
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

A FRAMEWORK FOR DYNAMIC

HYBRID SCHEDULING STRATEGIES IN

HETEROGENEOUS ASYMMETRIC

ENVIRONMENTS

Navrati Saxena

Advisor:

Prof. Maria Cristina Pinotti

Department of Computer Science and Mathematics

University of Perugia

Member ICT Graduate School

University of Trento

February 2005

alex v
DIT-05-022





Acknowledgment

Many different people provided help, support, and input that brought

this thesis to fruition. If anyone is looking for an example of a good advisor,

let me especially recommend mine, Maria Cristina Pinotti. Prof. Pinotti

has always been an enthusiastic advisor, providing encouragement, insight,

and a valuable big-picture perspective. She has been a shining catalyst for

this work. In addition, she provided great moral support. She had the

uncanny knack of always asking the questions I had hoped not to hear. By

raising these difficult issues, she focused my attention onto critical areas.

I have been fortunate and privileged to work with her.

I would like to express my sincere gratitude and best regards to Prof.

Sajal K. Das for his advice and encouragement. I am indebted to him for

for his comments and suggestions regarding my work. My sincere regards

to Prof. Kalyan Basu for his constant detail technical guidance and help

to me.

Thanks to all my colleagues University of Trento, Italy and in the

CReWMaN laboratory at The University of Texas at Arlington. The chal-

lenging, yet friendly environment created by them has been helping me to

pursue my studies and research works.

This thesis would not have been possible without the love and constant

emotional and moral support of my parents and my sister, Manu, without

which I would not have come this far. They were my last teachers and

inspired in me a love of learning and a natural curiosity. They provided

me with the faith and confidence to endure and enjoy it all.





Abstract

The increasing growth of wireless access networks, proliferation of the In-

ternet and gradual deployment of broadband networks has already given

birth to a set of information-centric applications based on data transmis-

sion. Efficient scheduling techniques are necessary to endow these appli-

cations with advanced data processing capability. Broadly all data trans-

mission applications are divided into (1) push and (2) pull systems. Hy-

brid scheduling, resulting from an efficient combination of these two types

of data delivery, often exploits the advantages of both the schemes. The

objective of this dissertation is to investigate and develop a novel hybrid

scheduling platform by effectively combining broadcasting (push) of popular

data and dissemination (pull) of less popular data. One major advantage

of this algorithm is dynamic computation of cut-off-point, used to segregate

the popular and less-popular data items, without any prior knowledge or

assumptions. In order to achieve a better performance, the framework is

enhanced to allow a set of consecutive push and pull operations, depending

on the probabilities of the data items present in the system. The framework

also incorporates practical issues like clients’ impatience leading to clients’

departure and transmission of spurious requests. A new client’s priority-

based service classification scheme is proposed to provide differentiated QoS

in wireless data networks. The framework proceeds further to incorporate

dynamic hybrid scheduling over multiple channels. Performance modeling,

analysis and simulation study points out efficiency of the entire framework.

Keywords: Data broadcasting, scheduling, asymmetric-wireless environ-

ment, push-pull, hybrid systems, cut-off point, client’s impatience, anom-

alies, client’s priority and classification, repeat-attempts, performance guar-

antee, multiple channels, queuing systems, Markov Chain.





Contents

1 Introduction 3

1.1 Push-Pull and Hybrid Scheduling . . . . . . . . . . . . . . 4

1.2 Client’s Impatience . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Service Classification and Differentiated QoS . . . . . . . . 6

1.4 Multichannel Scheduling . . . . . . . . . . . . . . . . . . . 7

1.5 Contribution and Scope of the Work . . . . . . . . . . . . 8

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . 12

2 Related Work in Push-Pull Scheduling 15

2.1 Push-based Systems . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Broadcast Disks for Asymmetric Communication . 17

2.1.2 Paging in Broadcast Disks . . . . . . . . . . . . . . 18

2.1.3 Polynomial Approximation Scheme for Data Broadcast 19

2.1.4 Packet Fair Scheduling . . . . . . . . . . . . . . . . 19

2.1.5 Broadcasting Multiple Data Items . . . . . . . . . . 21

2.1.6 Broadcasting Data Items with Dependencies . . . . 22

2.1.7 Broadcast Schedule with Polynomial Cost Functions 23

2.1.8 Jitter Approximation Strategies in Periodic Scheduling 24

2.1.9 Dynamic Levelling for Adaptive Data Broadcasting 25

2.2 Pull-based Systems . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 On-demand Data Dissemination . . . . . . . . . . . 27

2.2.2 RxW Scheduling . . . . . . . . . . . . . . . . . . . 28

i



2.2.3 Data Staging for On-Demand Broadcast . . . . . . 29

2.2.4 Pull Scheduling with Timing Constraints . . . . . . 30

2.2.5 Scheduling with Largest Delay Cost First . . . . . . 31

2.3 Both Push and Pull . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Lazy Data Request for On-demand Broadcasting . 32

2.4 Hybrid Scheduling . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Balancing Push and Pull . . . . . . . . . . . . . . . 34

2.4.2 On-Demand Broadcast for Efficient Data Dissemina-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Channel Allocation for Data Dissemination . . . . . 36

2.4.4 Wireless Hierarchical Data Dissemination System . 36

2.4.5 Adaptive Hybrid Data Delivery . . . . . . . . . . . 37

2.4.6 Adaptive Realtime bandwidth Allocation . . . . . . 38

2.4.7 Adaptive Dissemination in Time-Critical Environ-

ments . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.8 Adaptive Scheduling with Loan-based Feedback Con-

trol . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.9 Framework for Scalable Dissemination-Based Systems 41

2.4.10 Guaranteed Consistency and Currency in Read-Only

Data . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.11 Broadcast in Wireless Networks With User Retrials 43

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Hybrid Push-Pull Scheduling 45

3.1 Hybrid Scheduling for Unit-length Items . . . . . . . . . . 45

3.1.1 Assumptions and Motivations . . . . . . . . . . . . 46

3.1.2 The Basic Hybrid Push-Pull algorithm . . . . . . . 49

3.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . 52

3.3 Dynamic Hybrid Scheduling with Heterogeneous Items . . 54

ii



3.3.1 Heterogeneous Hybrid Scheduling Algorithm . . . . 54

3.3.2 Modeling the System . . . . . . . . . . . . . . . . . 57

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 67

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Adaptive Push-Pull Algorithm with Performance Guaran-

tee 75

4.1 Adaptive Dynamic Hybrid Scheduling Algorithm . . . . . 76

4.1.1 Analytical Underpinnings . . . . . . . . . . . . . . 78

4.1.2 Simulation Experiments . . . . . . . . . . . . . . . 81

4.2 Performance Guarantee in Hybrid Scheduling . . . . . . . 84

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Hybrid Scheduling with Client’s Impatience 89

5.1 Hybrid Scheduling Algorithm . . . . . . . . . . . . . . . . 89

5.1.1 Hybrid Scheduling with Clients’ Departure . . . . . 91

5.1.2 Hybrid Scheduling with Anomalies: . . . . . . . . . 91

5.2 Performance Modeling and Analysis . . . . . . . . . . . . . 94

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Client’s Departure from the System . . . . . . . . . 96

5.2.3 Anomalies from Spurious Requests . . . . . . . . . 101

5.3 Simulation Experiments . . . . . . . . . . . . . . . . . . . 104

5.3.1 Hybrid Scheduling with Client’s Departure . . . . . 105

5.3.2 Hybrid Scheduling with Anomalies . . . . . . . . . 108

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Dynamic Hybrid Scheduling with Request Repetition 113

6.1 Repeat-Attempt Hybrid Scheduling Scheme . . . . . . . . 113

6.2 Performance Analysis of the Hybrid Repeat Attempt System 115

6.3 Simulation Experiments . . . . . . . . . . . . . . . . . . . 123

iii



6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Service Classification in Hybrid Scheduling for Differenti-

ated QoS 127

7.1 Hybrid Scheduling with Service Classification . . . . . . . 128

7.2 Delay and Blocking in Differentiated QoS . . . . . . . . . . 131

7.2.1 Average Number of Elements in the System . . . . 131

7.2.2 Priority-based Service Classification . . . . . . . . . 133

7.2.3 Bandwidth Provisioning for Improved Blocking . . 139

7.3 Simulation Experiments . . . . . . . . . . . . . . . . . . . 140

7.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . 140

7.3.2 Results with Two Client-Classes . . . . . . . . . . . 142

7.3.3 Results with More Client-Classes . . . . . . . . . . 145

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8 Online Hybrid Scheduling over Multiple Channels 157

8.1 Preliminaries: Definitions and Metrics . . . . . . . . . . . 157

8.2 A New Multi-Channel Hybrid Scheduling . . . . . . . . . . 161

8.2.1 Balanced K-Channel Allocation with Flat Broadcast

Per Channel . . . . . . . . . . . . . . . . . . . . . . 162

8.2.2 On-Line Balanced K-Channel Allocation with Hy-

brid Broadcast Per Channel . . . . . . . . . . . . . 164

8.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 167

8.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9 Conclusions and Future Research Issues 173

iv



List of Tables

2.1 Different Scheduling Strategies . . . . . . . . . . . . . . . . 44

3.1 Build-up point B for several values of N and θ when D = 20. 49

3.2 Symbols Used for Performance Analysis . . . . . . . . . . . 58

5.1 Symbols Used for Performance Analysis . . . . . . . . . . . 96

8.1 The lower bound of the MAED for the SRR, SF , and

BF Schedules. . . . . . . . . . . . . . . . . . . . . . . . . . 163

v





List of Figures

2.1 Push-based Broadcasting . . . . . . . . . . . . . . . . . . . 16

2.2 Pull-based Data Dissemination . . . . . . . . . . . . . . . 26

3.1 Asymmetric Hybrid Scheduling System . . . . . . . . . . . 46

3.2 Algorithm to set the optimal cut-off point K . . . . . . . . 51

3.3 Algorithm at the Server End . . . . . . . . . . . . . . . . . 52

3.4 Algorithm at the Client Site. . . . . . . . . . . . . . . . . . 52

3.5 (A) Pure-Push scheduling Vs new algorithm; (B) Cut-Off

Point when N = 10, 20. . . . . . . . . . . . . . . . . . . . . 54

3.6 Client side algorithm . . . . . . . . . . . . . . . . . . . . . 55

3.7 Hybrid scheduling algorithm . . . . . . . . . . . . . . . . . 56

3.8 Performance Modeling of Our Hybrid System . . . . . . . 59

3.9 Variation of Expected Access Time with the Size of the Push

Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 System Behavior with λ = 10 . . . . . . . . . . . . . . . . 69

3.11 System Behavior with λ = 20 . . . . . . . . . . . . . . . . 69

3.12 Performance comparison with varying skewness . . . . . . 70

3.13 Performance comparison with different arrival . . . . . . . 71

3.14 Simulation Vs Analytical Results . . . . . . . . . . . . . . 71

3.15 Variation of Cutoff-point (K) . . . . . . . . . . . . . . . . 72

3.16 Simulation Vs Analytical Results of the Optimal Cut-Off

point (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



4.1 Hybrid Scheduling Algorithm at the Server . . . . . . . . . 77

4.2 Performance Modelling of Hybrid System . . . . . . . . . . 78

4.3 Improvement in Average Access Time . . . . . . . . . . . . 82

4.4 Dynamics of Cutoff Point . . . . . . . . . . . . . . . . . . 83

4.5 Comparison of Analytical and Simulation Results . . . . . 84

4.6 Algorithm for Performance Guarantee in Hybrid Scheduling 86

5.1 Hybrid Scheduling with Client’s Departure . . . . . . . . . 91

5.2 Take Access with Drop-requests . . . . . . . . . . . . . . . 92

5.3 Hybrid Scheduling with Anomalies . . . . . . . . . . . . . 93

5.4 Process requests with Anomalies . . . . . . . . . . . . . . . 93

5.5 Algorithm at the Client Side . . . . . . . . . . . . . . . . . 94

5.6 Performance Modelling of Our Hybrid System . . . . . . . 97

5.7 Expected Access Time with Cutoff Point . . . . . . . . . . 105

5.8 Minimum Expected Access Time with Arrival Rates . . . . 106

5.9 Variation of Cutoff Point . . . . . . . . . . . . . . . . . . . 107

5.10 Average Number of Requests Dropped . . . . . . . . . . . 107

5.11 Comparison of Analytical and Simulation Results . . . . . 108

5.12 Variation of Expected Access Time with Cutoff-point . . . 109

5.13 Minimum Expected Access Time with Arrival Rates . . . . 110

5.14 Expected Access Time with Item-length . . . . . . . . . . 110

5.15 Variation of Cutoff point with Arrival Rates . . . . . . . . 111

5.16 Variation of Cutoff point with Item-length . . . . . . . . . 111

5.17 Comparison of Analytical and Simulation Results . . . . . 112

6.1 Overview of Repeat Attempt System . . . . . . . . . . . . 114

6.2 Hybrid Scheduling Algorithm with Repeat-Attempts . . . 116

6.3 Access and Pull Scheduling . . . . . . . . . . . . . . . . . 117

6.4 Repeat Attempt Markov Model of Hybrid Scheduling . . . 118

6.5 Performance of Hybrid Scheduling . . . . . . . . . . . . . . 125

viii



6.6 Performance Comparison with [32] . . . . . . . . . . . . . 125

6.7 Simulation Vs Analytical Results . . . . . . . . . . . . . . 126

6.8 Variation of Cutoff-point (K) . . . . . . . . . . . . . . . . 126

7.1 Service Classification in Hybrid Scheduling . . . . . . . . . 129

7.2 Performance Modeling of Our Hybrid System . . . . . . . 132

7.3 Delay Variation with α = 0.0 . . . . . . . . . . . . . . . . . 143

7.4 Delay Variation with α = 0.25 . . . . . . . . . . . . . . . . 144

7.5 Delay Variation with α = 0.50 . . . . . . . . . . . . . . . . 144

7.6 Delay Variation with α = 0.75 . . . . . . . . . . . . . . . . 145

7.7 Delay Variation with α = 1.0 . . . . . . . . . . . . . . . . . 145

7.8 Cost Dynamics with α = 0.00 . . . . . . . . . . . . . . . . 146

7.9 Cost Dynamics with α = 0.25 . . . . . . . . . . . . . . . . 146

7.10 Cost Dynamics with α = 0.50 . . . . . . . . . . . . . . . . 147

7.11 Cost Dynamics with α = 0.75 . . . . . . . . . . . . . . . . 147

7.12 Cost Dynamics with α = 1.00 . . . . . . . . . . . . . . . . 148

7.13 Variation of Overall Cost . . . . . . . . . . . . . . . . . . . 149

7.14 Variation of Cut-off Point . . . . . . . . . . . . . . . . . . 149

7.15 Analytical Vs Simulation Results . . . . . . . . . . . . . . 150

7.16 Delay Variation with α = 0.0 . . . . . . . . . . . . . . . . . 150

7.17 Delay Variation with α = 0.25 . . . . . . . . . . . . . . . . 151

7.18 Delay Variation with α = 0.50 . . . . . . . . . . . . . . . . 151

7.19 Delay Variation with α = 0.75 . . . . . . . . . . . . . . . . 152

7.20 Delay Variation with α = 1.0 . . . . . . . . . . . . . . . . . 152

7.21 Cost Dynamics for Service Classes . . . . . . . . . . . . . . 153

7.22 Variation of Prioritized Cost . . . . . . . . . . . . . . . . . 153

7.23 Bandwidth Provisioning . . . . . . . . . . . . . . . . . . . 154

7.24 Reduction in Blocking . . . . . . . . . . . . . . . . . . . . 154

7.25 Variation of Cut-off Point . . . . . . . . . . . . . . . . . . 155

ix



7.26 Analytical Vs. Simulation Results . . . . . . . . . . . . . . 155

8.1 The Balanced Allocation algorithm. . . . . . . . . . . . . . 162

8.2 Multi-Channel Hybrid Scheduling Environment . . . . . . 164

8.3 The Client-request Algorithm at the Client Side. . . . . . . 165

8.4 The Hybrid Algorithm at the Server Side . . . . . . . . . . 166

8.5 MAED Performances of the BF and SF Schedules . . . . 168

8.6 MAED Performances of the New Multi-channel Hybrid and

the SF Schedule . . . . . . . . . . . . . . . . . . . . . . . 169

8.7 MAED Performances of the SF , BH-random and BH-

decreasing Schedules . . . . . . . . . . . . . . . . . . . . . 170

8.8 Size of the channel groups of the SF schedule when K = 3. 170

8.9 Size of the push sets of the BH schedule when K = 3. . . 171

8.10 Performance Comparison of the SRR and BH schedules . 172

1



2



Chapter 1

Introduction

The recent advancement and ever increasing growth in web technologies has

resulted in the need for efficient scheduling and data transmission strate-

gies. The emergence of wireless communication systems have also added

a new dimension to this problem by providing constraints over the low-

bandwidth upstream communication channels. While today’s wireless net-

works offer voice services and web-browsing capabilities, the actual essence

of future generation (3G and Beyond 3G) wireless systems lie in efficient

data services. Guaranteeing precise quality of service (QoS), such as the ex-

pected access-time or delay, bandwidth and blocking are perhaps the most

salient features of such data services. To extract the best performance and

efficiency of a data transmission scheme, one needs a scalable and efficient

data transmission technology. In such data transmission systems, there

often exists asymmetry due to any of the following factors:

1. The downstream communication capacity (bandwidth from server to

client) may be much higher than the upstream communication capac-

ity (bandwidth from client to server);

2. The number of clients is significantly larger than the number of servers.

3. In information retrieval applications, the clients make requests to the

server through small request messages that results in the transmission

3



of much larger data items. In other words, asymmetry remains in the

size and amount of messages in uplink and downlink transmission.

1.1 Push-Pull and Hybrid Scheduling

Broadly, all data dissemination applications have two flavors. In a push-

based system, the clients continuously monitor a broadcast process from the

server and obtain the data items they require, without making any requests.

Thus, the average waiting time of the clients become half of the broadcast

cycle. For unit length data items, this result boils down to the half of

the total number of items present in the system. The broadcast schedule

can be determined online, using a flat round-robin scheme or offline using

a Packet Fair Scheduling (PFS) scheme. In contrast, in a pull-based sys-

tem, the clients initiate the data transfer by sending requests on demand,

which the server schedules to satisfy. The server accumulates the client’s

requests for less-popular items in the pull queue. Subsequently, an item

from the pull queue is selected depending on specific selection criteria. This

selection criteria depends on the specification and objective of the system.

Most request first (MRF), stretch-optimal, priority or a combination of

these techniques is often used. Both push and pull scheduling schemes

have their own advantages and disadvantages. While the push scheduling

is not affected by the uplink channel constraints, it suffers from wasting

resources in downlink wireless channels by repeatedly transmitting the less

popular items. Also, for huge set of data items the average length of the

push-based broadcast schedule becomes quite higher. On the other hand,

the pull-based data dissemination scheme is performed on the basis of ex-

plicit clients’ requests, but such client-requests are bounded by the uplink

resource constraints.

Hence, neither push nor pull alone can achieve optimal performance [32].

4



A detailed overview of the published research works on wireless data broad-

cast can be found in [51]. Therefore, the search for efficient hybrid schedul-

ing, which explores the efficiency of both push and pull strategies, contin-

ues. Example of hybrid push-pull systems include the Huges Network

System DirecPC Architecture [23], that uses satellite technology to give

a fast, always-on Internet connection; the Cell Broadcast Service (CBS)

that enables to deliver short messages to all the users in a given cell in

both GSM and UMTS systems [47]; and the Service Discovery Service in

networks of pervasive devices [13]. The general notion of hybrid scheduling

lies in dividing the entire set of data items into two parts: popular items

and less-popular items. The scheduler pushes the popular data items at

regular intervals. It also accumulates the client’s requests for less-popular

items in the pull queue and selects an item depending on the specific se-

lection criteria. A wise selection of the cutoff-point, used to segregate the

push and pull sets has the power to reduce the overall expected waiting

time of the hybrid system. However, most of the hybrid scheduling are

based on homogeneous (often unit-length) data items. The effect of het-

erogeneity, with items having different lengths, needs to be considered to

get an efficient, hybrid scheduling strategy for asymmetric environments.

1.2 Client’s Impatience

In practical systems, the clients often loose their patience, while waiting

for a particular data item. This results in two-fold effects: (1) the client

might get too impatient and leave the system after waiting for a certain

time; This is often termed as balking. Excessive impatience might result

in client’s antipathy in joining the system again, which is better known as

reneging. The performance of the system is significantly affected by this

behavior of the clients. The scheduling and data transmission system needs

5



to consider such impatience resulting in balking and reneging with finite

probability. (2) the client may also send multiple requests for the required

data item. Multiple requests by even a single client can increase the access

probability of a given item in a dynamic system. In existing scheduling

schemes, the server is ignorant of this ambiguous situation and considers

the item as more popular, thereby getting a false picture of the system

dynamics. Hence, the effects of client’s impatience leading to spurious

requests and anomalous system behavior needs to be carefully considered

and resolved to capture a more accurate, practical behavior of the system.

1.3 Service Classification and Differentiated QoS

Diversification of personal communication systems (PCS) and gradual pen-

etration of wireless Internet have generated the need for differentiated ser-

vices. The set of clients (customers) in the wireless PCS networks is gener-

ally classified into different categories based on their power and importance.

Activities of the customers having higher importance have significant im-

pact on the system and the service providers. The goal of the service

providers lies in minimizing the cost associated in the maintenance of the

system and reducing the loss incurred from the clients’ churn rate. How-

ever, the current cellular systems and its data transmission strategies do

not differentiate the QoS among the clients, i.e., the sharing and manage-

ment of resources do not reflect the importance of the clients. Although

most of the service providers support different classes of clients, the QoS

support or the service level agreements (SLA) remains same for all the

client-classes. Future generation cellular wireless networks will attempt to

satisfy the clients with higher importance before the clients having com-

paratively lower importance. This importance can be determined by the

amount of money they have agreed to pay, while choosing a particular

6



type of service. Deployment of such differentiated QoS calls for efficient

scheduling and data transmission strategies.

However, a close look into the existing hybrid scheduling strategy for

wireless systems reveals that most of the scheduling algorithms aims at

minimizing the overall average access time of all the clients. We argue that

this is not sufficient for future generation cellular wireless systems which

will be providing QoS differentiation schemes. The items requested by

clients having higher priorities might need to be transmitted in a fast and

efficient manner, even if the item has accumulated less number of pending

requests. Hence, if a scheduling considers only popularity, the requests of

many important (premier) clients may remain unsatisfied, thereby resulting

in dissatisfaction of such clients. As the dissatisfaction crosses the tolerance

limit, the clients might switch the service provider. In the anatomy of

today’s competitive cellular market this is often termed as churning. This

churning has adverse impacts on the wireless service providers. The more

important the client is, the more adverse is the corresponding effect of

churning. Thus, the service providers always want to reduce this churn-

rate by satisfying the most important clients first. The data transmission

and scheduling strategy for cellular wireless data networks thus needs to

consider not only the probability of data items, but also the priorities of

the clients.

1.4 Multichannel Scheduling

In order to improve the broadcast efficiency in asymmetric communica-

tions, one can divide the large bandwidth of the downlink channel in mul-

tiple disjoint physical channels. Then, for total push systems, the Multiple

Broadcast Problem deals with finding the broadcast schedule on a multi-

channel environment which minimizes the Multiple Average Expected Delay

7



(MAED), that is the mean of the Average Expected Delay measured over

all channels a client can afford to listen. At the best of our knowledge, only

total push schedules for multiple channels have been proposed so far. Such

solutions may either transmit all data items on each channel or partition

the data items in groups and transmit a group per channel. In the former

case, MAED can be scaled up to the number of channels that clients can

simultaneously listen by coordinating the solutions for each single channel.

In the latter case, clients must afford to listen to all channels, but not

necessarily simultaneously. When data items are partitioned among the

channels, and the flat schedule is adopted to broadcast the subset of data

assigned to each channel, the Multiple Broadcast Problem boils down to

the Allocation Problem introduced in [12, 53]. For such a problem, the so-

lution that minimizes MAED can be found in time polynomial in both the

size of data and the number of channels [53, 54, 12]. However, the optimal

schedule can only be computed off-line because it requires in input the

data sorted by decreasing demand probabilities. Moreover, the strategy is

not dynamic and the optimal solution has to be recomputed from scratch

when the data demand probabilities change. Thus, a need for an efficient

online, dynamic, multi-channel broadcast scheme arises.

1.5 Contribution and Scope of the Work

The prime objective of this thesis is to develop a framework for new hybrid

scheduling strategy for heterogeneous, asymmetric environments. The hy-

brid scheduling needs to be adaptive and practical enough to be applicable

in real-life systems. Subsequently, it should consider the effects of clients’

requests as well as their importance to select a particular item for dissem-

ination. More precisely, we can say that the contribution and the scope of

the thesis are the following:

8



1. We first propose an ideal hybrid scheduling that effectively combines

broadcasting of more popular (i.e., push) data and dissemination upon-

request for less popular (i.e., pull data) in asymmetric (where asymme-

try is arising for difference in number of clients and servers) environ-

ments. In this approach, the server continuously alternates between

one push item and one pull operation. We have assumed an ideal

system where the clients sends their requests to the server and waits

for the necessary data item until they receive it. The data items are

initially considered to be of uniform and unit-lengths. At any instant

of time, the item to be broadcast is selected by applying a Packet

Fair Scheduling (PFS). On the other hand the item to be pulled is

the one selected from the pull-queue using Most Request First (MRF)

scheduling principle.

2. Subsequently, we enhance the proposed hybrid scheduling scheme to

incorporate the items having different lengths. While the push sched-

ule is still based on PFS, the item to be pulled is the one selected from

the pull-queue using stretch optimal (i.e, max-request min-service-time

first) scheduling principle. We argue that stretch is a more practical

and better measure in heterogeneous system, where items have vari-

able lengths and the difference in item-lengths results in the difference

in service time of data items. Hence, apart from the client-requests

accumulated, the system also needs to consider the service time of the

items as items of larger size should wait longer than items of shorter

length. The performance of our hybrid scheduler is analyzed to derive

the expected waiting time. The cut-off point between push and pull

items is chosen so as to minimize the overall waiting time of the hybrid

system.

3. Subsequently, the hybrid scheduling strategy is further improved so

9



that it does not combine oen push and one pull in a static, sequential

order. Instead, it combines the push and the pull strategies probabilis-

tically depending on the number of items present and their popularity.

In practical systems, the number of items in push and pull set can

vary. For a system with more items in the push-set (pull-set) than

the pull-set (push-set), it is more effective to perform multiple push

(pull) operations before one pull (push) operation. We claim that our

algorithm is the first work which introduces this concept in a dynamic

manner. This has the power to change the push and pull lists on

real time and the minimize the overall delay. A strategy for providing

specific performance guarantee, based on the deadline imposed by the

clients is also outlined.

4. In most practical systems, the clients often get impatient while wait-

ing for the designated data item. After a tolerance limit, the client

may depart from the system, thereby resulting in a drop of access

requests. This behavior significantly affects the system performance,

which needs to be properly addressed. Although an introduction of

impatience is investigated in [24], the work considers only pure push

scheduling. One major contribution of our work lies in minimizing the

overall drop request as well as the expected waiting time.

There are also ambiguous cases which reflect the false situation of the

system. Consider the scenario where a client gets impatient and sends

multiple requests for a single data item to the server. Even if that

particular data item is not requested by any other client, its access

probability becomes higher. In existing systems, the server remains

ignorant of this fact and thus considers the item as popular and inserts

it into the push set or pull it at the expense of some other popular

item. In contrast, our work reduces the overall waiting time of the

10



system in the presence of anomalies. More precisely, we develop two

different performance models – one to incorporate clients’ impatience

and the other to address anomaly-removal strategy – to analyze the

average system behavior (overall expected waiting time) of our new

hybrid scheduling mechanism.

5. One major novelty of our work lies in separating the clients into dif-

ferent classes and introducing the concept of a new selection criteria,

termed as importance factor, by combining the clients’ priority and the

stretch (i.e, max-request min-service-time) value. The item having the

maximum importance factor is selected from the pull queue. We argue

that this is a more practical and better measure in the system where

different clients have different priorities and the items are of vari-

able lengths. The service providers now provide different service level

agreements (SLA), by guaranteeing different levels of resource provi-

sioning to each class of clients. The QoS (delay and blocking) guaran-

tee for different class of clients now becomes different, with the clients

having maximum importance factor achieving the highest level of QoS

guarantee. The performance of our heterogeneous hybrid scheduler is

analyzed using suitable priority queues to derive the expected waiting

time. The bandwidth of the wireless channels is distributed among

the client-classes to minimize the request-blocking of highest priority

clients. The cut-off point, used to segregate the push and pull items is

efficiently chosen such that the overall costs associated in the system

gets minimized. We argue that the strict guarantee of differentiated

QoS, offered by our system, generates client-satisfaction, thereby re-

ducing their churn-rate.

6. A new on-line hybrid solution for the Multiple Broadcast Problem is

investigated. The new strategy first partitions the data items among

11



multiple channels in a balanced way. Then, a hybrid push-pull sched-

ule is adopted for each single channel. Clients may request desired

data through the uplink and go to listen to the channel where the

data will be transmitted. In each channel, the push and pull sets are

served in an interleaved way: one unit of time is dedicated to an item

belonging to the push set; and one to an item of the pull set, if there

are pending client-requests not yet served. The push set is served

according to a flat schedule, while the pull set according to the Most

Request First policy. No complete knowledge is required in advance

of the entire data set or of the demand probabilities, and the schedule

is designed on-line.

7. A considerable portion of this thesis is involved in performance analy-

sis of the hybrid scheduling strategies. We have deeply investigated

into the modeling of the scheduling schemes using suitable tools, like,

birth and death process and Markov Chain. The major objective of this

performance modeling is to get an estimate of the average behavior of

our hybrid scheduling system. Extensive simulation experiments are

also performed to corroborate the performance modeling and analy-

sis. Simulation results as well as performance modeling point out the

fact that a wise selection of cutoff-point to seperate push and pull

scheduling together with consideration of practical aspects like adap-

tive push-pull operations, clients’ impatience and service classification

has the capability to endow the system with better scheduling strat-

egy, thereby improving the Quality of Service (QoS) of the system.

1.6 Organization of the Thesis

The overall thesis is organized as follows: Chapter 2 introduces the basic

push-pull scheduling and also highlights the major existing works in push,

12



pull and hybrid scheduling. We have introduced our new hybrid scheduling

scheme for homogeneous, unit-length items in Chapter 3. This chapter also

extends the basic hybrid scheduling over heterogeneous (different-length)

data items. In order to make the hybrid scheduling adaptive to the system

load, Chapter 4 discusses the improvement over this hybrid scheduling

and also outlines the basic performance guarantee offered by the hybrid

scheduling scheme. The effects of clients’ impatience, resulting in their

departure from the system and transmission of spurious requests to cre-

ate an anomalous system-behavior and its efficient solution is discussed

in Chapter 5. A different modeling strategy and performance analysis us-

ing multi-dimensional Markov Chain is developed in Chapter ?? to get a

better picture of the clients’ retrials and repeated attempts. The concept

of service classification in hybrid scheduling and its effects in providing

a differentiated QoS is described in Chapter 7. We propose a new hybrid

scheduling over multiple channels in Chapter 8. The dissertation concludes

with pointers to future research works in Chapter 9.

13



14



Chapter 2

Related Work in Push-Pull

Scheduling

Broadly all data transmission mechanisms can be divided into two parts:

(1) push-based data broadcasting and (2) pull-based data dissemination.

The origin of push-based data broadcasting arises from solving the asym-

metry of wireless communication channels. In push-based systems, the

server periodically broadcasts a set of data items to the set of all clients,

without any client’s intervention. The client’s just listen to the down-link

channel to obtain its required data items. Indeed, this saves bandwidth in

the resource-constrained uplink wireless channels. On the other hand, in

pull-based systems, a client uses the uplink channel to send explicit request

for a particular data item to the server. The server, in turn, transmits the

item to the client.

2.1 Push-based Systems

Push-based broadcast systems explore the downstream communication ca-

pacity of wireless channels to periodically broadcast the popular data items.

