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ABSTRACT 

Given a set of gene expression time series obtained by a microarray experiment, this 

work proposes a novel quality control procedure, which exploits some analytical methods 

enabling the identification of genes which spike expressions within narrow time-windows 

and over a chosen amplitude threshold. The procedure automatically provides a list of 

genes and time points in which abrupt variations have been detected. The quality control 

has to be performed by a biologist, who assesses those spikes as bearing biology 

relevance or being artifacts. In the latter case spikes have to be substituted by a 

smoothing procedure. In particular, we focused on transcriptome of Plasmodium 

falciparum Intraerythrocytic Developmental Cycle. Assuming that spikes detected in this 
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set have been labeled as artifacts by a biologist, in the second part of this paper we 

discuss the effects of smoothing on subsequent different types of analyses. 
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1. INTRODUCTION 

To develop new drugs and vaccines that disable the malaria parasite Plasmodium 

falciparum (P. falciparum) [19], researchers need a better understanding of the regulatory 

mechanisms that drive the malarial life cycle. In [2] the first comprehensive 

transcriptome analysis of the P. falciparum asexual cycle, or Intraerythrocytic 

Developmental Cycle (IDC), which is associated with the clinical symptoms of malaria, 

is provided. Data in [2] show that: 1. at least 60% of the genome is transcriptionally 

active during this stage; 2. the P. falciparum has evolved an extremely specialized mode 

of transcriptional regulation. A continuous cascade of gene expression is produced, 

beginning with genes corresponding to general cellular processes, and ending with 

Plasmodium-specific functionalities, most of which are poorly understood. In other recent 

works on the P. falciparum biology [3,15], researchers’ attention is mainly placed on the 

poor knowledge about the P. falciparum gene functionalities. In fact the malaria genome 

sequencing consortium estimates that more than 60% of the 5,409 predicted open reading 

frames (ORFs) lacks sequence similarity to genes from any other known organism [8]. 



 

The simple program regulating the life of P. falciparum may hold the key to its downfall, 

as any perturbation of the regulatory program may have harmful consequences for the 

parasite [20]. The simple cascade of gene regulation that directs the asexual development 

of P. falciparum is unprecedented in eukaryotic biology [2]. The transcriptome of the 

IDC resembles a ‘‘just-in-time’’ manufacturing process whereby induction of any given 

gene occurs once per cycle and only at specific time points when required [2]. 

Quality control in microarray data analysis aims at discarding flawed data at an early 

stage of the analysis. The typical quality control procedure is performed after 

measurements on the raw digital image to increase signal to noise ratio. However, given 

the experimental design of present dataset, namely a temporal series, it is possible to use 

this temporal information in order to further detect expression points that could be 

strongly affected by noise. Abrupt variations in the transcriptional profile can be assessed 

as artifacts or carrying relevant information. Among abrupt variation we were particularly 

interested in peaks and valleys, as they preserve signal periodicity, which is an IDC 

transcriptome characteristic, as highlighted by [2]. Usually the approach to time series 

analysis [1,5,6] is to approximate them with a continuous interpolating function. 

However, in this study we chose to preserve the actual information about each single 

point. In fact, our goal is to identify ORFs that present a relevant variation also with very 

short duration with respect to the overall length of IDC (48 hours). To achieve this goal, 

we built different simple methods based on the discrete derivative and integral operators. 

An additional method directly matches abrupt variations on transcriptional profiles. The 

panel of methods allows to perform the investigation of candidate genes in an automatic 

way, avoiding direct visual inspection of all available time series microarray data. The 



 

presence of peaks and valleys in the signal as pointed out by our methods can be judged 

by the biologist as bearing biology relevance or being an artifact. In the former case 

further analysis for biological validation are required. In the latter case, peaks and valleys 

can be ruled out as artifacts that were not detected by conventional quality control 

procedures. These abrupt variations are therefore removed and substituted by a 

smoothing procedure. 

The first part of the paper is devoted to the description of our procedure for peaks and 

valleys detection. Assuming that any biological relevance of the abrupt variations is ruled 

out by a biologist, in the second part of the paper we verify whether the smoothing 

procedure influences further analyses. Obtained results suggest that our proposed quality 

control procedure should be used whenever biologist judges detected time variations to 

be artifacts. 

