphism, but not sufficient to determine the pair (RP3, S);
an example is shown in Figure 1.

Figure 1. Homeomorphic, but pairwise not ambient-
homeomorphic surfaces

In this paper we address the question of recognising the disposition in RP3 of the
connected components of a non-singular real projective surface from a constructive
point of view, presenting an algorithm that computes the adjacency graph of the
surface, decides for each connected component whether it is contractible or not
and reconstructs the inclusion partial order among the contractible components;
all these notions will be defined in Section 2. We show that this result can be
achieved by a more efficient handling of the techniques and computations used in
[3] to determine the topological type of the surface, enriching the data computed
at each iterative step with data relative to adjacencies. For this reason, even if
we have made an effort to take the paper as much self-contained as possible, the
knowledge of the article [3] (and also of [4], where the topology was computed for a
non-singular surface disjoint from a line) will be helpful for the full comprehension
of the procedures we are going to use. In any case we refer the reader to those papers
both for a wider description of the theoretical background needed for the topological
determination of a surface and for the algorithmic details of some constructive
procedures we will use also in this paper.

The adjacency graph with each vertex and each edge marked either “contractible”
or “non-contractible” and endowed with a set of roots will be called the weighted

adjacency graph of the surface. In Section 3 we will present an algorithm that,
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through an iterative computation of the graphs of finitely many level curves and
level surfaces, eventually computes the weighted adjacency graph of a compact non-
singular affine surface in R3. In the case of an arbitrary surface, the basic idea is
proving that the weighted adjacency graph of S can be recovered from the adja-

cency graph of a suitably constructed compact algebraic surface Ŝ in R3; this will
be the object of Section 4. In the final section we describe the global structure of
the algorithm and we show on some examples the way it works.

2. The adjacency graph of curves and surfaces

Assume that S is the real projective algebraic surface in RP
3 defined by the

equation F (x, y, z, t) = 0, where F is a homogeneous polynomial of degree d with

real coefficients; a point in RP
3 is called a singular point of the surface S if it

annihilates F and all its first partial derivatives. We will say that the surface is
non-singular if it contains no real singular point, while the complex zero-set defined
by F may contain non-real singular points.

Before defining the adjacency graph of curves and surfaces, we want to recall
some basic classical facts about the topology of non-singular algebraic curves and
surfaces, for a proof of which we refer for instance to [9], [8] and [7].

Each connected component of a non-singular real algebraic curve C in the real
projective plane is homeomorphic to a circle and can be embedded in RP2 in two
topologically distinct ways. In the first case the component does not disconnect
RP

2 and it is called a one-sided component. In the second case the connected
component, called an oval, disconnects RP2 into two connected components: one
of them is homeomorphic to a disc and is called the interior part of the oval, the
other is homeomorphic to a Möbius band and is called the exterior part of the oval.
A non-singular real algebraic curve contains a one-sided component, and in fact
exactly one, if and only if the degree of the curve is odd.

The pair (RP2, C) is determined up to homeomorphism by the parity of the
degree of C and by the mutual position of its ovals. Recall that two disjoint ovals
either can be mutually external (i.e. each lies in the exterior part of the other)
or one of them can encircle the other one. An oval that contains no other oval in
its interior part is called empty. A list [ω1, . . . , ωm] of ovals of a curve is called a
nest of depth m if ω1 is empty, ωi is contained in the interior part of ωi+1 for all
i = 1, . . .m−1 (and any other oval containing ωi contains also ωi+1) and ωm is not
contained in the interior part of any oval of the curve.

The relation “ωi is contained in the interior part of ωj” defines a partial order in
the set of the ovals of a given curve. The set of the ovals equipped with this partial
order and the marked one-sided component, if present, is called the scheme of the
curve (alternatively the information about the presence of a one-sided component
can be replaced by the parity of the degree of the curve).

An equivalent way to collect all the information concerning the mutual positions
of the ovals of the curve C is through its adjacency graph, that we now define in a
more general setting for later use:

Definition 2.1. Let X be a topological space and Y a subspace. The adjacency

graph G(X, Y ) is the graph whose vertices are the connected components of X \ Y
and where two distinct vertices Ω1, Ω2 are joined by an edge if and only if the

topological closures of Ω1 and Ω2 are not disjoint.
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Note that the graph G(X, Y ) is a topological invariant of the pair (X, Y ), i.e.
if (X1, Y1) and (X2, Y2) are homeomorphic pairs then G(X1, Y1) and G(X2, Y2)
are isomorphic graphs. For this reason we will think of an adjacency graph as an
abstract object obtained associating a vertex to each connected component of X \Y
and joining pairs of distinct vertices following the rule described above.

In our case, when X = RP2 and Y = C, for simplicity
we will denote G(RP

2, C) by G(C). Since the closures of
two distinct regions of RP

2 \C are either disjoint or inter-
sect only in one oval of C, each edge of G(C) corresponds
exactly to one oval. Moreover any oval of C is the com-
mon boundary of two distinct regions. Thus G(C) has as
many edges as the number of ovals in C and the only con-
nected component of the curve not represented among the edges of the graph is
that one-sided, in the case of an odd-degree curve.

Observe that G(C) is a tree. Namely, by construction it is a connected graph

and, since each oval disconnects RP
2, removing any edge from G(C) disconnects

the graph.
We will fix as a root of the tree G(C) the vertex r representing the unique region

external to all the ovals of C. As a consequence, the tree inherits an orientation
and each oriented edge can be indicated by means of the ordered pair of its vertices.
Fixing this root represents an equivalent way to express the relations of inclusion
induced by the partial order on the ovals of a curve. For instance, if l = (v1, v2)
is an oriented edge of G(C) corresponding to an oval ω, then the region R(v1)
corresponding to the vertex v1 is contained in the exterior part of ω, while the
region R(v2) is contained in the interior one. Moreover any leaf (i.e. vertex different
from the root and belonging to one single edge) corresponds to the interior part of
an empty oval, and any path connecting the root to a leaf corresponds to a nest.

