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Abstract. Given a real algebraic surface S in RP
3, we propose a constructive procedure to de-

termine the topology of S and to compute non-trivial topological invariants for the pair (RP
3, S)

under the hypothesis that the real singularities of S are isolated. In particular, starting from an
implicit equation of the surface, we compute the number of connected components of S, their
Euler characteristics and the weighted 2-adjacency graph of the surface.

1. Introduction

Given a real algebraic surface S in RP3 by means of an implicit equation, the problem of

recognizing the topology of the surface can be addressed at two different levels: either considering

S only as an abstract topological space, or taking into account also its embedding in RP
3 and

looking at the topology of the pair (RP
3, S).

When the surface S is non-singular, the possible topological models for the connected compo-

nents of S are given by the topological classification theorem for surfaces. Thus, if S is implicitely

defined by an equation of even degree, all its connected components are orientable topological

2-manifolds and hence homeomorphic to a torus with g holes (g ≥ 0); if the equation that defines

S has an odd degree, then S contains exactly one non-orientable connected component homeo-

morphic to the connected sum of a projective plane and a torus with g holes, while all the other

components are orientable.

If we want to consider also how a surface is embedded in RP3, we say that two surfaces S, S ′

are ambient-homeomorphic if there exists a homeomorphism ϕ : RP3 → RP3 such that ϕ(S) = S′;

in this case we also say that the pairs (RP3, S) and (RP3, S′) are homeomorphic. At present there

is no classification of the pairs (RP3, S) up to homeomorphism even in the non-singular case and

deciding whether two pairs (RP3, S) and (RP3, S′) are homeomorphic is a very hard problem, also

for simple classes of surfaces such as tori (with one hole). Hence a useful contribution in this

direction is to find topological invariants of the pair (RP
3, S).

The papers [FGPT] and [FGL] give constructive answers to the problem of recognizing topolog-

ically a real algebraic non-singular surface proposing algorithms that compute the number of its

connected components and the Euler characteristic of each of them, which determines them up to

homeomorphism. In [FGLP] the non-singular surface is considered together with its embedding in

RP
3; the authors describe an algorithmical method to compute the “weighted adjacency graph” of

the surface, which gives information both on the mutual disposition of the connected components

and on their contractibility.

In this paper we address from a constructive point of view the same questions when the surface

contains only isolated singularities. Our aim is to find a discrete set of data that are algorithmically

computable, sufficient to determine the topology of the surface and that are non-trivial topological

invariants for the pair (RP3, S).

The basic topological information is that in a small 3-dimensional disk D, centered at an isolated

singular point, S∩D is homeomorphic to the cone over the curve C obtained as the intersection of

Date: January 13, 2005.
This research was partially supported by M.I.U.R. and by Eurocontract HPRN-CT-2001-00271.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 E. FORTUNA, P. GIANNI, AND D. LUMINATI

S with the boundary of the disk (see [M]). Then, up to homeomorphism, the portion of S inside

the disk can be seen as the space obtained taking the union of as many 2-dimensional disks as the

connected components of C, choosing a point in each of these disks and collapsing these points to

a single point. In this way we see the isolated singularity as the effect of two successive operations:

first the glueing of a 2-cell (i.e. a subset homeomorphic to a closed 2-dimensional disk) along each

connected component of C and then the collapse of a set containing a point in each attached 2-cell.

Applying this procedure to all the singularities, we obtain a compact topological surface T

without boundary such that S is homeomorphic to the topological quotient T/R where R is the

equivalence relation that collapses suitable finite families of points of T . Thus our algorithm will

determine topologically S by computing the Euler characteristics of the connected components of

T and the families of points that, through a collapsing process, produce the isolated singularities

of S.

Furthermore, after defining the weighted 2-adjacency graph of S, we show that it is an invariant

of the pair (RP
3, S) and we describe an algorithmical method to compute it.

This paper is a natural evolution of the articles [FGPT], [FGL] and [FGLP], which dealt with

non-singular surfaces. Here we use the same basic ideas and techniques (use of a Morse projection,

connecting paths, reduction to the affine case, etc.) but we insert them in a new procedure able to

detect the presence of isolated singularities and to investigate their topological nature. Basically,

while at a critical point most of the needed information is given by the index of that point, at an

isolated singularity the necessary topological information will be obtained through the investigation

of the curve where S intersects a small disk centered at the singular point. Also to mantain the

paper at a reasonable length, we have chosen to describe in detail only the topological results on

which the algorithm bases its correctness and the organization of the main algorithm. As for the

instrumental algorithmical techniques used as “black boxes”, we only recall their essential features

and refer the reader to the papers previously mentioned for a detailed presentation.