2. PRELIMINARY ANALYSIS 

Given the intrinsic complexity of the experiments involving DNA microarray (see for 

example [10,17]), we spent some time to investigate reliability of the contest datasets 

[2,4]. In particular on a selected sample set of available data: 1. we executed a visual 

inspection of microarray images (the “Primary Data” in [4]), 2. we used TIGR 

SpotFinder [12] to analyze these images, and finally, 3. we verified the results of 

GenePixPro3.0 quality control algorithm. GenePixPro 3.0 [9] is the software used in [2] 

to acquire and analyze the DNA microarray data. The results and the considerations 

obtained from this step of our work suggested to use the “QC_Dataset” [2,4]. It is the set 

of oligonucleotides that passed all quality control filters, and it was obtained from the 

“Complete_Dataset” [2,4]. This choice presents some positive aspects: oligos with many 



 

missing data, that may affect the results of our methods, are not present; gene expression 

values obtained from corrupted images are also not included. Moreover, this choice 

allows us to prove that our quality control procedure is really a specific one and therefore 

its results do not necessary resemble those of a conventional one. The “QC_Dataset” 

contains 5080 of the 7091 oligonucleotides provided by Bozdech et al. [2]. 

3. METHODS OF ANALYSIS 

3.1 Detection Methods 

Following [13], we considered the “QC_Dataset” as the matrix depicted in Table 1. We 

called this matrix E, denoting with E(o,t) an element of E. The variable o indexes the 

oligos from Oligo1 to Oligo5080, and for the variable t, t TP, where TP={TP1-TP22, 

TP24-TP28, TP30-TP48}. TP23 and TP29 were not provided by [2,4]. Missing values in 

Table 1 were imputed with the loess() function, provided by the stats package of R 

(version 2.01) [11]. Local weighting parameter was reduced to 12%.  

Table 1. The data matrix obtained by QC_Dataset  

In order to find within the E matrix gene expressions with rapid changes over time (in 

particular candidate peaks and valleys), we used an automated procedure exploiting six 

different methods (briefly Mi) concisely reported in Table 2. They can be split in three 

main classes: Derivative Methods (M1, M2, M3), Integral Methods (M4, M5), and Other 

Methods (M6). For each transcriptional profile, method Mi detects a time point  i in 

which the maximum expression variation, measured by score So, occurs. The higher the 

score So the higher the probability to find a significant peak (or valley) with respect to 

average signal amplitude. The results of each method may confirm or complete the results 

of the other ones. M1 method proceeds as described in Figure 1: it simply computes (Step 



 

2) for each oligo in E the maximum absolute value of the discrete derivative, obtained 

from Step 1. Similar procedure characterizes method M2. Method M3 characterizes ideal 

abrupt time variations as those for which expression So reported in Table 2 is zero. 

Differently from the other five methods, the smaller So the higher is therefore the 

probability to find a significant peak (or valley).  

Figure 1. The derivative method M1. 

For method M4 reported in Figure 2 (and similarly for M5) the score So is the fraction of 

area under a possible peak. Method M6 reported in Figure 3 looks for three-point 

structures in each gene profile, weighting their possible asymmetry and selecting that 

structure for which the area is maximum. 

Figure 2. The integral method M4. 

Figure 3. The method M6 

Table 2. The methods used in this work. 

Each method Mi is separately and iteratively applied to “clean” transcriptional profiles by 

filtering abrupt time variations larger than a chosen threshold (PEAK_VALUE). For each 

method Mi the iterative procedure may be schematized as follows: (i) For each gene 

expression the time point with maximum variation  i is found; (ii) if the expression 

variation in  i is larger than PEAK_VALUE,  the expression value in  i is substituted by 

applying the loess() function with local weighting parameter reduced to 15%; (iii) steps 

(i) and (ii) are repeated until no new  i in which  variation is larger than PEAK_VALUE 

is found. Each method ultimately provides a set of oligos for which at least a spike is 

found and the list of the corresponding time points..  



 

It is worth noting that iterative procedure for each Mi method is completely automatic, 

i.e. it does not need any user intervention. The procedure is implemented in R [11]. 

The numbers of affected oligos and of detected time points depend on the threshold 

PEAK_VALUE chosen. By analyzing these numbers and performing a visual inspection 

of the expression profiles the most appropriate threshold value can be chosen, depending 

on the goal of the analysis. If the goal is quality control, the profiles in the original 

datasets are substituted by the smoothed profiles. In this paper, for each oligo, distinct 

time points detected by the methods were substituted by applying the loess() function 

with local weighting parameter reduced to 30%. Figure 4 presents two example of 

expression time series pointed out by the iterative procedure, performed with 

PEAK_VALUE=2. Profiles before and after the described smoothing are reported.  