Because of this full parallelism between describing an embedded curve through
its nests or through its associated graph, a pair (RP

2, C) is equivalently determined
up to homeomorphism by the rooted adjacency graph G(C) and the parity of the
degree of C.

Turning to consider surfaces, the topological determination of a surface requires
to count the number of its connected components and to characterize topologically
each of them. As explained in [3], this can be done computing the Euler charac-
teristic χ of each component. Namely, any compact connected orientable surface
is homeomorphic to a torus with g holes, with g ≥ 0 (meaning that a torus with
0 holes is a sphere), and χ = 2 − 2g; instead, a non-orientable connected surface
in RP3 is homeomorphic to the connected sum of a projective plane and a torus
with g holes, so that χ = 1 − 2g. We will denote by χ(S) the list of the Euler
characteristics of all the components of S.

Recall that, if S is a non-singular real algebraic surface in RP3 of even degree, the
surface and all its connected components are orientable; if the degree is odd, then
S contains a non-orientable connected component, while all the other components
are orientable. In particular for odd-degree surfaces the unique non-orientable
component is the only one having an odd Euler characteristic.

If we now consider a surface as an embedded object, we see that a connected
surface can be situated in RP

3 in two ways: either it disconnects RP
3 in two

connected components, being the boundary for both regions, and it is then called
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two-sided, or it does not disconnect RP
3 and it is called one-sided. The nature

of the connected components of a non-singular real surface S with respect to the
previous property is again determined by the degree of the surface: if it is even,
all the components are two-sided; if it is odd, S contains exactly one component
which is one-sided (the non-orientable one) and all the others are two-sided.

While for curves the property of being one-sided or two-sided fully characterizes
how an oval is embedded in the projective plane, for surfaces the situation is more
complicated. For instance we see that a one-sided component contains a loop (i.e.

a closed path) which is not contractible (i.e. not homotopically trivial) in RP
3. In

general a subset A ⊂ RP
3 is called contractible if any loop in A is contractible as a

loop in RP3; otherwise it is called non-contractible. Equivalently A is contractible
if and only if the homomorphism π1(A) → π1(RP

3) induced by the inclusion of A
in RP3 is trivial. As observed above, any one-sided component is non-contractible;
instead a two-sided component can be either contractible or non-contractible, since
for instance an affine torus is contractible while a one-sheeted hyperboloid is not.

Classical topological considerations lead to useful information, available in the
literature, about the nature of components with respect to this property. One
of them ensures that, if S is odd-degree, all its two-sided components are con-
tractible. Additional results are known only for low degree surfaces; for instance,
if S has degree 4, it has at most two non-contractible components: if it has two
non-contractible components, then there is no other component and each of them is
homeomorphic to a torus; if the number of non-contractible components is 1, then
all the contractible ones are mutually external.

Looking at the complement of surface components, if S is connected and one-
sided, then RP

3 \ S is connected and contractible. For two-sided components the
contractibility of the complementary regions depends on the contractibility of the
component. Namely, if S is connected two-sided and non-contractible, then the two
connected regions of RP

3\S are both non-contractible (the existing non-trivial loop
on S can be pushed to each region of the complement); the simplest example of
this situation is a one-sheeted hyperboloid, which is homeomorphic to a torus and
disconnects RP

3 into two solid tori. If S is connected two-sided and contractible,
then only one of the two regions of RP3 \S is contractible and is called the interior

part of S, while the other is called the exterior part.
Since the interior is defined only for the contractible connected components, it is

not possible to define a partial order relation in the set of the two-sided components
of a surface, just repeating what we did for curves; such a partial order can be
defined only in the set of the contractible components. If we choose to represent
a surface through its adjacency graph and want to able to recover from it the
previous partial order, it is necessary to endow the graph with weights expressing
the mentioned topological features of the various components.

Again we will denote the graph G(RP
3, S) simply by G(S). As in the case of

curves, G(S) has as many edges as the number of two-sided components of S and,
if S is odd-degree, the only component of S not represented in the graph is the
non-orientable one. Moreover G(S) is a tree.

We associate to any edge e of G(S) a weight, fixing wS(e) = c if the connected
component of S represented by e is contractible, wS(e) = nc if it is non-contractible.
By the same rule we associate to each vertex v of G(S) a weight wS(v) = c or
wS(v) = nc.
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As a consequence of the previous considerations, the two vertices of an edge
are non-contractible if and only if the edge is non-contractible; hence the non-
contractible vertices and edges of G(S) form a subgraph that we will denote Gnc(S).

We will denote by Gc(S) the subgraph formed by the contractible edges of G(S) and
their relative vertices. If S has an even degree, there exists at least a vertex v non-
contractible; if the degree is odd, all vertices and all edges in G(S) are contractible,

i.e. Gnc(S) = ∅. While Gc(S) may be non-connected, we have that:

Proposition 2.2. Gnc(S) is connected.

Proof. Let u, v be two distinct vertices of Gnc(S) and consider the unique path
(u = u0, u1, . . . , um−1, um = v) joining u and v in G(S) with ui 6= uj for any i 6= j.
We claim that ui is non-contractible for any i = 1, . . . , m− 1; otherwise, if r is the
least integer such that ur is contractible, then ur−1 is non-contractible and the edge
e = {ur−1, ur} corresponds to a contractible component of S containing ur in its
interior part. Since the ui’s are distinct, the regions ur+1, . . . , um = v are contained
in the interior part of e, which contradicts the fact that v is non-contractible. �

We now fix a root in each connected component of Gc(S) in such a way that
the induced order reflects the natural partial order in the set of the contractible
components of the surface.