The main definitions, the necessary theoretical background and the list D(S) of data invariant

up to homeomorphism of the pair (RP
3, S) to be computed are contained in Section 2. In Section

3 we describe a constructive procedure to compute D(S) when the surface is contained in an

affine chart of RP
3. This procedure can be applied if some preliminary tests have been positively

passed, i.e. if the singularities of S are isolated and the working system of coordinates is a “good

frame”; in Section 4 we present algorithms to perform both these tests and also some preliminary

computations concerning the critical and singular points and some related data. When S is not

affine, it is possible to construct a suitable compact algebraic surface Ŝ in R3 and to recover

D(S) from D(Ŝ), which can be computed by means of the affine-case algorithm. This reduction

procedure and the general-case algorithm are presented in Section 5 which contains also some

examples.

2. Some remarks on the topology of surfaces with isolated singularities

Let S be the real projective algebraic surface in RP3 defined by the equation F (x, y, z, t) = 0,

where F is a square-free homogeneous polynomial of degree d with real coefficients. A point P ∈ S

is called a singular point of the surface if it annihilates all the first partial derivatives of F ; thus

the set Sing S of the singular points of S is an algebraic set.

We will consider the case when each singular point is isolated in Sing S, i.e. Sing S is a discrete

set containing finitely many points. Note that, if S contains some isolated points, all of them are

singular points for S; though, a point can be an isolated singular point without being isolated in

S. Note also that we make no assumption on the singular locus Sing SC of the complex projective

surface SC in CP
3 defined by the equation F = 0; since F is square-free, Sing SC cannot have

dimension 2, but it can be a complex curve.
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If Q ∈ R3 and ε ∈ R, ε > 0, we will use the following notations:

— B(Q, ε) = {X ∈ R3 | d(X,Q) < ε}

— D(Q, ε) = {X ∈ R3 | d(X,Q) ≤ ε}

— S(Q, ε) = {X ∈ R3 | d(X,Q) = ε},

where d(·, ·) denotes the Euclidean distance in R3. The previous notations make sense also for

points Q in RP3 working in an affine chart U ' R3 containing Q.

The local topological structure of S at an isolated singularity is described by the following

Theorem 2.1. (Milnor, [M] Proposition 2.10) Let Q be an isolated singular point of S. Then

there exists a sufficiently small r > 0 such that for all positive ε ≤ r

i) C(Q, ε) = S ∩ S(Q, ε) is a non-singular curve (possibly empty)

ii) S ∩D(Q, ε) is homeomorphic to the cone over C(Q, ε).

Any r > 0 such that D(Q, r) \ {Q} contains no singular points of S and no critical points of the

restriction to S of the function X → d(X,Q)2 satisfies the thesis of the previous theorem. For any

ε ≤ r we will call D(Q, ε) a Milnor disk at Q.

Our strategy to study S will be based on the possibility of modifying S inside Milnor disks

centered at the singular points, getting a topological surface T ⊂ RP3 (i.e. a 2-dimensional

topological manifold) from which we can obtain again S, except its isolated points if any, by means

of a suitable quotient. We will construct T as an application of the following

Lemma 2.2. Let X be a non-empty topological 1-dimensional submanifold of a sphere S(Q, r).

Then there exist finitely many disjoint 2-cells embedded in D(Q, r) such that, denoting by W (X)

the union of such 2-cells,

(1) the boundary of W (X) is the curve X,

(2) W (X) ∩ S(Q, r) = X.

ω 2

ω 1

ω 3

Q

Figure 1. The construction de-

scribed in the proof of Lemma 2.2

Proof. Let L(X) be the adjacency graph of the pair (S(Q, r), X)

whose vertices are the connected components of S(Q, r) \X and

in which two distinct vertices are joined by an edge if and only if

they share a common boundary (for the general definition of the

adjacency graph of a pair of topological spaces, see also [FGLP]).

It is a tree having at least 2 vertices. We will prove the lemma

by induction on the number n of vertices of L(X). If n = 2, then

X is connected and it is sufficient to take as W (X) the cone over

X with vertex Q.