Figure 2.1 demonstrates this basic push-based scheduling principle. The

clients present in the system does not need to send explicit request to the

15



Server

ClientClient

Client Client

Figure 2.1: Push-based Broadcasting

server for any item, thereby saving the scarce upstream channel resources.

Instead, the clients simply listen to server until it receives its desired data

item. A wide variety of push-based broadcast scheduling exists in the lit-

erature. The vision of efficient push scheduling lies in effectively reducing

the overall access time of the data items in asymmetric communication en-

vironment. The concept of broadcast disks, resolving dependencies among

different broadcast data items, jitter approximation and introduction of

fair scheduling have contributed to the eventual realization of this vision.

Recent research trends have also addressed the issues related to broadcast

of heterogeneous data items and polynomial costs. In this section we take

a look into the different major existing push-based broadcast scheduling

strategies.

16



2.1.1 Broadcast Disks for Asymmetric Communication

The concept of broadcast disk was first introduced in [1] to explore the

downstream channel abundance in asymmetric communication environ-

ment. The key idea is that the server broadcasts all the data items to

multiple clients. In such a push-based architecture, the broadcast channel

essentially becomes a disk from which the clients retrieve the data items.

The broadcast is created by assigning data items to different disks of vary-

ing sizes and speeds. Items stored in faster disks are broadcast more often

than the items on the slower disks. Number of disks, their sizes and rela-

tive speeds can be adjusted to make the broadcast match the data access

probabilities. Assuming a fixed number of clients with static access pat-

tern for read-only data the objective of the work is to construct an efficient

broadcast program to satisfy the clients’ needs and manage the local data

cache of the clients to maximize their performance. Intuitively, increasing

the broadcast rate of one item decreases the broadcast rate of one or more

items. With the increasing skewness of data access probabilities, the flat

round-robin broadcast results in worse performance. Multi-disk broadcast

programs performs better than skewed broadcasts (subsequent broadcasts

of same page clustered together). It also aids in pre-fetching techniques,

power savings and obtaining a suitable periodicity in the broadcast pro-

gram. The proposed algorithm orders the pages from most popular to

least popular ones. It then partitions the list of the pages into multiple

ranges, where each range contains pages with similar access probabilities.

These ranges are termed as disks. Now, it chooses the relative frequency of

broadcast for each of the disks. Each disk is split into smaller units, termed

chunks. The broadcast program is created by interleaving the chunks.

Thus, the scheme essentially produces a periodic broadcast program with

fixed inter-arrival times per page. Unused broadcast slots are used for

17



transmitting index information, updates, invalidation or extra broadcast

of extremely important pages. Fast disks have more pages than the slower

ones.

2.1.2 Paging in Broadcast Disks

Similar to the concept of virtual memory, paging is also used in broad-

cast disks to improve its performance. However, a page-fault in broadcast

disk has variable cost, which is dependent on the requested page as well

as current broadcast state. Also pre-fetching a page is a natural strategy

for performance improvement in broadcast paging. For n data items and a

client’s cache-size of k, a deterministic algorithm for achieving a O(n log k)

competitiveness in broadcast paging is proposed in [26]. It also points out

that in a system without any pre-fetching, no deterministic algorithm can

achieve a competitive ratio better than Ω(nk). An algorithm is called lazy

if it moves only when it misses and positions itself on the requested page.

Such a lazy algorithm might load a page even if its is not requested as long

as no time is spent waiting for that page. A request sequence is hard if it

faults for every request in the sequence. Comparing the online broadcast

paging algorithm G with lazy adversaries reveals that the online algorithm

ignores all requests that do not cause any fault and is c-competitive on all

hard sequences on all such hard sequences. If n and k represent maximum

number of pages in the system and maximum size of client-cache, then for

n = k + 1, there exists a 1-competitive deterministic algorithm for broad-

cast disk paging. The competitive-ratio for a c-competitive deterministic

algorithm is (c−1)n+1. In fact, without pre-fetching, no deterministic on-

line algorithm can have a better competitive ratio than Ω(nk). This result

is extended to incorporate randomized algorithms also, with the the bound

being Ω(n log k). A new broadcast paging algorithm, termed as Gray algo-

rithm is proposed which uses a set of three marks, black, gray and white

18



and maintains a mark for each page. It has been shown that for a total

number of w requests, the cost on the gray requests in a given segment is

at most O(wn log k). This leads to the result that the amortized cost of

algorithm Gray on white requests is O(wn log k). Hence, the algorithm is

O(n log k) competitive and can be implemented by keeping track of O(k)

gray pages.

2.1.3 Polynomial Approximation Scheme for Data Broadcast

The first polynomial-time approximation scheme for data broadcast prob-

lem with unit length data items and bounded costs is introduced in [25].

The objective is to minimize the cost of the schedule, where the cost is

actually consisted of expected response time and broadcast cost of the mes-

sages. The basic idea is to form different groups consisting of equivalent

messages (i.e., messages having same cost and probability). Within every

group these messages are rearranged in such a manner that they can be

scheduled in a cyclic, round-robin fashion. This concept is extended to a

generalized case of broadcast scheduling. A randomized algorithm is intro-

duced which rounds the probabilities and costs of messages and partitions

them into three similar groups. Subsequently a greedy technique is also in-

troduced which minimizes the expected cost of the already allocated slots.

This greedy schedule is at least as good as the randomized schedule. The

period of this greedy technique is bounded in polynomial length.

2.1.4 Packet Fair Scheduling

The work of Hameed and Vaidya [19, 49] relates the problem of broadcast

scheduling with packet fair scheduling (PFS) and subsequently present

a O(log D) scheduling algorithm for D number of data items. It intro-

duces the concept of spacing between two items as the time taken between

19



two consecutive broadcasts of a particular (same) data item. For opti-

mal scheduling, any data item needs to be equally spaced [19, 49]. If,

li and si represents the length and spacing of item i, then assuming a

Poisson arrival of client requests, the waiting time of any client for that

particular item is given by: ti = si/2. Now, if pi represents the probabil-

ity of the item i, then the overall mean access time (toverall) is given by

toverall =
∑D

i=1 pi ti = 1
2

∑D
i=1 pi si. At this point of time one needs a suit-

able, optimal expression of spacing si. If instances of all items are equally

spaced, then, minimum overall access time is achieved when si and toptimal

is given by the following equations:

si =




D∑

j=1

√
pjlj




√√√√ li
pi

(a)

toptimal =
1

2




D∑

i=1

√
pili




2

(b) (2.1)

Although, equal-spacing of data items is not always feasible in practical sys-

tems, toptimal provides a lower bound on the overall minimum expected ac-

cess time. Packet fair scheduling algorithms essentially considers as switch

connecting many input queues with a single output queue. The objective is

to determine which packet will be transmitted from the set of input queues

to the output queue. For a specific value φi, the input queue i should get

at least fraction φi of the output bandwidth. Thus bandwidth is evenly

distributed between the input queues. Since, for optimal scheduling the

spacing between consecutive instances of same data item i needs to be

obtained from Equation 2.1(a). Thus we have,

li
si

=
li

(
∑D

j=1

√
pjlj)

√
li/pi

=
pili

∑D
j=1

√
pjlj

(2.2)

The performance of the algorithm can be further improved by using suit-

able bucketing techniques [49]. However, wireless channels are inherently

20



lossy and error-prone. Thus any practical broadcast scheduling should con-

sider the associated transmission errors. While error control codes (ECC)

aids to correct these errors, it is not possible to correct all the errors. Any

erroneous packet is discarded after reception.

2.1.5 Broadcasting Multiple Data Items

Traditional broadcasting schemes, which do not consider the relationship

between these data items often increases the average access time to process

clients’ requests in this environment. The problem of deciding and schedul-

ing the content of the broadcast channel is found to be NP-hard [29].

Subsequently different greedy heuristics exist for obtaining near-optimal

solutions.

Intuitively it is quite clear that the deciding the content of the broad-

cast channels is based on the clients’ queries. Given a set of queries and

a set of equal-sized data items, each query accesses a set of data items

termed query data set. For a given set of data items and queries, the query

selection problem is to choose a set of queries, which maximizes the to-

tal overall frequency of queries, constrained to the number of data items

over all queries to be bounded by maximum possible number of data items

currently present in the channel. Three different greedy approaches based

on (i) highest frequency, (ii) highest frequency/size ratio and (iii) highest

frequency/size ratio with overlapping are proposed to solve this query se-

lection problem.

The proposed query expansion method sorts the query according to their

corresponding access frequencies and inserts the data items of each query

in a greedy manner. Higher frequency queries are given higher preferences

for expansion. This basic method is extended to include the frequencies of

data items also. In order to reduce the overall access time, the query-set

of the overlapping and previously expanded data items are modified by

21



moving the data items to either left-most or right-most positions of the

previous schedule. This change makes the data items adjacent to data

items of currently expanded query. The moving of queries is performed

only if the remaining queries benefitted from this operation is larger than

the remaining queries that suffer from this operation. On the other hand,

the content of the scheduling can be expanded on the basis of data items

also. The data items of chosen queries are transformed to a data access

graph – a weighted, un-directed graph. Each vertex represents a certain

data item and each edge represents that the two data items belonging to a

certain query. The procedure combines two adjacent vertices of the graph

into a multi-vertex. If any vertex has more than one edge to a multi-vertex,

the edges are coalesced into a single edge with the previous edge-weights

added to form the total new weight. The procedure is iterated until the

graph is left with a single multi-vertex.

2.1.6 Broadcasting Data Items with Dependencies

Researches have demonstrated the existence of a simple optimal schedule [7]

for two files. Considering all possible combinations of clients from both

the classes and accessing the data items of any single or both the classes,

the work has shown that for equal length files with no dependencies any

optimal schedule can be partitioned into consistent simple segments, i.e.,

there exists an optimal simple schedule. The model is also extended to

incorporate variable length file sizes. But it has been proved that a simple,

optimal schedule still exists.

While the objective of broadcast schedule is to minimize the access cost

of a random client, most of the schedules are based on the assumption that

access cost is directly proportional to the waiting time. However, in real

scenarios the patience of a client is often not necessarily proportional to

the waiting time. This makes the broadcast scheduling problem even more

22



challenging by generating polynomial cost functions.

2.1.7 Broadcast Schedule with Polynomial Cost Functions

Recent researches [10] have shown the formulation of fractional modelling

and asymptotically optimal algorithms for designing broadcast schedules

having cost functions arbitrary polynomials of client’s waiting time. For

any data item i ∈ {1, 2, 3, . . . , D} with probability pi a cyclic schedule is

a repeated finite segment. For any increasing cost function the optimal

fractional broadcast schedule with minimum expected cost results when

successive instances of each data item are equally spaced. For such a

model, the optimality is achieved when the frequency of each item satisfies

the relation: frequencyi =
√

pi∑D
j=1

√
pj

. The access probabilities of the data

items are assumed to obey Zipf distribution, with access skew coefficient θ.

Subsequently a random algorithm, a halving algorithm, a fibonacci algo-

rithm and a greedy algorithm is proposed to obtain the optimal fractional

schedule.

1. At each step, the random algorithm transmits a page such that ex-

pected frequency of each page approaches exact frequency of frac-

tional schedule. For linear (first order) function, random algorithm

provides a solution bounded by twice the optimal cost. However, the

performance of the random algorithm deteriorates exponentially for

non-linear function.

2. Halving algorithm attempts to achieve the optimal fractional schedule

by rounding off the desired page frequencies to nearest power of 1/2.

When the desired frequencies are always powers of 2 the strategy

achieves the optimal schedule. On the other hand, in the worst case,

the actual frequency is always more than 1/2 the original frequency.

23



For linear cost model, the halving algorithm results in costs bounded

by twice the optimal algorithm.

3. Like random algorithm fibonacci (golden ratio) algorithm also gener-

ates schedule with same average frequencies as those of the optimal

fractional solution. However, the spacing between two consecutive

appearances of same item in the schedule may have three different

schedules close to the optimal periods. For a linear cost function, the

fibonacci algorithm generates a schedule whose cost is 9/8 times the

cost of optimal fractional model.

4. At every step the greedy algorithm broadcasts the item which will

be having maximum cost if not broadcasted. A finite schedule is

computed and repeated at each iteration of the algorithm. Even with

exponential cost function, the greedy approach results in a very near

optimal solution.

2.1.8 Jitter Approximation Strategies in Periodic Scheduling

Perfectly periodic scheduling broadcasts each item at exact time intervals.

This removes the constraint for the client to wait and listen to the server

until its desired item is broadcasted. Instead, the client now has the flexibil-

ity to switch its mobile on exactly when needed, thereby saving the energy

of power-constrained hand-held mobile terminals. Jitter is estimated as

the difference in spacing between the consecutive occurrences of the same

data item. A new algorithm for controlling the jitter in the schedule is

proposed. It requires that the ratio between any two periods to be a power

of 2. The key idea is to evenly spread the schedule over the entire period

in a recursive fashion. Idle slots are inserted in the schedule to remove the

imperfect balancing. Using a suitable parameter the algorithm controls the

influence of jitter and period approximation. It first constructs a binary

24



tree to create a replica for each job in the instance and associates these

replicas with the root of the tree. Each node has exactly two children. In

order to ensure low jitter, the strategy uses a total ordering of jobs. This

results in reduction of the jitter in databroadcasting.

2.1.9 Dynamic Levelling for Adaptive Data Broadcasting

The major important problem associated with this research on broadcast-

ing over multiple channels lie in generating hierarchical broadcast programs

with a given number of data access frequencies and a number of broadcast

disks in a broadcast disk array. The problem of generating hierarchical

broadcast programs is first mapped into construction of channel allocation

tree with variant fan out [33]. The depth of the allocation trees corre-

sponds to the number of broadcast disks and the leaves in the same level

actually represents the specific data items. The data items in the fast

disks are faster accessible than the data items in slower disks. However,

the data access frequencies change over time. The broadcast programs

need to dynamically adapt to all such changes.

2.2 Pull-based Systems

While push-based broadcast strategy attempts to reduce the overall ex-

pected access time, it suffers from two major disadvantages:

1. The server broadcast does not discriminate between the popular (hot)

and non-popular (cold) items. Thus, the non-popular (cold) items are

also broadcasted repeated times in periodic intervals. This results in

wastage of valuable bandwidth, because the non-popular items are

required by a few, handful of clients.

2. On an average the overall expected access time becomes half of the

25



Server

Client−A Client−B Client−C Client−D

A B C D

Figure 2.2: Pull-based Data Dissemination

entire broadcast cycle length. Hence, for a system having very large

number of items, some of which are non-popular, the average waiting

time for the popular items also becomes pretty high. In other words,

the popular items suffer for the presence of non-popular items.

A close look into the scenario reveals that the major reason behind these

two problems lie in the absence of clients’ explicit role in the scheduling.

Indeed, push-based scheduling does not take the clients’ need into account.

This gives rise to the on-demand pull scheduling. Figure 2.2 shows the ba-

sic of on-demand pull scheduling. In pull-based data transmission scheme,

the clients explicitly send uplink request for a particular data item to the

server. The server, in turn, process the requests and transmits the data

item over down-link channel. A wide variety of scheduling principles exist

for this pull-based scheduling. While most request first (MRF) provides

a low average access time, it suffers from fairness. On the other hand,

first-come-first-serve (FCFS), is fair, but suffers from sub-optimality and

26



increased average access time. A combination and modification of these

basic scheduling principles give rise to other scheduling like, shortest time

first (STF) and lowest waiting time first (LWTF). Subsequently, caching,

pre-fetching and opportunistic scheduling is also used to improve the per-

formance of on-demand pull-based data transmission. The eventual goal

is to satisfy certain timing constraints imposed by real-time communica-

tion. In this section we take a look into the major pull-based scheduling

strategies.

2.2.1 On-demand Data Dissemination

The scheduling problems arising in on-demand broadcast environments for

applications with heterogeneous data items is investigated in [3]. A new

metric stretch is introduced for performance measurement in heterogeneous

environments. The primary objective of the proposed algorithm is to op-

timize the worst case stretch of individual requests. Like other pull-based

applications, the clients send explicit requests to the server and the server

transmits the specific item to the client. The transmission unit is page –

a basic fixed-length unit of data transfer between clients and server. The

pages are assumed to have self-identifying headers, which are delivered

in a specific order. The concept of preemption is used to achieve better

scheduling performance. This also aids in implementing the the scheduling

strategy with less complexity, as most of the non-preemptive scheduling

schemes are NP-hard. The preemption helps in avoiding the backlog of

pending requests when a long job is being serviced. Preemption of an

item for a more popular item also has the potential for the improvement

of its performance. While response time is the most popular performance

measure, it is not a fair measure in heterogeneous systems. Individual re-

quests differ in terms of their service time. The proposed strategy uses

the concept of stretch, defined as the ratio of response time of a request

27



to its service time. Stretch explores the intuitive concept that larger jobs

should take more service time than the smaller jobs. The jobs are clas-

sified into different classes based on their service times. The average of

maximum stretch for each class (AMAX) aids to get the overall picture of

the entire system. This classification helps in better understanding of the

system performance. This algorithm repeatedly guesses a stretch-value,

which immediately yields a deadline for each job based on its arrival and

service time. Earliest deadline first (EDF) is used to determine if all jobs

can be scheduled with a bounded maximum stretch-value, thereby meet-

ing the respective deadlines. The objective is to use the past access-history

to make intelligent guess of stretch-values. The current stretch is used to

obtain the deadline.

2.2.2 RxW Scheduling

The RxW algorithm in [4, 5] is proposed to meet these criteria. By making

the scheduling decisions based on current request queue state, RxW can

adapt to the changes in client population and workload.

The primary intuition behind designing the RxW algorithm is to ex-

ploit the advantages of both MRF and FCFS. While MRF provides lowest

waiting time for popular pages, it suffers from fairness and might lead

to starvation of non-popular requests. On the other hand, FCFS is fair

but suffers from higher waiting time. The success of LWF lies in providing

more bandwidth to popular pages, while avoiding starvation of non-popular

pages. RxW combines the benefits of both MRF and FCFS in order to

provide good performance to both popular and non-popular items, while

ensuring scalability and low overhead. Intuitively, it broadcasts every page

having the maximal R×W values, where R and W are the number of pend-

ing requests and time of the oldest outstanding request for the particular

page. Three different versions of the RxW algorithm is proposed:

28



1. Exhaustive RxW: The exhaustive RxW maintains a structure contain-

ing a single entry for each page having outstanding requests. It also

maintains R, 1st arrival time. For any arriving request, a hash look

up is performed to get the page. If the request is the first one, then

the R is initialized to 1 and 1st arrival is initialized to current time;

otherwise the value of R is incremented. The server selects the page

having largest R×W value.

2. Pruning Search Space: This version of the algorithm uses two sorted

lists (i) the W -list, ordered by increasing order of 1st arrival time and

(ii) the R-list, ordered by decreasing order of R-values. The entries

in the W -list are kept fixed until the page is broadcasted. However,

the entries in the R-list is changed during every request arrival. This

makes request processing a constant-time operation. The pruning

scheme truncates the W -list. The algorithm alternates between two

lists, updating the maximum value of R×W at every iteration.

3. Approximating RxW: The approximated, parameterized version of

RxW reduces the search space even further at the cost of subopti-

mal broadcast decision. For highly skewness data items, the maximal

R×W values is obtained at the beginning of the least one of the two

lists. Also, the static workload, the average R×W value of the page

chosen to be broadcast converges to a constant.

2.2.3 Data Staging for On-Demand Broadcast

The RxW algorithm [4, 5], discussed before, is extended to incorporate

these data staging strategies [6] for improved performance of on-demand

data broadcasting. The server maintains a service queue for keeping the

outstanding clients’ requests. Upon receiving a request, the queue is checked.

If the item is already present, then the entry is updates, otherwise a new

29



entry for that item is created. An ending is also kept to track the items

for which an asynchronous fetch request is pending. The limit of this re-

quest is constrained by the size of the pending list. The server first checks

for completion of any asynchronous fetches in the pending list. The items

arrived by fetch operation are broadcasted in the order they were received

and the corresponding entries are removed from the pending list. If the

pending list is not full, the server operates in normal mode, otherwise, it

operates in opportunistic mode. In the normal mode, the server selects

an item using RxW algorithm. If the selected item is found in cache, it

is broadcasted, otherwise an entry to the item is created in pending list

and request for the item is sent to the remote site or secondary/tertiary

item. When the server has reached the limit of outstanding requests, the

system switches to opportunistic scheduling mode. The algorithm is now

restricted to cache-resident pages, having at least one pending requests. A

single bit in the service queue is kept to check whether the page is cache-

resident or not. The algorithm now attempts to find the best available

(cache resident) page according to RxW strategy. A new modified LRU

replacement scheme, termed as LRU with love/hate hint (LRU-LH) is used

to improve the cache replacement strategy. The popular and non-popular

pages are marked as ‘love’ and ‘hate’ to put them in the up and bottom

of the LRU chain. A page is selected for broadcast if it is encountered on

the R-list before W -list.

2.2.4 Pull Scheduling with Timing Constraints

An investigation into traditional realtime non-mobile and non-realtime mo-

bile data transmission strategies is performed in [15]. Subsequently an ef-

ficient pull-based scheduling scheme based on Aggregated Critical Requests

(ACR) is designed to meet the specific deadline of clients’ requests.

In realtime non-mobile environment, the server assigns priorities to

30



transactions based on several strategies, like, Earliest Deadline First (EDF)

or Least Slack (LS) first. As the name suggests, in EDF the item with ear-

liest deadline is given the highest priority. On the other hand, in LS the

slack time at any instant t is estimated as: deadline−(t+executionT ime−
processorT ime). The transaction is capable of meeting the deadline if the

slack time is zero. Although EDF is the best overall strategy, it performs

in a very poor manner when the system load is high. In pull-based, mobile

non-realtime strategies, the Longest Wait First (LWF) often outperforms

all other schemes to achieve the minimum waiting time. LWF computes

the sum of total time that all pending requests have been waiting for a

data item. The database is assumed to consist of a fixed number of uni-

form pages, where each page fits into one slot. Broadcast time of each

page is equal to 1 slot. Assuming an Poisson arrival rate, the system as-

signs the slots to particular data items such that the long term deadline

miss ratio is minimized. At any time slot t this ACR strategy attempts

to minimize the deadlines missed during time slot t + 1 by transmitting

the page with the most deadlines to meet before slot t + 1. The waiting

requests are kept in the pull queue. The server maintains the number of

deadlines to be missed if a page is not transmitted in the next time slot.

The requests corresponding to the deadlines are termed as critical requests

and the server updates the number of critical requests for the data item

at every time slot. It chooses the page having largest number of critical

requests to transmit, delete the requests with missed deadlines and reset

the number of critical requests.

2.2.5 Scheduling with Largest Delay Cost First

While most broadcast scheduling strategies (both adaptive and non-adaptive)

attempt to minimize the overall access time, recent researches have been

focussed to reduce the overall delay cost [46] in on-demand pull based data

31



dissemination schemes. The delay cost consists of three different compo-

nents. Apart from the existing overall access time cost it also takes the

tuning time costs and failure recovery costs into account. Like conventional

pull scheduling schemes, in the proposed largest delay cost first (LDCF)

the clients explicitly send the request for specific data items to the server.

However, it does not wait indefinitely for server’s response. Instead, the

clients use a response time limit (RTL) to indicate the maximum possible

time it can wait for server’s response. The strategy also considers tuning

time costs, which corresponds to the search for the location of a particular

data item in the index. During the entire broadcast period, the strategy re-

ceives the new requests and add them into the request sequence. The data

item with largest priority is selected and added to the broadcast period,

sorted by the descending order of popularity factor. The index is obtained

and data item is broadcasted. The failure requests are now cleared.

2.3 Both Push and Pull

At this point of time, it is clear that both push-based and pull-based

scheduling have some specific advantages. Naturally, a wise approach is

to explore the advantages of both of these basic data transmission mecha-

nisms. This gives rise to some interesting data transmission schemes, like,

lazy data request.

2.3.1 Lazy Data Request for On-demand Broadcasting

While the prime goal of data broadcasting is reducing the overall access

time, most practical systems need to consider the messaging overhead also.

On the other hand, the load of the real-time systems often change in a

dynamic fashion. Hence, the broadcast system needs to be robust enough

to adapt itself online with the system dynamics. The basic motivation

32



behind the lazy data request strategy [31] is to not to send the request

for the data item but wait. The particular data item might already be

broadcasted due to explicit request by other clients. This will result in

saving of message passing in the uplink channel and battery power of the

mobile terminal. It proposes a new dynamic bounded waiting strategy

which contains two parts in the schedule: index section and data section.

The client can use the index section to get an predicted estimate of the item

to be broadcasted in near future. The server chooses a set of data items

and the items are batched together for broadcasted. The corresponding

index section is broadcasted before the transmission of the batch set. The

number of items to broadcast in a batch set is determined by a control

variable termed selection factor. In the worst case the client tunes at the

beginning of a data section and waits till the end of next index section of

the next data set.

2.4 Hybrid Scheduling

Hybrid approaches, that use the flavors of both push-based and the pull-

based scheduling algorithms in one system, appears to be more attractive.

The key idea is to separate the data items into two sets: (1) popular

and (2) non-popular. While the popular data items are broadcasted us-

ing push-based transmission strategy, the relatively non-popular items are

transmitted using on-demand pull-based scheduling strategy. A suitable

balance between push and pull scheme is of utmost important at this as-

pect. A major characteristic of an efficient hybrid scheduling strategy is its

adaptiveness. The strategy should be able to change the scheduling deci-

sions online. In this section we will look into the major hybrid scheduling

techniques.

33



2.4.1 Balancing Push and Pull

The work of Acharya, Franklin and Zdonik [2] is perhaps the first signifi-

cant work which effectively explores the advantages of both push and pull

based data transmission strategies. The work introduces the asymmetry

in different factors, like, (i) uplink and downlink channels (ii) clients and

server ratio (iii) amount of data downloaded and uploaded. The proposed

strategy considers a capacity-constrained server and multiple clients with

uplink channels. It then extends the static, push-based data broadcast-

ing to incorporate pull-based on-demand data transmission schemes for

read-only data items. For push based broadcast scheduling, the proposed

algorithm, selects the cached page which contains lowest p/x ratio. The

pull-based on-demand scheduling is modeled as a point-to-point connection

with the server. While the rate of client-requests increases with number

of clients, the server has a constraint of maximum allowable requests it

can handle. The server is capable of interleaving push and pull-based data

items, and options are kept to vary the percentage of slots dedicated for

on-demand pull scheduling. The requests are accumulated and kept in the

pull-queue. The server selects the item in a first-come-first-serve (FIFO)

fashion. A threshold parameter is kept to maintain the use of back-channel

under certain limits. While Measured Client models a single client, the Vir-

tual Client models the combined effect of all other clients in the system. It

maintains a cache holding different pages and waits for certain time units

between two consecutive requests. If possible the requests are serviced

from the cache, otherwise, they are broadcasted or pulled.

2.4.2 On-Demand Broadcast for Efficient Data Dissemination

A demand-driven broadcast framework, termed Broadcast on Demand (BoD)

is proposed in [52], which satisfies the temporal constraints of the requests

34



and uses scheduling techniques at the server side to dynamically utilize the

limited bandwidth. The framework allows mobile clients limited ability to

transmit queries to the server with the maximum tolerable latency. The

server is capable of producing a broadcast which satisfies the clients’ re-

quests and retains scalability and bandwidth utilization. Essentially the

broadcast communication is combined with on-demand data dissemina-

tion. It customizes the broadcast service to service individual clients bet-

ter, while avoiding the scalability problem of client/server model. Time

division multiplexing is used to utilize a fraction of the bandwidth for pe-

riodic broadcast and the rest for on-demand data transmission.

The broadcast strategy uses earliest deadline first (EDF) to schedule

the transmission of data items. In the planning-based non-preemptive

broadcast strategy, a sorted target-set of the number of requests need to

be broadcast is formed. At every iteration an item, having the closest

deadline is chosen from the target. However, this schedule often performs

poorly in overload situation. This is solved by using batching of multiple

information and handling the batched requests by a single transmission

of data items. Unlike EDF, for every transmission request EDF-BATCH

checks if that transmission is already planned. If so, it does not re-transmit

the data as the planned transmission will take care of that data, otherwise

the scheduler attempt to transmit the data. This results in bandwidth sav-

ings with less overhead. This strategy is extended to make the scheduling

hybrid by incorporating on-demand pull-based scheduling schemes. On

arrival of a client’s request, first the server checks if periodic broadcast

can satisfy the request within deadline. If so, no on-demand scheduling is

needed; otherwise, the on-demand scheduling is used.

35



2.4.3 Channel Allocation for Data Dissemination

A different dynamic channel allocation method, which assigns channels for

broadcast or on-demand services based on system workload is discussed in

[27, 20, 28]. The proposed channel allocation algorithm efficiently achieves

the optimal channel allocation by approximation techniques. The wireless

communication platform is assumed to be supported by a Mobile Support

Station (MSS). Every cell is assumed to be consisted of one MSS and mul-

tiple mobile computers. The MSS maintains D data items and the mobile

computers issue requests to the MSS. Using the concept of a M/M/c/n

queuing model (with finite buffers) the expected access time (E[PULL])

of on-demand system under heavy load is approximated. Similarly for

broadcast channels a cost analysis is performed and the expected access

time for retrieving data through monitoring the broadcast channel is ob-

tained. In order to achieve optimal data access efficiency in the cells, the

system dynamically reassigns channels between on-demand and broadcast

services. The allocation algorithm starts with exclusive on-demand sys-

tem (i.e., broadcast set being empty). It then initializes the lowest access

time depending on whether the system is heavily or lightly loaded. Now at

every iteration the algorithm identifies the data items to be transmitted.

Then it computes the channel allocation policies and obtain the optimal

allocation by choosing the policy which minimizes the overall access time.

This scheme is performed both in heavy and light load.

2.4.4 Wireless Hierarchical Data Dissemination System

A hierarchical data delivery (HDD) model is proposed in [21] which in-

tegrates data caching, information broadcasting and point-to-point data

delivery schemes. The broadcast schedule and cache management schemes

are dynamically adjusted to minimize the overall access time. Efficient data

36



indexing methods are also explored in this environment. Data are stored

in the hierarchies, with most requested data in client-cache, followed by

commonly used data in broadcast channel and least popular data in the

server (for pulling). When a user issues a query the item is first searched

in the cache. The item is retrieved if it is found in the cache, otherwise

the item is searched in the server. If it is found within the threshold of

the server’s broadcast channel, it is obtained and kept in the cache; other-

wise it is explicitly pulled from the server. The clients can explicitly issue

signature to the broadcast channels. The model is formed using a single

server and multiple clients. The client model is used to generate query

with Zipf’s and Gaussian distribution, broadcast channel monitoring and

request for pull items. The server model uses broadcast disk management

techniques to schedule data items in an efficient manner.

2.4.5 Adaptive Hybrid Data Delivery

An adaptive hybrid data delivery strategy is also proposed in [32], which

dynamically determines the popularity of the data items and effectively

combines the push and pull based strategies. In other words, the data

items are neither characterized nor predicted a-priori. The continuously

adjusts the amount of bandwidth to match the diverse demand patterns

of the clients. The total bandwidth is logically distributed into three parts

for (10 broadcasting index block, (2) broadcasting data blocks and (3) uni-

casting on-demand data blocks. The distribution adapts with the changes

in clients’ demands. The system begins with server broadcasting one or

more index or data objects. Increasing number of requests for a particular

data will increase the bandwidth allocation for that data item and vice-

versa. One major advantage of this approach is that it implicitly takes

care of the fact that when the requests for a data item is reduced due to

the satisfaction of the clients recently received that data item. The server

37



then reduces the bandwidth allocation for that data item. However, sub-

sequent requests by the set of clients for that same data item increases the

popularity of that item, and the server re-assigns more bandwidth for that

particular data item. One prime objective of the work is to minimize the

overall access time, where the access time is composed of access time for

index, tuning time and access time for data.