If S is even-degree, then Gnc(S) is non-empty: any connected component of

Gc(S) is a tree having a unique vertex weighted nc, that we will take as a root
of the subtree. In particular, if S is even-degree and does not contain any non-
contractible two-sided component, then there is a unique (non-contractible) region

in RP
3 \ S external to all the two-sided components of S, the subgraph Gnc(S)

consists of a single vertex, chosen as a root of Gc(S), which is connected. If d is
even but S contains non-contractible two-sided components, then Gnc(S) is not

simply a point, Gc(S) (if non-empty) may be non-connected and a root is chosen in
each connected component of it. Note that for even-degree surfaces the chosen roots
can be equivalently characterized as the vertices common to Gc(S) and Gnc(S).

The previous way to fix roots in Gc(S) cannot be used when the degree of S is
odd, because Gnc(S) = ∅. For instance if S consists of a non-orientable component
and two spheres, the graph contains two edges and three vertices all marked with
c; note that the information about which vertex is the root is the only one that
allows to decide whether the two spheres are mutually external or if one encircles
the other.

If the degree d is odd and Y0 is the non-orientable component, then there exists a
unique (contractible) region of RP3 \S external to all the components of S different

from Y0 (which are contractible): we choose this vertex as a root of Gc(S).
The graph G(S) endowed with the function wS : G(S) → {c, nc} and with the

set r(S) of roots chosen as above will be called the weighted adjacency graph of S.
The knowledge of the weighted adjacency graph allows us not only to recover

the scheme of inclusions of the contractible components of S, but also to recognize
whether two distinct chains of contractible components of S ordered by inclusion
lie in the same or in different regions of the complement of a non-contractible
component of the surface.
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We can therefore collect all the information on the surface examined so far asso-
ciating to S a set of data (G(S), wS , r(S), χ(S)) which is invariant up to ambient-
homeomorphism. Passing from S to its graph, in principle we discard the informa-
tion concerning the parity of the surface degree, since in any case the non-orientable
component is not represented in the graph. As a matter of fact, this piece of infor-
mation is not lost and can be recovered looking at χ(S): the surface is odd-degree
if and only if χ(S) contains an odd number. As already pointed out, surfaces
that are homeomorphic but not ambient-homeomorphic can share the same data
(G(S), wS , r(S), χ(S)): an example was shown in Figure 1.

Even if not sufficient to determine the pair (RP3, S), the ability to compute
(G(S), wS , r(S), χ(S)) starting from an equation of S is very useful as a source of
information about the nature of the surface as an embedded object. As announced
in the introduction, the algorithm to compute all these data is an “enriched variant”
of the one presented in [3] to compute χ(S) and hence the topological type of S.
For this reason in the next sections we will focus on the procedure to compute the
triple (G(S), wS , r(S)), refering the reader to the mentioned previous papers for
the details of the computation of χ(S).

3. The compact affine case

In this section we preliminarily consider the case when the surface S does not
intersect in real points the plane “at infinity” {t = 0}, so that it is contained in the
affine chart {[x, y, z, t] ∈ RP

3 | t 6= 0} ' R3. We will describe an algorithmic pro-
cedure to compute its weighted adjacency graph (G(S), wS , r(S)). The algorithm
follows the same iterative steps as the one presented in [3] to compute the topologi-
cal type of S; at each step a more efficient handling of the computations performed
to study S topologically will allow us also to record the mutual dispositions of the
connected components of the level surfaces and so eventually compute the weighted
adjacency graph of S.

First of all let us see how we can compute the adjacency graph G(S) considering
S as a non-singular compact affine surface in R3 using the affine coordinates (x, y, z).

Up to a generic linear change of coordinates, one can assume (see for instance
[1]) that the projection p : S → R defined by p(x, y, z) = z is a Morse function
(i.e. all its real critical points are non-degenerate) and that the images of distinct
critical points are distinct critical values. If [−N, N ] is an interval containing all
the finitely many critical values of p, we subdivide it as [−N, N ] = [−N = a0, a1]∪
[a1, a2] ∪ . . . ∪ [as, as+1 = N ] so that each ai is non-critical for p and each interval
[ai, ai+1] contains only one critical value in its interior part. For each a ∈ R we
will denote by Ca the level curve p−1(a) = S ∩ {z = a} and by Sa the level surface
p−1([−N, a]) = S ∩ {z ≤ a}; in particular S−N = ∅ and SN = S, while Sa is a
surface with boundary Ca.

Our goal of computing the graph G(S) will be achieved by computing iteratively,
for a = ai, i = 0, . . . , s + 1, the triple (G(Ca), Ma, G(Sa)), where

(1) G(Ca) denotes the adjacency graph G({z = a}, Ca)
(2) G(Sa) denotes the adjacency graph G({z ≤ a}, Sa)
(3) Ma : G(Ca) → G(Sa) is the graph morphism that associates to each vertex

v of G(Ca) the vertex of G(Sa) representing the region of (R3 \S)∩{z ≤ a}
having in its boundary the region of {z = a}\Ca represented by v. Observe
that this association defines a graph morphism since the images of adjacent
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vertices are adjacent vertices; in particular Ma transforms each edge e of
G(Ca) into the edge of G(Sa) representing the connected component of Sa

containing in its boundary the oval of Ca represented by e.

At the initial level both C−N and S−N are empty, hence both G(C−N ) and
G(S−N ) consist of a single vertex and M−N is defined in the natural trivial way.
Recall that in [3] (see also [4]) the number of connected components of S and their
topological types were computed iteratively reconstructing, for a = a1, . . . , as+1,
the triple (Scheme(Ca), µa, χ(Sa)) where:

i) Scheme(Ca) is the list of all the nests of the level curve Ca (which is non-
singular, compact and even-degree)

ii) µa is the function that associates to any oval ω of Ca the connected com-
ponent of Sa containing ω in its boundary

iii) χ(Sa) is the list of the Euler characteristics of the connected components
of the level surface Sa.