Assume now that L(X) has n vertices with n ≥ 3 and let v be

a vertex of L(X) of valency 1. Then v is a connected component

of S(Q, r) \ X homeomorphic to an open disk bounded by an

oval ω(v) which appears in L(X) as the unique edge having v

in its boundary. For any subset Z of R3 denote by C(Z) the cone over Z with vertex Q. Let

X̃ = X \ ω(v) and consider the curve X ′ = C(X̃) ∩ S(Q, r
2 ). By construction the adjacency

graph L(X ′) of the pair (S(Q, r
2 ), X ′) has one vertex less than L(X), hence by the inductive

hypothesis there exists a union of 2-cells W (X ′) embedded in D(Q, r
2 ) whose boundary is X ′ and

such that W (X ′) ∩ S(Q, r
2 ) = X ′. If we denote by θ : S(Q, r) → S(Q, 3

4r) the function defined by

θ(Y ) = 3
4 (Y −Q) +Q, it is sufficient to take

W (X) = W (X ′) ∪
(
C(X̃) \D(Q,

r

2
)
)
∪

(
C(ω(v)) \D(Q,

3

4
r)

)
∪ θ(v).

�
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Assume at first, for simplicity, that Q is the only singular point of S. There are two possible

situations:

– if Q is isolated in S, then S can be seen as the disjoint union of the point Q and the compact

topological (not algebraic, in general) surface without boundary S \ {Q},

– if Q is not isolated in S and D(Q, ε) is a Milnor disk at Q, then S \B(Q, ε) is a topological surface

having as its boundary the non-empty curve C(Q, ε). Denote by T the topological surface without

boundary embedded in RP3 which is the union of S \ B(Q, ε) and the set W (C(Q, ε)) obtained

applying Lemma 2.2 to the curve C(Q, ε). Thus T is obtained from S removing S ∩ B(Q, ε) and

attaching a 2-cell along each connected component of C(Q, ε). Choose a point in each of the

attached 2-cells and denote by Z(Q) the set of these points. Then S is homeomorphic to the

topological quotient of T with respect to the equivalence relation that collapses Z(Q) to a single

point.

Coming back to the general case, henceforth we will denote by

– Q1, . . . , Qm the singularities of the surface that are not isolated points in S,

– R1, . . . , Rs the isolated points in S.

Let ε be a small positive rational number such thatD(Qi, ε) is a Milnor disk atQi for i = 1, . . . ,m

and such that D(Qi, ε) ∩D(Qj , ε) = ∅ whenever i 6= j.

Let T be the embedded topological surface without boundary obtained from S\(
⋃m

i=1 B(Qi, ε)∪

{R1, . . . , Rs}) by means of Lemma 2.2, i.e. attaching a 2-cell along each connected component of

S ∩ S(Qi, ε) for all i = 1, . . . ,m. Again denote by Z(Qi) the set obtained choosing a point in each

2-cell attached to C(Qi, ε). If R is the equivalence relation on T that collapses to a point each of

the sets Z(Q1), . . . , Z(Qm), then S is homeomorphic to the disjoint union of T/R and of the set

{R1, . . . , Rs}.

The topological type of the space obtained by collapsing finitely many points in a compact con-

nected surface does not depend on the choice of these points, but only on their number. Therefore,

if T1, . . . , Tr are the connected components of T , the topological type of T/R = (T1∪ . . .∪Tr)/R is

completely determined by the number nij of points in Z(Qi)∩Tj for i = 1, . . . ,m and j = 1, . . . , r.

Recall (see for instance [FGL]) that each connected component Tj , being embedded in RP3, is

topologically determined by its Euler characteristic χj : if Tj is orientable, then it is homeomorphic

to a torus with gj holes (meaning that a torus with 0 holes is a sphere), χj is even and gj =
2−χj

2 ;

if Tj is non-orientable, then it is homeomorphic to the connected sum of a projective plane and a

torus with gj holes, χj is odd and gj =
1−χj

2 .

Thus, in order to determine the topological type of S, it will be sufficient to compute:

(1) the list χ(T ) = [χ1, . . . , χr] of the Euler characteristics of the connected components

T1, . . . , Tr of T ,

(2) m lists of non-negative integers, each having length r, say

l1 = [n11, . . . , n1r], . . . , lm = [nm1, . . . , nmr]

where nij = #(Z(Qi) ∩ Tj),

(3) the number s of isolated points in S.