3.2 Evaluation of the detection methods  

Let us assume that the detection methods presented above lead to detect artifacts, namely 

the application of the detection methods to the QC_Dataset  leads to the creation of a new 

dataset QC_Dataset_smooth. It is now necessary to provide evaluation methods in order 

to assess the impact that the smoothing of the artifacts can have on further analysis. We 

considered a functional classification with Support Vector Machine and power spectrum. 

3.2.1 Effect of spike smoothing on a MSVM functional classification 

Support vector machine is a state-of-the-art classifier which has been widely used in the 

analysis of microarray data [7,14,18]. We studied the effect of spike smoothing on a 

Multiclass SVM classifier [13] provided by the package e1071 of R [11]. In particular, 

we adopted the pair wise classification approach, where for each possible pair of 

functional classes a SVM classifier is trained. For N classes, this results in (N 1)*N /2 



 

binary classifiers, and the  resulting class is chosen by majority voting, i.e. the class with 

the highest number of votes gives the label. We chose a linear kernel for the MSVM 

algorithm. 

We first used the data set provided in TableS2 [2,4], hereinafter called “raw_dataset”. 

TableS2 describes the known functional classification of 530 genes belonging to the 

QC_Dataset. Afterwards the second dataset hereinafter called smooth_dataset, in which 

the same genes are extracted from QC_Dataset_smooth, was considered.  

However, in SVM the selection of the model requires also the choice of the cost 

parameter C, which sets the trade-off between model complexity and generalization error. 

Usually the best cost parameter C is estimated through a cross validation procedure, in 

our case a leave-one-out (LOO) cross validation . 

The effect of spike smoothing was assessed by considering its influence on the model 

selection and on the functional class prediction. We evaluated the effect of the smoothing 

procedure on model selection, namely the selection of the cost parameter C, by fixing 

different values of C and computing the leave-one-out accuracy on the raw_dataset and 

smooth_dataset. 

Then, as in the model selection procedure, we trained the MSVM on the raw_dataset and 

on the smooth_dataset and used the obtained models to predict, respectively, the genes 

without functional annotation in the QC_Dataset and in the QC_Dataset_smooth. Given a 

dataset, the parameter C maximizing  leave-one-out accuracy was chosen to build the 

corresponding model. We then compared the prediction for the two models on the genes 

without functional annotation.  



 

3.2.2 Effects on power spectrum 

We assessed how our smoothing procedure affects the power spectrum used in [2] to 

select those genes that have a definitely periodic time course. We thus repeated the 

computational steps therein described to obtain the power spectrum using the 

QC_Dataset as well as the QC_dataset_smooth  and compared the differences. 

4. RESULTS 

Table 3 reports the number of oligos having at least one spike for different values of 

PEAK_VALUE. 

Table 3. Number of oligos with at least one spike detected by the iterative procedure 

for different values of PEAK_VALUE 

PEAK_VALUE equals to 2 sensibly discriminate between irrelevant time variations 

(PEAK_VALUE < 2) and too stringent spike detection conditions (PEAK_VALUE > 2). 

This choice was confirmed by visually inspecting a number of selected expressionary 

profiles. Accordingly, a new dataset, “QC_Dataset_smooth”, was obtained by 

substituting in the original QC_Dataset the 334 transcriptional profiles obtained by our 

iterative procedure with their smoothed version. 

As reported in Table 3, methods Mi identified 334 oligos, each presenting abrupt 

expression variation in at least one time point.  For sake of simplicity Table 4 only 

reports those 56 genes with the functional annotation. The complete list is available upon 

request (or as supplemental material).  

We first assessed the distribution of those time points by computing the histogram 

reported in Figure 5. We can note that the methods identified more than 100 spikes at 

time point 18. 



 

Figure 5. Peak temporal distribution. 

In this section we first discuss how the smoothing procedure affects MSVM functional 

classification. Consistency considerations are also reported.  

Concerning the model selection, Table 5 reports the LOO accuracy values for different 

values of cost parameter C. 

Table 5.  LOO accuracy values of model selected for different values of cost 

parameter C using raw_dataset and smooth_dataset. 

From Table 5 it is evident that to always guarantee the maximal LOO accuracy, using the 

raw_dataset the best parameter should be C=0.1, instead using the smooth_dataset the 

chosen parameter should be C=1. Hence, despite of the very few modifications induced 

by the smoothing procedure (56 out of 530 genes of the training set) two different models 

would be obtained. 