Since for a non-singular curve of even degree giving the list of its nests is per-
fectly equivalent to giving its adjacency graph, we can modify the output of the
subalgorithm that studies the shape of the level curves so that it returns the scheme
of Ca in the form of its adjacency graph.

The function µa can be seen as a function, defined on the edges of G(Ca) and
associating to each of them an edge of G(Sa), that coincides with the action of Ma

on the edges of G(Ca). It is clear that the knowledge of the function Ma is essential,
because it allows to iteratively recover the adjacencies among the connected com-
ponents of the level surface; thus it will be computationally relevant to show that
the same computations needed to reconstruct µa are sufficient also to reconstruct
Ma.

Let us recall that, for any interval [a, b], the reconstruction of µb from µa requires
to investigate the surface in the strip {a ≤ z ≤ b} so as to be able to decide whether
an oval ω of Ca and an oval η of Cb lie in the boundary of the same connected
component of S ∩ {a ≤ z ≤ b}. If so, µb(η) is the component Y of Sb such that
Y ∩ {z ≤ a} contains ω in its boundary.

In the case when [a, b] contains no critical value, the situation is quite simple.
First of all the curves Ca and Cb have the same schemes, i.e. G(Ca) = G(Cb);
moreover the level surfaces Sa and Sb are homeomorphic and share the same ad-
jacency graph G(Sa) = G(Sb). The boundary of each connected component of
S ∩ {a ≤ z ≤ b} contains exactly one oval in the plane {z = a} and one oval in
{z = b}. It is possible to detect the 1-1 correspondence between the ovals of Ca and
the ovals of Cb as follows: one chooses a point P in the center of a nest n of Ca (i.e.
inside the innermost oval of the nest) and computes the final point Q of a roadmap

lifting P up to level b (following the terminology adopted in [3] by roadmap we
mean a continuous semialgebraic path α : [0, 1] → {a ≤ z ≤ b} not intersecting the
surface and such that α(0) = P and α(1) = Q ∈ {z = b}). Then the point Q lies in
the center of a nest ñ having the same depth as n. Thus one recognizes that the i-th
oval of ñ belongs to the boundary of the connected component of Sb that contains
also the i-th oval of n; one recognizes also the correspondence among the regions
comprised between two consecutive ovals of the nest n and the analogous regions
determined by the ovals of the nest ñ. Therefore the computation of finitely many
roadmaps from points chosen in the centers of the nests of Ca up to level b allows to
compute the 1-1 correspondence between the ovals and regions determined by Ca
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and the ovals and regions determined by Cb. In other words, when [a, b] contains
no critical value, the computation of finitely many roadmaps allows to reconstruct
not only µb from µa but also Mb from Ma.

The same result holds also when the interval [a, b] contains exactly one critical
value c, with a < c < b. In this case there is no 1-1 correspondence between the
ovals of Ca and the ovals of Cb; according to the index of the critical point we can
have different situations: an oval may appear in Cb (when the index is 0) or it may
disappear (if the index is 2), while if the index is 1 it may happen either that two
ovals of Ca glue into a single oval of Cb or that an oval of Ca splits into two ovals
of Cb. In [4] and [3] it is explained how the previous method based on roadmaps
can be used to understand what happens to the level curve and to the level surface
when passing through a critical value; in this way we can reconstruct both G(Sb)
from G(Sa) and Mb from Ma.

Case index 0. If the index is 0, we know that Cb contains one more oval than Ca

and by means of roadmaps we can recognize it and also decide in which region of
{z = b} \ Cb it appears. This means that we are able to decide to which vertex of
G(Ca) it is necessary to join the new vertex in order to obtain G(Cb). Similarily
G(Sb) contains one more vertex and one more edge than G(Sa): the information
on regions given by the computed roadmaps makes it possible to detect the vertex
of G(Sa) where the new edge has to be attached. In particular Mb coincides with
Ma on the common graph G(Ca) and associates to the new vertex (edge) of G(Cb)
the new vertex (edge) of G(Sb).

P1

Q
2

2PP1

G(C  )b G(S  )b

G(C  )a G(S  )a

Q
1

Q
2

M a

M b

ω

Q

Q
1

2P

Q
ω

Figure 2. An example of how the adjacency graphs and the func-
tion Ma change passing through a critical point of index 0.

Case index 2. Passing through a critical value of index 2, a 2-cell is attached to
an oval of Ca which disappears and G(Sb) = G(Sa). We can reconstruct the other
data in this situation just reversing the method used in the case of index 0: the
computation of finitely many “reversed roadmaps” starting from points chosen in
the centers of the nests of Cb and having their final points on the plane {z = a}
allows to recognize the oval that disappears and its location with respect to the
ovals of Ca. Thus we can determine the edge and the vertex that disappear in
G(Cb) w.r.t. G(Ca), i.e. to see G(Cb) as a subgraph of G(Ca). Then the function
Mb coincides with the restriction of Ma to G(Cb).

Case index 1. The case of critical points of index 1 presents several possible
situations according to the way a 1-cell is attached to the boundary Ca of Sa. In



10 E. FORTUNA, P. GIANNI, D. LUMINATI, AND P. PARENTI

[3] one can find the list of the different situations that can arise and a procedure to
determine the ovals involved in the attachment of the 1-cell and to reconstruct µb

from µa.
If a 1-cell is attached to one single oval η which splits into two ovals ω1, ω2 of Cb,

the edge η in G(Ca) splits into two edges ω1, ω2 in G(Cb) sharing a common vertex,
while G(Sb) = G(Sa). As for Mb, using the information given by the roadmaps
about how edges and vertices of G(Ca) lift to edges and vertices of G(Cb), we
can compute Mb on the whole graph G(Cb). Two of the possible situations are
presented in Figure 3.