2.4.6 Adaptive Realtime bandwidth Allocation

The real-time data delivery strategy discussed in [30] maintains a certain

level of on-demand request arrival rate to get a close approximation of op-

timal system response time. One advantage of the system is that it does

not explicitly need to know the access information of the data items. A

single broadcast channel and a set of on-demand point-to-point channels

are used in a single cell environment. The data items are of uniform size

and the number of data items in the broadcast channel changes with vari-

ation in the system load. The clients first listen to the broadcast channels

for respective data items they are waiting for. Only if the required data

item is not found, the client transmits explicit request to the server for

that particular data item. A MFA (bit) vector and a broadcast number

is kept. Each bit in the vector represents a data item in the broadcast

channel. Whenever a request is satisfied, the corresponding bit in the vec-

tor is set. The server maintains a broadcast version number to ensure the

validity of the relationship between bit-positions and data items. This vec-

tor and broadcast version number is piggy-backed to the server along with

the on-demand data request. The server uses this information to update

the request information available and get an almost accurate information

regarding the clients’ requests and data items received.

38



2.4.7 Adaptive Dissemination in Time-Critical Environments

An adaptive, online, hybrid scheduling and data transmission schemes for

minimizing the number of deadlines missed is also proposed in [16]. The

information server dynamically adapts to the specific data items that needs

to be periodically broadcast and the amount of bandwidth assigned to each

transmission mode. A time critical adaptive hybrid broadcast (TC-AHB)

is proposed in which combines both periodic broadcast and on-demand

dissemination efficiently. In this scheme both the data items being broad-

cast and the amount of bandwidth assigned dynamically changes in a per-

cycle basis to adapt to the clients’ needs. The decision regarding periodic

broadcast and on-demand transmission is dependent on the access fre-

quency. The amount of bandwidth assigned, on the other hand, is related

to the deadline constraints. The server always computes periodic broadcast

program for next cycle and leaves some bandwidth for on-demand trans-

mission. The broadcast frequency is the minimum needed to satisfy the

deadline constraints of the specific data items. An online scheduling policy

is used to prioritize the requests according to their deadlines and subse-

quently minimize the number of deadlines missed. The server broadcasts

the items which have high access requests and low bandwidth requirement.

In each broadcast cycle it includes the data item which aids in maximum

bandwidth savings. This process is continued until some bandwidth is left

for on-demand transmission. Such a greedy strategy offers a solution which

is very close to optimal solution. The on-demand scheduling used Earliest

Deadline First (EDF), which is implemented using priority queues where

priorities are inversely proportional to deadlines.

39



2.4.8 Adaptive Scheduling with Loan-based Feedback Control

In order to solve the dynamic information transmission problem, the work

in [22] proposed a strategy to subsume the dynamic and static information

into groups and introduce a loan-based slot allocation and feedback control

scheme to effectively allocate the required bandwidth. A uniform building

block, termed as a group, is designed. Every block has a unique Group-

Id (GID). Two types of groups, namely, virtual and actual groups are

formed. Clients interested for a static data item forms the virtual group.

The server broadcasts the static items to the group at the same time. On

the other hand, the actual group consists of the clients requesting dynamic

data items. The server allocates a specific number of slots to each group

depending on the particular group-popularity.

The dynamics of traffic might lead to excess of scarce slots (bandwidth)

to the groups. A loan based slot allocation and feedback control (LSAF)

scheme is introduced to complement the GID mechanism. At the start of a

broadcast cycle, every group is assigned with a slot-quota. The server then

performs dynamic slot allocation among the groups during a broadcast

cycle. When the slot-quota of a particular group is exhausted (due to

transmission of different data items belonging to that group), the server

attempts to loan a slot from another group to broadcast any data item

belonging to the previous group. This loan for slots is determined by

any one of the three schemes: (1) sensitive loan: the server estimates

and predicts the slot requirements of every group and loans a slot from

the group, which will be having largest remaining slots in future; (2) in-

sensitive loan: the server loans the slot from the group currently having

largest unused slots normalized by the slot quota; (3) greedy loan: the

server takes the loan from the group having largest remaining slots at

current instant. At the end of each broadcast cycle the server estimates

40



and learns the amount of slots taken to deliver all group-specific items

of any group by a direct feedback mechanism. This feedback mechanism

essentially gives the required slot-quota to meet the specific group’s need.

This also gives an estimate of dynamic item production and transmission

rate. In order to meet the real-time constraints, the server also delivers the

queued items using a pull-scheduling and has the capability of preempting

the slots in the next broadcast cycle and broadcasts the queued items using

a push scheduling.

2.4.9 Framework for Scalable Dissemination-Based Systems

A general framework for describing and constructing Dissemination Based

Information Systems (DBIS) is described in [14]. A number of data de-

livery mechanisms and investigate the tradeoffs among them. By com-

bining various data delivery techniques the most efficient use available

server and communication resources, the scalability and performance of

dissemination-oriented applications is enhanced.

The approach distinguishes between three types of nodes: (1) data

sources provide base data for application (2)clients consume this informa-

tion and (3) information broker adds value to information and redistribute

it. Information brokers binds the different modes of data delivery and drive

the scheduling to select a particular mode, depending on its access patterns.

Brokers provide network transparency to the clients. Brokers can be the

data sources also. Data can be cached at any of the many points along the

data path from the server to the client. Cache invalidations and refresh

messages need to be send to each client cache manager. LRU or some other

cache replacement policy can be used in this approach. Intermediate nodes

can simply pass/propagate the data or can also perform some computa-

tions over those data. Provisions are also kept to recover some nodes from

failure. The server relies on the clients’ profile to optimize the push sched-

41



ule. The framework provides techniques for delivering data in wide-area

network settings in which nodes and links reflect extreme variation in their

operating parameters. By adjusting the data delivery mechanism to match

these characteristics high performance and scalability can be achieved. The

toolkit provides a set of classes to allow distributed nodes to negotiate in

order to establish a connection and local cache. The data transmission

policies needs to be agreed upon between the server and the clients.

2.4.10 Guaranteed Consistency and Currency in Read-Only Data

In order to ensure various degrees of data consistency and currency for

read-only transactions, various new isolation levels are proposed in [44].

Efficient implementation of these isolation levels are also proposed. This

is used in hybrid data transmission environment. The newly proposed

consistency levels are independent of the existing concurrency protocols.

Although, serializability is standard criteria for transaction processing

in both stationary and mobile computing, it is in itself not sufficient for

preventing read-only transactions from experiencing anomalies related to

data currency. A start-time multi-version serialization graph (ST-MVSG)

is a directed graph with nodes = commit(MV H) and edges E such that

there is an edge representing every arbitrary dependency. Let MVH be a

multi-version history over a set of committed transactions. Then MVH is

BOT serializable if ST-MVSG is acyclic. In a MVH that contains a set

of read-write transactions such that all read-write transactions are seri-

alizable, each read-only transaction satisfying READ-RULE is also seri-

alizable. This leads to the conclusion that MVH is strict forward BOT

serializable if SFR-MVSG is serializable. In a multi-version history con-

taining a set of read-write transactions such that all read-write transactions

are serializable, each read-only transaction is serializable with respect to

transactions belonging to the corresponding update. Simulation results

42



demonstrate that this improves the throughput control and number of

abort associated in transactions.

2.4.11 Broadcast in Wireless Networks With User Retrials

Most of the research works in data broadcast do not consider the possibility

of a single user making multiple request submission attempts. Such retrial

phenomenon has significant attempt on the system’s overall performance.

The prime objective of the work in [50] is to capture and analyze the user

retrial phenomenon in wireless data broadcast schemes. The objective is

realized by introducing different performance measures, like, broadcast and

unicast service ratio, service loss, waiting time and reneging probability.

Based on the analytical expressions for these performance measures the

existence of a single, optimal broadcast scheduling scheme is proved. The

solution provides optimal performance with respect to system’s through-

put, grade and quality of service. This method is extended to design a

hybrid unicast/broadcast scheduling scheme with user’s retrials.

2.5 Summary

Broadly all scheduling can be divided into push and pull scheduling schemes.

However, both push and pull scheduling schemes have their own limita-

tions. Hence, a suitable combination of push and pull schemes is required

to develop a hybrid scheduling strategy, which has the capability of im-

proving the overall performance. In this chapter we have given a broad

overview of the major existing push, pull and hybrid scheduling strategies.

While most of the strategies attempt to minimize the client’s waiting time,

some are also focused on delay jitter, overall cost, consistency.

43



Table 2.1: Different Scheduling Strategies
No. Work Type Performance Metric Adaptability Spl. Features

1 [1] push response time no LIX, PIX

page replacement

2 [3] pull stretch value no MAX, AMAX

BASE and EDF

strategy

3 [4, 5] pull waiting time no scalable , RxW ,

combination of

MRF and FCFS

4 [6] pull waiting time no LH-LRU replacement

opportunistic schedule

5 [30] hybrid response time yes inaccurate

data access info.

6 [9] push cost (poly. of access time) no asymptotic

lower bound

7 [11] push jitter–period tradeoff no flexibility

jitter-period

8 [14] hybrid delay no real toolkit, scalable,

LRU cache, information-broker

9 [35] hybrid avrg. access time yes –

10 [31] hybrid access time no lazy data

messaging overhead no request

11 [44] hybrid throughput no data consistency

abort no concurrency

12 [8] push access time no separating service

provider entity

13 [33] push expected delay yes sensitivity with items,

disks and frequencies

14 [29] push access time no multiple

query frequency data items

15 [21] push delay yes hierarchical data deliver model

16 [22] push message traffic yes group info

loan-based slot-allocation

feedback control

17 [26] push cost no O(n log k) competitive

18 [46] pull access time yes largest delay

tuning time cost first

failure recovery (LDFC)

19 [34] hybrid avrg. access time yes –

20 [7] push waiting time no file dependency

21 [32] hybrid average access time yes dynamic popularity

average completion time of data items

22 [25] push broadcast cost no fast, polynomial

approx. algos. approach

23 [19, 49] push access time no packet fair

scheduling

24 [46] push-pull access time yes identical push-

response time pull systems

25 [16] push requests scheduled yes time constraints

missed deadlines

26 [27, 28] push-pull access time yes cost estimation

on-demand channels of dynamic scheduling

27 [2] hybrid response time no scalability issues

44



Chapter 3

Hybrid Push-Pull Scheduling

In this chapter we introduce a new hybrid push-pull scheduling strategy.

In short, the strategy partitions the entire set of items into push and pull

sub-sets. It then strictly alternates between a push and a pull operation

to transmit all the data items. While initially the system is operated on

unit-length, homogeneous data items, the work is extended to include the

heterogeneous, variable-length items also. The selection criteria for a push-

item is based on packet-fair scheduling and a pull-item is selected on the

basis of most request first (MRF) (for homogeneous items) and stretch-

optimal scheduling (for heterogeneous items). The scheme is further en-

hanced to incorporate the role of client priorities to resolve the tie. Suitable

performance modeling is done to analyze the average system performance.

Simulation experiments support this performance analysis and points out

the efficiency of the hybrid system in reducing the overall average access

time.

3.1 Hybrid Scheduling for Unit-length Items

Before introducing our proposed hybrid scheduling for unit-length data

items, we first highlight the assumptions we have used in our hybrid

scheduling system.

45



Clients

Server Data Base

Pull Queue

Priority−1
Priority−2 Priority−N

Broadcast Cycle (Push) with PFS schedule

Scheduler

Figure 3.1: Asymmetric Hybrid Scheduling System

3.1.1 Assumptions and Motivations

1. We assume a system with a single server and multiple clients thereby

imposing an asymmetry. Figure 3.1 shows the schematic diagram

of such an asymmetric environment consisting of a single server and

multiple clients with different priorities. The uplink bandwidth is

much less than the down-link bandwidth.

2. The database at the server is assumed to be composed of D total

number of distinct data items, each of unit length.

3. The access probability Pi of item i is a measure of its degree of popu-

larity. We assume that the access probabilities Pi follow the Zipf’s dis-

tribution with access skew-coefficient θ: Pi = (1/i)θ∑n
j=1(1/j)θ . It is assumed

that the server knows the access probability of each item in advance.

The items are numbered from 1 to D in decreasing order of their ac-

46



cess probability, thus P1 ≥ P2 ≥ ... ≥ PD. Clearly, from time to time,

the server recomputes the access probability of the items, renumber

them as necessary and eventually make available to all clients the new

numbering of the items. It is assumed that one unit of time is the

time required to spread an item of unit length.

We say that the client accesses an item if that item is pushed, while

that item is requested if the item is pulled. Moreover, let the load N of the

system be the number of requests/access arriving in the system for unit

of time. Let the access time, Tacc,I be the amount of time that a client

waits for a data item i to be broadcast after it begins to listen. Moreover,

let the response time, Tres,I be the amount of time between the request of

item i by the client and the data transmission. Clearly, the aim of the

push scheduling is to keep the access time for each push item i as small as

possible, while that of the pull scheduling is to minimize the response time

for each pull item i. In a push-based system, one of the overall measures of

the scheduling performance is called average expected access time, Texp−acc,

which is defined as Texp−acc =
∑D

i=1 Pi · Tacc,i, where Tacc,i is the average

expected access time for item i. If instances are equally spaced in the

broadcast cycle, then Tacc,i = si

2 , where si is the spacing between the two

instances of same item i. The push-scheduling is based on the packet fair

scheduling algorithm. Similarly, it can be defined the average expected

response time, denoted Texp−res for the pull scheduling.

In order to explain the rational behind our approach, let us first describe

in details the intuition behind the hybrid scheduling in [18] and point out

some of its drawbacks. To make the average expected access time of the

system smaller, the solution in [18] flushes the pull queue. Let the push-

set consist of the data items numbered from 1 up to K, termed from now

on the cut-off point, and let the remaining items from K + 1 up to D

form the pull set. Hence, the average expected waiting time for the hybrid

47



scheduling is defined as:

Texp−hyb = Texp−acc + Texp−res =
K∑

i=1
Pi · Tacc,i +

D∑

i=K+1
Pi · Tres,i.

As the push-set becomes smaller, the average expected access time Texp−acc

becomes shorter. However, the pull-set size becomes larger, leading to

a longer expected response time Texp−res. The size of the pull-set might

also increase the average access time Tacc,i, for every push item. In fact,

if the hybrid scheduling serves, between any two items of the cyclic push

scheduling, all the pending requests for pull items in First-Come-First-

Served order, it holds for the average expected access time for item i :

Tacc,i = (si + si · q)/2, where q is the average number of distinct pull items

for which, arrives, at least one pending request in the pull-queue for unit

of time. From now on, we refer to q as the dilation factor of the push

scheduling. To limit the growth of the Tacc,i, and therefore that of the

Texp−acc, the push-set is taken in [18] enough large that, in average, no

more than 1 request for all the pull items arrives during a single unit time.

To guarantee a dilation factor q equal to 1 when the system load is equal to

N , [18] introduces the concept of the build-up point B. B is the minimum

index between 1 and D for which it holds N(1 − ∑B
i=1 Pi) ≤ 1, where N

is the average access/requests arriving at unit of time. In other words,

[18] pushes all the items from 1 up to B to guarantee that no more than

1 item is waiting in the pull queue to be disseminate, and therefore to

achieve q = 1. After having bounded the dilation factor to 1, [18] chooses

as the cut-off point between the push and pull items the value K, with

K ≥ B, such that K minimizes the average expected waiting time for

the hybrid system. Intuitively, the partition between push and pull items

found out in [18] is meaningful only when the system load N is small

and the access probabilities are much skewed. Under these conditions,

indeed, the build-up point B is low. Hence, there may be a cut-off K,

48



such that B ≤ K ≤ D, which improves on the average expected access

time of the pure-push system. However, when either the system has a

high load N and/or all items have almost the same degree of probability,

the distinction between the high and low demand items becomes vague,

artificial, hence the value of build-up point B increases, finally leading to

the maximum number D of items in the system. Thus, in those cases,

the solution proposed in [18] almost always behaves as a pure push-based

system. To corroborate what discussed so far, in Table 3.1, the relation of

the value of the load N of the distribution of the access skew coefficient θ

with the value of the build up point B is illustrated, when the total number

of distinct items D is 20.

3.1.2 The Basic Hybrid Push-Pull algorithm

We now present a hybrid scheduling that improves on [18] when the load

is high or when the access probabilities are balanced, that is, when the

scheduling in [18] reduces to the pure-push scheduling. The solution pro-

posed in this paper again partitions the data items in the push-set and the

pull-set, but it chooses the value of the cut-off point K between those two

N 2 4 6 8 10 12 14 16 18 20

θ

0.5 8 14 16 17 18 19 19 19 20 20

0.6 7 13 16 17 18 18 19 19 19 20

0.7 6 12 15 16 17 18 18 19 19 19

0.8 6 11 14 16 17 17 18 18 19 19

0.9 5 10 13 15 16 17 17 18 18 19

1.0 4 9 12 14 15 16 17 17 18 18

1.1 4 8 11 13 14 15 16 17 17 18

1.2 3 7 10 12 13 14 15 16 16 17

1.3 3 7 9 11 12 13 14 15 16 16

Table 3.1: Build-up point B for several values of N and θ when D = 20.

49



sets independent of the build-up point. Indeed, we let the pull-queue grow

in size, and the push-set can contain any number of data items. After each

single broadcast, we do not flush out the pull-queue, which may contain

several different pending requests. In contrast, we just pull one single item:

the item, which has the largest number of pending requests. Observe that

simultaneously with every push and pull, N more access / requests arrive

to the server, thus the pull-queue grows up drastically at the beginning. In

particular, if the pull-set consists of the items from K +1 up to D, at most

N ∗∑D
j=K+1 Pi requests can be inserted in the pull-queue at every instance

of time, out of which, only one, the pull item that has accumulated the

largest number of requests, is extracted from the queue to be pulled. We

are sure, however, that the number of distinct items in pull-queue cannot

grow uncontrolled since the pull-queue can store at most as many distinct

items as those in the pull-set, that is no more than D − K items. So,

after a while, the new arriving requests will only increase the number of

clients waiting in the queue for some item, leaving unchanged the queue

length. From this moment, we say that the system has reached a steady

state. In other words, the pending requests will start to accumulate behind

each pull-item without increasing anymore the queue length. Hence, just

pulling the high demanded pull item, the system will not serve just one

client but many. Our intuition is that a pull item cannot be stuck in the

pull-queue for more than as many unit of time as the length of the queue.

The push system, on the other hand, incurs an average delay of
∑K

i=1 siPi,

where si =
∑k

j=1

√
P̂j√

P̂i

, and P̂i = Pi∑K
j=1 Pj

.

The server performs several actions simultaneously. From one side, it

monitors the access probabilities of the data items and the system load.

When those parameters diverge significantly from the assumptions previ-

ously made by the system, the server renumber the data items, and recal-

culates the cut-off point K to separate the push-set from the pull-set, as

50



Integer function CUT-OFF POINT (D,P = P1, P2...PD) : K

/* D: Total No. Of items in the Database of the server
P : Sorted vector of access probability of items in decreasing order
K: Optimal Cut off Point */
K := 1; Texp−hyb(0) := Texp−hyb(1) := D;
while K ≤ D and Texp−hyb(K − 1) ≥ Texp−hyb(K) do
begin

Set si =
∑k

j=1

√
P̂j√

P̂i

, where P̂i = Pi∑K

j=1
Pj

,

Texp−hyb(K) =
∑K

i=1 SiPi +
∑D

i=K+1 Pi ∗ (D −K); K := K + 1;
end
return (K − 1)

Figure 3.2: Algorithm to set the optimal cut-off point K

illustrated in Figure 3.2. Note that K is selected in such a way that the av-

erage expected waiting time of the hybrid scheduling Texp−hyb is minimized.

In addition, the server listens to all the requests of the clients and man-

ages the pull-queue. The pull-queue, implemented by a max-heap, keeps

in its root, at any instant, the item with the highest number of pending

requests. For any request i, if i is larger than the current cut-off point K,

i ≥ K, i is inserted in the pull-queue, the number of the pending requests

for i is increased by one, and the heap information updates accordingly.

On the other hand, if i is smaller than or equal to K, i ≤ K, the server

simply drops the request because that item will be broadcast by the push-

scheduling. Finally, the server is in charge of deciding at each instant of

time which item must be spread. The scheduling is derived as explained

in Figure 3.3, where the details for obtaining the push scheduling (PFS)

are omitted. Interested readers can find it in [19].

To retrieve a data item, a client performs the following actions (Fig-

ure 8.3):

51



Procedure HYBRID SCHEDULING;
while true do
begin
compute an item from the push scheduling and broadcast it;
if the pull-queue is not empty then
extract the most requested item from the pull-queue,
clear the number of pending requests for that item, and pull-it
end;

Figure 3.3: Algorithm at the Server End

3.2 Simulation Experiments

First of all, we compare the simulation results of the new algorithm with

those of the hybrid scheduling in [18], with the results of the pure-push

scheduling and with the analytic expression used to derive the optimal

cut-off point. We run experiments for D = 100, for the total number of

access / requests in the system M = 25000 and for N = 10 or N = 20. The

results are reported in Table 2 and 3, respectively for N = 10 and N = 20.

For both Tables 2 and 3, the value of θ is varied from 0.50 to 1.30, so as

to have the access probabilities of the items initially from similar to very

skewed. Note that for θ no larger than 1, the analytic average expected

access time is close to that measured with the experiments. This confirms

that, when the access probabilities are similar, the pull items remain in the

pull-queue for a time no larger than to total number of pull items that is

D −K. For larger values of θ, the experimental measure of the expected

Procedure CLIENT-REQUEST (i):
/* i : the item the client is interested in */
begin
send to the server the request for item i;
wait until listen for i on the channel
end

Figure 3.4: Algorithm at the Client Site.

52



response time is smaller that the analytic expected value because due to

the fact that the access probabilities are very skew fewer than D−K items

can be present simultaneously in the pull-queue. Therefore, the actual

waiting time of the client is eventually shorter than D − K. Further ex-

perimental results have shown that when θ is varied from 0.90 to 1.30; the

length of the pull-queue is approximated better by the value D ∗∑D
i=K+1 Pi

than by D −K. Moreover, as earlier discussed, when the system is highly

loaded, the scheduling algorithm in [18], whose cut-off point K must be

larger than the build-up point B, almost reduces to the pure-push schedul-

ing. Contradictory to [18], the new hybrid algorithm, even with very high

loaded system, experiments better results than a pure-push based system

as illustrated in Figure 3.5 (A). Besides, in Figure 3.5 (B), the values of

the cut-off point K for our solution, which takes K independent of B, and

for the hybrid scheduling proposed in [18] are depicted for N = 10 and

N = 20.

53



Figure 3.5: (A) Pure-Push scheduling Vs new algorithm; (B) Cut-Off Point when N =

10, 20.
3.3 Dynamic Hybrid Scheduling with Heterogeneous

Items

The above-mentioned hybrid scheduling algorithm is extended to incor-

porate the heterogeneous data items and to resolve tie during selecting a

pull-item [35, 41]. This variation of the lengths of the items result in differ-

ence in service time. Hence, the pull scheduling now needs to consider the

item-length along with the number of request accumulated. This motivates

us to use stretch-optimal scheduling principle.

3.3.1 Heterogeneous Hybrid Scheduling Algorithm

We still assume an ideal environment with a single server serving multiple

clients, thereby imposing asymmetry. As earlier, the database at the server

consists of a total number of D distinct items, out of which, K items are

54



pushed and the remaining (D −K) items are pulled. However, the items

now have variable lengths, and each item i has a different access probability

Pi. The service time for an item is dependent on the size of that item. The

larger the length of an item, the higher is its service time.

We have adopted PFS in our hybrid algorithm as the push mechanism.

As before, the term push-scheduling will refer to the cyclic scheduling pro-

duced by the PFS algorithm applied to the push set. On the other hand,

for the pull mechanism, we select the item that has maximum stretch-

value Si = Request Count for item i
Length2

i
. We have assumed an ideal environment,

where the client needs to send the server its request for the required item

i along with its unique ID and waits until it listens for i on the channel

(see Figure 3.6). Note that the behavior of the client is independent of

the fact that the requested item belongs to the push-set or the pull-set.

As mentioned earlier in Section 1.1, the Huges Network Network Systems

DirecPC architecture [23] is a suitable example for such broadcast system.

Procedure CLIENT-REQUEST:

begin
send to the server the request for a particular item

with a unique id associated with the item;

wait until listen for that item on the channel;

end

Figure 3.6: Client side algorithm

The server maintains the database of all items. The system starts as

a pure pull-based scheduler (i.e., the push set is empty) assuming that

all the items have the same access probability and few requests occur.

Then, based on the requests received for each item during a certain interval

of time, it dynamically moves to a hybrid system with the data items

separated into the push set and the pull set. Precisely, at regular interval

55



Procedure Hybrid Scheduling;
while (true) do
begin

Push-Phase:

broadcast an item selected according to the Packet Fair Scheduling;

handle the requests occurring during the push-phase;

if the pull-queue is not empty then
Pull-Phase:

extract from the pull-queue the item whose stretch is maximum;

if tie
extract the item whose sum of the clients’ priority is high;

if tie
extract the item with the smallest index;

clear the number of pending requests for this item, and pull-it;

handle the requests occurring during the pull-phase;

end;

Figure 3.7: Hybrid scheduling algorithm

of time, the server monitors the data access probabilities of the items and

the arrival rate of the requests. If the values registered by the server

significantly deviate by the values for which the current segregation point

between the push and the pull sets has been computed, the cut-off point

must be recomputed.

Once the cut-off point is fixed, the server continuously alternates a push-

phase, in which a single item is broadcasted, and a pull-phase, in which a

single item is disseminated, when there are clients waiting for pull items.

After every push and every pull operation, the server accepts the set of

requests arriving into the system. More precisely, the server simply col-

lects statistics about the requests for the push items. After every push,

if the pull queue is not empty, the server chooses the item whose stretch

value is maximum. It might happen that more than one item have same

stretch value. In that case, the server considers the item that has maxi-

56



mum priority. Priorities of the items are estimated by adding the priorities

of the clients requesting that particular item, and then normalizing it. The

ID of the client is used by the server to calculate its priority. Figure 3.7

provides the pseudo-code of the hybrid scheduling algorithm executing at

the server-side while the push and pull sets do not change.

3.3.2 Modeling the System

In this section we evaluate the performance of our hybrid scheduling by

developing suitable analytical models. The goal of this analysis is two-fold:

it is used (i) to estimate the minimum expected waiting time (delay) of the

hybrid system when the size of the push set is known, and (ii) to determine

the cut-off point (K) between the push-set and pull-set when the system

conditions (arrival rate and access probabilities) change. Indeed, since the

waiting time is dependent on the size K of the push set, we investigate, by

the analytical model, into the delay dynamics for different values of K in

order to derive the cut-off point, that is the value of K that minimizes the

system delay.

Before proceeding further, let us enumerate the parameters and assump-

tions used in our model:

1. The database consists of D = {1, . . . , D} distinct items, sorted by non

increasing access probabilities {P1 ≥ . . . ≥ PD}. Basically, the access

probability gives a measure of item’s popularity among the clients.

We have assumed that the access probabilities (Pi) follow the Zipf’s

distribution with access skew-coefficient θ, such that Pi = (1/i)θ∑n
j=1(1/j)θ .

Every item has different length randomly distributed between 1–L,

where L is the maximum length.

2. Let C, K and %(cl), respectively, denote the maximum number of

clients, the size of the push set and priority of client cl. The server

57



pushes K items and clients pull the remaining (D −K) items. Thus,

the total probability of items in push-set and pull-set are respectively

given by
∑K

i=1 Pi and
∑D

i=K+1 Pi = (1 − ∑K
i=1 Pi).

3. The service times of both the push and pull systems are exponentially

distributed with mean µ1 and µ2, respectively.

4. The arrival rate in the entire system is assumed to obey the Poisson

distribution with mean λarrival.

Table 3.2 lists the symbols with their meanings used in the context of

our analysis. Now, we are in a position to analyze the system performance

for achieving the minimal waiting time.

Table 3.2: Symbols Used for Performance Analysis

Symbols Descriptions
D Maximum number of items
C Maximum number of clients
i Index of data item
K Size of the the push set
Pi Access Probability of item i

Li Length of item i

λ Pull Queue Arrival Rate
λarrival System Arrival Rate

µ1 Push Queue Service Rate
µ2 Pull Queue Service Rate
Si Space between the two instances of data item i

%(cl) Priority of client cl

%i Priority of data item i

E[Wpull] Expected Waiting Time of Pull System
E[W q

pull] Expected Waiting Time of Pull Queue
E[Lpull] Expected Number of items in the Pull system
E[Lq

pull] Expected Number of items in the Pull queue

58



0, 0 1, 0 2, 0 i, 0

i, 12, 11, 1

λ λ λ λ λ

λ λ λ λµ

µ µ µ
µ

µ
1

µ

1 1
2

2

2

2

2µ

λ

µ
2

λ

µ1

C, 0

C, 1

Figure 3.8: Performance Modeling of Our Hybrid System

Minimal Expected Waiting Time

Figure 3.8 illustrates the birth and death process of our system model,

where the arrival rate in the pull-system is given by λ = (1−∑K
i=1 Pi)λarrival.

First, we discuss the state space and possible transitions in this model.

1. Any state of the overall system is represented by the tuple (i, j), where

i represents the number of items in the pull-system and j = 0 (or

1) respectively represents whether the push-system (or pull-system) is

being served.

2. The arrival of a data item in the pull-system results in the transition

from state (i, j) to state (i + 1, j), for 0 ≤ i ≤ C and 0 ≤ j ≤ 1.

However, the service of an item results in two different actions. Since

the push system is governed by packet fair scheduling, the service of

an item in the push-queue results in transition from state (i, 0) to state

(i, 1), for 0 ≤ i ≤ C. On the other hand, the service of an item in the

pull queue results in transition from state (i, 1) to the state (i− 1, 0),

for 1 ≤ i ≤ C.

3. Naturally, the state (0, 0) of the system represents that the pull-queue

is empty and any subsequent service of the items in the push system

leaves it in the same (0, 0) state. Obviously, state (0, 1) is not valid

59



because the service of an empty pull-queue is not possible.

In the steady-state, using the flow-balance conditions of Chapman-Kolmogrov’s

equation [17], we have the following equation for representing the initial

system behavior:

p(0, 0) λ = p(1, 1) µ2 (3.1)

where p(i, j) represents the probability of state (i, j). The overall behav-

ior of the system for push (upper chain in Figure 3.8) and the pull system

(lower chain in Figure 3.8) are given by the following two generalized equa-

tions:

p(i, 0)(λ + µ1) = p(i− 1, 0)λ + p(i + 1, 1)µ2 (3.2)

p(i, 1)(λ + µ2) = p(i, 0)µ1 + p(i− 1, 1)λ (3.3)

The most efficient way to solve of Equations (3.2) and (3.3) is using the

z-transforms [17]. The resulting solutions are of the form:

P1(z) =
C∑

i=0
p (i, 0) zi (3.4)

P2(z) =
C∑

i=0
p(i, 1) zi. (3.5)

Now, dividing both sides of Equation (3.2) by µ2, letting ρ = λ
µ2

and

f = µ1

µ2
, performing subsequent z-transform as in Equation (3.4) and using

Equation (3.1), we obtain

P2 (z) = p (1, 1) + z (ρ + f)[P1(z)− p(0, 0)]− ρ z2 P1(z) (3.6)

= ρ p (0, 0) + z (ρ + f) [P1(z)− p (0, 0)]− ρz2 P1(z)

Similarly, transforming Equation (3.3) and performing subsequent deriva-

tions we get,

P2(z) =
f [P1(z)− p(0, 0)]

(1 + ρ− ρ z)
(3.7)

Now, estimating the system behavior at the initial condition, we state the

following normalization criteria:

60



1. The occupancy of pull states is the total traffic of pull queue and given

by: P2(1) =
∑C

i=1 p(i, 1) = ρ.

2. The occupancy of the push states (upper chain) is similarly given by:

P1(1) =
∑C

i=1 p(i, 0) = (1− ρ).