To evaluate the differences of these two models in terms of classification we predicted 

the functional class of genes without annotation in the QC_Dataset as well in the 

QC_Dataset_smooth as described in Section 3.2.1. Table 6 shows the confusion matrix 

we obtained. There were 970 off-diagonal elements, i.e. 970 elements were classified 

differently by the two classifier obtained by raw_dataset and smooth_dataset. 

 

Table6. Confusion matrix regarding the prediction of functional expression of 

unknown genes between the two M-SVM models, selected respectively for C=0.1 

and C=1.0 

Concerning the power spectrum analysis, the smoothing procedure, by eliminating abrupt 



 

changes in the signal, removes high frequency components in the Fourier space. 

Therefore, as expected, power spectrum shifts towards higher percentage. About 50 more 

genes have a power spectrum greater than 90% in the smoothed dataset. Concerning the 

cut-off value of 70% which was used in [2] to select periodic genes, 12 more genes have 

a power spectrum greater than 70%. 

5. DISCUSSION 

The work described in this paper can be divided into two conceptual distinct parts. In the 

first part we perform a quality control procedure by detecting in the gene expression time 

series anomalous rapid changes. Biologists have to assess if they represent artifacts or are 

instead biologically relevant. In the first case the spikes have to be smoothed. The 

detection is achieved by exploiting six different simple methods combined in an 

automatic iterative procedure. The choice of the PEAK_VALUE parameter permits to 

control the amplitude and number of detected spikes, therefore allowing the biologist to 

control the possible smoothing basing on his/her own personal knowledge of the expected 

dynamic of the temporal series. Moreover, our detection procedure preserves the data 

while smoothing only the points that are considered to be artifacts. In contrast a complete 

smoothing change the data completely. 

In the case of the P. falciparum asexual cycle, if this peaks are artifacts we discuss the 

effects of their removal and substitution with smoothed values on a popular analysis 

technique such as supervised functional classification by means of MSVM. Evidence in 

favor of being artifacts is the bigger number of valleys with respect to peaks. In fact in 

case of low signals the relative noise is higher so it seems to be more reasonable to detect 

a valley. We found out that removing artifacts detected by our methods has an impact on 



 

both the results of the model selection procedure and the functional classification of 

genes without annotation. In this last case, 970 genes are differently classified before and 

after the smoothing procedure. 

Concerning power spectrum computation, smoothing result confirms and enhances the 

periodicity of expression profiles used for subsequent analysis in [2]. This result reflects 

the aim of our quality control procedure at preserving as much as possible signal 

periodicity. Therefore, while preserving periodicity, nonetheless our approach may have 

impact on functional analyses. 

In the temporal distribution of spike positions as reported in Figure 5, the most populated 

channel is located in time steps 18. The result of Kolmogorv-Smirnov test performed on 

this distribution allows us to state with a high level of confidence (p < 0.0005) that this 

spike position distribution does not come from a uniform one, suggesting that spikes, if 

considered artifacts, are not due to random experimental errors. This analysis may 

suggest to biologists, aware of performed experimental procedure, the possible causes of 

artifacts. In this way, improvements of experimental process could be achieved.  
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APPENDIX 

Table 2. The data matrix obtained by QC_Dataset  

Oligo TP1 … TP48 

Oligo1 Log2(Cy5/Cy3) … log2(Cy5/Cy3) 

… … … … 

Oligo5080 Log2(Cy5/Cy3) … log2(Cy5/Cy3) 

 

 



 

Table 2. The methods used in this work. 

Methods Description 

Derivative  

M1 Figure 1. 

M2 As M1, with Step 1 in Figure 1 replaced by: 

( )
),(

2

),()2,(),(
2 toE

tt

toEtoE

t

toE
=

+

+
=  

M3 As M1, with Step 2 in Figure 1 replaced by: 

( ) ( ) ( ) ( )[ ]),(min),(max),(min),(max toEtoEtoEtoE
tttt

=So 

Integral  

M4 Figure 2. 

M5 As M4, “argmax” replaced by “argmin” (Step 3, Figure 2) 

Other Methods  

M6 Figure 3. 