ω1

ω2

P1

G(C  )a

M a

G(C  )b

M b
ω1

ω2

P1

Q
1

G(S  )b

G(S  )a

Q
1

η

Q

η

Q

ω1

ω2

P1 2P

ω1

2PP1

3P

ω2

3P

Q
1

G(C  )b G(S  )b

G(C  )a G(S  )a

M b

M a

Q
2

Q
3

Q
3Q

1 Q
2

η

η

Figure 3. Two cases of attachment of a 1-cell to a single oval

When a 1-cell is attached to two distinct ovals ω1, ω2 of Ca that glue into an
oval η of Cb, it may happen that two distinct connected components of Sa glue into
a single component of Sb: this occurs when µa(ω1) 6= µa(ω2) (see the right-hand
surface in Figure 4). In this case the components µa(ω1) and µa(ω2) appear in
G(Sa) as distinct edges e1 and e2 having a common vertex v0 (corresponding to
the region of {z ≤ a} \S containing in its boundary both µa(ω1) and µa(ω2)). The
glueing of the components µa(ω1) and µa(ω2) when passing through the critical
value has as its counterpart in the adjacency graph the fact that the two edges e1

and e2 collaps into a single edge in G(Sb). In other words, after recognizing via
roadmaps e1 and e2, G(Sb) can be obtained as a quotient of G(Sa) identifying e1

with e2. The function µb expresses this identification associating to the edge η of
G(Cb) the edge obtained in G(Sb) via identification; Mb can be then computed
using roadmaps as in the previous case. If instead µa(ω1) = µa(ω2) (e.g. as in the
left-hand surface in Figure 4), the situation is simpler because G(Sb) = G(Sa); Mb

can be again computed via roadmaps.
After finitely many calls of the iterative step, eventually we get the adjacency

graph G(S) = G(SN ).
In order to know the weighted adjacency graph, we still have to compute wS and

r(S). Since S is contained in the affine chart {t 6= 0} of RP
3, necessarily it has an

even degree, all its components are two-sided contractible and the regions of RP
3\S

are contractible except the only one external to all the components of S, which is
non-contractible. We can easily detect this region Σ by means of our algorithm:
Σ ∩ {z ≤ −N} corresponds to the only point in G(S−N ), thus it is sufficient to
mark with nc this unique vertex v(Σ) at the initial step and, after completing the
computation of G(S) = G(SN ), to mark with c all the edges in G(S) and all the
vertices different from v(Σ), and to choose v(Σ) as the only root in the graph.
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Figure 4. Two cases of attachment of a 1-cell to distinct ovals

4. The general case algorithm

In this section we will describe a constructive procedure to compute the triple
(G(S), wS , r(S)) for an arbitrary non-singular real algebraic surface S ⊂ RP3. If S
does not intersect in real points the plane at infinity {t = 0} ⊂ RP3, then we can
apply the algorithm described in the previous section. If S is not affine, in [3] the
authors proposed a method to reduce the computation of χ(S) to the computation

of χ(Ŝ) for a compact affine surface Ŝ ⊂ R3 suitably constructed. In this paper we
will exploit the same reduction process, that we now briefly recall, explaining how
G(S), wS and r(S) can be recovered from the computation of the adjacency graph

G(Ŝ).
Let S be a non-singular real projective surface in RP3 defined by the equation

F (x, y, z, t) = 0, where F is a homogeneous polynomial of degree d in Q[x, y, z, t].
Denote by π : S3 → RP

3 the map that associates to any point (x, y, z, t) of the
3-sphere S3 the point of homogeneous coordinates [x, y, z, t] in RP

3, so that each
fiber contains two antipodal points on the sphere. In this way S3 is a 2-sheeted
covering space of RP3 on which we can lift the surface S through π considering the
non-singular surface

S̃ = π−1(S) = {(x, y, z, t) ∈ R4 | F (x, y, z, t) = 0} ∩ S3.

The antipodal map ap : S3 → S3 defined by ap(v) = −v induces an involution on

the set F of the connected components of S̃, so that we can split F as the union
of F1 and F2, where

F1 = {T̃ | T̃ ∈ F , ap(T̃ ) = T̃} and F2 = F \ F1.

The map ap acts as an involution also on the set R of the connected components

of S3 \ S̃, thus we can similarily split R as R1 ∪ R2 where

R1 = {Σ̃ | Σ̃ ∈ R, ap(Σ̃) = Σ̃} and R2 = R \R1.

The preimage Ỹ = π−1(Y ) of a connected component Y of S can be either

connected (so that Ỹ ∈ F1) or the union of two distinct connected components of

S̃ corresponding each to the other through the pairing induced by ap in F2. Using

this fact, in [3] it is proved that the knowledge of the topology of S̃ and of the
two sets F1 and F2 makes it possible to compute the Euler characteristic of all the
components of S, that is the list χ(S), and hence to determine the topological type
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of the surface. We will see that the computation of the sets F1, F2, R1, R2 is

sufficient both to recover the graph G(S) from G(S̃) and to compute wS and the
set of roots r(S). This will be a consequence of the following

Lemma 4.1. Let A be a connected subset of RP
3. Then A is non-contractible if

and only if π−1(A) is connected.

Proof. Assume that A is non-contractible and, by contradiction, that π−1(A) is
not connected. Let C1, C2 be two connected components of π−1(A) such that
C2 = ap(C1). If x1 ∈ C1 and x2 = ap(x1) ∈ C2, then π(x1) = π(x2) = y ∈ A.
By hypothesis there exists a non-contractible closed path γ : [0, 1] → A such that
γ(0) = γ(1) = y. If we lift γ to a path γ̃ in π−1(A) such that γ̃(0) = x1, then
necessarily γ̃(1) = x2: if otherwise γ̃(1) = x1, then γ̃ would be contractible in
S3, while γ is not homotopically trivial. Then the points x1, x2 lying in different
connected components of π−1(A) could be joined by means of a continuous path,
which is impossible. Conversely, since π−1(A) is ap-invariant, if it is connected
then we can find a path σ in π−1(A) joining two antipodal points. Then π ◦ σ is a
non-trivial loop in A. �

Corollary 4.2. A connected component Y of S is non-contractible if and only if

π−1(Y ) ∈ F1; a region Σ of RP3 \S is non-contractible if and only if π−1(Σ) ∈ R1.