Using these two relations in Equation (3.6), the idle probability, p(0, 0),

is obtained as follows:

P2(1) = ρ p(0, 0) + (ρ + f) [P1(1)− p(0, 0)]− ρP1(1) (3.8)

ρ = ρ p(0, 0) + (ρ + f) [1− ρ− p(0, 0)]− ρ (1− ρ)

= f(1− ρ)− f p(0, 0)

f p(0, 0) = f (1− ρ)− ρ

p(0, 0) = 1− ρ− ρ

f
= 1− 2 ρ, (if µ1 = µ2)

Generalized solutions of Equations (3.6) and (3.7) to obtain all values of

probabilities p(i, j) become very complicated. Thus, the best possible way

is to go for an expected measure of system performance, such as the aver-

age number of elements in the system and average waiting time. The most

convenient way to derive the expected system performance is to differenti-

ate the z-transformed variables, P1(z) and P2(z) and capture their values

at z = 1. Thus, differentiating both sides of Equation (3.6) with respect to

z at z = 1, we estimate the expected number of items in the pull-system,

E[Lpull], as follows:

dP2(z)

dz




z=1
= (ρ + f)


dP1(z)

dz




z=1
+ P1(1) (f − ρ)

−p(0, 0) (ρ + f)− ρ


dP1(z)

dz




z=1

E[Lpull] = (ρ + f)N ] + (1− ρ)− (ρ + f)

(
1− ρ− ρ

f

)
− ρN

61



=

(
µ1

µ2

)
N +

(
1− λ

µ2

)
−

(
λ + µ1

µ2

) (
1− λ

µ2
− λ

µ2

)

= N +

(
1− λ

µ

)
−

(
1 +

λ

µ

) (
1− 2

λ

µ

)
, (if µ1 = µ2 = µ)

(3.9)

where N is the average number of users waiting in the pull queue when

push is being served. Once we have the expected number of items in the

pull system from Equation (3.9), using Little’s formula [17] we can easily

estimate the average waiting time of the system, E[Wpull], average waiting

time of the pull queue, E[W q
pull], and expected number of items, E[Lq

pull],

in the pull queue as follows:

E[Wpull] =
E[Lpull]

λ

E[Lq
pull] = E[Lpull]− λ

µ2

E[W q
pull] = E[Wpull]− 1

µ2
(3.10)

Note that, there is a subtle difference between the concept of pull system

and pull queue. While the pull queue considers only the items waiting for

service in the queue, the pull system also includes the item(s) currently

being serviced. However, the expected waiting time for the pull system

discussed above does not consider the priorities associated with the indi-

vidual data items. Such estimate can suffice the need for average system

performance when every item in the pull queue has accumulated different

number of requests. However, when any two items contain the same num-

ber of pending requests, the priorities associated with those two items come

into consideration. This will affect the arrival and service of the individual

data items. Thus, a smart system should consider the priorities of the data

items influenced by the client priorities.

62



Role of Client Priorities:

Any client j is associated with a certain priority %(j) that reveals its

importance. The priority of a particular data item is derived from the

total normalized priorities of all the clients currently requesting for that

data item. Thus, if a particular data item i is requested by a set C of clients,

then its priority is estimated as: %i = 1
|C|×

∑
∀j∈C %(j). The lower the value of

%(cl), the higher is the priority. When two items have the same stretch value,

the item with higher priority is serviced first. This is also practical since

such an item is requested by more important clients than its counterpart.

Considering a non-preemptive system with many priorities, let us assume

the data items with priority %i have an arrival rate λi and service time

µ2i
. The occupancy arising due to this jth data item is represented by

ρi = λi

µ2i
, for 1 ≤ i ≤ max, where max represents maximum possible value

of priority. Also, let σi =
∑i

x=1 ρx. In the boundary conditions we have,

σ0 = 0 and σmax = ρ. If we assume that a data item of priority x arrives

at time t0 and gets serviced at time t1, then the waiting time is t1 − t0.

Let at t0, there be ni data items present having priorities i. Also let, S0

be the time required to finish the data item already in service, and Si be

the total time required to serve ni. During the waiting time of any data

item, n′i new items having the same number of pending requests and higher

priority can arrive and go to service before the current item. If S ′i be the

total time required to service all the n′i items, then the expected waiting

time will be,

E[W
q(x)
pull ] =

x−1∑

i=1
E[S ′i] +

x∑

i=1
E[Si] + E[S0] (3.11)

In order to get a reasonable estimate of W
q(i)
pull , three components of Equa-

tion (3.11) needs to evaluated individually.

(i) Estimating E[S0]: The random variable S0 actually represents the

remaining service time, and achieves a value 0 for idle system. Thus,

63



the computation of E[S0] is performed in the following way:

E[S0] = Pr[Busy-System]× E[S0|Busy-System]

= ρ
max∑

i=1
E[S0|Serving items having priority-i]

×Pr[items having priority i]

= ρ
max∑

i=1

ρi

ρµ2i

=
max∑

i=1

ρi

µ2i

(3.12)

(ii) Estimating E[Si]: The inherent independence of Poisson process gives

the flexibility to assume the service time S
(n)
i of all ni customers to be

independent. Thus, E[Si] can be estimated using the following steps:

E[Si] = E[niS
(n)
i ] = E[ni]E[S

(n)
i ]

=
E[ni]

µ2i

ρiE[W
q(i)
pull ] (3.13)

(iii) Estimating E[S ′i]: Proceeding in a similar way and assuming the

uniform property of Poisson,

E[S ′i] =
E[n′i]
µ2i

ρjE[W
q(x)
pull ] (3.14)

The solution of Equation (3.11) can be achieved by combining the results

of Equations (3.12)–(3.14) and using Cobham’s iterative induction [17].

Finally, the new overall expected waiting time of the pull system ( ̂E[W q
pull])

is achieved in the following manner:

E[W
q(x)
pull ] =

∑max
i=1 ρi/µ2i

(1− σx−1)(1− σx)

(3.15)

̂E[W q
pull] =

max∑

x=1

λxE[W
q(x)
pull ]

λ
(3.16)

64



Thus, the expected access-time, E[Thyb−acc], of our hybrid system is given

by:

E[Thyb−acc] = E[Lpull]
K∑

i=1

si

2
Pi + ̂E[W q

pull]×
D∑

i=K+1
Pi, (3.17)

where according to the packet-fair-scheduling, si =
[∑M

i=1

√
P̂i li

] √
li
P̂i

and

P̂i = Pi∑K
j=1 Pj

. The above expression provides an estimate of the average

behavior of our hybrid scheduling system.

Estimation of the Cut-off value

One important system parameter which needs to be investigated is the

cut-off point, that is the value of K which minimizes the expected waiting

time in the hybrid system. It is quite clear from Equations (3.9)–(3.17)

that the dynamics of minimum expected waiting time (delay) is governed

by K. Furthermore, Equation (3.17) has two components for the minimum

expected waiting time. While
∑K

i=1
ςi
2 Pi provides an estimate for the delay

accumulated from the push system, E[Ŵ q
pull] × ∑D

i=K+1 Pi represents the

delay component arising from the pull system. For different values of K,

these two components change dynamically. Intuitively, for low values of

K, most of the items are pulled and the significant delay is accrued from

the pulled items. The scenario gets reversed for high values of K. It seems

hard to derive a closed form solution for the optimal value of K. The

cut-off-point can be obtained algorithmically by estimating both the delay

components and overall expected delay at each iteration and preserving

the value of K which provides minimum expected delay. Alternatively to

derive the cut-off point, for a fixed value D, we analyze the pattern of

the expected waiting time with different values of K and fit the values to

obtain a closed form equation of the pattern. We have used polynomial

fit with degree 3 to identify these patterns for 3 different values of the

access skew coefficient, θ = {0.40, 0.80, 1.20}. This leads to the equations

65



for E[Thybacc] = f(K). For the sake of notational simplicity, we use y

to represent E[Thybacc]. We first differentiate y with respect to K to get

the first derivative ∂y
∂K . At the extreme points (maxima or minima) the

derivative will be 0. Hence, the expression for ∂y
∂K is made equal to 0 to

get the extreme values of K. As the polynomial is of degree 3, the slope of

the curve ∂y
∂K is of degree 2. Hence, two possible values of K are possible.

We have taken only that value of K which falls in the range 0 ≤ K ≤ D,

as the minimum and maximum possible values of cut-off point are 0 and

D, respectively. At this particular value of K, we compute the value of

y using the original equation. This is the minimum expected access time

with corresponding cut-off-point for a particular value of θ. In order to

check the minima, we have also computed the second order derivative with

respect to K and showed this derivative is positive (minimality condition)

for that K. This is repeated for θ = {0.40, 0.80, 1.20}.
For example, the following three optimal values of K achieves the min-

imum waiting time for different values of θ and D = 100. When θ = 0.40,

y = 27× 10−5K3 − 0.028K2 − 0.5K + 160[
∂y

∂K

]

min y
= 81× 10−5K2 − 0.056K − 0.5 = 0

K = 77

y = 78.75191

(3.18)

When θ = 0.80

y = 13× 10−5K3 − 0.11K2 − 0.34K + 100[
∂y

∂K

]

min y
= 39× 10−5K2 − 0.22K − 0.34 = 0

K = 69

y = 66.875

(3.19)

66



When θ = 1.20

y = 0.01K2 − 4× 10−5K3 − 0.62K + 55[
∂y

∂K

]

min y
= 0.02K − 12× 10−5K2 − 0.62 = 0

K = 41

y = 43.633

(3.20)

Figure 3.9 shows the variation of expected access time with different values

of the size of the push set. The overall expected waiting time always

achieves more or less a parabolic (bell-shaped) form with the global minima

occurring at K = {77, 69, 41} for θ = {0.40, 0.80, 1.20}, respectively. The

corresponding minimum expected waiting time is {79, 67, 44} time units.

0 10 20 30 40 50 60 70 80 90 100
40

60

80

100

120

140

160

Size of the Push−set (K)

M
in

m
um

 E
xp

ec
te

d 
A

ce
ss

 T
im

e

θ = 0.40
θ = 0.80
θ = 1.20

Figure 3.9: Variation of Expected Access Time with the Size of the Push Set

3.4 Experimental Results

In this section we validate our hybrid system by performing simulation

experiments. The primary goal is to reduce the expected access time.

67



We enumerate below the salient assumptions and parameters used in our

simulation.

1. Simulation experiments are evaluated for a total number of D = 100

data items.

2. Arrival rate, λarrival, is varied between 5–20. The values of µ1 and µ2

are estimated as: µ1 =
∑K

i=1(Pi × Li) and µ2 =
∑D

i=K+1(Pi × Li).

3. Length of data items is varied from 1 to 5. An average length of 2 is

assumed.

4. Every client is assumed to have some priority randomly assigned be-

tween 1 and 5. These priorities are so defined that the lower the value,

the higher the priority.

5. To keep the access probabilities of the items from being similar to very

skewed, θ is dynamically varied from 0.20 to 1.40.

6. To compare the performance of our hybrid system, we have chosen 4

different hybrid scheduling strategies [31, 32, 18, 45] as performance

benchmarks.

Figures 3.10 and 3.11 respectively demonstrate the variation of the ex-

pected access-time with different values of K and θ, for λ = 10 and λ = 20,

in our hybrid scheduling algorithm. In both cases, the expected access-time

is minimum (∼ 40 time units) for high values of θ (∼ 1.3) and moderate

K. With decreasing values of K, the expected access-time increases. This

is because as K decreases, the number of items in the pull queue increases

and those items take much more time to get serviced. On the other hand,

the average access time also increases for very high values of K. This is

because for pretty high K, the push set becomes very large and the system

68



0

0.5

1

1.5

0
20

40
60

80
100

0

50

100

150

200

250

Access Skew Coefficient (θ)

Cut−off (k)

A
cc

es
s 

T
im

e

θ = 0.2
θ=0.4
 θ = 0.6
 θ = 0.8
 θ = 1.0
 θ = 1.2
 θ = 1.4

Figure 3.10: System Behavior with λ = 10

0

0.5

1

1.5

0
20

40
60

80
100

0

50

100

150

200

250

Access Skew Coefficient (θ)

Cut−off (K)

A
cc

es
s 

T
im

e

θ = 0.2
θ=0.4
 θ = 0.6
 θ = 0.8
 θ = 1.0
 θ = 1.2
 θ = 1.4

Figure 3.11: System Behavior with λ = 20

repeatedly broadcasts data items which are even not popular. Thus, the

optimal performance is achieved when K is in the range 40–60.

Figure 3.12 shows the results of performance comparison, in terms of

expected access time (in seconds), between our newly proposed hybrid al-

gorithm with three existing hybrid schemes due to Su, et al. [45], Oh,

et al. [32], and Guo, et. al. [18]. The plots reveal that our new algorithm

69



achieves an improvement of ∼ 2 – 6 secs. The possible reasons lie in the fact

that while these existing scheduling algorithms use MRF and Flat schedul-

ing to select an item for transmission from the pull and push systems, our

new algorithm uses the stretch, i.e., max-request min-service-time based

scheduling and packet fair scheduling for pull and push systems, respec-

tively. The effective combination of these two scheduling principles result

in the lower expected access time in our hybrid scheduling algorithm.

0.2 0.4 0.6 0.8 1 1.2 1.4
1

2

3

4

5

6

7

8

9

10

11

Access Skew Coefficient (θ)

M
in

m
um

 E
xp

ec
te

d 
A

ce
ss

 T
im

e

Our New Algorithm
Su−et−al.
Oh et. al.
Guo et. al.

Figure 3.12: Performance comparison with varying skewness

In order to demonstrate the performance efficiency of the proposed hy-

brid scheduling, we have also looked into the minimum expected access

time (for a particular K and θ) with different arrival rates (λ). The

hybrid scheduling algorithm due to [31] is chosen for comparison. Fig-

ure 3.13 points out that our algorithm consistently gains over existing

hybrid scheduling [31] with different arrival rates. Note that the variation

of expected access time with different arrival rates is pretty low. This also

demonstrates the stability of our hybrid scheduling system.

Figure 3.14 depicts the comparative view of the analytical results, pro-

vided in Equation (3.17), with the simulation results of our hybrid schedul-

70



5 10 15 20
1

1.5

2

2.5

3

3.5

4

4.5

5

Arrival Rate (λ)

M
in

m
um

 E
xp

ec
te

d 
A

ce
ss

 T
im

e

Our New Algorithm
Ni−et. al.

Figure 3.13: Performance comparison with different arrival

ing scheme. The analytical results closely match with the simulation re-

sults for expected access time with almost ∼ 90%4 and ∼ 93% accuracy

for λ = 5 and λ = 20, respectively. Thus, we can conclude that the perfor-

mance analysis is capable of capturing the average system behavior with

good accuracy. The little (∼ 7–10%) difference exists because of the as-

sumption of memory-less property associated with arrival rates and service

times in the system.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
150

200

250

300

350

Average Access Time

A
cc

es
s 

S
ke

w
 C

oe
ffi

ci
en

t (
θ)

Simulation Results for λ = 20
Analytical Results for λ = 20
Simulation Results for λ = 10
Analytical Results for λ = 10

Figure 3.14: Simulation Vs Analytical Results

71



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

Access Skew Coefficient ( θ)

C
ut

−o
ff 

P
oi

nt
 (

K
)

Variation of the Cut−Off Point (K)

α=0.0
α=0.25
α=0.50
α=0.75
α=1.00

Figure 3.15: Variation of Cutoff-point (K)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

10

20

30

40

50

60

70

80

90

100

Access Skew Coefficient θ

O
pt

im
al

 V
al

ue
 o

f C
ut

of
f P

oi
nt

 (
K

)

Analytical Value of Optimal Cutoff Point
Experimental value of Optimal Cutoff Point

Figure 3.16: Simulation Vs Analytical Results of the Optimal Cut-Off point (K)

Let us now investigate the dynamics of the cut-off point (K) achieved

by our hybrid scheduling strategy. Figure 3.15 demonstrates that K lies in

the range of 40–60 for three different arrival rates such as λ = [5, 10, 20].

Intuitively, this points out that the system has achieved a fair balance

between push and pull systems, thereby efficiently combining both the

scheduling strategies to achieve the minimum expected access time.

72



Figure 3.16 provides the comparison of the variation of optimal cut-off

point provided by simulation and analytical results, for different values of

access skew coefficient, θ. The plots point out that the simulation and

analytical results of optimal cut-off point closely matches with a difference

of only ∼ 1%–2%.

3.5 Summary

In this chapter we have proposed a new framework for hybrid scheduling

in asymmetric wireless environments. The framework is initially designed

for homogeneous, unit-length items. The push system operates on PFS

and the pull part is based on MRF scheduling. The cutoff point used to

sperate push and pull system is determined such that the overall expected

access delay is minimized. Subsequently, the system is enhanced to include

the items of heterogeneous lengths. In order to take the heterogeneity

into account, the pull part is now based on stretch-optimal scheduling.

Performance modeling, analysis and simulation results are performed to

get an overall picture of the hybrid scheduling framework.

73



74



Chapter 4

Adaptive Push-Pull Algorithm with

Performance Guarantee

A dynamic hybrid scheduling [37] is proposed, which does not combine

the push and pull in a static, sequential order. Instead, it combines the

push and pull strategies probabilistically depending on the number of items

present and their popularity. In practical systems, the number of items in

push and pull set can vary. For a system with more items in the push-

set (pull-set) than the pull-set (push-set), it is more effective to perform

multiple push (pull) operations before one pull (push) operation.

The cut-off point, that is the separation between the push and the pull

items, is determined in such a way that the clients are served before the

deadline specified at the time of the request. In other words, the major

novelty of our system lies in its capability of offering a performance guar-

antee to the clients. Once that the analytic model has been devised, we

take advantage from it to make our system more flexible. Indeed, since by

the analytic model the system performance is already known with a good

precision, it is possible to decide in advance if the value of K currently in

use at the server will satisfy the client request on time. If not, K is updated

in a suitable way again looking at the system performance analysis.

75



4.1 Adaptive Dynamic Hybrid Scheduling Algorithm

The strict sequential combination of push and pull fails to explore the

system’s current condition. In practical systems, it is a better idea to per-

form more than one push operations followed by multiple pull operations,

depending on the number of items currently present in the system. The

algorithm needs to be smart and efficient enough to get a good estimate

of these number of continuous push and pull operations. Our proposed

hybrid scheduling scheme performs this strategy based on the number of

items present and their popularity.

We have assumed a single server, multiple clients and a database con-

sisting of D distinct items, of which K items are pushed and the remaining

(D − K) items are pulled. The access probability Pi of an item i is gov-

erned by the Zipf’s distribution and depends on the access skew-coefficient

θ. When θ is small (value close to 0), Pi is well balanced but as θ increases

(value close to 1), the popularity of the data items becomes skewed. From

time to time the value of θ is changed dynamically for our hybrid system,

which in turn, results in dynamic variation of Pi and the size of the push

and pull sets. PFS and MRF techniques are used for selecting the item

to be pushed and pulled respectively. After every push or pull operation,

the next push or pull operation is probabilistically determined using the

following equation:

γ1 = Pr[push|push] =
K

D

K∑

i=1
Pi

γ2 = Pr[pull|push] = 1− γ1

γ3 = Pr[pull|pull] =
D −K

D

D∑

i=K+1
Pi

γ4 = Pr[push|pull] = 1− γ3

(4.1)

76



In other words, at the end of every push operation the system checks if γ1.

If γ1 ≥ Pr1 (where Pr1 is a pre-defined value), the system goes for another

push, else it switches to the pull-mode. Similarly, at the end of every pull

operation, it computes the value of γ3. If γ3 ≥ Pr2 (Pr2 is pre-defined)

then the system performs another pull operation, else it switches to the

push mode.

Procedure HYBRID SCHEDULING (Pr1, P r2);
while true do

begin
1. select an item using PFS and push it;

2. consider new arrival requests;

3. ignore the requests for push item;

4. append the requests for items in the

pull queue;

5. compute probabilities of γ1 and γ2

6. if (Pr1 <= γ1) goto step 1

7. else goto step 8

8. if pull-queue is not empty then
9. use MRF to extract an item from pull

queue;

10. clear pending requests for that item;

11. Pull that particular item;

12. consider new arrival requests;

13. ignore the requests for push item;

14. append the requests for items in

pull queue;

end-if
15. compute probabilities of γ3 and γ4

16. if (Pr2 <= γ3) goto step 8

else goto step 1;

end-while

Figure 4.1: Hybrid Scheduling Algorithm at the Server

At the server end, the system starts as a pure pull-based scheduler. If

the request is for a push item, the server simply ignores the request as

the item will be pushed according to the PFS algorithm sooner. However

77



if the request is for a pull item, the server inserts it into the pull queue

with the associated arrival time and updates its stretch value. Figure 4.1

provides the pseudo-code of the hybrid scheduling algorithm executing at

the server-side.

4.1.1 Analytical Underpinnings

In this section we investigate into the performance evaluation of our hybrid

scheduling system by developing suitable analytical models. The arrival

rate in the entire system is assumed to obey the Poisson distribution with

mean λ1. The service times of both the push and pull systems are expo-

nentially distributed with mean µ1 and µ2, respectively. The server pushes

K items and clients pull the rest (D − K) items. Thus, the total prob-

ability of items in push-set and pull-set are respectively given by
∑K

i=1 Pi

and
∑D

i=K+1 Pi = (1 − ∑K
i=1 Pi), where Pi denotes the access probability of

item i. We have assumed that the access probabilities Pi follow the Zipf’s

distribution with access skew-coefficient θ, such that, Pi = (1/i)θ∑n
j=1(1/j)θ . Af-

ter every push the server performs another push with probability γ1 and

a pull with probability γ2. Similarly, after every pull it performs another

pull with probability γ3 and a push with probability γ4.

0, 0 1, 0
2, 0 i, 0

i, 12, 1
1, 1

λ λ λ λ λ

λ λ λ λµ

µ µ µ
µ

µ

2

1 1
1

µ

1
2

(i−1)
i

1 2 (i−1) i

2, 1

2, 2
2, i

µ
2, (i−1)

Figure 4.2: Performance Modelling of Hybrid System

Figure 4.2 illustrates the underlying birth and death process of our

78



system, where the arrival rate in the pull-system is given by λ = (1 −
∑K

i=1 Pi)λ1. Any state of the overall system is represented by the tuple (i, j),

where i represents the number of items in the pull-system. On the other

hand, j is a binary variable, with j = 0 (or 1) respectively representing

whether the push-system (or pull-system) is currently being served by the

server.

The arrival of a data item in the pull-system, results in the transition

from state (i, j) to state (i + 1, j),∀i, such that 0 ≤ i < ∞ and ∀j ∈ [0, 1].

The service results in different actions. The service of an item in the push-

queue results in transition of the system from state (i, j = 0) to state

(i, j = 1), with probability γ2, ∀i such that 0 ≤ i < ∞. With probability

γ1 the push-service makes the system to remain in same state. On the

other hand, the service of an item in the pull results in transition of the

system from state (i, j = 1) to the state (i − 1, j = 0), with probability

γ4 and state (i − 1, j = 1) with probability γ3, ∀i, such that 1 ≤ i < ∞.

The state of the system at (i = 0, j = 0) represents that the pull-queue is

empty and any subsequent service of the elements of push system leaves

the system in the same (0, 0) state. Obviously, the state (i = 0, j = 1) is

not valid because the service of an empty pull-queue is not possible.

In the steady-state, using the flow-balance conditions of Chapman-Kolmogrov’s

equation [17], we have the following three equations representing the sys-

tem’s behavior:

p(i, 0) =
p(i− 1, 0)λ + p(i + 1, 1)γ4µ2

(λ + γ2µ1)
(4.2)

p(i, 1) =
p(i, 0)γ2µ1 + p(i− 1, 1)λ

(λ + γ3µ2 + γ4µ2)
(4.3)

p(0, 0) λ = p(1, 1) µ2, (4.4)

where p(i, j) represents the probability of state (i, j). While the first

two equations represents the overall behavior of the system for push (upper

79



chain) and the pull system (lower chain), the last equation actually repre-

sents the initial condition of the system. The most efficient way to solve

the above Equations is using z-transforms [17]. Performing z-transforms

of Equation 4.2 and Equation 4.3 and using the initial condition, we get a

pair of transformed equations:

P2(z)γ4µ2 = z[P1(z)− p(0, 0)](λ + γ2µ1)− z2λP1(z)

+p(1, 1)γ4µ2 (4.5)

P2(z) =
γ2µ1[P1(z)− p(0, 0)]

(λ + γ3µ2 + γ4µ2 − zλ)
(4.6)

Now, estimating the system behavior at the initial condition, we can

state the following normalization criteria: The occupancy of pull states

is the total traffic of pull queue and is given by: P2(1) =
∑C

i=1 p(i, 1) =

ρ. The occupancy of the push states (upper chain) is similarly given by:

P1(1) =
∑C

i=1 p(i, 0) = (1−ρ). Using these two relations in Equation (4.5),

we can obtain the initial probability, p(0, 0). The initial probability of the

system, i.e. probability of an empty pull queue is given by the following

equation:

p(0, 0) =
µ1(γ2 − γ2ρ− ργ4µ2)

λ + γ2µ1 − γ4λ
(4.7)

Generalized solutions of Equations (4.5) to obtain all values of proba-

bilities p(i, j) become very complicated. Thus, the best possible way is to

go for an expected measure of system performance, such as the average

number of elements in the system and average waiting time. The most

convenient way to obtain this expected system performance is to differen-

tiate the z-transformed equation (Equation (4.5)), and capture the values

of the z-transformed variable at z = 1.

γ4µ2
dP2(z)

dz
|z=1 = γ2µ1

dP1(z)

dz
|z=1 + (1− ρ)(γ2µ1 − λ)

80



− p(0, 0)(λ + γ2µ1)

E[Lq
pull] =

dP2(z)

dz
|z=1, (4.8)

where dP1(z)
dz |z=1 gives the number of elements in push system in PFS. Once,

we have the expected number of items in the pull system from Equa-

tion (4.8), using Little’s formula [17], we can easily obtain the estimates

of average waiting time of the system (E[Wpull]), and expected number of

items (E[Lq
pull]) in the pull queue as:

E[W q
pull] = E[Wpull]− 1

µ2
=

E[Lpull]

λ
− 1

µ2
(4.9)

If K represents the number of items in the push system, then the expected

cycle-time of the push system is given by:
∑K

i=1
SiPi

(1−ρ)µ1
. Hence, the expected

access-time (E[Thyb−acc]) of our hybrid system is given by:

E[Thyb−acc] =
K∑

i=1
siPi + E[W q

pull]×
D∑

i=k+1
Pi, (4.10)

where according to the packet-fair-scheduling, si =
∑K

j=1

√
P̂j√

P̂i

and P̂i =

Pi∑K
j=1 Pj

. The above expression provides an estimate of the average behavior

of our hybrid system.

4.1.2 Simulation Experiments

In this section we perform the experiments to demonstrate the performance

efficiency of our hybrid system. In order to compare the performance

of our hybrid system, we have chosen our previous hybrid scheduling al-

gorithm [34] as performance bench-marks. The prime goal of the entire

scheme is to reduce the expected access time. Before going into the details

of the simulation results, we enumerate the assumptions we have used in

our simulation.

81



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
100

150

200

250

300

350

400

450
Improvement in Average Access time

Access Skew Coefficient (θ)

A
ve

ra
ge

 A
cc

es
s 

tim
e

Existing Hybrid algorithm with λ = 10
Existing hybrid algorithm with λ = 20
New Hybrid Algorithm with λ=10
New Hybrid Algorithm with λ = 20

Figure 4.3: Improvement in Average Access Time

1. The simulation experiments are evaluated for D = 1, 000 items. The

system performs a push and pull operation in a reciprocal manner,

unless the pull queue is empty.

2. In order to remain consistent with the analysis, the arrival and service

rates are assumed to obey Poisson distribution. The average value of

arrival rate (λ) is taken to be 10 and 20. The average value of service

rates (push and pull), µ1 and µ2 are assumed to be 1.

3. In order to keep the access probabilities of the items from similar to

very skewed, θ is dynamically varied from 0.50 to 1.50.

Figure 4.3 demonstrate the variation of expected access-time with dif-

ferent values of θ, for arrival-rates of 10 and 20 respectively, in our hybrid

scheduling algorithm, for 1000 items. Note that, in both cases, the ex-

pected access-time for our new hybrid scheduling is sufficiently lower than

the expected access time for existing hybrid scheduling. The prime rea-

82



0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

100

200

300

400

500

600

700

800

Access Skew Coefficient (θ)

C
ut

−
of

f P
oi

nt
 (

K
)

Existing Hybrid Scheduling with λ = 10
Existing Hybrid Scheduling with λ = 20
New Hybrid Scheduling with λ = 10
New Hybrid Scheduling with λ = 20

Figure 4.4: Dynamics of Cutoff Point

son behind this lies in the fact that the hybrid scheduling captures the

requirement of the system by probabilistically combining push and pull-

based scheduling principles. Figure 4.4 shows that the hybrid scheduling

achieves a cut-off point in the range 360–430 and 360–460 respectively for

arrival rates of 10 and 20 with 1000 data items. This explains the reason

that our hybrid scheduling makes a fair combination of both push and pull

systems, which is required to improve the expected access-time. Figure 4.5

depicts the comparative view of the analytical results with the simulation

results, for 1000 data items. The analytical results closely match with the

simulation results for expected access time with almost ∼ 90% and ∼ 93%

accuracy for λ = 10 and λ = 20 respectively. Thus, we can conclude that

the performance analysis is capable of capturing the average system behav-

ior with good accuracy. The little (∼ 7–10%) differences exist because of

the assumption of memory-less property associated with arrival rates and

service times in the system.

83



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
150

200

250

300

350

Average Access Time

A
cc

es
s 

S
ke

w
 C

oe
ffi

ci
en

t (
θ)

Simulation Results for λ = 20
Analytical Results for λ = 20
Simulation Results for λ = 10
Analytical Results for λ = 10

Figure 4.5: Comparison of Analytical and Simulation Results

4.2 Performance Guarantee in Hybrid Scheduling

While the performance evaluation of our new basic hybrid scheduling al-

gorithm has already pointed out its significant gains in both response time

and minimizing the value of the cut-off point when compared to existing al-

gorithms and pure push-based scheduling, we now proceed to mention the

complete version of our new algorithm [36] with performance guaranteed

quality that our new scheduling scheme is capable to offer. Such perfor-

mance guarantee is required to deliver, for example, the wireless voice and

data packets within a precise time-frame of service, thereby ensuring a

certain level of quality-of-service (QoS).

Essentially for all D possible values of the cut-off point, the server com-

putes the expected hybrid waiting time E[Thyb−access]. From now on, let

E[Thyb−access(i)] denote such expected hybrid waiting time when i is the

cut-off point value. These D expected waiting times are stored, one-at-a

84



time along with the index of the cut-off point that generates it, sequen-

tially in a matrix V . That is, for all 1 ≤ i ≤ D, V[i, 1] = [E[Thyb−access(i)]

and V[i, 2] = i]. Moreover V is maintained sorted with respect to the first

component, i.e. the expected hybrid waiting time. With this structure, the

server can extract the first element V[0] of this matrix in a single access,

which will indicate in correspondence of which value K0 of the cut-off point

the minimum expected hybrid waiting time V[0, 1] = E[Thyb−access(K0)] is

achieved. The server broadcasts V[0] from time to time, thereby informing

the clients of the best performance it can provide. Moreover, the server

continuously broadcasts the basic hybrid scheduling that corresponds to

the cut-off point K in use we discussed in previous section. On the other

side, when a client sends a request for any item j, it also specifies an ex-

pectation ∆(j) of its possible waiting time for item j. Indeed, ∆(j) reflects

the nature of the application, and the tolerance of the client. For example,

a client requesting for any real-time video application, will expect a time

much lower than any client requesting data service-specific applications.

Moreover, an impatient client could ask that its request is served in a time

much lower than its moderate counterparts.