 

 



 

Table 3. Number of oligos with at least one spike detected by the iterative procedure 

for different values of PEAK_VALUE 

Peak_Value # oligos 

1 3305 

2 334 

3 28 

4 8 

5 2 

6 1 

7 0 

 

 

 

 



 

Table 4.  Genes with functional annotation which present at least one detected spike 

in their expression (see Table 6 for class acronym definition).  

oligo_ID Class oligo_ID Class oligo_ID Class oligo_ID Class 
a10325_30 ER f739_1 MI l1_28 ER opfblob0060 AM 
a10325_32 ER i10472_1 MI m14235_3 CT opfblob0092 MI 
a12696_3 MI i1225_2 MI m33088_2 AM opfk12894 ER 
a1718_1 DR i14975_1 MI m36656_1 MI opfl0013 AM 
b218 MI i8675_1 AM m54626_4 CT opfl0022 AM 
b230 MI j116_7 MI m60464_2 MI opfl0029 M 
b391 OT j170_10 MI n131_10 OT opfl0141 AM 
b444 MI kn9335_1 DR n132_124 MI opfm60467 MI 
d49942_9 MI kn973_2 DR n132_125 MI ptrgln PG 
e15509_11 AM ks1030_4 OT n134_78 DR ptrgly PG 
e18550_1 MI ks26_17 AM n137_2 CT z_4_50 MI 
e24991_1 MI ks48_18 ER n138_34 M z_4_50 MI 
f12313_1 MI ks510_10 MI n141_14 MI   
f27464_2 OT ks510_8 MI opfb0671 MI   
f49857_1 MI ks75_15 ER opfblob0020 ER   

 

 

 

 

 

 

 

 



 

Table 5.  LOO accuracy values of model selected for different values of cost 

parameter C using raw_dataset and smooth_dataset. 

C LOO accuracy raw LOO accuracy smoothed 

0.001 56.4 56.8 

0.01 69.4 69.6 

0.1 72.5 71.9 

1 72.1 72.5 

10 69.2 69.4 

100 67.4 67.4 

1000 67.0 64.3 

10000 64.7 66.8 

100000 66.6 66.8 

 

 

 

 



 

Table6. Confusion matrix regarding the prediction of functional expression of 

unknown genes between the two M-SVM models, selected respectively for C=0.1 

and C=1.0  

(AM=Actin myosin motors, CT=Cytoplasmic Translation machinery,  DR=DNA replication, 

DS=Deoxynucleotide synthesis, ER=Early ring transcripts, GP=Glycolytic pathway, M=Mitochondrial, 

MI=Merozoite Invasion, OT=Organellar Translation machinery, P=Proteasome, PG=Plastid genome, 

RS=Ribonucleotide synthesis, TC=TCA cycle, TM=Transcription machinery).  

  M-SVM with smooth_dataset C=1.0 

  AM CT DR DS ER GP M MI OT P PG RS TC TM 

AM 4 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 0 1393 0 0 7 31 0 0 0 33 0 75 0 27 

DR 0 0 340 7 0 0 50 1 103 0 3 0 21 0 

DS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ER 1 27 0 0 181 0 0 0 0 0 0 2 0 4 

GP 0 14 0 0 0 51 0 0 1 29 0 20 0 1 

M 0 0 9 1 0 0 25 6 0 1 0 0 21 0 

MI 62 46 7 0 5 1 3 654 4 16 2 1 16 0 

OT 0 10 54 1 0 1 10 0 349 8 0 15 15 0 

P 0 36 9 0 0 5 5 9 77 443 2 3 7 0 

PG 0 0 16 1 0 0 5 1 0 0 8 0 1 0 

RS 0 2 0 0 0 5 0 0 6 4 0 129 0 0 

TC 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

 

M-SVM 

with 

raw_dataset 

C=0.1 

TM 0 2 0 0 0 0 0 0 0 0 0 2 0 0 

 



 

 

Given in input Matrix E,  

Do o,  

{ Step 1. (Discrete Derivative).  t TP compute: 
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Figure 1. The derivative method M1. 

 



 

 

Given in input Matrix E,  

Do o,  

{     Step 1. (Normalization). Compute: 

 t TP  )),((),(),( toEmeantoEtoE
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      Step 2. (Integral). Compute: 
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Step 5. (Local Integral). Compute 
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Figure 2. The integral method M4. 



 

 

Given in input Matrix E,  

Do o,  

{ Step 1. (Spike Value Detection).  t TP compute: 
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Figure 3. The method M6 



 

 

Figure 4.  Example of expression time series detected by the iterative procedure, 

performed with PEAK_VALUE=2. Profiles before (A1 and B1 panels) and after (A2 

and B2) the described smoothing are reported. Gene reported  in A  and B are 

respectively  b541 (TP: 15, 16, 17, 18) and f71224_1 (TP detected = 39,40,41,43).  

  



 

 

 

Figure 5. Peak temporal distribution. 
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