The previous corollary explaines how vertices and edges in G(S) lift in the ad-

jacency graph G(S̃) = G(S3, S̃) of the surface S̃ according to their contractibility.
Namely, for every edge e of G(S), if e is non-contractible then π−1(e) is an edge

of G(S̃), while if e is contractible then π−1(e) consists of two edges e1, e2 of G(S̃)
with e2 = ap(e1). Similarily, each non-contractible vertex of G(S) lifts to a single

vertex in G(S̃), while the preimage of each contractible vertex of G(S) consists of
a pair of vertices v1, v2 such that v2 = ap(v1).

Therefore the map ap induces an automorphism , that we denote again by ap, of

the adjacency graph G(S̃), with ap2 = id, which fixes the vertices corresponding to
regions in R1 and the edges corresponding to components in F1, while it induces a
pairing in the set of vertices in R2 and in the set of edges in F2.

We want now to relate the way ap acts on G(S̃) with the structure of the graph

G(S) and with π. To do that, denote by {v1, . . . , vs} the set of the vertices of Gc(S)∩
Gnc(S). For each i = 1, . . . , s, the vertex vi represents a non-contractible region,

so that π−1(vi) consists of only one vertex in G(S̃) and represents a connected

region Σi of S3 \ S̃ invariant with respect to ap. For each i, denote by A(vi) the

connected component of Gc(S) containing vi. As a consequence of the previous

considerations, π−1(A(vi)) is a subgraph of G(S̃) on which ap acts as an involution
having as its fixed locus only the vertex π−1(vi).

If the degree d is even, these observations are sufficient to reconstruct G(S), wS

and r(S) from the knowledge of G(S̃) and of the sets F1, F2, R1, R2 according to
the following rules:

(a) leave unchanged the edges of G(S̃) corresponding to components in F1 and
the vertices corresponding to regions in R1 and denote by G′ this subgraph.
Note that G′ is non-empty because there exists at least a non-contractible
region Σ in RP

3 \ S, hence π−1(Σ) ∈ R1 and it corresponds to a vertex of
the subgraph G′;
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(b) for each vertex v ∈ G′ which is the vertex of at least an edge in G(S̃) \G′,

consider the set Ã(v) constructed as above starting from the graph G(S̃)

and its subgraph G′. Using the natural pairing existing in Ã(v), delete one

copy in each pair of isomorphic elements in Ã(v); denote by G the graph

so obtained from G(S̃);
(c) mark with nc all the edges and vertices in G′ and mark with c all the other

elements in the constructed graph;
(d) choose as roots the vertices in G′ which are vertices also for at least one

edge in G \ G′.

The resulting marked graph equipped with the chosen roots is isomorphic to the
weighted adjacency graph (G(S), wS , r(S)) of S.

When the degree d is odd, we must be more careful because S contains a non-
orientable and non-contractible component Y0 not represented in G(S) while the

component π−1(Y0), lying in F1, is represented in G(S̃) as an edge e0. Since in this
case all the other components of S are contractible, F1 contains only one element,
and each component of S different from Y0 has a preimage in S3 formed by two
components lying in F2 and exchanged by ap. Moreover the preimage of each

region in RP3 \ S consists of two connected regions of S3 \ S̃ exchanged by ap (in
other words R1 = ∅); in particular, if Σ0 is the region in RP3 \ Y0 external to all
the two-sided components of S, then the two regions in π−1(Σ0) correspond to the
vertices v1, v2 of e0.

Thus the graph G(S̃), apart the “special” edge e0, detectable as the unique

element in F1, having no counterpart in G(S), is such that G(S̃) \ {e0} consists of

two connected and isomorphic subgraphs G̃1 and G̃2.
This explains why, when the degree d is odd, we can reconstruct G(S), wS and

r(S) from G(S̃), F1, F2, R1, R2 as follows:

(a) we detect in G(S̃) the edge e0 as the unique element in F1;

(b) we choose one of the two connected components of G(S̃) \ {e0}, say for

instance G̃1;

(c) we mark with c all the edges and vertices in G̃1;
(d) we choose v1 as a root.

Again the marked graph so constructed with the chosen root is isomorphic to
the weighted adjacency graph of S. Note that in this case only the knowledge of
F1 and F2 is nedeed; the splitting of R is useless since R1 = ∅ and R2 = R.

Thus our original question has been reduced to the computation of G(S̃) and
of the sets F1, F2, R1, R2. We will accomplish all these tasks working on a

compact affine surface Ŝ ⊂ R3 homeomorphic to S̃. Namely we can assume, up

to an affine translation, that [0, 0, 0, 1] 6∈ S so that N = (0, 0, 0, 1) 6∈ S̃. Then,

projecting S3 \ {N} to R3 via the stereographic projection ϕ, the image Ŝ =

ϕ(S̃) is a compact non-singular surface in R3, homeomorphic to S̃ and given by
the polynomial equation f(X) = F (2X, ‖X‖2 − 1) = 0, where X = (x, y, z) and
‖X‖2 = x2 + y2 + z2.

We will denote by inv = ϕ ◦ ap ◦ϕ−1 : R3 \ {0} → R3 \ {0} the involution, given
by inv(X) = − X

‖X‖2 , corresponding to ap through the stereographic projection.
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Since G(S̃) = G(Ŝ), in order to compute G(S̃) it is sufficient to apply to Ŝ
the algorithm to compute the adjacency graph of a compact affine surface in R3

described in the previous section.
Also for the computation of the splittings of F and R, we will equivalently

determine the sets of components F̂ , F̂1, F̂2 of Ŝ and the sets of regions R̂, R̂1, R̂2

of R3 \ Ŝ corresponding through ϕ respectively to F , F1, F2, R, R1, R2.