In order to accept a client request for item j with expectation ∆(j), the

server estimates the expected waiting time for j at this current time instant

using the values stored in matrix V and the knowledge of the current cut-

off point K in use for the hybrid scheduling algorithm broadcasted by the

server. If the expected hybrid waiting time provided by the system is

smaller or equal to the expectation time of the client’s request, then the

certain level of QoS expected by the client is guaranteed. Otherwise, the

server checks whether the item j belongs to its current push set, that is

if j ≤ K. If this is true, it compares the client request deadline with the

expected waiting time guaranteed by the Packed Fair Scheduling Queueing

for the push part of the system, say E[TPFS(j)]. Recall that such a value

85



Performance Guarantee in Hybrid Scheduling
1. for (i = 1 to D) do

2. compute the average waiting time E[Thyb−access(i)];
3. sort all the values of E[Thyb−access(1)], . . . , E[Thyb−access(D)] and

store them in increasing order in a matrix V
4. broadcast to the clients the min{affordable waiting time} V[0];
do

5. accept the client’s request for any item j with expected

waiting-time ∆(j) ≥ E[Thyp−access(K)], where K = current cut-off;

6. if (condition at line 5 is not verified and j ≤ K)

accept the client’s request for any item j with expected

waiting-time ∆(j) ≥ 2E[TPFS(j)], where E[TPFS(j)] is the

expected waiting time guaranteed by Packet Fair Scheduling;

7. if (both conditions at lines 5 and 6 are not verified) and

(∆(j) is larger than expected waiting time stored in V [0, 1])
8. get the largest value of E[Thyb−access(j)] ≤ ∆(j) from V
9. adjust the cut-off point and restart new hybrid scheduling;

10.otherwise reject the request.

while (true)

Figure 4.6: Algorithm for Performance Guarantee in Hybrid Scheduling

is known and it is proportional to the space Sj between two instances of

j in the Packed Fair Queueing Scheduling [19], and it is different from

the overall expected waiting time of the server although it depends on the

cut-off point in use. Now, if the expectation of the client 2E[TPFS(j)] is

smaller than or equal to ∆(j), the request can still be accepted and the

performance guarantee. Note that the E[TPFS(j)] is doubled to take in

the figure the fact that the system pulls one item between two consecutive

pushed items. Otherwise, the request can be accepted only if the cut-off

point is updated. Indeed, the server will perform a binary search on the

matrix V to look for a cut-off point value whose corresponding expected

hybrid waiting time is the largest value smaller than or equal to ∆(j).

Note that such a value always exists if V[0, 1] ≤ Delta(j). Then, the cut-

86



off point is updated accordingly and the scheduling re-initialized. Note

that the adjustment in push and pull sets results in some overheads, and

in practice, the server may be forced to reject requests to avoid to pay

such an overhead too frequently. Figure 4.6 provides a pseudo-code for

this entire procedure of performance guarantee.

4.3 Summary

In this chapter we have improved our hybrid scheduling framework to make

it adaptive with the system’s behavior and provide certain level of perfor-

mance guarantee. Instead of strict, sequential push and pull operation, the

hybrid scheduling framework now probabilistically determines the number

of consecutive push and pull operations based on the system’s require-

ments. Subsequently, we propose a strategy to provide certain level of

performance guarantee by meeting the clients’ deadlines.

87



88



Chapter 5

Hybrid Scheduling with Client’s

Impatience

In most practical systems, clients often get impatient while waiting for the

designated data item. After a tolerance limit, the client may depart from

the system, thereby resulting in a drop of access requests. This behavior

significantly affects the system performance, which needs to be properly

addressed. There are also ambiguous cases which reflect the false situation

of the system. Consider the scenario where a client gets impatient and

sends multiple requests for a single data item to the server. Even if that

particular data item is not requested by any other client, its access prob-

ability becomes higher. In existing systems, the server remains ignorant

of this fact and thus considers the item as popular and inserts it into the

push set or pull it at the expense of some other popular item. In contrast,

our work [43] reduces the overall waiting time of the system taking care of

such anomalies.

5.1 Hybrid Scheduling Algorithm

The major novelty of our strategy lies in its consideration for clients’ im-

patience which is incorporated in two different ways, thereby leading to

89



two different strategies. Although the basics of both strategies are similar,

the first one considers that the impatience of a client results in a departure

from the system. This strategy is termed as Hybrid Scheduling with Clients

Departure. Whereas, the second strategy considers the fact that a client’s

impatience compels it to send spurious requests for a particular data item,

thereby creating an anomalous (ambiguous) situation in the system. We

term this strategy as Hybrid Scheduling with Anomalies.

In general, the system begins with operating as a pure pull system

providing on-demand service for every client. When the number of client’s

access request rate increases and broadcasting the same item to different

clients causes downstream bandwidth wastage, the algorithm shifts to the

hybrid mode. The items are now divided into two disjoint sets: the push

set of cardinality K and the pull set of cardinality D − K. The items

to be pushed are governed by flat round-robin scheduling. On the other

hand, the item which maximizes stretch (max-request min-service time)

is selected to be pulled by the server. Every push is followed by a pull,

provided that the pull-set (queue) is not empty. If there are no items in

the pull queue, then the server simply continues pushing the items using

flat schedule. However, after transmitting each page the server attempts λ

more access requests arriving into the system. If the request is for a push

item, the server simply ignores the request as the item would be pushed

anyway according to the broadcast schedule.

If the request is for a pull item, then the server first checks whether the

request is for a new item or an already requested item. If it is for a new

item, the item is inserted into the pull queue and its stretch value is cal-

culated. Next, the server checks for the client’s impatience and tolerance.

The impatience is considered in the following two strategies as follows.

90



5.1.1 Hybrid Scheduling with Clients’ Departure

If the request is for an existing item, the server checks whether one or more

clients are getting impatient and loosing there tolerance limit. Anticipating

departures of such clients, the server drops their requests and stores their

previous waiting time (departure time − arrival time). It then updates

the stretch value of the data items in the pull queue considering only the

request of existing clients which are not impatient. A pseudo-code of the

strategy is depicted in Figure 5.1. The procedure Take-Access-with-Drop()

considers λ more requests, process them and insert in the pull queue, after

considering the number of requests dropped due to the client’s departure.

A pseudo-code of this procedure is shown in Figure 5.2.

HYBRID SCHEDULING with CLIENT’s DEPARTURE;

while true do
begin
Broadcast all the pages of an item, selected

according to the flat scheduling;

After broadcasting each page

Take-Access-with Drop();

if the pull-queue is not empty then
extract an item from the pull-queue

that optimizes the stretch;

clear the number of pending requests for

that item and pull it;

Take-Access-with-Drop() /*procedure call */

end;

Figure 5.1: Hybrid Scheduling with Client’s Departure

5.1.2 Hybrid Scheduling with Anomalies:

While considering a request for an item that is already in the pull queue,

the server checks for anomalies arising from spurious requests of impatient

91



Procedure: Take-Access-with-Drop();
Take λ more accesses;

if the request is for push items then
ignore the requests;

if the request is for pull items then
Compute the number of impatient clients

leaving and number of clients remaining;

insert the request for the pull item into

the pull queue (with arrival time);

update the stretch value of data items in

pull queue based on number of remaining

clients;

Figure 5.2: Take Access with Drop-requests

client(s) for a particular data item. While exceeding the tolerance limit, a

single client can send a large number of requests for a particular data item,

thereby making it pseudo-popular. In existing hybrid scheduling schemes,

the server is ignorant of this fact and considers the item as a popular one,

even if it is requested by a single client. In order to remove this anomaly

the server now considers only unique requests for data items, i.e., if the

request is from a new client, and not from the same client(s) who have

already requested this item before. Thus, the system computes the unique

requests by the clients, i.e., the effective number of requests for data item

i. The stretch values of the items in the pull queue are now updated

using these unique requests. A pseudo-code of this algorithm is shown in

Figure 5.3. The procedure Proc-Req-Anomalies() takes λ more requests,

process the requests and inserts them into the pull queue after removing the

anomalies associated with the requests. The pseudo-code of this procedure

is shown in Figure 5.4

The dynamics of the system often leads to changes in the arrival rate of

the access requests, in other words in the access skew coefficient (θ). Hence,

92



HYBRID SCHEDULING with ANOMALIES;
while true do
begin
Broadcast all the pages of an item,

according to the flat scheduling;

After broadcasting each page

Proc-Req-Anomalies();

if the pull-queue is not empty then
extract an item from the pull-queue

that optimizes the stretch;

clear the number of pending requests for

that item and pull-it;

Proc-Req-Anomalies(); /* procedure call */

end;

Figure 5.3: Hybrid Scheduling with Anomalies

Procedure: Proc-Req-Anomalies();
Take λ accesses;

if the request is for push items then
ignore the requests;

if the request is for pull items then
if the same item is not requested

by same client(s)

insert the request for this pull item into

the pull-queue (with arrival time);

update the stretch value of the data

items in pull-queue;

Figure 5.4: Process requests with Anomalies

the access probabilities for all data items are recalculated. Based on these

new access probabilities, the cut-off point (K) is calculated dynamically.

This needs dynamic shuffle of some items between the push and the pull-

set. Whenever a client requires an item, it sends a request for that item to

the server. The clients can request any item from the server. No matter

93



whether the item is currently being broadcasted or disseminated, the client

simply passes its request for the interested item to the server and listens to

the channel until its desired item is obtained. This procedure is highlighted

in Figure 5.5.

Procedure CLIENT-REQUEST (i):
/* i : item the client is interested in

*/

begin
send to the server the request for item

i;

wait until listen for i on the channel

end

Figure 5.5: Algorithm at the Client Side

5.2 Performance Modeling and Analysis

In this section we analyze the performance of our hybrid scheduling algo-

rithm. Recall that we have proposed two different schemes to incorporate

client’s impatience and accordingly we analyze the system performance by

developing two different queuing models. However, the primary goal of

both the analysis is to estimate the minimum expected waiting time (de-

lay) of the hybrid system. Before proceeding further, let us enumerate the

parameters and assumptions used.

5.2.1 Assumptions

1. The arrival rate in the entire system is assumed to obey the Poisson

distribution with mean λ′. This includes the arrival rate in both push

and pull systems. Although the arrival rate of the push system is

assumed fixed, the departure of impatient clients and/or their spurious

requests changes the arrival rate of the pull system at every step. The

94



initial arrival rate of the pull system is assumed to be λ. The pull

queue contains data items which are yet to be served. Thus by the

term pull system, we mean the items waiting in pull queue, together

with the item(s) currently getting service.

2. The service times of both the push and pull systems are exponentially

distributed. Again, the mean service time of push system is fixed,

however, the clients’ impatience changes the service time of the pull

system. We represent the initial service time of pull system by µ2.

3. Let C, D and K respectively represent the maximum number of

clients, total number of distinct data items, and the cut-off point.

The server pushes K items while clients pull the remaining (D −K)

items. Thus, the total probability of items in the push- and pull sets

are respectively given by
∑K

i=1 Pi and
∑D

i=K+1 Pi = (1 − ∑K
i=1 Pi),

where Pi denotes the access probability of item i. Basically, it gives

a probabilistic measure of item’s popularity among the clients. We

have assumed that the access probabilities follow the Zipf’s distribu-

tion with access skew-coefficient θ, such that Pi = (1/i)θ∑n
j=1(1/j)θ . Items

are numbered from 1 to D and are arranged in the decreasing order

of their access probabilities, i.e., P1 ≥ P2 ≥ ... ≥ PD. Table 5.1 lists

the symbols with their meaning used in the context of our analysis.

Let us now analyze the system performance for achieving the minimal

waiting time. First, we discuss the model when the client looses its patience

and leaves the system. Next, we discuss the system where an impatient

client transmits spurious requests for a particular data item. As mentioned,

this situation creates anomaly in the system, and the server needs to ignore

such requests.

95



Table 5.1: Symbols Used for Performance Analysis

Symbols Meanings
D Maximum number of data items
C Maximum number of clients
i Candidate data item
K Cut-Off Point separating push and pull sets
Pi Access Probability of item i

Li Length of item i

λ′ Overall System Arrival Rate
λ Initial Arrival Rate in pull queue
µ1 Push Queue Service Rate
µ2 Initial Service Rate in Pull Queue

E[Wpull] Expected Waiting Time of Pull System
E[W q

pull] Expected Waiting Time of Pull Queue
E[Lpull] Expected Number of items in the Pull system
E[Lq

pull] Expected Number of items in the Pull queue

5.2.2 Client’s Departure from the System

Here we assume that a client’s impatience results in its departure from

the system before the item is actually serviced. This impatience generally

takes two forms [17]: (1) The reluctance of the customer to remain in the

system is known as reneging ; (2) Excessive reluctance might restrain the

customer to even join the system, which is known as balking. These two

behaviors significantly affect the arrival/service rate and average system

performance. In our analysis, we have assumed the duration of the waiting

time of a client (before leaving) to follow exponential distribution with

mean 1/τ . If λ̄m represents the request arrival rate for mth data item, then

λ̄m = Pmλ, where λ is the initial request arrival rate of the entire pull

system. If the request arrives at time t and does not depart the system

before servicing the mth data at time Γ, then expected number of requests,

E[Ri], satisfied by transmission of mth item is given by:

E[Rm] =
∫ Γ

0
λ̄me−τ(Γ−t)dt

96



=
Pmλ

τ
(1− e−τΓ) (5.1)

Also, for Poisson arrival, the expected number of requests arriving in time

period Γ is given by λΓ. Thus, the expected number of drop requests,

E[Rd], is measured as:

E[Rd] = λΓ− E[Rm]

= λΓ− Pmλ

τ
(1− e−τΓ) (5.2)

Our next objective is to estimate the expected waiting time of our hy-

brid system considering the clients balking and reneging due to client’s

impatience.

0, 0 1, 0
2, 0 i, 0

i, 12, 1
1, 1

λ λ λ λ λ

λ λ λ λµ

µ µ µ
µ

µ

2

1 1
1

µ

1
2

(i−1)
i

1 2 (i−1) i

2, 1

2, 2
2, i

µ
2, (i−1)

Figure 5.6: Performance Modelling of Our Hybrid System

Figure 5.6 illustrates the birth and death model of our system. For any

variable i, the ith state of the overall system is represented by the tuple

(i, j), where i represents the number of items in the pull-system and j = 0

(or 1) respectively represents whether the push-system (or pull-system) is

being served. The arrival of a data item in the pull-system results in the

transition from state (i, j) to state (i+1, j),∀i ∈ [0,∞] and ∀j ∈ [0, 1]. The

service of an item results in transition of the system from state (i, j = 0)

to state (i, j = 1), ∀i ∈ [0,∞]. On the other hand, the service of an item

97



in the pull results in transition of the system from state (i, j = 1) to the

state (i − 1, j = 0),∀i ∈ [1,∞]. Note that, the arrival and service rates

in the pull system are both different at each state. Naturally, the state of

the system at (i = 0, j = 0) represents that the pull-queue is empty and

any subsequent service of the elements of push system leaves the system in

the same (0, 0) state. Obviously, state (i = 0, j = 1) is not valid because

the service of an empty pull-queue is not possible. The arrival rates at

different states are now represented by λ0, λ1, . . . , λi, . . ., where λ0 = λ.

Furthermore, λi is different from λ̄m discussed before. While λ̄m represents

the request arrival rate for mth data item, λi denotes the total arrival rate of

requests for all i items present in the system, i.e., λi =
∑i

m=0 λ̄m. Similarly,

the service rates at different states are denoted by µ2,j where 1 ≤ j ≤ n

and µ2,1 = µ2.

In the steady-state, using the flow-balance conditions of Chapman-Kolmogrov’s

equation [17], the initial system-behavior is represented by:

p(0, 0) λ = p(1, 1) µ2 (5.3)

where p(i, j) represents the probability of state (i, j). The overall behavior

of the system for push (upper chain in Figure 5.6) and the pull system

(lower chain) are given by the following two generalized equations:

p(i, 0)(λi + µ1) = p(i− 1, 0)λi−1 + p(i + 1, 1)µ2,i+1 (5.4)

p(i, 1)(λi + µ2,i) = p(i, 0)µ1 + p(i− 1, 1)λi−1 (5.5)

Balking [17] is generally estimated by using a series of monotonically de-

creasing functions of the system size multiplying by the initial arrival rate,

λ. If bi is the balking function at ith state, then λi = biλ, where0 ≤ bi+1 ≤
bi ≤ 1, (∀i > 0, b0 = 1). The most practical discouragement (balking)

function is bi = e−iα, where α is a constant. This takes the queue size into

account and discourages the customers from joining in large-sized queues.

98



However, in practical systems, the discouragement does not always arrive

from excessive queue sizes. These customers might instead join the system

and continuously retain the prerogative to renege if the waiting time is

intolerable. This reneging function r(i) [17] at ith state is defined by:

r(i) = lim
∆t→0

Pr[unit reneges during ∆t]

∆t
(5.6)

The service rate of pull queue now takes the form: µ2 = µ2 + r(i). A good

possibility of the reneging function is: r(i) = eiα/µ2. Note that both balk-

ing and reneging functions are assumed to follow exponential distribution,

which is in accordance with the distribution obeyed by request’s waiting

time.

From Equations (5.4) and (5.5) we get,

p(i, 0)(e−αiλ + µ1) = p(i− 1, 0)λe−α(i−1) + p(i + 1, 1)µ2 + e(i+1) α
µ2

p(i, 1)λe−αi + p(i, 1)µ2 + p(i, 1)eα i
µ2 = p(i, 0)µ1 + p(i− 1, 1)e−α(i−1)

(5.7)

The most efficient way to solve of Equation (5.7) is using Z-transforms [17].

From the definition of z-transforms, the resulting solutions are of the form:

P1(z) =
C∑

i=0
p (i, 0) zi and P2(z) =

C∑

i=0
p(i, 1) zi. (5.8)

Using subsequent Z-transforms, Equation (5.7) yields:

λ

[
P1

(
z

eα

)
− p(0, 0)

]
+ µ1 [P1(z)− p(0, 0)]

= λz

[
P1

(
z

eα

)]
+

1

z
[P2(z)− p(0, 1)− p(1, 1)]

+
1

z

[
P2

(
ze

α
µ2

)
− p(0, 1)− p(1, 1)

]

(5.9)

99



Similarly, transforming Equation (5.7) leads to:

λP2

(
z

eα

)
+ P2

(
ze

α
µ2

)
= µ1P1(z)− p(0, 0) + zP2

(
z

eα

)
(5.10)

Now, putting z = 1 in Equation (5.9), we can obtain the probability

p(0, 0) of the idle state as:

λ

[
P1

(
1

eα

)
− p(0, 0)

]
+ µ1[P1(1)− p(0, 0)]

= λ

[
P1

(
1

eα

)]
+ µ2[P2(1)− p(1, 1)] + P2

(
e

α
µ2

)
− p(1, 1)

p(0, 0) =
µ2ρ− µ1(1− ρ) + ρ

1−e
λ
µ2

λ
µ2
− µ1

(5.11)

Deriving closed form solutions of Equations (5.9) and (5.10) to eval-

uate the state probabilities seems not possible. Instead we measure the

expected performance of the overall system. In order to estimate the av-

erage number of items in the pull system, Equation (5.9) is differentiated

(at z = 1). Now, the occupancy of push and pull states are respectively

given by P1(1) =
∑∞

i=0 p(i, 0) = 1 − ρ and P2(1) =
∑∞

i=0 p(i, 1) = ρ, where

ρ = λeff

µeff
=

∑∞
i=0 λip(i,1)∑∞

i=1 µ2,ip(i,1) . Differentiating Equation (5.9) and using these

values of P1(1) and P2(1), we get

µ2
dP2(z)

dz
+

dP2

dz

(
ze

α
µ2

)
= µ1P1(1) + µ1

dP1

dz

−(λ + µ1)
µ1ρ− µ1(1− ρ) + 1

1−e
α
µ2

λ/µ2 − µ1
−

λP1(1/e
α)− λ

dP1

dz
(

1

eα
) + 2λP1(1/e

α) + λP1(1/e
α)

E[Lpull] =
dP2(z)

dz
|z=1 =

(
µ1 +

1

1− e
α
µ2

)−1


µ1ρ + µ1E[Lpush]− (µ1 + λ)

µ1ρ− µ1(1− ρ) + ρ

1−e
α
µ2

λ
µ2
− µ1




100



+λE[Lpush]e
α/mu2, (where E[Lpush] =

dP1(z)

dz
|z=1) (5.12)

Once we have the expected number of items in the pull system from

Equation (5.12), using Little’s formula [17], we can easily estimate the

average waiting time of the system (E[Wpull]), average waiting time of the

pull queue (E[W q
pull]) and expected number of items (E[Lq

pull]) in the pull

queue as follows:

E[Wpull] = E[Lpull]
λ , E[Lq

pull] = E[Lpull]− λ
µ2

and E[W q
pull] = E[Wpull]− 1

µ2
.

Since the push system is governed by flat scheduling, the average cycle

time of the push system is given by: K
2(1−ρ)µ1

∑
i=1K Pi. Thus, the overall

minimum expected access-time, (E[Thyb−acc], of our hybrid system is:

E[Thyb−acc] =
K

2(1− ρ)µ1

K∑

i=1
Pi + E[Wpull]

D∑

i=K+1
Pi (5.13)

This gives a suitable measure of the performance of our hybrid, het-

erogeneous system when the clients get impatient and leave the system at

certain intervals. Our next objective is to analyze the performance of the

system, when the impatience does not force the clients to leave the system,

but makes them to transmit spurious requests for the same data item.

5.2.3 Anomalies from Spurious Requests

As discussed earlier, the anomaly arises from the clients making multiple,

spurious requests for the same data item, thereby making the particular

item pseudo-popular. In other words, the item might not be popular (i.e.,

not requested by many clients), but the server is ignorant of this fact and

considers it to be popular. The objective of the hybrid scheduling is to

remove this anomalous behavior and develop a performance analysis to

obtain an estimate of average behavior of the real system. Intuitively, the

101



spurious requests change the arrival rate in the pull system at every state.

However, the service rate of both push and pull systems remains constant.

Thus, the overall model of the system remains similar to the birth and

death process as shown in Figure 5.6, but with different measures of λi

and all µ2,i = µ2. Naturally, the state space and basic equations of the

model is similar to Equations (5.3–5.5). However, we need to estimate the

different arrival rates at different states.

A careful look into this system reveals that the basic idea behind removal

of anomaly is to ignore multiple spurious requests for a data item sent by

the same set of clients. While modelling and analyzing such a system

is extremely complex, quite satisfactory results can be obtained by not

considering the individual client’s role explicitly. Hence, for performance

analysis, we consider the system as ignoring the multiple, spurious requests

for a particular data item as a whole. At this point of time we explain the

behavior of the system characterized by the presence of data items. Note

that every state in Figure 5.6 represents the number of items present in

that state. Hence, in state (1, 0) and (1, 1) it could be any one of the D

items present. Similarly, in state 2 any two items could be present, with the

condition that an item already present (requested) will not be considered

for another request. This procedure goes on for all the following states.

Thus, in every state we consider unique data items requested by clients.

The probability that a requested item will not be requested again, is given

by:
∑i

j=1 Πi
k=1,k 6=jPjPk. Hence, the arrival rate in the state that contains i

items, is given by:

λ̂i = λ
i∑

j=1
Πi

k=1,k 6=jPjPk

= λ


i!

n∑

j=1
Pj

n−i+1∑

k=j

[Pk+1Pk+2 . . . Pk+i−1]




(as PjPk = PkPj) (5.14)

102



Using suitable Z-transform of Equation (5.4) and (5.5) we get,

P̂2(z) =
1

µ2
[zP̂1(z)(λ̂i + µ1)]− (λ̂i + µ1)zp(0, 0)

µ2

+ p(1, 1)− z2P̂1(z)λ̂i−1

µ2
(5.15)

In order to obtain the probability p(0, 0) of the idle state, we evaluate

the expression at z = 1. Indeed, the occupancy of the push and pull states

are still the same. Thus, P̂2(1) = ρ and P̂1(1) = 1−ρ, where ρ =
∑∞

i=0 λip(i,1)
µ2

.

Thus we have,

P̂2(1) =
(λ̂i + µ1)

µ2
P̂1(1)− (λ̂i − λ̂0 + µ1)

µ2
p(0, 0)− P̂1(1)λ̂i−1

µ2

ρ =
(λ̂i + µ1)

µ2
(1− ρ)− (λ̂i − λ̂0 + µ1)

µ2
p(0, 0)− λ̂i−1

µ2
P̂1(1)

p(0, 0) =


λ̂i + µ1

µ2
(1− ρ)− ρ− λ̂i−1

µ2
(1− ρ)





 µ2

λ̂i − λ̂0 + µ1


 (5.16)

where λ̂i is given by Equation (5.14). In order to get an estimate of the

average system performance, we differentiate Equation (5.15) to estimate

the expected number of elements in the pull system.

dP̂2(Z)

dZ
=

λ̂i + µ1

µ2


P̂ − 1(Z) + Z

dP̂1(Z)

dZ




−λ̂i + µ1

µ2
p(0, 0)− 2ZP̂1(Z)λ̂i−1

µ2
− Z2

µ2

dP̂1(Z)

dZ
λ̂i−1

dP̂2(Z)

dZ
|Z=1 =

λ̂i + µ1

µ2
p(0, 0)− 2λ̂i−1

µ2
P̂1(1)− λ̂i−1

µ2

dP̂1

dZ
|Z=1

Ea[Lpull] =
λ̂i + µ1

µ2
[1− ρ− E[Lpush]]− λ̂i + µ1

µ2
p(0, 0)

−2λ̂i−1

µ2
ρ− λ̂i−1

µ2
ρ (5.17)

103



Subsequently, using Little’s formulae and combining the expression for

waiting time of push system, the expected access-time, Ea[Thyb−acc], of our

hybrid system which considers anomalies is obtained as:

Ea[Thyb−acc] =
K

2(1− ρ)µ1

K∑

i=1
Pi + Ea[Wpull]×

D∑

i=K+1
Pi, (5.18)

where Ea[Wpull = Ea[Lpull]
λ ].

5.3 Simulation Experiments

In this section we validate the performance of our hybrid system through

simulation experiments developed separately for both the strategies – hy-

brid scheduling with client’s departure and hybrid scheduling with anom-

alies. While the primary goal of hybrid scheduling with anomalies is to

reduce the expected access time, the hybrid scheduling with client’s de-

parture also considers reducing the service drop, apart from minimizing

the expected access time. Before presenting the details of simulation re-

sults, we enumerate the salient assumptions and parameters used in our

simulation.

1. The simulation experiments are evaluated for a total number of D =

1000 data items.

2. The overall arrival rate λ′ is varied between 1–4 arrivals per unit time.

The value of µ1 and µ2 is estimated as: µ1 =
∑K

i=1(Pi × Li) and

µ2 =
∑D

i=K+1(Pi × Li) where Pi and Li are the access probability and

length of data item i, respectively.

3. The length of data items are varied from 1 to 5.

4. In order to keep the access probabilities of the items from similar to

very skewed, θ is dynamically varied from 0.20 to 1.40.

104



5. To compare the performance of our hybrid scheduling strategy with

client’s impatience, we have chosen the work in [24], as according

to our knowledge, this is the only existing broadcast scheme which

considered client’s impatience.

In the following, we discuss a series of simulation results to demonstrate

the efficiency of our two hybrid scheduling strategies. First we look into

the results considering the client’s departure (arising from impatience) from

the system. Then we discuss the situation where client’s impatience gives

rise to anomalous behavior.

5.3.1 Hybrid Scheduling with Client’s Departure

0.2
0.4

0.6
0.8

1
1.2

0

20

40

60

80

100
200

400

600

800

1000

1200

1400

1600

Access Skewness (θ)
Cut−off (k)

A
cc

es
s 

T
im

e

θ=0.2
θ=0.4
θ=0.6
θ=0.8
θ=1.00
θ=1.20

Figure 5.7: Expected Access Time with Cutoff Point

Figure 5.7 demonstrates the variation of expected access time with

cutoff-points (K) for different values of access skewness, θ. For all val-

ues of θ, with increasing K the expected access time initially decreases up

to a certain point and then increases again. The reason is that with lower

values of K, the access time for push items are pretty low while those for

pull items are very high. The scenario gets reversed when the value of K

105



is pretty high. The curve for the expected access time takes a bell-shaped

form, with the minimum value obtaining for certain cutoff-point, termed

as optimal cutoff.

1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

Arrival Rate (λ)

M
in

 E
xp

ec
te

d 
A

cc
es

s 
T

im
e

θ = 0.20
θ = 0.40
θ = 0.60
θ = 0.80
θ = 1.00
θ = 1.20

Figure 5.8: Minimum Expected Access Time with Arrival Rates

The different arrival rates of data items have significant impact on the

minimum expected access time achieved by the system. Figure 5.8 shows

that for different access skewness and with increasing arrival rates, the

expected access time increases. For an arrival rate of 1 and 4, the average

access time is in the range 100–400 and 400–750 time units respectively.

Next we analyze the variation of the cutoff point with access skewness for

different arrival rates. This is necessary to get a clear picture of the system

dynamics, as the cutoff point plays the major role to minimize the expected

access time. Figure 5.9 shows that the value of cutoff point decreases with

increasing values of access skewness, θ. For example, K = 300–500 for

lower skewness (θ ≤ 0.6) and K = 100–150 for higher skewness (θ ≥ 1.00).

The reason is that with increasing skewness, the items get more skewed

and number of popular items decreases. Hence, fewer number of items are

pushed, thus decreasing the cutoff point.

One major objective of our proposed hybrid scheduling is to reduce the

106



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400

450

Access Skew Coefficient (θ)

C
ut

−
of

f P
oi

nt
 (

K
)

λ = 1
λ=2
λ=3
λ=4

Figure 5.9: Variation of Cutoff Point

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

200

400

600

800

1000

1200

1400

1600

Access Skewness (θ)

A
ve

ra
ge

 N
um

be
r 

of
 R

eq
ue

st
s 

D
ro

pp
ed

λ = 2
λ=3
λ=4
Existing Strategy

Figure 5.10: Average Number of Requests Dropped

dropped requests arising from client’s impatience. Figure 5.10 depicts the

average number of requests dropped with access skewness for different ar-

rival rates. The performance is compared with the existing strategy [24] for

client’s impatience in data broadcasting with an unit arrival rate. As ex-

pected, the number of drop-requests increases with increasing arrival rates.

However, for all arrival rates the number of drop requests is significantly

lower than the number of drop-requests in existing work. This is true even

107



for higher arrival rates λ′ ≥ 2. This points out the efficiency of our hybrid

scheduling strategy while considering client’s departure due to impatience.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
250

300

350

400

450

500

550

600

650

700

750

Access Skewness (θ)

M
in

 E
xp

ec
te

d 
A

cc
es

s 
T

im
e

Simulation Results with λ = 2
Analytical Results with λ = 2
Simulation Results with λ = 3
Analytical Results with λ = 3

Figure 5.11: Comparison of Analytical and Simulation Results

Figure 5.11 provides the comparative view between analytical and simu-

lation results for hybrid scheduling with client’s departure. The simulation

results closely match with the analytical results. The minor ∼ 8% differ-

ence is primarily due to the fact that analytical results only capture an

approximate average value.

5.3.2 Hybrid Scheduling with Anomalies

In this section, we discuss the simulation results for hybrid scheduling

where the clients’ impatience does not compel them to leave the system,

but makes them transmit multiple request for the same data item, thus

generating an anomaly in the system.

Figure 5.12 delineates the variation of expected access time with cutoff

point for different values of access skewness. The variation of this access

time is similar to Figure 5.7, and takes a bell-shaped form, i.e., the expected

access time first decreases up to a certain point and then starts increasing.

108



0.2
0.4

0.6
0.8

1
1.2

0

20

40

60

80

100
0

500

1000

1500

2000

2500

3000

Access Skewness (θ)Cut−off (k)

A
cc

es
s 

T
im

e

θ=0.2
θ=0.4
θ=0.6
θ=0.8
θ=1.00
θ=1.20

Figure 5.12: Variation of Expected Access Time with Cutoff-point

The optimal value of K is chosen to get the minimum expected access time

for hybrid scheduling with anomalies.

The changes in the expected access time with different arrival rates is

shown in Figure 5.13 for different values of access skewness. The increase

in access skewness results in lower expected access time for all values of

arrival rates. For items of unit length, the expected access time lies in the

range 150–400 time units. For items of length 4, the expected access time

is ∼ 50–110 time units.

The change in minimum expected access time with different values of

access skewness and item-length is depicted in Figure 5.14. The waiting

time is minimized (100 time units) for items of unit length and higher

values of access skewness.

Finally, we investigate into the dynamics of cutoff point with different

access skewness and arrival rates. Figures 5.15 and 5.16 show the variation

of cutoff point with access skewness for different values of arrival rates

and item lengths, respectively. For higher skewness, the cutoff decreases,

thereby allowing more items in the pull queue and less items to be pushed.