In [3] the authors described a procedure to split F̂ as F̂1 ∪ F̂2 based on an

investigation of the plane level curve Ĉ0 = Ŝ ∩ Ŵ where Ŵ = {z = 0} ⊂ R3,

provided that Ĉ0 is non-singular; they proved that a component T̂ of Ŝ belongs to

F̂1 if and only if there exist two ovals ω1, ω2 of Ŝ∩Ŵ both contained in T̂ and such
that inv(ω1) = ω2.

Using the same argument it is easily seen that a region Σ̂ of R3 \ Ŝ belongs to

R̂1 if and only if there exist two regions σ1, σ2 of Ŵ \ (Ŝ ∩ Ŵ ) both contained in Σ̂
and such that inv(σ1) = σ2.

All these conditions can be constructively tested. First of all one can assume
that 0 is not a critical value for the projection p and choose it as one of the levels ai

to be studied in the iterative procedure, so that Ĉ0 is automatically studied by the

algorithm that computes the graph. Thus the components of Ŝ containing ω1 and
ω2 can be detected taking into account the function µ0 and recording the glueing

of distinct components of Ŝ through critical values > 0. Similarily the fact that σ1

and σ2 are both contained in Σ̂ can be tested using the function M0 in the place
of µ0.

The second condition inv(ω1) = ω2 was tested in [3] by means of a procedure

that recognizes the images through inv of the ovals of Ŝ ∩ Ŵ and also shows how

the regions of Ŵ \ (Ŝ ∩ Ŵ ) are transformed by the involution inv.

Therefore not only the splitting R̂1 ∪ R̂2 can be easily computed, but it is in

fact obtained by performing the same computations needed to split F̂ into F̂1 ∪ F̂2

with no additional computational cost.

5. Computational remarks and examples

Before presenting some examples, let us recall the main steps in which our algo-
rithm is organized. Assume that the projective surface S to be studied is given by
means of a defining equation F (x, y, z, t) = 0, with F is a square–free homogeneous
polynomial of degree d with rational coefficients. We assume also that the surface
is non-singular, that is it contains no real singular point while complex singularities
are allowed; one of the possible methods to test that can be found in [4].

As explained in the previous section, the algorithm preliminarily checks whether
S intersects in real points the plane {t = 0}: if S has no real point “at infinity”,
it is defined as an affine surface in R3 by the equation f(x, y, z) = F (x, y, z, 1);
otherwise the algorithm computes the equation f(X) = F (2X, ‖X‖2 − 1) = 0 of

the affine surface Ŝ ⊂ R3. Note that if S is non-singular, Ŝ is non-singular too.
The part of the algorithm that studies this affine surface requires to work in a

good system of coordinates:

Definition 5.1. The system of affine coordinates (x, y, z) is called a “good frame”

for the non-singular surface {f(x, y, z) = 0} if

(1) the projection p(x, y, z) = z is a Morse function on the surface
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(2) the images of distinct real critical points are distinct critical values.

Up to a generic projective change of the original homogeneous coordinates, we
can assume without loss of generality that the previous conditions are satisfied.

The real critical locus of p on the surface is the real zero-set of the ideal K =
(f, ∂f

∂x
, ∂f

∂y
). The projection p(x, y, z) = z is a Morse function if no real critical

point annihilates the determinant H(x, y, z) of the matrix

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)
, i.e.

if the real zero-set defined by the ideal (K, H(x, y, z)) is empty. A method to test
that can be found in [4]. In that paper it is also showed that, if p is Morse and
K is 1-dimensional, it is possible to compute a zero-dimensional ideal, say I , such
that the real zero-set VR(I) coincides with VR(K). Of course, without changing its
zero-set, we can also assume that I is radical.

Another datum necessary for the algorithm is the list of the indexes. A partial
information on the index of a real critical point P is obtained by evaluating at
P the determinant H(x, y, z) of the Hessian matrix: if H(P ) is negative, then P
has index 1, otherwise it has index either 0 or 2 (recall that H(P ) cannot vanish
since P is non-degenerate). This partial information, combined with other data
already computed in the iterative steps, are sufficient to determine the index: if P
is a critical point contained in the strip a < z < b and H(P ) > 0 , we can decide
whether the index of P is 0 or 2 simply checking whether Cb has more or fewer ovals
than Ca. Therefore, in order to compute the indexes it is sufficient to estimate the
sign of the function H(x, y, z) at the points of the variety VR(I).

Note that the algorithm does not really require the knowledge of the real critical
points, but only of the corresponding critical values and of their indexes: if these
data are known, the remaining procedure in the iterative step to lift the needed
data is of a pure combinatorial nature and based only on roadmaps.

Actually it is possible to compute both the real critical values and their indexes,
avoiding the whole computation of the real critical points. First of all, since the
real critical values of p on the surface are the images through p of the real points
in V (I), they can be computed as the real roots of the minimal degree univariate
polynomial m(z) in I ∩Q[z]. If the degree of m(z) coincides with the dimension of
the finite-dimensional Q-vector space V = Q[x, y, z]/I , then I is in general position
(which we can always assume) and the fiber over any critical value contains exactly
one critical point.

Moreover recall that (see for instance [2]), for any polynomial h ∈ C[x, y, z]
and any zero-dimensional ideal J ⊂ C[x, y, z], the values of h at the points of
V (J) coincide with the eigenvalues of the multiplication matrix Mh associated,
with respect to a monomial basis, to the linear map from C[x, y, z]/J to itself that
transforms [g] into [h] · [g].