This is performed to achieve the minimum expected access time of the

109



1 1.5 2 2.5 3 3.5 4
100

200

300

400

500

600

700

800

900

1000

1100

Arrival Rate (λ)

M
in

 E
xp

ec
te

d 
A

cc
es

s 
T

im
e

θ = 0.20
θ = 0.40
θ = 0.60
θ = 0.80
θ = 1.00
θ = 1.20

Figure 5.13: Minimum Expected Access Time with Arrival Rates

1
1.5

2
2.5

3
3.5

4

0

0.5

1

1.5
100

200

300

400

500

600

700

800

900

length of Items
Access Skew Coefficient (θ)

E
xp

ec
te

d 
A

cc
es

s 
T

im
e

λ = 1
 λ = 2
 λ = 3
 λ = 4

Figure 5.14: Expected Access Time with Item-length

system.

Figure 5.17 provides the comparative view between analytical and sim-

ulation results in hybrid scheduling with anomalies. The simulation results

closely match (90%) with the analytical results. The minor difference is

again attributed to the approximate nature of the analysis.

110



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

Access Skew Coefficient (θ)

C
ut

−
of

f P
oi

nt
 (

K
)

λ = 1
λ=2
λ=3
λ=4

Figure 5.15: Variation of Cutoff point with Arrival Rates

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

Access Skew Coefficient (θ)

C
ut

−
of

f P
oi

nt
 (

K
)

length = 1
length=2
length=3
length=4

Figure 5.16: Variation of Cutoff point with Item-length

5.4 Summary

In this chapter we have enhanced our hybrid scheduling framework to make

it more practical and close to real systems. In real systems the clients often

get impatient which might result in two different scenarios. An impatient

client might leave the system. Excessive impatience might lead to the

client’s declination in re-joining the system again. On the other hand, an

111



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
100

200

300

400

500

600

700

800

900

1000

Access Skewness (θ)

M
in

 E
xp

ec
te

d 
A

cc
es

s 
T

im
e

Simulation Results with λ = 2
Analytical Results with λ = 2
Simulation Results with λ = 3
Analytical Results with λ = 3

Figure 5.17: Comparison of Analytical and Simulation Results

impatient client can send multiple requests for the same item (the item

it wants), thereby increasing that item’s popularity. The server (system)

might be ignorant of this fact, and can consider the item as a popular one.

This raises an anomaly in the system. In this chapter we have enhanced

our hybrid scheduling framework to cope up with clients’ impatience to

resolve the situation arising due to clients’ departure and spurious requests

(anomalies).

112



Chapter 6

Dynamic Hybrid Scheduling with

Request Repetition

In this chapter we propose a dynamic hybrid scheduling [39], where any new

request for a pull item is kept in the pull queue. However, the clients’ impa-

tience resulting from their prolonged waiting for any item, or a new requests

for the same data item by another client often makes them to transmit

repeated requests. The server keeps these repeated requests in the repeat-

attempt (retrial) queue, thereby distinguishing such requests from the new

requests arriving in the pull queue. At any instance of time the item to

be serviced is selected by using stretch (i.e, max-request min-service-time

first) optimal scheduling algorithm. The service of an item from the pull

queue needs to consider the service of the instances of same items from the

repeat-attempt queue also. Using a multi-dimensional Markov model the

average performance of the overall heterogenous, hybrid scheduling system

is derived.

6.1 Repeat-Attempt Hybrid Scheduling Scheme

Figure 6.1 highlights the overview of a repeat-attempt system. In the con-

ventional communication, any request which finds the terminal busy is put

113



External Arrivals Departures

Retrial Item Existing in Queue

Server and Queue
for data items

Repeat Attempt State

Figure 6.1: Overview of Repeat Attempt System

on the waiting queue. In a repeat-attempt model however, a request which

finds the server busy checks whether the item is in the waiting queue. If

not, the item is kept in the waiting queue. If the item is already in the

waiting queue, it is stored in the repeat-attempt queue. This forms the ba-

sis of our newly-proposed repeat-attempt hybrid scheduling system. The

database at the server consists of a total number of D distinct, heteroge-

neous items, out of which K items are pushed and the remaining (D−K)

items are pulled. The access probability Pi of an item i, i.e., the popularity

of the items amongst the clients, is governed by the Zipf’s distribution and

depends on the access skew-coefficient (θ). From time to time the value

of θ is changed dynamically for our hybrid system, thus varying Pi of all

items and hence varying the size of the push and the pull sets dynamically.

The server maintains the database of all variable-length items. Peri-

odically the server pushes the data items using a broadcast schedule. We

have used the Packet Fair Scheduling (PFS) principle [19], which schedules

the data items in an order such that two consecutive instances of the same

data items are always equally spaced. When a client needs an item i, it

sends to the server its request for item i and waits until it listens for i on

the channel. If the request is for a push item, the server simply ignores the

request as the item will be pushed according to the PFS algorithm. How-

ever, if the request is for a pull item, then the server first checks whether it

114



is a new item-request from a client or it is a request for the same data item

by another client. If it is a request for a new item, it inserts the request

into the pull queue with the arrival time and updates its stretch value.

On the other-hand, if the request is not a new one, i.e., some other client

has already requested the item, the server considers it as a repeat attempt

from an impatient client, inserts the item into the repeat-attempt (retrial)

queue and updates its stretch-value. After every push, if the pull queue is

not empty, the server chooses one item based on optimal stretch value, i.e,

the item having max-request min-service-time value from the pull-queue.

It now pulls that item and clears the pending requests for that item in

the pull-queue. Subsequently, the server now checks the repeat-attempt

queue and clear the requests associated with the instances of the same

item. Figure 6.2 provides the pseudo-code of the repeat-attempt, hetero-

geneous hybrid scheduling algorithm executing at the server-side, where

the procedure Access and pull() is depicted in Figure 6.3.

6.2 Performance Analysis of the Hybrid Repeat At-

tempt System

In normal pull-based scheduling strategy, the clients send explicit request

to the server and the server queues the requests. The item with maximum

requests or maximum stretch (request/square of length) is selected for ser-

vice. However, in real systems often the clients are impatient, i.e., they

often send multiple requests for a data item while it is not being serviced.

Similarly, if a data item is already requested by a client and is waiting

for service, and another client requests the same data item, the item is

also considered as repeat-attempt item. In these scenarios, the data items

having multiple requests are assumed to be in a new state, termed repeat

attempt state.

115



Procedure Hybrid Scheduling with

Retrials;

while (true) do

begin

Broadcast all pages of an item,

selected according to the PFS;

Access and pull();

if (pull-queue is not empty) then

extract an item, from pull

queue, that optimizes stretch;

if (tie)

extract the item with the

smallest index;

clear the number of pending

requests for this item in the

pull queue;

clear the pending requests for

the instance of the same item

in the repeat-attempt queue;

pull the particular item;

Access and pull();

end;

Figure 6.2: Hybrid Scheduling Algorithm with Repeat-Attempts

We have assumed Poisson’s arrival and exponential service of the items

to make the analysis mathematically tractable. Figure 6.4 shows the

schematic diagram of such a multi-dimensional Markov model representing

the repeat-attempt hybrid system. Any state of the system is represented

by (x, y, z), where x represents number of unique items in the pull queue

(0 ≤ x ≤ D −K) and y represents number of repeat-attempt items in the

repeat-attempt queue and z = 0 (or 1) represents push (or pull) system

116



Procedure Access and Pull();

while (true) do

begin

take a specific number of accesses

after broadcasting each page;

if(the request is for push-item)

ignore the request;

else-if(the request is for pull-item)

if(new request)

insert the request into the

pull queue with arrival time;

else

mark the request as a

repeat-attempt;

insert the request into the

repeat-attempt queue;

end;

Figure 6.3: Access and Pull Scheduling

is currently under operation. The average arrival rate of the pull queue

is assumed as λ. On the other hand, the arrival in the repeat-attempt

queue is assumed to be directly proportional of the number of items present

in the pull queue. Thus, the arrival rate in the repeat-attempt queue is

taken as xξλ, where ξ is the scaling factor based on per item’s average

repeat attempt probability. We denote the transitional probability associ-

ated with transition from any state (x, y, z) to any another state (x′, y′, z′)

by P(x,y,z);(x′,y′,z′). A careful insight into the system, shown in Figure 6.4

demonstrates the following major transitions:

1. There is only single transition possible from initial (idle) state (0, 0, 0).

This happened with probability P(0,0,0);(1,0,0) during the arrival of any

117



0, 0, 0 1, 0, 0 2, 0, 0 3, 0, 0

1, 0, 1 2, 0, 1

1, 1, 0 2, 1, 0 3, 1, 0

1, 1, 1 2, 1,  1 3, 1, 1

3, 0, 1

P
(0,0,0);(1,0,0)

P P P

P

PP

P

P

P P

P

P

P

P
(0,0,0);(1,0,0)

P

P P

P

(1,0,0);(2,0,0) (2,0,0);(3,0,0) (3,0,0);(4,0,0)

(3,0,0);(3,1,0)

(3,0,1);(2,0,0)
(3,0,1);(4,0,1)

(1,0,1);(0,0,0)

(3,0,0);(3,1,0)

(1,1,1);(0,0,0)

(3,1,1);(4,1,1)

P(3,1,1);(3,2,0)PP
(1,1,1);(1,2,1) (2,1,1);(2,2,1)

(0,0,0);(1,0,0)P

(1,,0,0);(1,1,0)
P

(0,0,0);(1,0,0)P

(1,0,1);(2,0,1)

P(2,0,0);(2,1,0)

(2,0,0);(2,0,1)P

P
(2,0,1);(2,1,1)

P

(2,1,1);(1,0,0)P

(2,1, 0);(3,1,0)

P
(3,1,1);(2,0,0)

(3,1,0);(4,1,0)

P
(1,1,0);(1,1,1) P(1,1,1);(2,1,1) (2,1,1);(3,1,1)

(2,1,0);(2,1,1)
P

(3,1,1);(2,1,0)

P(3,1,0);(3,1,1)

(2,1,1);(1,1,0)

(2,0,1);(1,0,0)

(1,0,0);(1,0,1)

Figure 6.4: Repeat Attempt Markov Model of Hybrid Scheduling

item in the pull system.

2. Arrival of any item in the pull queue results in transition of state in

both the push and pull system from (x, y, 0) and (x, y, 1) to (x+1, y, 0)

and (x + 1, y, 1) with probabilities P(x,y,0);(x+1,y,0) and P(x,y,1);(x+1,y,1)

respectively.

3. Similarly, arrival of any item in the repeat-attempt queue results in

transition of states in the repeat-attempt system from (x, y, 0) and

(x, y, 1) to (x, y+1, 0) and (x, y+1, 1) with probabilities P(x,y,0);(x,y+1,0)

and P(x,y,1);(x,y+1,1) respectively.

4. Service of an item in the push system results in transition of states

from (x, y, 0) to (x, y, 1) with probability P(x,y,0);(x,y,1). However, de-

pending on the number of repeated attempts, the service of an item

in the pull system can result in transition of states from (x, y, 1)

to (x − 1, y, 0), (x − 1, y − 1, 0), . . ., (x − 1, 0, 0) with probabilities

P(x,y,1);(x−1,y,0), P(x,y,1);(x−1,y,0), . . ., P(x,y,1);(x−1,0,0) respectively. When

118



the pull system contains only a single element, the service of an

item results in transition from (1, y, 1) to (0, 0, 0) with probability

P(1,y,1);(0,0,0).

For example, referring to the states (2, 0, 0) (push with 2 items) and

(2, 0, 1) (pull with 2 items) in Figure 6.4, the arrival of a new pull-item

with arrival rate λ in the system, leads to the transition into state (3, 0, 0)

and (3, 0, 1) with probability P(2,0,0);(3,0,0) and P(2,0,0);(3,0,1) respectively. Sim-

ilarly, arrival of a repeat-attempt item at these two states with an arrival

rate 2ξλ results in transition into the state (2, 1, 0) and (2, 1, 1) with prob-

ability P(2,0,0);(2,1,0) and P(2,0,1);(2,1,1) respectively. We have assumed strictly

reciprocal service of a push and pull item. The average service rate of the

push system is assumed to be µ′. Such a service of an item from the push

system, indicates that the next service will be from the pull system. Re-

ferring to the same state, i.e., (2, 0, 0) in Figure 6.4, the service of the item

results in transition from state (2, 0, 0) to state (2, 0, 1) with probability

P(2,0,0);(2,0,1) and service rate µ′. However, the service of an item results

in different possibilities, because the item currently getting serviced might

be present or absent in the repeat-attempt queue. If it is present in the

repeat-attempt queue, then the number of entries of that particular item

in the repeat-attempt queue also needs to be cleared. Hence, service from

state (2, 1, 1) results in transition to either of the states (1, 0, 0) or (1, 1, 0)

with probabilities P(2,1,1);(1,0,0) and P(2,1,1);(1,1,0) with service rates µ1 and µ2

respectively.

In order to get the estimates of these probabilities (P ), first we need to

derive the probabilities of selecting a particular item for service from the

pull-queue and repeat-attempt queue. Subsequently, we need to obtain the

relations between different service rates and measure for transition prob-

abilities of the Markov Chain. We first proceed to find out the selection

probabilities of different data items in the pull and Repeat Attempt queue.

119



Since, there are x number of items currently present in the pull system,

the actual items could be any combination of x elements chosen from total

m data items in the system. Obviously, there are κ =
(
m
x

)
number of com-

binations possible. We denote the combination by ~C = {~C1, ~C2, . . . , ~Cκ},
where every ~Cj is a x-element vector. Every element of this vector is a

data item. We can select an element i from any of these vectors in
(
x
1

)

ways. Now, once we have chosen i from a particular vector every other

item of the remaining x − 1 items can be chosen from any element of the

available vectors. It should be noted that same items can not be repeated,

as repeated items reside in the repeat-attempt queue. In other words, any

item selected can not be re-selected again. Hence, if pi represents the ac-

cess probability of item i, then probability Pr[i]Q of choosing any item i

from the pull queue (without repetition) is given by the relation:

Pr[i]Q =


x

1


[pi

x∑

j1=1,j1 6=i

pj1 . . .
x∑

jκ=1,jκ 6=i,jκ 6=jz,∀z<κ

pjκ
]

(6.1)

However, it should be noted that since the pull queue does not contain the

repeated instances of the items, the sum of total probability of the queue

is less than 1. Hence all such probabilities Pr[i]Q need to be normalized.

Hence the normalized probability is now given by:

Pr[i]norm =
Pr[i]Q

∑κ
j=1 Pr[~Cj]

(6.2)

where Pr[~Cj] represents the probability of all the items belonging to the

vector ~Cj.

We now investigate into the Repeat-Attempt queue, where the elements

can be repeated. They can be repeated once, twice or up to a maximum

of m-times. We are looking to obtain the probability of this repetition

120



of elements. Proceeding in the similar approach as in Equation (6.1),

we can obtain the probability of a particular item i to be repeated any

number of times in the Repeat-Attempt queue. Let, (Pr[i]Repeat)y denotes

the probability that the item i is repeated y times in the Repeat-Attempt

queue. Now, for the first time, the item i can still be selected in
(
x
1

)
= x

different ways. However, since i will be repeated once more, after choosing

it for once, it can still be selected in x ways for the second time and there-

after. The other terms for the remaining items can be chosen from any

element of the available vectors. The restriction that the item can not

be repeated (as in the pull queue) no longer exists in this repeat-attempt

queue. Hence, proceeding in a similar way, the probability (Pr[i]Repeat)y

that there are y number of repetition of the item i is given by the equation:

(Pr[i]Repeat)y = [
x∑

j1=1
. . .

x∑

jy=1,jy 6=i

. . .
x∑

jκ=1,jκ 6=i

pj1...pjy
. . . pjκ

]× xypi,

(∀y, 1 ≤ y ≤ m) (6.3)

The normalized probabilities of repeat-attempt states are now obtained

by dividing the probability (Pr[i]Repeat)y by the total probability of all the

elements in the repeat-attempt queue:

(Pr[i]Repeat)ynorm
=

(Pr[i]Repeat)y∑x
i=1

∑y
j=1 (Pr[i]Repeat)j

(6.4)

It should be noted that when a departure occurs from a repeat-attempt

state, the next state always depends on the probabilities of the number

of repeated attempts occurred. Let, µ and µ′ be the overall service rate

associated with the pull and push system. Also, let µ0, µ1, . . ., µy represents

the fraction of overall pull service rate (µ) associated with 0, 1, . . ., y

number of repetitions. Now each of this fractional service rate is responsible

for servicing the particular item from the pull-queue and the corresponding

121



items repeated in the repeat-attempt queue. Hence, the fractional service

rate can be estimated by multiplying the probability of item-selection from

the pull queue and from the repeat-attempt queue. Thus, we have:

µy = Pr[i]norm (Pr[i]Repeat)ynorm
µ,

µ0 = (Pr[i]norm [1− ζ]) µ, where

ζ = (Pr[i]Repeat)1norm
+ . . . + (Pr[i]Repeat)ynorm

(6.5)

We are now in a position to compute the transitional probabilities in the

Markov Chain. The transitional probabilities between any two states are

estimated as the ratio of the transition rate between the initial and the

final state with the total transition rate from the initial state. Hence, the

expression for different transitional probabilities of the Markov Chain is

now given as:

P(x,y,0);(x+1,y,0) =
λ

λ + xξλ + µ′

P(x,y,0);(x,y+1,0) =
xξλ

λ + xξλ + µ′

P(x,y,0);(x,y,1) =
µ′

λ + xξλ + µ′

P(x,y,1);(x+1,y,1) =
λ

λ + xξλ +
∑y

i=0 µi

P(x,y,1);(x,y+1,1) =
xξλ

λ + xξλ +
∑y

i=0 µi

P(1,y,1);(0,0,0) =
µ0

λ + xξλ + µ0

P(x,y,1);(x−1,y,0) =
µ0

λ + xξλ + µ0

P(x,y,1);(x−1,y−1,0) =
µ1

λ + xkξλ + µ0

(∀x ≥ 1,∀y ≥ 0)

. . . . . . . . . . . . . . .

P(x,y,1);(x−1,0,0) =
µy

λ + xξλ + µ0
(6.6)

122



The transitional probabilities of the Markov Chain obtained in this manner

now forms the transitional matrix, containing the necessary information

of the hybrid system. Any entry corresponding to (x, y, z), (x′, y′, z′) in

the transition matrix, actually contains the state transition probability

P(x,y,z);(x′,y′,z′) from (x, y, z) to (x′, y′, z′). Representing all the steady states

by the vector ~π and the transition matrix by P, an approximate measure

of the steady state probabilities can be obtained by solving the following

matrix equations associated with the Markov Chain:

~π = ~πP

~πe = 1, (6.7)

where e is a unit column vector. Solving the above equations helps us

in obtaining the state probabilities π = {π(0, 0, 0), . . . , π(x, y, z)}. The

average number of items in the system and the average waiting time is

now estimated as:

E[Items] =
D−K∑

x=0

x∑

y=0
[π(x, y, 0) + π(x, y, 1)]

E[W ] = E[Items]/λ. (6.8)

This provides an average behavior of our newly proposed hybrid scheduling

system, which considers repeated-attempts from the clients.

6.3 Simulation Experiments

In this section we validate the performance of our hybrid system through

simulation experiments. The primary goal of hybrid scheduling is to re-

duce the expected access time. Before presenting the details of simulation

results, we enumerate the salient assumptions and parameters used in our

simulation.

123



1. The simulation experiments are evaluated for a total number of D =

1000 data items.

2. The overall arrival rate λ is varied between 5–20 arrivals per unit

time. The value of µ and µ′ is estimated as: µ =
∑K

i=1(Pi × Li) and

µ =
∑D

i=K+1(Pi × Li) where Pi and Li are the access probability and

length of data item i, respectively.

3. The length of the data items are varied from 1 to 4.

4. In order to keep the access probabilities of the items from similar to

very skewed, θ is dynamically varied from 0.20 to 1.40.

5. To compare the performance of our hybrid scheduling strategy with

client’s impatience, we have chosen the work in [32], as according

to our knowledge, this is the only existing broadcast scheme which

considered client’s impatience.

In the following, we discuss as series of simulation results to demonstrate

the efficiency of our two hybrid scheduling strategies.

Figure 6.5 demonstrate the variation of the expected access-time with

different values of K and θ, for λ = 10, in our hybrid repeat-attempt

scheduling system. With increasing values of cutoff point K, the expected

access time initially decreases, attains a minimum value and then starts

increasing again. This minimum point also provides the optimum cut-off

point for which the framework gets an exact balance between the push and

pull systems. Figure 6.6 shows the results of performance comparison, in

terms of expected access time (in seconds), between our newly proposed

repeat-attempt hybrid framework with the existing hybrid scheme due to

Oh, et al. [32]. The effective combination of PFS and Stretch-optimal

scheduling strategies, together with the repeat-attempt functionality re-

sults in the reduced waiting time in our hybrid scheduling framework.

124



0.2
0.4

0.6
0.8

1
1.2

0

20

40

60

80

100

20

40

60

80

100

120

140

160

Access Skew Coefficient (θ)

Cut−off (k)

Ac
ce

ss
 T

im
e

θ = 0.2
θ=0.4
 θ = 0.6
 θ = 0.8
 θ = 1.0
 θ = 1.2
 θ = 1.4

Figure 6.5: Performance of Hybrid Scheduling

0.2 0.4 0.6 0.8 1 1.2 1.4
1

2

3

4

5

6

7

8

9

10

11

Access Skew Coefficient (θ)

M
in

m
um

 E
xp

ec
te

d 
Ac

es
s 

Ti
m

e

Our New Algorithm at N=5
Our New Algorithm at N=10
Our New Algorithm at N=20
Oh et. al. at N= 5
Oh et. al. at N= 10
Oh et. al. at N= 20

Figure 6.6: Performance Comparison with [32]

Figure 6.7 depicts the comparative view of the analytical results with

the simulation results of our repeat-attempt hybrid scheduling framework.

For the analytical results, we have numerically solved the Markov Chain

in Figure 6.4 and the Equations 6.1– 6.8 to get an estimate of the aver-

age system performance. The analytical results closely match with the

simulation results for expected access time with almost ∼ 95% accuracy,

thereby pointing out that the performance analysis is capable of capturing

the average system behavior with good accuracy.

Figure 6.8 demonstrates that K lies in the range of 40–60 for three differ-

ent arrival rates λ = [5, 10, 20]. Intuitively, this points out that the system

125



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
40

45

50

55

60

65

70

75

80

85

90

 Access Skew Coefficient (θ) 

 M
in

im
um

 E
xp

ec
te

d 
Ac

ce
ss

 T
im

e 

Analytical Results for λ = 20
 Simulation Results for λ = 20
Analytical Results for λ = 10
Simulation Results for Lambda = 10
Analytical Results for λ = 5
 Simulation Results for λ = 5

Figure 6.7: Simulation Vs Analytical Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

Access Skew Coefficient ( θ)

Cu
t−

of
f P

oi
nt

 (K
)

Variation of the Cut−Off Point (K)

α=0.0
α=0.25
α=0.50
α=0.75
α=1.00

Figure 6.8: Variation of Cutoff-point (K)

has achieved a fair balance between push and pull systems to achieve the

minimum expected access time.

6.4 Summary

In this chapter we have enhanced our hybrid scheduling to incorporate

the client’s repeat-attempt (retrial) behavior. The client’s impatience of-

ten results in repeated attempts (retrials) for the same item. We have

used suitable modeling, analysis and simulation experiments to capture

the clients’ retrials.

126



Chapter 7

Service Classification in Hybrid

Scheduling for Differentiated QoS

In this chapter we propose a new service classification strategy [38], [42]

for hybrid broadcasting to support the differentiated QoS in wireless data

networks. The major novelty of our work lies in separating the clients

into different classes and introducing the concept of a new selection cri-

teria, termed as importance factor, by combining the clients’ priority and

the stretch (i.e, max-request min-service-time) value. The item having the

maximum importance factor is selected from the pull queue. The service

providers now provide different service level agreements (SLA), by guar-

anteeing different levels of resource provisioning to each class of clients.

The QoS (delay and blocking) guarantee for different class of clients now

becomes different, with the clients having maximum importance factor

achieving the highest level of QoS guarantee. The performance of our het-

erogeneous hybrid scheduler is analyzed using suitable priority queues to

derive the expected waiting time. The bandwidth of the wireless channels

is distributed among the client-classes to minimize the request-blocking of

highest priority clients. The cut-off point, used to segregate the push and

pull items is efficiently chosen such that the overall costs associated in the

system gets minimized.

127



7.1 Hybrid Scheduling with Service Classification

We assume an environment with a single server serving multiple clients,

thus imposing asymmetry. The server-database consists of a total D dis-

tinct items, out of which K items are pushed and the remaining (D −K)

items are pulled. All the items have variable lengths. The access probabil-

ity Pi, of an item i is governed by the Zipf’s distribution. Every client is also

associated with certain priority. These priorities provides the influence and

importance of the clients to the service providers. The push-based broad-

casting ignores the clients’ requests, and uses a Flat round-robin scheduling

strategy for cyclic broadcasting of popular data items.

The pull-scheduling, on the other hand, is based on a linear combination

of the number of clients’ requests accumulated and priorities. It should be

noted that items with pending requests for higher priority clients should be

serviced faster than the items having requests from lower priority clients.

However, this scheme might suffer from un-fairness to the lower priority

clients and also does not consider the number of clients’ requests. A data

item, requested by many clients having lower importance, might remain in

the pull queue for a long time. Eventually, all the pending requests for that

item might be lost (blocked). Hence, a better option is to consider both the

number of pending requests and the priorities of all clients requesting the

particular data item. A close look into the system reveals that, the service

time required to serve an item is dependent on the size of that item. The

larger the length of an item the higher is its service time. We introduce

a new scheduling strategy that combines stretch optimal or max-request

min-service-time first schedule with the priority scheduling to select an

item from the pull-queue. Formally if, Si represents the stretch associated

with item i and Qi represents the total clients’ priority associated with

item i, then the item selected from the pull-queue is determined by the

128



following condition:

γi = max [αSi + (1− α)Qi] , (7.1)

where α is a fraction 0 ≤ α ≤ 1, which determines the relative weights

between the priority and the stretch value. Clearly, α = 0 and α = 1

makes the schedule priority-scheduling and stretch-optimal scheduling re-

spectively.

Procedure HYBRID SCHEDULING;

divide the clients among different service-classes;

distribute the total available bandwidth among service

classes such that every class is assigned to a bandwidth

proportional to the sum of its clients’ priorities;

while true do

begin

consider the access/requests arriving;

ignore the requests for push item;

append the requests for the pull item in the

pull-queue with its arrival time and importance-factor;

take out an item from the push scheduling and broadcast it;

if the pull-queue is not empty then

extract the item having maximum importance-factor

(γi) from the pull-queue;

if the required bandwidth for the item is

greater than the available bandwidth for the

corresponding service class then

drop that item and the corresponding requests;

else

assign the required bandwidth of the item and

update the available bandwidth;

transmit that item;

clear the number of pending requests for that item;

free the amount of required bandwidth and update

the amount of available bandwidth;

end-if

end-while

Figure 7.1: Service Classification in Hybrid Scheduling

When a client needs an item i, it requests the server for item i and waits

until it listens for i on the channel. Note that the behavior of the client

is independent of the fact that the requested item belongs to the push-

set or the pull-set. Depending on the priorities, the server first classifies

129



the clients into different service classes. Similarly, the server assigns the

total available bandwidth (B) to different service classes in such a way

that the bandwidth distribution is directly proportional to the sum of the

clients’ priorities belonging to the particular class. Formally we can say,

if n1, n2, . . . , nx represents the number of clients in each of the x service

classes, %j is the priority associated with any client j and B1,B2, . . . ,Bx

represents the bandwidth provisioning in every class, then we have:

B1 :: B2 :: . . . :: Bx =
n1∑

j=1
qj ::

n2∑

j=1
qj :: . . . ::

nx∑

j=1
qj, where

x∑

j=1
Bj = B (7.2)

The server goes on accumulating the set of requests from the clients. The

algorithm starts with a fixed cutoff-point which separates the push and

pull set. For any item arrived, it first determines if the item belongs to the

push or the pull set. If the request is for a push item, the server simply

ignores the request as the item will be pushed according to the online Flat,

round-robin algorithm. However, if the request is for a pull item, the server

inserts it into the pull queue with the arrival time, and updates its stretch

value and total priority of all the clients’ requesting that item. After every

push, if the pull queue is not empty, the server chooses the item having

maximum importance factor (γi) from the pull-queue. The bandwidth

required by the data item is assumed to follow Poisson’s distribution. If the

required bandwidth of the data item is less than the bandwidth available for

the corresponding service class, then the data item and the corresponding

requests are lost. Otherwise, the server assigns the required bandwidth

and transmits the item. Once the transmission is complete, the pending

requests for that item in the pull-queue is cleared and the bandwidth used

is released to update the available bandwidth. Figure 7.1 provides the

pseudo-code of the hybrid scheduling algorithm executing at the server-

side. Periodically the algorithm is executed for different cutoff-points and

obtains the optimal cutoff-point which minimizes the overall access time

130



(delay).

7.2 Delay and Blocking in Differentiated QoS

In this section we study the performance evaluation of our hybrid sched-

uler system by developing suitable models to analyze its behavior. The

prime concern of this analysis is to obtain an estimate of the minimum ex-

pected waiting time (delay) of the hybrid system. Since, this waiting time

is dependent on the cutoff point K, investigation into the delay dynamics

with different values of K is necessary to get the optimal cutoff point. As

explained before in Section 7.1, the selection criteria in the pull system is

dependent on both the stretch-value associated with the item and the pri-

ority of the clients requesting that particular item. Hence, the performance

analysis also needs to consider the clients priority along with the stretch-

value associated with every data item. We divide the entire analysis into

two parts. In the first part, we consider the system without any role of

the client’s priority and obtain the expression for average number of items

present in the system. In the second part, we introduce the explicit role of

priorities in determining the average system performance.

7.2.1 Average Number of Elements in the System

Assumptions: The arrival rate in the entire system is assumed to obey

the Poisson’s distribution with mean λ′. The service times of both the

push and pull systems are exponentially distributed with mean µ1 and µ2,

respectively. Let C, D and K respectively represents maximum number

of clients, total number of distinct data items and the cut-off point. The

server pushes K items and clients pull the rest (D −K) items. Thus, the

arrival rate in the pull-system is given by: λ =
∑D

i=K+1Pi × λ′, where Pi

denotes the access probability of item i. We have assumed that the access

131



probabilities Pi follow the Zipf’s distribution with access skew-coefficient

θ, such that Pi = (1/i)θ∑n
j=1(1/j)θ .

0, 0 1, 0 2, 0 i, 0

i, 12, 11, 1

λ λ λ λ λ

λ λ λ λµ

µ µ µ
µ

µ
1

µ

1 1
2

2

2

2

2µ

λ

µ
2

λ

µ1

C, 0

C, 1

Figure 7.2: Performance Modeling of Our Hybrid System

Figure 7.2 illustrates the birth and death model of our system, where

the arrival rate in the pull-system is given by λ. Any state of the overall

system is represented by the tuple (i, j), where i represents the number of

items in the pull-system and j = 0 (or 1) respectively represents whether

the push-system (or pull-system) is being served. The arrival of a data

item in the pull-system, results in the transition from state (i, j) to state

(i + 1, j), ∀i ∈ [0, C] and ∀j ∈ [0, 1]. The service of an item in the push

system results in transition of the system from state (i, j = 0) to state

(i, j = 1),∀i ∈ [0, C]. On the other hand, the service of an item in the

pull results in transition of the system from state (i, j = 1) to the state

(i−1, j = 0),∀i ∈ [1, C]. The details of steady-state flow balance equations

and their solutions are explained in our previous work [35]. For the sake of

clarity, we briefly highlight the major steps here. The steady-state behavior

of the system (without considering priority) is represented by the equations

given below:

p(0, 0) λ = p(1, 1) µ2

p(i, 0)(λ + µ1) = p(i− 1, 0)λ + p(i + 1, 1)µ2 (7.3)

p(i, 1)(λ + µ2) = p(i, 0)µ1 + p(i− 1, 1)λ (7.4)

132



where p(i, j) represents the probability of state (i, j). Dividing both sides

of Equation (7.3) by µ2, letting ρ = λ
µ2

, f = µ1

µ2
, performing subsequent

z-transform and using Equation (7.3), we get

P2 (z) = ρ p (0, 0) + z (ρ + f) [P1(z)− p (0, 0)]− ρz2 P1(z) (7.5)

P2(z) =
f [P1(z)− p(0, 0)]

(1 + ρ− ρ z)
(7.6)

Now, estimating the system behavior at the initial condition, we can state

that the occupancy of pull and push states is given by: P2(1) =
∑C

i=1 p(i, 1) =

ρ and P1(1) =
∑C

i=1 p(i, 0) = (1 − ρ). Using these two relations in Equa-

tion (7.5), we can obtain the idle probability, p(0, 0) as: p(0, 0) = 1−ρ− ρ
f .

Differentiating both sides of Equation (7.5) with respect to z at z = 1, we

estimate the expected number of elements in the pull-system (E[Lpull]) as

follows:

∂P2(z)

∂z




z=1
= E[Lpull] = (ρ + f)N + (1− ρ)− (ρ + f)× (1− ρ− ρ

f
)− ρN

(7.7)

where
[
∂P1(z)

∂z

]

z=1
= N represents the average number of elements in the

pull queue when a push request is being serviced.

7.2.2 Priority-based Service Classification

Every client j is associated with a certain priority qj, which reveals the

importance or class of that client. Obviously, this influences the arrival

rate associated with every item. The arrival rate associated with ith item

for jth priority-client is given by: λi = λ pi qj. Now, Li and Ri represents the

length and number of pending requests associated with the ith item, then

the stretch-value Si associated with that item is given by the expression:

Si = Ri

L2
i
. If E[Lpull] represents the average length of the pull queue, then

average number of ith items present in the queue is given by E[Lpull]pi.

133



Hence, average importance of ith item requested by jth client is given by:

E[Lpull] pi qj. Representing the influence of the set of clients S requesting

for item i by Qi =
∑S

j=1 qj, the selection criteria of that element is now

given by the following equation:

%i =


α

E[Lpull]pi

L2
i

+ (1− α)E[Lpull] piQi


 (7.8)

It should be noted that the above equation actually resembles Equation 7.1.

However, Equation 7.1 does not consider the number of ith items present in

the pull queue. Thus, Equation 7.8 actually generalizes Equation 7.1 and

boils down to Equation 7.1, when E[Lpull]pi = 1. This condition provides

the position of every item in the priority queue. In order to distinguish this

measure with the client priority qj, we term %i as the importance-factor of

item i. We first analyze the system performance with clients belonging to

two different classes [17], having two different importance factors. Sub-

sequently, we extend the framework to incorporate clients having multiple

importance factors.

Delay Estimation for Two Different Service Classes

Let, λ1 and λ2 represents the average arrival rate of the data items having

importance factors 1 and 2, i.e., λ = λ1+λ2. We also assume that the most

important items have the right to get service before the second important

item without preemption. Now, the probability of every state should in-

corporate the number of items belonging to both important factors and

the class of item currently getting service. We denote it by p(m,n, r, 1),

such that: p(m,n, r, 1) = Pr[m and n units of importance factor 1 and 2

are present in the system and a unit of importance factor r = 1(or 2) is in

service, the system is in the pull mode]. Proceeding in a similar manner as

shown in Section 7.2.1, we can obtain the steady state balanced equations

134



of the prioritized pull-system as:

(λ1 + λ2 + µ2)p(m,n, 2, 1) = λ1p(m− 1, n, 2, 1) + λ2p(m,n− 1, 2, 1)

(λ1 + λ2 + µ2)p(m,n, 1, 1) = λ1p(m− 1, n, 2, 1) + λ2p(m,n− 1, 2, 1)

+µ2[p(m + 1, n, 1, 1) + p(m,n + 1, 1, 1)]

(λ1 + λ2 + µ2)p(m, 1, 2, 1) = λ1p(m− 1, 1, 2, 1)

(λ1 + λ2 + µ2)p(1, n, 1, 1) = λ2p(1, n− 1, 1, 1) + µ2[p(2, n, 1, 1)

+p(1, n + 1, 2)]

(λ1 + λ2 + µ2)p(0, n, 2, 1) = λ2p(0, n− 1, 2, 1) + µ2[p(1, n, 1, 1) +

p(0, n + 1, 2, 1)]

(λ1 + λ2 + µ2)p(m, 0, 1, 1) = λ1p(m− 1, 0, 1, 1) + µ2[p(m + 1, 0, 1, 1) +

p(m, 1, 2, 1)]

(λ1 + λ2 + µ2)p(0, 1, 2, 1) = λ2p(0, 0, 0, 1) + µ2[p(1, 1, 1, 1) + p(0, 2, 2, 1)]

(λ1 + λ2 + µ2)p(1, 0, 1, 1) = λ1p(0, 0, 0, 1) + µ2[p(2, 0, 1, 1) + p(1, 1, 2, 1)]

(λ1 + λ2)p(0, 0, 0, 1) = µ2[p(1, 0, 1, 1) + p(0, 1, 2, 1)] (7.9)

It should be noted that the probability of the idle state, i.e., p(0, 0, 0, 0) =

p(0, 0) remains same as before. The reason behind this is that the ordering

of service does not affect the probability of idleness; i.e., p(0, 0) = 1−ρ− ρ
f .

Now, the occupancy of the pull states is ρ. Hence the fraction of time, the

pull-system is busy with type-1 and type-2 items is given by: ρλ1/λ and

ρλ2/λ. Thus we have,

C∑

m=1

C∑

n=0
p(m,n, 1, 1) =

λ1

µ
(a)

C∑

m=0

C∑

n=1
p(m,n, 2, 1) =

λ2

µ
(b) (7.10)

Obtaining a reasonable solution to these set of stationary equations is al-

most impossible. All we can is to achieve an expected measure of the sys-

tem performance. We perform two successive z-transforms over the Equa-

tions 7.10 (a)–(b), to get one and two dimensional z-transformed equations

135



in the following way:

Pm1(z) =
∞∑

n=0
znp(m,n, 1, 1) and Pm2(z) =

∞∑

n=1
znp(m,n, 2, 1)(7.11)

H1(y, z) =
∞∑

m=1
ymPm1(z) and H2(y, z) =

∞∑

m=1
ymPm2(z) (7.12)

Combining the above two-dimensional z-transforms we have:

H(y, z) = H1(y, z) + H2(y, z) + p(0, 0, 0, 1)

=
∞∑

m=1

∞∑

n=1
ymzn(pm,n,1,1 + pm,n,2,1) +

∞∑

m=1
znp(m, 0, 1, 1)

+
∞∑

n=1
znp(0, n, 2, 1) + p(0, 0, 0, 1) (7.13)

Multiplying the set of steady-state equations by suitable powers of y and

z and summing up accordingly we get,
(
1 + ρ− λ1y

µ2
− λ2z

µ2
− 1

y

)
H1(y, z) =

H2(y, z)

z
+

λ1yp(0, 0, 0, 1)

µ2
− P11(z)− P02(z)

z(
1 + ρ− λ1y

µ2
− λ2z

µ2

)
H2(y, z) = P11(z) +

P02

z
− p(0, 0, 0, 1)

(
ρ− λ2z

µ2

)

P11(z) =

(
1 + ρ− λ2z

µ2
− 1

z

)
P02(z)

+p(0, 0, 0, 1)

(
ρ− λ2z

µ2

)
(7.14)

Solution of the above three equations results in:

H(y, z) = H1(y, z) + H2(y, z) + p(0, 0, 0, 1)

=
p(0, 0, 0, 1)(1− y)

1− y − ρy(1− z − λ1y/λ + λ1z/λ)

+
(1 + ρ− ρz + λ1zµ2)(z − y)P0,2(z)

z[1 + ρ− λ1y/µ2 − λ2z/µ2][1− y − ρy(1− z − λ1y/λ + λ1z/λ]

(7.15)

The above equation provides the final solution of the z-transforms associ-

ated with the two different priority classes of clients. This equation will

136



help us in obtaining the average performance of both the priority classes

and also the overall expected system performance. As discussed earlier in

the previous subsection, differentiating this equation will provide the av-

erage number of items present in the system. If L1 and L2 represents the

average number of items for both the classes then,

L1 =


∂H(y, z)

∂y




y=z=1
and L2 =


∂H(y, z)

∂z




y=z=1
(7.16)

The expected waiting time of the data items having two different impor-

tance factors now can be easily found by using the Little’s formula as:

E[W1] = L1/λ1 and E[W2] = L2/λ2.

Effect of Multiple Service Classes

The outline of the above procedure however fails to capture the expected

system performance when number of importance-factors increase over 2.

Thus a better way is to follow a direct expected value approach [17]. Con-

sidering a non-preemptive system with many importance-factors, let us

assume the data items with importance-factor %j have an arrival rate and

service time of λj and µ2j respectively. The occupancy arising due to this

jth data item is represented by ρj = λj

µ2j
(1 ≤ j ≤ max), where max repre-

sents maximum possible value of importance-factor. Also let σj represents

the sum of all occupancy factors ρi, i.e., σj =
∑j

i=1 ρi. In the boundary

conditions we have, σ0 = 0 and σmax = ρ. If we assume that a data item of

importance-factor i arrives at time t0 and gets serviced at time t1, then the

wait is t1− t0. Let at t0 there are nj data items present having priorities j.

Also let, S0 be the time required to finish the data item already in service,

and Sj be the total time required to serve nj. During the waiting time of

any data item, n′j new items having higher importance-factor can arrive

and go to service before the current item. If S ′j be the total service time

required to service all the n′j items, then the expected waiting time for the

137



ith item will be,

E[W
(i)
pull] =

i−1∑

j=1
E[S ′j] +

i∑

j=1
E[Sj] + E[S0] (7.17)

In order to get a reasonable estimate of W
(i)
pull, three components of Equa-

tion 7.17 needs to individually evaluated.

(i)Estimating E[S0]: The random variable S0 actually represents the re-

maining time of service, and achieves a value 0 for idle system. Thus,

the computation of E[S0] is performed in the following way:

E[S0] = Pr[Busy-System].E[S0|Busy-System]

= ρ.
max∑

j=1
E[S0|Serving an item having importance-factor = j]

×Pr[item having importance-factor = j]

= ρ×
max∑

j=1

ρj

ρµ2j

=
max∑

j=1

ρj

µ2j

(7.18)

(ii) Estimating E[Sj]: The inherent independence of Poisson’s process

gives the flexibility to assume the service time S
(n)
j of all nj customers

to be independent. Thus, an estimate of E[Sj] can be obtained using

the following steps:

E[Sj] = E[njS
(n)
j ] = E[nj]E[S

(n)
j ] =

E[nj]

µ2j

= ρjE[W
(j)
pull] (7.19)

(iii) Estimating E[S ′j]: Proceeding in a similar way and assuming the

uniform property of Poisson’s,

E[S ′j] =
E[n′j]
µ2j

= ρjE[W
(i)
pull] (7.20)

The solution of Equation 7.17 can be achieved by combining the results

of Equations 7.18–7.20 and using Cobham’s iterative induction [17]. The

138



expected waiting time of the ith item and the overall expected waiting time

of the pull system is given as:

E[W
(i)
pull] =

∑max
j=1 ρj/µ2j

(1− σi−1)(1− σi)

E[W q
pull] =

max∑

i=1

λiE[W
q(i)
pull ]

λ
(7.21)

The overall expected access time is obtained by combining the time taken to

service the push and pull items. Since, the push set contains K items of het-

erogeneous lengths L1, L2, . . . , LK , the average length of the push (broad-

cast) cycle is 1
2

∑K
i=1 LiPi. Thus, the expected access-time (E[Thyb−acc]) of

our hybrid system is now given by:

E[Thyb−acc] =
1

2µ1

K∑

i=1
LiPi + E[W q

pull]
D∑

i=k+1
Pi, (7.22)

where K is the cutoff-point used to segregate push and pull components

of the hybrid system. It should be noted that one major objective of our

proposed algorithm is to find out an optimal cutoff-point K such that

this delay is minimized. The above expression provides an estimate of

the average delay (waiting time) for different class of clients in our hybrid

scheduling system. The service providers always try to reduce the delay of

the high priority clients, in order to ensure their satisfaction. Apart from

this delay, we would like get an estimate of the prioritized cost associated

with each class of client. This cost is actually obtained as qj ×E[Thyb−acc].

Intuitively this cost provides an estimate of the client’s influence on the

service provider and the overall system.

7.2.3 Bandwidth Provisioning for Improved Blocking

As discussed earlier in Equation 7.2 in Section 7.1, the overall bandwidth

B, of the wireless channels is distributed among the service classes in pro-

portion to the total probabilities of the set of clients belonging to that

139



service class. The bandwidth required for transmission of any data item is

assumed to follow Poisson’s distribution with mean ß. Thus the probability

that the current bandwidth (bcur) required is less than β is given by:

Pr[b < β] =
ßβe−ß

β!
(7.23)

If the bandwidth availability (bavail) is less than the current required band-

width (bcur) then the item is blocked and the corresponding requests are

not satisfied, otherwise the item is transmitted and the bandwidth avail-

ability is updated. If we denote the successful transmission F then we

have,

F =





1, bavail ≥ bcur

0, otherwise
(7.24)

7.3 Simulation Experiments

In this section we validate the performance analysis of our prioritized hy-

brid system by performing simulation experiments. Since, the framework is

made for differentiated services in wireless data networks, the primary ob-

jective is to reduce the cost associated in maintaining the different classes

of clients, thereby reducing the loss that might incur from the churning of

the clients. Naturally, the clients belonging to highest priority class should

be provided with minimum possible waiting time, as the system suffers

more in loosing these highest priority clients. We first enumerate the set

of assumptions used in our simulation. Subsequently, we provide the series

of simulation results obtained.

7.3.1 Assumptions

1. The simulation experiments are evaluated for a total number of data

items D = 100.

140



2. The overall average arrival rate λ′ is assumed to be 5. The value of µ1

and µ2 is estimated as: µ1 =
∑K

i=1(Pi×Li) and µ2 =
∑D

i=K+1(Pi×Li).

3. The length of the data items are varied from 1 to 5, with an average

of 2.

4. In order to keep the access probabilities of the items from similar to

very skewed, θ is dynamically varied from 0.20 to 1.40. More specifi-

cally, we have assumed θ = {0.20, 0.60, 1.0, 1.40}.
5. The entire set of clients is divided into three classes: Class-A, having

highest priority, Class-B with medium priority and Class-C with lowest

priority. The priorities are taken in the ratio 1 :: 2 :: 3. The fraction

α associated in deriving the importance-factor is assumed to be in the

range [0, 1], where α = 1 indicates the system ignoring the effect of pri-

ority and α = 0 indicates the system ignoring the effect of stretch. The

simulation experiments are performed for α = {0, 0.25, 0.50, 0.75, 1.0}.
6. The distribution of clients among different classes is also assumed

to obey Zipf’s distribution, with lowest number of highest priority

(Class-A) clients and highest number of lowest priority clients.

7. The overall average wireless channel bandwidth is assumed to be 64

Kbps. The average bandwidth requirement ß is assumed to be 10

Kbps.

8. The cost associated in maintaining the three different classes of clients

is assumed to be in proportion to the priority of the clients’ classes.

In other words the cost associated with Class-A, Class-B and Class-C

clients are assumed to be in the ratio 3 :: 2 :: 1. As discussed earlier,

this is used to obtain the prioritized cost (multiplication of client’s

priority and the expected delay) associated with different classes of

clients.

141



7.3.2 Results with Two Client-Classes

Now we describe the set of simulation results obtained from our simulation

experiments. First we concentrate on the simulation results with two dif-

ferent classes of clients. Subsequently we focus on the results having more

service classes.

Overall Expected Delay

The goal of the first set of experiments is to investigate into the overall

delay experienced by each class of clients. Figures 7.3–7.7 demonstrate

the dynamics of total delay with the cut-off point experienced by two dif-

ferent classes of clients for α = {0, 0.25, 0.50, 0.75, 1.0} respectively. This

is performed for different values of access skewness. The delay associated

with the Class-A (highest priority) clients is very low (within 20 broadcast

units). The delay experienced by the Class-B clients remains in the range

70–100 broadcast units. However, for both the classes of clients the delay

is higher for low values of cut-off point (K). This is because for low values

of K, the system deviates from the hybrid nature and can not achieve a

good balance between push and pull set.

Prioritized Costs

The major objective of the second set of experiments is to look into the vari-

ation of the prioritized cost associated with each class of clients. As men-

tioned earlier, the system assigns the costs to each class of clients in propor-

tion to the priority of that particular class. Figures 7.8–7.12 demonstrates

the variation of prioritized costs with the cut-off point, associated with each

class of clients for α = {0, 0.25, 0.50, 0.75, 1.0} and θ = 0.20, 0.60, 1.00, 1.40.

The overall objective is to pick up the particular value of cut-off point such

that the total prioritized cost is minimized. Figure 7.13, on the other hand,

142



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Delay Dynamics for α = 0.0

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.3: Delay Variation with α = 0.0

shows the changes in total optimal prioritized cost of both the client-classes,

with different values of α for θ = {0.20, 0.60, 1.00, 1.40}. With increasing

values of α the influence of priority increases and the prioritized cost re-

duces. The underlying reason is that for higher values of α the increased

influence of priority results in serving the important clients first, thereby

reducing the overall cost of the system.

Dynamics of Cutoff-Point

Figure 7.14 points out the changes in the cut-off point with different values

of θ for all five values of α. For small values of θ the cut-off point lies in the

range 40–50. This is because for small θ the items have similar probabilities

and the system obtains a very good balance between the push and pull set.

However, for higher values of θ the probabilities of the items get skewed.

Thus, the size of the push-set (having high probabilities) shrinks, thereby

resulting in low cut-off points (in the range 15–20).

143



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Delay Dynamics for α = 0.25

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.4: Delay Variation with α = 0.25

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Delay Dynamics for α = 0.50

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.5: Delay Variation with α = 0.50

Simulation and Analytical Results

Figure 7.15 demonstrates the comparison between analytical and simula-

tion results for θ = 0.60 and α = 0.75. The analytical results are obtained

using the Equation 7.22. We have chosen the values of α and θ so that these

values are almost in the middle of their range. Analytical results closely

match simulation results for both the set of clients, with a minor 10% de-

144



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Delay Dynamics for α = 0.75

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.6: Delay Variation with α = 0.75

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Delay Dynamics for α = 1.00

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.7: Delay Variation with α = 1.0

viation. The minor deviation is attributed to the memoryless assumption

in the system modeling.

7.3.3 Results with More Client-Classes

We now show the results with more than two different priority classes.

While all our results are performed with three different priority classes,

145



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
C

os
ts

Cost Variation for α = 0.0

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.8: Cost Dynamics with α = 0.00

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Delay Dynamics for α = 0.25

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.9: Cost Dynamics with α = 0.25

more than three priority classes are just straight-forward extension of these

results.

Overall Expected Delay

The goal of the first set of experiments is to investigate into the overall

delay experienced by each class of clients. Figures 7.16–7.20 demonstrate

the dynamics of total delay with the cut-off point experienced by three dif-

146



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
C

os
t

Cost Variation for α = 0.50

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.10: Cost Dynamics with α = 0.50

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

E
xp

ec
te

d 
C

os
t

Cost Variation for α = 0.75

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.11: Cost Dynamics with α = 0.75

ferent classes of clients for α = {0, 0.25, 0.50, 0.75, 1.0} respectively. This

is performed for different values of access skewness. The delay associated

with the Class-A (highest priority) clients is very low (within 5–10 broad-

cast units). The delay experienced by the Class-B clients remains in the

range 20–40 broadcast units. The highest delay (40–70 broadcast units) is

experienced by the Class-C clients. However, for all the classes of clients

the delay is higher for low values of cut-off point (K). The reason is that

147



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Cut−off Point (K)

Ex
pe

ct
ed

 C
os

t

Cost Variation for α = 1.00

Class A,  θ=0.20
Class B, θ = 0.20
Class A, θ = 0.60
 Class B, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
Class A, θ=1.40
Class B, θ=1.40

Figure 7.12: Cost Dynamics with α = 1.00

for low values of K, the system deviates from the hybrid nature and can

not achieve a good balance between push and pull set.

Prioritized Costs

The major objective of the second set of experiments is to look into the

variation of the prioritized cost associated with each class of clients. As

mentioned earlier, the system assigns the costs to each class of clients in

proportion to the priority of that particular class. These costs are actually

computed by multiplying the priority of the client-class with the expected

delay. Figure 7.21 demonstrates the variation of prioritized costs with the

cut-off point, associated with each class of clients for α = {0.25, 0.75} and

θ = 0.60. The overall objective is to pick up the particular value of cut-off

point such that the total prioritized cost is minimized.

Figure 7.22, on the other hand, shows the changes in total optimal

prioritized cost of all the client-classes, with different values of α for θ =

{0.20, 0.60, 1.40}. With decreasing values of α the influence of priority

increases and the prioritized cost reduces. The underlying reason is that

for lower values of α the increased influence of priority results in serving

148



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

60

70

80

90

100

110

120

Weighting factor α

O
ve

ra
ll 

Ex
pe

ct
ed

 C
os

ts

Variation of Overall Cost

θ = 0.20
θ=0.60
θ=1.0
θ=1.40

Figure 7.13: Variation of Overall Cost

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

Access Skew Coefficient ( θ)

C
ut

−o
ff 

P
oi

nt
 (K

)

Variation of the Cut−Off Point (K)

α=0.0
α=0.25
α=0.50
α=0.75
α=1.00

Figure 7.14: Variation of Cut-off Point

the important clients first, thereby reducing the overall cost of the system.

Differentiated Bandwidth Provisioning

One prime objective of this work is to point out the differentiated provision-

ing of wireless bandwidth among the different service classes. Figure 7.23

shows the percentage distribution of total available wireless bandwidth

among the three different sets of clients. The class-A clients are assigned

149



0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

80

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Analysis Vs Simulation for θ=0.60, α=0.75

Simulation Results for Class A
Simulation Results for Class B
Simulation Results for Class C
Analytical Results for Class A
Analytical Results for Class B
Analytical Results for Class C

Figure 7.15: Analytical Vs Simulation Results

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Cut−off Point (K)

W
ai

tin
g 

Ti
m

e

Delay Dynamics for α = 0.0

Class A,  θ=0.20
Class B, θ = 0.20
Class C, θ = 0.20
 Class A, θ = 1.0
 Class B, θ = 1.0
 Class C, θ = 1.0

Figure 7.16: Delay Variation with α = 0.0

with maximum fraction of bandwidth (almost 45%–50%), followed by class-

B (∼ 35%–40%). The class-C clients are provided with lowest bandwidth

(∼ 14%–∼ 20%).

This differentiated bandwidth provisioning helps in reduction of block-

ing for clients having higher priorities. Figure 7.24 points out that using

such a differentiated bandwidth provisioning strategy the blocking of class-

A and class-B clients can be reduced to 1/5 of the original blocking (without

150



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Cut−off Point (K)

W
ai

tin
g 

Ti
m

e

Delay Dynamics for α = 0.25

Class A,  θ=0.20
Class B, θ = 0.20
Class C, θ = 0.20
 Class A, θ = 1.0
 Class B, θ = 1.0
 Class C, θ = 1.0

Figure 7.17: Delay Variation with α = 0.25

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Cut−off Point (K)

W
ai

tin
g 

Ti
m

e

Delay Dynamics for α = 0.50

Class A,  θ=0.60
Class B, θ = 0.60
Class C, θ = 0.60
 Class A, θ = 1.4
 Class B, θ = 1.4
 Class C, θ = 1.4

Figure 7.18: Delay Variation with α = 0.50

any resource provisioning). However, the blocking of class-C clients are not

reduced. The reason is that the improved service to class-A and class-B

clients are provided at a minor expense of class-C clients. Since, class-A is

the highest priority clients, such differentiated service provisioning results

in increased of satisfaction to the higher priority clients, thereby reducing

the overall churn rate and the cost of the service providers.

151



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Cut−off Point (K)

W
ai

tin
g 

Ti
m

e

Delay Dynamics for α = 0.75

Class A,  θ=0.20
Class B, θ = 0.20
Class C, θ = 0.20
 Class A, θ = 1.40
 Class B, θ = 1.40
 Class C, θ = 1.40

Figure 7.19: Delay Variation with α = 0.75

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Cut−off Point (K)

W
ai

tin
g 

Ti
m

e

Delay Dynamics for α = 1.00

Class A,  θ=0.60
Class B, θ = 0.60
Class C, θ = 0.60
 Class A, θ = 1.0
 Class B, θ = 1.0
 Class C, θ = 1.0

Figure 7.20: Delay Variation with α = 1.0

Dynamics of Cutoff-Point

At this point of time, we want to look into the delay dynamics with the

variation of the cutoff-point. As discussed earlier, the algorithm determines

an optimal cutoff-point to reduce the overall delay. However, for different

values of access-skewness (θ), the optimality of cutoff-point changes. Fig-

ure 7.25 points out these changes in the cut-off point with different values

of θ for α = {0, 0.75, 1.0}. For small values of θ the cut-off point lies in

the range 40–55. This is because for small θ the items have similar proba-

152



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Cut−off Point (K)

P
rio

rit
iz

ed
 C

os
ts

Cost Dynamics for Access Skewness (θ) = 0.60

Class A,  α=0.25
Class B, α = 0.25
Class C, α = 0.25
 Class A, α = 0.75
 Class B, α = 0.75
 Class C, α = 0.75

Figure 7.21: Cost Dynamics for Service Classes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
80

90

100

110

120

130

140

150

160

α

To
ta

l P
rio

rit
iz

ed
 C

os
t

Variation of Total Cost

θ=0.20
θ = 0.60
θ=1.0
 θ = 1.40

Figure 7.22: Variation of Prioritized Cost

bilities and the system obtains a very good balance between the push and

pull set. However, for higher values of θ the probabilities of the items get

skewed. Thus, the size of the push-set (having high probabilities) shrinks,

thereby resulting in low cut-off points (in the range 15–20).

Simulation and Analytical Results

Figure 7.26 demonstrates the comparison between analytical and simula-

tion results for θ = 0.60 and α = 0.75. The analytical results are obtained

153



0.2

0.6

1

1.4

0

20

40

60

80

100

Access Skew Coefficienct (θ)

 Ba
nd

wi
dth

 Pr
ov

isi
on

ing

Class−A users
Class−B users
Class−C users

Figure 7.23: Bandwidth Provisioning

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

Arrival Rate

P
er

ce
nt

ag
e 

of
 B

lo
ck

in
g 

Without any Bandwidth Provisioing
Class−A With Bandwidth Provisioning
Class−B with Bandwidth Provisioning
Class−C with Bandwidth Provisioning

Figure 7.24: Reduction in Blocking

using the Equation 7.22. We have chosen the values of α and θ so that

these values are almost in the middle of their range. Analytical results

closely match simulation results for all the three set of clients, with a mi-

nor 10% deviation. The minor deviation is attributed to the memory-less

assumption in the system modeling.

154



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

Access Skew Coefficient (θ)

C
ut

−o
ff 

Po
in

t (
K)

Variation of the Cut−Off Point (K)

α=0.0
α=0.75
α=1.00

Figure 7.25: Variation of Cut-off Point

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

70

80

Cut−off Point (K)

E
xp

ec
te

d 
W

ai
tin

g 
Ti

m
e

Analysis Vs Simulation for θ=0.60, α=0.75

Simulation Results for Class A
Simulation Results for Class B
Simulation Results for Class C
Analytical Results for Class A
Analytical Results for Class B
Analytical Results for Class C

Figure 7.26: Analytical Vs. Simulation Results

7.4 Summary

In this chapter we have proposed a new priority based service classification

scheme suitable for differentiated QoS. Subsequently, we have enhanced

our hybrid scheduling strategy by using this service classification schemes.

The scheme explores clients’ priorities and items’ popularity for differen-

tial distribution of wireless resources. This results in lower churning rate,

improved QoS and more profit for the service providers.

155



156



Chapter 8

Online Hybrid Scheduling over

Multiple Channels

In this chapter, a new on-line hybrid solution [40] for the Multiple Broad-

cast Problem is investigated. The new strategy first partitions the data

items among multiple channels in a balanced way. Then, a hybrid push-

pull schedule is adopted for each single channel. Clients may request de-

sired data through the uplink and go to listen to the channel where the

data will be transmitted. In each channel, the push and pull sets are served

in an interleaved way: one unit of time is dedicated to an item belonging

to the push set; and one to an item of the pull set, if there are pending

client-requests not yet served. The push set is served according to a flat

schedule, while the pull set according to the Most Request First policy. No

complete knowledge is required in advance of the entire data set or of the

demand probabilities, and the schedule is designed on-line.

8.1 Preliminaries: Definitions and Metrics

Let D = {1, 2, . . . , N} be a set of N data items of unit length, and let each

item i be characterized by a demand probability Pi. To start, consider

a system with a single broadcast channel. A broadcast schedule S of any

157



period is an ordered sequence of data items selected from the set D. Note

that if S is cyclic then the period is a positive integer, otherwise period →
∞. Position t of S indicates the item of D that is broadcast at time

τ ≡ t mod period. The same item can be replicated in S. The average

spacing between two consecutive instances of the same item i in S is termed

si. Note that if i appears only once in S, then si = period. For total

push systems, the expected item delay ti for item i on S is defined as the

average time a client waits before receiving i, assuming that, at any instant

of time, clients start to listen with the same probability. Hence, ti = si

2 ,

for 1 ≤ i ≤ N . Thus, the Average Expected Delay is given by:

AED(D) =
N∑

i=1
tiPi =

1

2

N∑

i=1
siPi (8.1)

is the average over all items of D of their delay.

For the total pull systems, let δi,r be the actual delay between the request

r for item i and the transmission time of item i. If Ri and #i respectively

denotes the set of requests for item i and its size, then the average item

delay is defined as ∑
r∈Ri

δi,r

#i

and the Average Access Time

AAT (D) =
N∑

i=1

∑
r∈Ri

δi,r

#i
Pi (8.2)

is the average over all items of D of their average item delay.

For the hybrid push-pull systems, let D = Π ∪ ∆, where Π and ∆ are

the push and pull sets, respectively. Then, their performance is measured

as the Hybrid Time, represented by:

HT (D) = AED(Π) + AAT (∆) (8.3)

Finally, the Single Broadcast Problem is defined as the problem of finding

the broadcast schedule S which minimizes Equations 8.1, 8.2, and 8.3 for

push, pull and hybrid systems, respectively.

158



Note that, for total push schedules, particular assumptions lead to sim-

plified formulations. For example, for a flat schedule F , since si = N for

1 ≤ i ≤ N and
∑N

i=1 Pi = 1, it holds that

AEDF (D) =
N

2

For a schedule generated by the Square Root Rule algorithm SRR, if the

optimal spacing si =
(∑N

j=1
√

pj

) √
1
Pi

can be guaranteed, AEDSRR(D) =
(∑N

j=1
√

pj

)2
. Since, in general, however, optimal spacing is not reachable

because conflicts can arise on the same schedule position, the following

weaker result holds [48]

AEDSRR(D) ≥



N∑

j=1

√
pj




2

Consider now a system with K broadcast channels. Clearly, a multi-

ple broadcast schedule M consists of K single broadcast schedules, one per

channel. For total push systems, the average delay ti for item i is defined

exactly as in the single channel environment, except that two item occur-

rences are considered consecutive if they happen to be close in the time,

irrespective of on which channels they appear. Specifically, for a client lis-

tening simultaneously to the first j channels, two occurrences of i are con-

secutive and they are si apart if an occurrence of item i appears at time τi

on channel j1, the subsequent earliest occurrence of i appears at time τi+si

on channel j2, with 1 ≤ j1 ≤ j2 ≤ j, and no other occurrence appears in

any other channel between 1 and j at the instants of time τi+1, . . . , τi+si−1.

Now, let AEDj(D) denote the AED experienced by a client listening to

the first j channels. It is easy to see that a lower bound for AEDj(D) is
AED(D)

j . Note that, such a lower bound holds either when all data items

are transmitted on each channel or when only a group of the data items is

transmitted on each channel. Finally, the Multiple Average Expected Delay

MAED is defined as the AED averaged over all the subsets of channels

159



that clients can afford to read. To simplify, let clients listen only to consec-

utive subsets of channels, starting from channel 1. Thus, if a client listen

to j channels, with j > 1, it will listen to channels 1, 2, . . . , j. Denoting

by πj the probability that clients listen to j channels, and assuming that
∑K

j=1 πj = 1,

MAED(D) =
K∑

j=1
AEDj(D)πj (8.4)

Clearly, MAED = AED when K = 1.