Therefore in our situation the values of the function H(x, y, z) at the points
of the variety V (I) are the eigenvalues of the multiplication matrix MH . Also the
eigenvalues of the multiplication matrix Mz coincide with the values of the function
z on V (I), i.e. with the critical values of the projection p, which we already know
to be distinct. Hence the commuting matrices Mz and MH are simultaneously
diagonalizable by means of an invertible matrix L and therefore, if a real critical
value c = p(P ) appears in the position(i, i) of the diagonal matrix L−1MzL, then
the value of H(P ) appears in the position(i, i) of the diagonal matrix L−1MHL.
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Thus by means of linear algebra techniques we can avoid the numerical difficulties
due to the explicit computation of the critical points.

Once computed the real critical values and relative indexes, the algorithm com-
putes the topology and the weighted adjacency graph of S, if it is affine, or otherwise

of the doubled surface Ŝ. In the latter case, the procedure described in Section 4

allows us to compute the splittings F̂ = F̂1 ∪ F̂2 and R̂ = R̂1 ∪ R̂2 and thus to
recover the topology and the weighted adjacency graph of S.

We conclude the paper with some examples intended as a means to exemplify
the way our algorithm works, not to show the full potentiality of the procedure.
All the computations have been performed using a preliminary implementation of
the algorithm we have produced in Axiom ([6]).

Example 1. The projective closure of the affine surface S defined by
f(x, y, z) = [(z4 + (2y2 + 2x2 − 10)z2 + y4 + (2x2 + 6)y2 + x4 − 10x2 + 9) · ((x +
1
2
z)2 + (y − 1)2 + 90(z − 1

2
x)2 − 80) + 200] · (x2 + y2 + (z − 2)2 − 1

4
) = 0

does not contain any real point in the plane at infinity {t = 0}. Inspecting the
defining equation, it is easily seen that it contains a sphere, while the other factor
of f defines a perturbation of the union of a torus and an ellypsoid. The Figure
5 shows the 12 steps through which the algorithm recognizes that S consists of a
torus with 2 holes and three spheres, two of which are nested, lying in the exterior
part of the torus.

Example 2. Consider the projective surface S defined by the homogeneous
equation F (x, y, z, t) = (x2 + y2 + z2 − 1

36
t2) · ((x− 3

2
t)2 + y2 + z2 − 1

4
t2) · (x2 + z2 −

y2 − 1
16

t2) = 0. The real singular locus of S is empty, and the surface intersects
the plane {t = 0} in real points, so the algorithm preliminarily investigates the

doubled surface S̃ ⊂ S3 studying the affine surface Ŝ ⊂ R3 of degree 12 which

is homeomorphic to S̃. At the end of the iterative steps corresponding to the 12

distinct real critical points on Ŝ we get the output showed in Figure 6.

Since F̂1 contains only the edge {1, 2}, the algorithm recognizes that S con-
tains only one non-contractible two-sided component, which splits RP

3 into two

regions corresponding to the vertices 1 and 2. Removing this edge from G(Ŝ) we

get two connected graphs Â(1) and Â(2); in each of them the two edges corre-
spond each to the other through the natural pairing, so we have to delete one
edge in each graph. Thus we get the graph G(S) with vertices 1, 2, 3, 5 joined by
the edges {1, 2}, {2, 3}, {1, 5}, where {1, 2} is non-contractible and {2, 3}, {1, 5} are
contractible. The topological output of the algorithm yields that χ({1, 2}) = 0,
χ({2, 3}) = 2 and χ({1, 5}) = 2. Hence we recognize that the non-contractible two-
sided component of S is a torus, which splits RP

3 into two regions each containing
a sphere.

Example 3. The non-singular surface S defined by the homogeneous equation
F (x, y, z, t) = ((x − 2t)2 + y2 + z2 − 5t2) · [(x + 3t)z2 − (4x + 12t)zt + (x + 3t)y2 +
x3 − 3x2t − 27xt2 − 28t3] = 0 has an odd degree, hence it necessarily intersects
the plane at infinity {t = 0} and contains one non-orientable one-sided component.
We already know that all its other components are two-sided and contractible, but
we can also detect their mutual disposition studying the doubled 10-degree affine

surface Ŝ.
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Figure 5. Reconstruction of the topology and the adjacency
graph of the surface of Example 1. The horizontal strips (to be ex-
amined in a downward order) correspond to the 12 iterative steps
of the algorithm. Each strip schematically reproduces the data
computed in that step; from left to right: the index of the critical
point, the scheme of the level curve, the adjacency graphs of the
level curve and of the level surface with arrows representing the
action of the function M , and finally a visual image of the level
surface reconstructed on the basis of the computed data. Vertical
dotted segments represent the roadmaps computed by the algo-
rithm.



18 E. FORTUNA, P. GIANNI, D. LUMINATI, AND P. PARENTI

0 3

5 4

21
0 1 5

3 2 4G(S) 2A(  )

1A(  )

5

1 2

3

nc
c c

G(S)

Figure 6. Graphical representation of the algorithm output rela-
tive to the surface of Example 2.
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Figure 7. Graphical representation of the algorithm output rela-
tive to the surface of Example 3.

In the output represented in Figure 7 we see that, as expected, F̂1 contains only

one element, i.e. the edge {2, 3} corresponding to the preimage in Ŝ of the non-
orientable component in S. Since the algorithm computations yield that χ({2, 3}) =
1, we realize that the non-orientable component is a projective plane. Moreover,
following the rules described in Section 4, we discard the edge {2, 3} and choose
one of the two connected graphs so obtained, say for instance the graph having
3, 4, 5 as vertices joined by the edges {3, 4} and {4, 5} and we choose 3 as its root.
Since χ({3, 4}) = 2 and χ({4, 5}) = 2, we get that the two contractible two-sided
components of S are two nested spheres.
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