As for AED, also simplified expressions of MAED hold. Namely, for the

multiple schedule based on the Square Root Rule[48], we have,

MAEDSRR(D) ≥
K∑

j=1

1
2

(∑
i = 1N

√
Pi

)2

j
πj (8.5)

Moreover, MAED boils down to a much simpler expression when Skew

allocation among channels and Flat schedules SF are assumed [53, 12].

Indeed, assume that the data items are assumed partitioned into K groups

G1, G2, . . . , GK , where the group Gj consists of the Nj data items trans-

mitted by a flat schedule on channel j. Since each item is transmitted only

by a channel, MAED is bounded by a constant only if clients listen to all

channels. Hence, assuming πK = 1 and πj = 0, for any 1 ≤ j ≤ K − 1, it

is easy to see that, for any skewed allocation,

MAEDskew(D) = AEDK(D) = AEDF (G1) + . . . + AEDF (GK)

=
1

2

K∑

j=1


Nj

∑

i∈Gj

Pi


 (8.6)

Hence, the Allocation Problem, proposed in [53, 12], consists in finding

the Skewed Allocation and Flat Schedule in such a way that Equation 8.6

is minimized. It is worthy to note at this point that such SF schedule,

(denoted from now on as SF ), can be found by a dynamic programming

strategy in O(NK log N) time, as shown in [12].

160



Nonetheless, since the Allocation Problem is a special case of the Mul-

tiple Broadcast Problem, it is not known how far is the optimal MAED of

the Allocation Problem from the optimal solution of the Multiple Broad-

cast Problem, even when it is considered restricted to the push systems.

In conclusion, let us point out, that although AAT and HT performance

measures can be generalized to the case of multiple channels, we are not

aware of solutions already proposed in literature for the Multiple Broadcast

problem for total pull or hybrid systems.

8.2 A New Multi-Channel Hybrid Scheduling

The above discussion suggests that many different schedules for the Mul-

tiple Broadcast Problem can be obtained by combining different data allo-

cation strategies with different schedule strategies for single channels. The

solution proposed in this paper for N data items and K channels combines

a balanced allocation of data among channels with hybrid push-pull sched-

ule per each single channel. The hybrid push-pull strategy guarantees that

our solution adapts easily to changes of item demand-probability, while

the balanced data allocation provides an easy way to incorporate new data

items, without any data pre-processing. Moreover, since no more than

dN/Ke items are assigned to each channel, by the flat schedule, MAED

cannot go beyond d N
2Ke. Finally, since each client knows in advance the

channel on which the desired item will be transmitted, it can listen only

to a channel per time.

First, the Balanced K-channel allocation with Flat schedule, briefly BF ,

solution is presented in Subsection 8.2.1. The performance of this simple

solution is competitive with the MAED of both the SRR and SF schedules

when all the items have almost the same demand probabilities. Then, in

Subsection 8.2.2, the Flat schedule is substituted by the Hybrid schedule

161



to make our solution competitive even when the item demand probabilities

are skewed.

8.2.1 Balanced K-Channel Allocation with Flat Broadcast Per

Channel

Algorithm Balanced K-channel allocation :
begin
for i = 1, . . . , N do
j = ((i− 1) mod K) + 1;
Gj = Gj ∪ {i}
end

Figure 8.1: The Balanced Allocation algorithm.

The balanced data allocation strategy, which assigns O(N/K) items to

each channel, lies in the opposite end of the skewed allocation strategy

adopted for the K-Allocation Problem [53]. Specifically, consider a set

of N data items D = {1, . . . , N} and K channels, numbered from 1 to

K. The items are partitioned in K groups G1, . . . , GK , where group Gj =

{i|(i− 1) mod K = j − 1}, whose size

Nj =





⌈
N
K

⌉
if 1 ≤ j ≤ (N mod K),

⌊
N
K

⌋
if (N mod K) + 1 ≤ j ≤ K.

The Balanced Data Allocation algorithm is depicted in Figure 8.1. The

items assigned to each channel are then broadcast locally by a flat schedule.

Specifically, item i assigned to group Gj will be broadcast as the di/Ke-th
item of the flat schedule of channel j. Thus, the MAED of the BF schedule

is given by the following relation:

MAEDBF (D) =
1

2

N mod K∑

j=1




⌈
N

K

⌉ ∑

i∈Gj

Pi


 +

1

2

K∑

j=N mod K+1




⌊
N

K

⌋ ∑

i∈Gj

Pi




(8.7)

162



N ; θ N ; θ N ; θ N ; θ N ; θ N ; θ
Algorithm 2500; 0 2500; 0.1 2500; 0.2 2500; 0.4 10;0.8 500;0.8

SRR 312.5 311.65 308.75 294.201 1.13 45.20
SF 312.5 311.86 309.69 298.44 1.17 47.53
BF 312.5 312.5 312.5 312.5 1.25 62.5

Table 8.1: The lower bound of the MAED for the SRR, SF , and BF Schedules.

It can be seen that
⌊

N
2K

⌋ ≤ MAEDBF (D) ≤ ⌈
N
2K

⌉
. BF is periodic and

independent of the demand probabilities. Moreover, it is easy to see how

the BF schedule can be updated when the size N of the set of data items

increases by one. More specifically, the the new item N + 1 will become

the d(N + 1)/Ke-th item of channel j = (N mod K) + 1.

Table 8.1 compares the performances of the BF schedule, the SF sched-

ule, and the lower bound, of the performance of the SRR schedule, as given

in Equation 8.5. The demand probabilities of the items are assumed to fol-

low the Zipf distribution whose skew coefficient is θ; i.e., Pi = (1/i)θ

∑N
i=1(1/i)θ

,

for 1 ≤ i ≤ N . The parameters N and θ have been chosen to range,

respectively, in 10 ≤ N ≤ 2500 and 0 ≤ θ ≤ 0.8, while K is fixed to 4.

The demand probabilities become skewed as θ approaches 1. Evaluated

the distance in percentage between the MAED of the BF schedule and

the MAED of the SF schedule as

ε =
MAEDBF −MAEDSF

MAEDSF
,

it is clear that the distance between the simple BF schedule is no larger

that 4% for θ ≤ 0.4, leading to a very satisfying trade-off between efficiency

and simplicity. However, the gap is marked for large values of θ. Our new

hybrid scheduling per channel, proposed in the following section, improves

in this respect.

163



Channel−1

Channel−2

Server Data Base

Clients

Channel−K

1        2 3 k
j

Pull Queue (MRF using Max−Heap)

Broadcast Cycle (Push) with Flat schedule

Scheduler

Data Items

Data Items

Figure 8.2: Multi-Channel Hybrid Scheduling Environment

8.2.2 On-Line Balanced K-Channel Allocation with Hybrid Broad-

cast Per Channel

In this section, we investigate into the improvement on the MAED of the

BF -algorithm, while using the Balanced K-channel allocation to partition

the data items among the channels, but by replacing the flat schedule with

the following new hybrid schedule at each channel. Figure 8.2 explains this

multi-channel, asymmetric, hybrid communication environment. For each

channel j, the hybrid algorithm first partitions the group Gj assigned to

each channel in two sets: the push-set Πj, whose items {1, . . . , kj} will be

broadcast according to a flat schedule and the pull-set ∆j, whose items will

be sent on-demand. The hybrid schedule alternates between the transmis-

sion of one item extracted from the push-set and the transmission of one

item from the pull-set. At each pull turn, the item to be sent on demand

is the item most requested so far by clients. Note that the push set may

gain several consecutive turns if there are no pending requests for items of

164



the pull set.

The algorithm that runs at the client site is depicted in Figure 8.3. A

client, desiring to receive item i, sends to the server an explicit request

through the uplink if i > kj. Then, it goes to listen to channel j =

(i − 1) mod K + 1 to which item i has been assigned by the balanced

allocation algorithm, and waits until i is transmitted.

Algorithm Client-Request (item i):
/* i : the desired item */

begin
j = (i− 1) mod k + 1;
if i > kj then send to the server the

request for item i;

wait on channel j until i is transmitted;

end

Figure 8.3: The Client-request Algorithm at the Client Side.

The algorithm at the server site is illustrated in Figure 8.4. For each

channel j, the server stores in Fj the flat schedule of Πj, whose current

length is kj. For each item i of the pull set, the server maintains the

number #i of requests received between two consecutive transmissions of

that item in a max-heap Hj. The requests are checked before each push

turn. Note that only items of the pull set can be requested. The item

broadcast at the pull turn is the one stored in the heap root, that is the

item that has received so far the largest number of requests. After the

pull transmission of item i, #i is always set to 0. Note that to decide the

next item to be pushed costs constant time, while O(log ∆j) is required to

maintain the heap after each delete-max operation. The new algorithm is

on-line since it decides at run time the new item to be transmitted.

In order to have a schedule adaptive to noticeable changes of the demand

probabilities, a mechanism for dynamically varying the push and pull sets is

given based on the threshold σ. When item i is broadcast at the pull turn,

165



Algorithm Hybrid (channel j, pull set Πj, push set ∆j);
while (true) do
begin

check the requests received after the last check;

for every item i that has been requested do

#i = #i + 1;
update Hj;

broadcast the current item of Fj;

update Fj;

if (Hj 6= ∅) then

i = root(Hj);
pull item i;

if #i > σ then move i from Πj to ∆j;

#i = 0;
end;

Figure 8.4: The Hybrid Algorithm at the Server Side

if #i > σ, i is inserted in the push set as the last item of the flat schedule.

Observe that although the push set initially consists of consecutive items,

it may become fragmented. Then, the client needs more information to

learn to which set the desired item belongs. More precisely, the server

will supply the index of the changes occurred at the push sets, which is

sent in a compressed form along with each single data, and periodically

defragmentation policies are applied to globally renumber the data items.

It remains to discuss the MAED performance of the Balanced K-

channel allocation with Hybrid schedule per channel, briefly BH, algo-

rithm. As for the BF algorithm, the performance of BH is bounded by

a constant only if the clients listen to all channels. Hence, πk = 1 and

πj = 0 for 1 ≤ j ≤ k − 1. Restricted to the push sets, BH reduces to a

BF schedule. Recalling that clients must afford to listen to all channels,

166



its MAED performance measure is given by:

MAEDBH(D) = γMAEDSF (Π1 ∪ Π2 ∪ . . . Πk) +
K∑

j=1
AAT (∆j) =

γ
K∑

j=1
AEDF (Πj) +

K∑

j=1
AAT (∆j) = γ

K∑

j=1

kj∑

i=1

kj

2
Pi +

K∑

j=1

Nj∑

i=kj+1

∑
r∈Ri

δr,i

#i
Pi,

(8.8)

where γ is the interleaving coefficient and varies from 1, when only push

turn occur, to 2, when every push turn is followed by a pull turn. When the

push-sets are small, the time spent at the BF schedule becomes shorter,

but the pull-sets are larger, leading to longer access time if the system is

highly loaded. Thus, the two sets should be chosen in such a way that they

reflect the load of the system to gain the advantages of both push and pull

based schedules.

8.3 Simulation Results

In this section, simulation experiments are reported in order to discuss the

performance of our multi-channel scheduling strategies. Before going into

the details of simulation results, the major assumptions and parameters

used for our experiments are summarized.

1. The simulation experiments are evaluated for a total number of data

items N = 2000.

2. The request arrival time is assumed to obey Poisson distribution with

mean λ = 10, which simulates a middle load of the system. The item

requests follow the Zipf distribution, defined in Section 8.2.1. The

average service time for every request is assumed to be 1.

3. The number of channels varies between 2–4.

167



4. The demand probabilities follow the Zipf distribution with θ dynam-

ically varied from 0.30 to 1.30.

Finally, observe that all the experiments involving BH and SRR schedules

were executed 10 times, and the performance average has been reported.

8.3.1 Results

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
160

180

200

220

240

260

280

300

320

340

Access Skew Coefficient (θ)

M
A

E
D

SF Schedule
BF Schedule

Figure 8.5: MAED Performances of the BF and SF Schedules

Figure 8.5 shows the performance of the SF and BF schedules for

N = 2000, K = 3 and 0.3 ≤ θ ≤ 1.3. It should be noted that the re-

sults are independent of the arrival time of the requests, since two total

push schedules are considered. Clearly, the MAED performance of the

BF schedule is also independent from the demand probabilities, as shown

in Equation 8.7. The SF schedule results in significant gains in overall

expected access time for high values of θ. The major objective of our BH

schedule is to reduce such a gap performance.

168



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
50

100

150

200

250

300

350

Access Skew Coefficient (θ)

M
A

E
D

SF Scheduling
BH−random Scheduling
BH−decreasing Scheduling

Figure 8.6: MAED Performances of the New Multi-channel Hybrid and the SF Schedule

Figure 8.6 demonstrates the performance efficiency of the BH schedule

over the SF schedule. In addition to the BH schedule as described in

Section 8.2.2, a variant that maintains in each channel the item of the

push set sorted by decreasing demand probabilities is studied. Note that

the ordering is local into each channel. In this way, the push set is initialized

with hot items, and similarly the pull set with the cold items. So, from now

on, let BH-random denote the basic hybrid schedule, while BH-decreasing

the new variant. Both the BH schedules result in an improvement of

almost half of the performance of the SF schedule.

Figure 8.7 shows the gain achieved by BH schedules on different num-

bers of channels, for θ = 0.50 or θ = 1.00. Even for different number of

channels the BH-schedules achieve almost half of the MAED measure in

comparison to the SF -schedule.

We have also taken a look into the distribution of items among different

channels. While the Balanced Allocation distributes the items equally

169



2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
50

100

150

200

250

300

350

400

450

500

Number of Channels

M
A

E
D

SF Schedule with θ=0.50
BH−random Schedule with θ=0.50
BH−decreasing with θ=0.50
SF Schedule with θ=1.0
BH−random Schedule with θ=1.0
BH−decreasing with θ=1.0

Figure 8.7: MAED Performances of the SF , BH-random and BH-decreasing Schedules

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

2000

Access Skew Coefficient (θ)

T
ot

al
 N

um
be

r 
of

 It
em

s 
(D

)

Channel−1
Channel−2
Channel−3

BF Allocation 

BF Allocation 

Figure 8.8: Size of the channel groups of the SF schedule when K = 3.

among the channels and the Skewed Allocation is twisted, different sizes

of the push sets of the BH schedule can be selected initially. Figure 8.8

170



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

2000

Access Skew Coefficient (θ)

T
ot

al
 N

um
be

r 
of

 It
em

s 
(D

)

Channel−1
Channel−2
Channel−3

BF Allocation 

BF Allocation 

Figure 8.9: Size of the push sets of the BH schedule when K = 3.

and 8.9 show that, for a fixed value of the skew parameter θ of the Zipf

distribution, and assuming all the push sets initially empty, when the BH

schedule reaches a steady state (i.e., when the threshold mechanism does

not move any items), the sizes of the push sets are skewed at least as much

as that of the groups of the SF schedule when θ ≤ 0.4 and much more

skewed for larger values of θ.

Finally, Figure 8.10 shows that both BH-random and BH-decreasing

schedules outperform the SRR-schedule. Note that the SRR-schedule is

determined on-line, but as for all push systems, it only knows the system

load through the demand probabilities. So, for fixed θ, while BH reacts to

the changes of the load of the system because it listen to the clients, SRR

cannot.

171



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

100

200

300

400

500

600

700

800

900

1000

Access Skew Coefficient (θ)

M
A

E
D

BH−random Schedule
BH−decreasing Schedule
SRR−Schedule

Figure 8.10: Performance Comparison of the SRR and BH schedules

8.4 Summary

In this chapter we have enhanced our hybrid scheduling strategy to span

it over multiple channels. The data items are partitioned in an online,

round-robin fashion over all the channels. Dynamic hybrid scheduling is

then applied over every channel. The scheme significantly gains over the

existing optimal skewed partition, followed by push scheduling in each

channel.

172



Chapter 9

Conclusions and Future Research

Issues

In this thesis we have developed a framework for hybrid scheduling in

asymmetric wireless environments. The scheduling and data transmission

strategies can be broadly classified into push and pull scheduling schemes.

However, both of these push and pull scheduling strategies suffer from some

specific disadvantages. Hence, a hybrid scheduling that explores the ad-

vantages of both push and pull scheduling appears to be more attractive.

We first develop a basic hybrid scheduling scheme which combines the push

and pull scheduling schemes independent of the build-up point, i.e., without

restricting the pull-queue size to be 1. The hybrid scheduling system, de-

signed by us uses push scheduling to broadcast the popular data items and

takes the help of pull scheduling to transmit the less popular data items.

The system computes the packet fair scheduling (PFS) for push system

and accumulates the clients’ request in the pull queue. The pull system

works on most request first (MRF) scheduling. The system alternatively

performs one push and one pull method. The cutoff point, which segregates

between the push and pull scheduling is chosen in such a manner that the

overall average access time experienced by the clients is minimized. This

hybrid scheduling strategy is enhanced to incorporate heterogeneous data

173



items (i.e., items of variable lengths). While the basic of the push sched-

ule remains un-changed, pull scheduling now needs to consider the item

lengths also. The underlying reason is that items of variable lengths have

different service times. This leads us to use the stretch-optimal schedul-

ing principle to choose an item from the pull queue. Performance analysis

and simulation results point out the efficiency of this heterogeneous hybrid

scheduling scheme. While this scheduling strictly alternates between one

push and one pull method, a better approach is to adapt the operations

depending on the overall system load. Hence, we further improve the hy-

brid push-pull scheduling to introduce multiple consecutive push and pull

operations depending on the overall load and dynamism of the system. A

procedure for providing the performance guarantee of the system to meet

the deadline specified by the clients is also developed.

A close look into the practical systems reveals that in most systems

some clients might be impatient. This impatience of the clients signifi-

cantly affects the performance of the system. An impatient client can leave

the system even before the request is actually serviced. Excessive impa-

tience might result in clients antipathy in joining the system again. On

the other hand, an impatient client might send multiple requests for the

same data item, thereby increasing the access probability of the item. This

develops an anomalous picture of the system, as the server might consider

the item very popular, which is not the actual case. The effects of such

spurious requests from impatient clients needs to resolved. We have devel-

oped hybrid scheduling principle which takes care of clients impatience and

resolves the anomalous behavior. Performance modelling using birth and

death process and multi-dimensional Markov Chain is provided to capture

an overall estimate of such practical hybrid scheduling principles.

Today’s wireless PCS networks classify the clients into different cate-

gories based on their importance. The goal of the service providers is to

174



provide the highest priority clients with maximum possible satisfaction,

even at the cost of some lower priority clients. This, in turn, helps in

reducing the overall churn rate and increasing the overall profit of the

service providers. The role of clients priorities needs to be considered to

implement such differentiated QoS. We have introduced a new service clas-

sification scheme in our hybrid scheduling strategy which combines the

stretch-optimal and priority-based scheduling in a linear fashion to de-

velop a new selection criteria, termed importance factor. While the items

to be pushed are determined using a flat scheduling, the item from the pull

queue is selected based on this importance-factor. Modelling and analysis

of the system is performed to get an average behavior of the QoS parame-

ters like delay, bandwidth and drop-request in this new hybrid scheduling

framework. The dissertation proceeds further to investigate into the hybrid

scheduling over multiple channels. It is shown that using online partition-

ing of data items into multiple channels and deploying hybrid schedule

on every channel has the power to improve the average waiting time of

the clients over the existing optimal multi-channel push-based scheduling

schemes.

While the wireless communication technology is rapidly enhancing from

a voice-alone framework to an audio-visual world of real-time applications,

the efficiency of data broadcasting needs to be improved significantly. The

gradual deployment of 3G wireless systems and the quest for 4G wireless

systems has encouraged us to look and investigate into different open prob-

lems in data broadcasting. In future we want to look into the effects of effi-

cient data caching mechanisms to save the energy of the power-constrained

mobile devices. The dynamism of the wireless networks and Internet often

creates uncertainty and variation of the QoS parameters. We believe that

the QoS offered in wireless networks and Internet should not be constant,

but needs to change over the time. Thus, in order to provide the services

175



with some level of QoS guarantee, the QoS parameters need to be re-

negotiated at specific intervals. We would like to look into the effects and

solutions required to design such re-negotiable QoS in data broadcasting

over wireless systems and the Internet.

176



Bibliography

[1] S. Acharya, R. Alonso, M. Franklin and S. Zdonik, “Broadcast Disks:

Data Management for Asymmetric Communication Environmens”,

Proc. of ACM SIGMOD, 1995.

[2] S. Acharya, M. Franklin and S. Zdonik, “Balancing Push and Pull for

Data Broadcast”, Proc. of ACM SIGMOD, 1997.

[3] S. ACharya and S. Muthukrishnan, “Scheduling On-demand Broad-

casts: New Metrics and Algoritms, Proc. ACM Intl. Conf on Mobile

COmputing and Networking (MobiCom), 1998.

[4] D. Aksoy and M. Franklin, “Scheduling for Large-Scale On-Demand

Data Broadcasting”, Proc. of IEEE InfoCom, 1998.

[5] D. Aksoy and M. Franklin, “RxW: A Scheduling Approach for Large-

Scale On-Demand Data Broadcast”, IEEE/ACM Trans. on Network-

ing, vol. 7, No. 6, pp. 646-860, 1999.

[6] D. Aksoy, M. Franklin and S. Zdonik, “Data Staging for On-Demand

Broadcast”, Proc. of 27th VLDB Conference, 2001.

[7] A. Bar-Noy and Y. Shilo, “Optimal Broadcasting for Two Files over an

Asymmetric Channel”, Journal of Parallel and Distributed Computing,

vol. 60, no. 4, pp. 474-493, 2000.

177



[8] A. Bar-Noy, J. S. Naor and B. Schieber. Pushing Dependent Data in

Clients-Providers-Servers Systems. In Mobile Networks and Applica-

tions, Vol. 9, pages 421-430, 2003.

[9] A. Bar-Noy, B. Patt-Shamir and I. Ziper, “Broadcast Disks with Poly-

nomial Cost Functions”, ACM/Kluwer Wireless Networks (WINET),

vol. 10, pp.157-168, 2004.

[10] A. Bar-Noy, B Patt-Shamir and I. Ziper, “Broadcast Disks with Poly-

nomial Cost Functions”,ACM/Kluwer Wireless Networks (WINET),

vol. 10, pp. 157-168, 2004.

[11] Z. Brakereski and B Patt-Shamir, “Jitter -Approximation Tradeoff for

Periodic Scheduling”, Proc. of IEEE Intl. Workshop of WMAN, 2004.

[12] A. A. Bertossi, M. C. Pinotti, S. Ramaprasad, R. Rizzi and M. V. S.

Shashanka, “Optimal Multi-channel Data Allocation with Flat Broad-

cast Per Channel”, Proc. of IEEE IPDPS, 2004.

[13] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph, and R.H. Katz,

”An Architecture for a Secure Service Discovery”, Proc. 5th Int. Conf.

Mobile Computing (Mobicom), pp. 24-35, Aug. 1999.

[14] M. Franklin and S. Zdonik, “A Framework for Scalable Dissemination-

Based Systems” Proceedings of the 12th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications,

pp. 94 - 105, 1997 .

[15] Q. Fang, V. Vrbsky, Y. Dang and W. Ni, “A Pull-Based Broadcast Al-

gorithm that Considers Timing Constraints”, Proc. of Intl. Workshop

on Mobile and Wireless Networking, 2004.

178



[16] J. Fernandez and K. Ramamritham, “Adaptive Dissemination of Data

in Time-Critical Asymmetric Communication Environments”, Eu-

romicro Conf. on Real-time Systems (ECRTS), 1999.

[17] D. Gross and C. M. Harris, Fundamentals of Queuing Theory, John

Wiley & Sons Inc.

[18] Y. Guo, S. K. Das and M. C. Pinotti. A new Hybrid Broadcast schedul-

ing Algorithm for Asymmetric Communication Systems: Push and

Pull Data based on Optimal Cut-Off Point. In Mobile Computing and

Communications Review (MC2R), Vol. 5, No. 4, 2001.

[19] S. Hameed and N. H. Vaidya. Efficient algorithms for scheduling data

broadcast In Wireless Networks, Vol. 5, pages 183-193, 1999.

[20] W-C. Lee, Q. Hu and D. L. Lee, “Channel Allocation Methods for

Data Dissemination in Mobile Computing Environments”, Proc. of

Intl. Symp. on High Performance Distributed Computing (HPDC),

1997.

[21] Q. Hu, D. L. Lee and W-C. Lee, “Performance Evaluation of a Wireless

Hierarchical Data Dissemination Systems”, Proc. of AGM MobiCom,

1999.

[22] C-L. Hu nd M-S. Chen, “Adaptive Information Dissemination: An

Extended Wireless Data Broadcasting Scheme with Loan-Based Feed-

back Control”, IEEE Trans. on Mobile Computing, vol. 2, no. 4, 2003.

[23] http://www.direcpc.com, 1997

[24] S. Jiang and N. H. Vaidya, “Scheduling Data Broadcast to “Impatient”

Users, ACM Intl. Workshop on Mobile Data Engineering, 1999.

179



[25] C. Kenyon, N. Schanbanel and N. Young, “Polynomial-Time Approx-

imation Scheme for Data Broadacst”, Proc. of ACM Symp. on Theory

of Computing (STOC), 2000.

[26] S. Khanna and V. Liberatore, “On Broadcast Disk Paging”, Proc. of

ACM STOC, 1998.

[27] Q. Hu D. L. Lee and W-C. Lee, “Optimal Channel Allocation for Data

Distrbution in Mobile Computing Environments”, Proc. of Intl. Conf.

on Distributed Computing Systems (ICDCS), 1998.

[28] W-C. Lee, Q. Hu and D. L. Lee, “A Study on Channel Allocation

for Data Dissemination in Mobile Computing Environments”, Mobile

Networks and Applications (MONET), vol. 4, pp. 1‘7-‘29, 1999.

[29] G. Lee and S. C. Lo. Broadcast Data Allocation for Efficient Access

of Multiple Data Items in Mobile Environments. In Mobile Networks

and Applications, Vol. 8, pages 365-375, 2003.

[30] C-W. Lin, H. Hu and D-L. Lee, “Adaptive Realtime Bandwidth Allo-

cation for Wireless Data Delivery”, ACM/Kluwer Wireless Networks

(WINET), vol. 10, pp. 103-120, 2004.

[31] W. Ni, Q. Fang and S. V. Vrbsky, “A Lazy Data Approach for On-

demand Data Broadcasting”, Pro.c of 23rd Intl. Conf. on Distributed

Computing Systems Workshops (ICDCSW03).

[32] JH. Oh, K. A. Hua and K. Prabhakara, “A New Broadcasting Tech-

nique for An Adaptive Hybrid Data Delivery in Wireless Mobile Net-

work Environment”, Proc. of IEEE Intl. Performance Computing and

Communications Conf., pp. 361-367, 2000.

180



[33] W-C Peng, J-L Huang and M-S Chen, “Dynamic Leveling: Adap-

tive Data Broadcasting in a Mobile Computing Environmrnt”,

ACM/KLUWER Mobile Networks and Applications

[34] M. C. Pinotti and N. Saxena. Push less and pull the current highest

demaned data item to decrease the waiting time in asymmetric com-

munication environments. In 4th International Workshop on Distrib-

uted and Mobile Computing, (IWDC), Calcutta, India pages 203–213.

Springer-Verlag 2002; LNCS 2571, Dec 28-31, 2002.

[35] N. Saxena, K. Basu and S. K. Das, “Design and Performance Analysis

of a Dynamic Hybrid Scheduling for Asymmetric Environment”, IEEE

Intl. Workshop on Mobile Adhoc Networks, WMAN, 2004.

[36] N. Saxena and M. C. Pinotti, “ Performance Guarantee in a New Hy-

brid Push-Pull Scheduling Algorithm”, Third International Workshop

on Wireless Information Systems (WIS), 2004.

[37] N. Saxena, M. C. Pinotti and S. K. Das, “A Probabilistic PushPull

Hybrid Scheduling Algorithm for Asymmetric Wireless Environment”,

IEEE Intl. Workshop on Wireless Ad Hoc and Sensor Networks (co-

located with GlobeCom), 2004.

[38] N. Saxena, K. Basu, S. K. Das and M. C. Pinotti, “A Prioritized Hy-

brid Scheduling for Two Different Classes of Clients in Asymmetric

Wireless Networks”, To Appear in 24th IEEE. International Perfor-

mance Computing and Communications Conference (IPCCC), 2005.

[39] N. Saxena, K. Basu, S. K. Das and M. C. Pinotti, “A New Hybrid

Scheduling Framework for Asymmetric Wireless Environments with

Request Repetition”, To Appear in 3rd IEEE Intl. Symposium on

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), 2005.

181



[40] N. Saxena and M. C. Pinotti, “On-line Balanced K-Channel Data

Allocation with Hybrid Schedule per Channel”, Under Review in IEEE

Intl. Conf. in Mobile Data Management (MDM), 2005.

[41] N. Saxena, K. Basu, S. K. Das and M. C. Pinotti “A Dynamic Hybrid

Scheduling Algorithm for Heterogeneous Asymmetric Environments”,

To Appear in International Journal of Parallel, Emergent and Distrib-

utes Systems (IJPEDS), Feb. 2005.

[42] N. Saxena, K. Basu, S. K. Das and M. C. Pinotti, “A New Service

Classification Strategy in Hybrid Scheduling to Support Differentiated

QoS in Wireless Data Networks” under review in IEEE IPCC, 2005.

[43] N. Saxena and M. C. Pinotti, “A Dynamic Hybrid Scheduling Algo-

rithm with Clients’ Departure for Impatient Clients in Heterogeneous

Environments” 5th IEEE International Workshop on Algorithms for

Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN) 2005.

[44] A. Seifert and M. H. Scholl, “Processing Read-Only Transactions

in Hybrid Data Delivery Environments with Consistency and Cur-

rency Guarantees”, ACM/Kluwer Mobile Networks and Applications

(MONET), vol. 8, pp. 327-342, 2003.

[45] C-J. Su, L. Tassiulas and V. J. Tsotras, “Broadcast Scheduling for In-

formation Distribution”, ACM/Kluwer Wireless networks (WINET),

vol. 5, pp. 137-147, 1999.

[46] W. Sun, W.Su and B. Shi, “A Cost-Efficient Scheduling Algo-

rithm of On-demand Broadcasts”, ACM / Kluwer Wireless Networks

(WINET) 2003.

[47] “Support of Third Generation Services Using UMTS in a Converging

Network Environment”, UMTS Forum, 2002.

182



[48] N. Vaidya and S. Hameed. Log time algorithms for scheduling single

and multiple channel data broadcast. Proc. Third ACM-IEEE Conf.

on Mobile Computing and Networking (MOBICOM), pp. 90-99, Sep-

tember 1997.

[49] N. H. Vaidya and S. Hameed Scheduling data broadcast in asymmetric

communication environments In Wireless Networks, Vol. 5, pages 171-

182, 1999.

[50] N. Vlajic, C. C. Charalambous and D. Makrakis, “Performance As-

pects of Data Broadcast in Wireless Networks with User Retrials”,

IEEE Transactions on Networking, Vol. 12, No. 4, pp. 620-633, 2004.

[51] J. Xu, D.L. Lee, Q. Hu, and W.C.Lee, ”Data Broadcast”, Handbook of

Wireless Networks and Mobile Computing , I. Stojmenovic, Ed., New

York: Wiley, 2003

[52] P. Xuan, S. Sen, O. Gonzalez, J. Fernandez and K. Ramamritham,

“Broadcast on Demand: Efficient and Timely Dissemination of Data

in Mobile Environments” , 1997.

[53] W. G. Yee, S. B. Navathe, E. Omiecinski and C. Jermaine, “Efficient

Data Allocation over Multiple Channels at Broadcast Servers”, IEEE

Trans. on Computers, vol. 51, no. 10, pp. 1231-1236, 2002.

[54] W. G. Yee and S. B. Navathe, “Efficient Data Access to Multi-channel

Broadcast Programs”, Proc. of ACM Conf. on Intl. Knowledge Man-

agement, (CIIKM), pp. 153-160, 2003.

183