Example 2.3. The surface represented in Figure 2 has three isolated singularities Q1, Q2, R1 and

R1 is an isolated point, so that m = 2, s = 1. The topological surface T constructed as explained

above has three connected components T1, T2, T3 and all of them are spheres. The singularity Q1

can be obtained collapsing one point of T1 and two points of T2 to a single point; similarily Q2 can

be obtained collapsing three points chosen respectively in T1, T2 and T3. Thus the topology of S

is determined by the following data: χ(T ) = [2, 2, 2], l1 = [1, 2, 0], l2 = [1, 1, 1], s = 1. �

So far our topological investigation has not taken into account the way in which the surface is

embedded in RP
3 and in particular it gives no information about the mutual disposition of the
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Q1

R1

Q
2

T
3

T
1

T
2

Figure 2. A surface with three singular points (left-hand side) and the topological surface T

associated to it (right-hand side).

connected components of S and the connected components (or regions) of RP
3 \ S. In [FGLP] it

was shown how additional information can be obtained in the case of a non-singular surface by

computing the ”adjacency graph” of the surface. This is the graph whose vertices are the regions

of RP
3\S and two distinct vertices are joined by an edge if and only if their topological closures are

not disjoint. When S is non-singular, two adjacent regions of RP3 \ S share in their boundaries a

connected component of S. Hence the edges of the adjacency graph of S are in 1-1 correspondence

with the connected components of the surface, with the only exception that, when S has an odd

degree, the unique non-orientable component of S is not represented in the graph.

If S is singular, it may occur that the closures of two regions of the complement of S share

only finitely many points; think for instance of the surface consisting of two spheres tangent at a

common point. We will not consider two such regions ”really adjacent” and will be interested in

the 2-adjacency graph G(S) in which two distinct vertices are joined by an edge if and only if the

closures of the two regions of RP
3 \ S meet in a 2-dimensional subset of S. Observe that

(1) the 2-adjacency graph G(S) just defined coincides with the ordinary adjacency graph when

S is non-singular,

(2) the graph G(S) is a topological invariant of the pair (RP3, S),

(3) the isolated points of S, if any, are not represented in G(S).

Unlike the non-singular case, there is not a bijective correspondence between the set of the edges

of G(S) and the set of the connected components of the surface even if S has an even degree: for

instance if S consists of two cones with the same vertex, S is connected but G(S) has two edges.

Actually the next proposition shows that we recover similar properties if we consider the connected

components of S \Sing S; the proof of this result, that we insert for completeness, may be omitted

with no influence on the comprehension of the rest of the paper.

Proposition 2.4. Let S1, . . . , Sn be the connected components of S \ Sing S. Then

(1) If the degree of S is odd, then there exists a unique i such that, if we set Γ = Si, the set

RP
3 \ Γ is connected, while for any j 6= i the set Sj disconnects RP

3 into two connected

regions.

(2) If the degree of S is even, for all j Sj disconnects RP
3 into two connected regions.

Proof. (1) The homology class [S] in H2(RP3,Z/2Z) is given by [S] =
∑n

i=1[Si]. If S has an odd

degree, [S] is non-zero and hence there exists a component Si of S \ Sing S such that [Si] 6= 0.

Moreover for any j 6= i necessarily [Sj ] = 0 because otherwise [Si] · [Sj ] ∈ H1(RP
3,Z/2Z) would

be non-trivial, which is impossible since Si ∩ Sj ⊂ Sing S consists of isolated points.

Let Γ = Si; we claim that RP
3 \Γ is arcwise connected (and hence connected). Namely for each

P,Q ∈ RP
3 \ Γ let α : [0, 1] → RP

3 be a continuous path in RP
3 joining P and Q. If α does not

intersect Γ, the claim is proved; otherwise we can assume that α meets Γ in non-singular points of

S (i.e. lying in Γ) and transversally. Since Γ is homologically non-trivial, then Γ is non-orientable;

thus, if α(t0) ∈ Γ, there exists a loop γ in Γ passing through α(t0) and orientation-reversing for Γ.
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If n(t) is a normal vector to Γ along γ , since RP
3 is orientable, then n(1) = −n(0). It is therefore

possible to join α(t0−ε) with α(t0 +ε) without intersecting Γ following the normal n(t). Repeating

this construction for each point where α meets Γ, eventually we get a path lying in RP
3 \ Γ and

joining P and Q.

We have only to prove that, for each Sj 6= Γ, RP3 \ Sj is not connected. Otherwise, choosing

a segment that meets transversally Sj in its medium point, and connecting the extremal points of

this segment by means of a continuous path disjoint from Sj , we would find a closed curve δ that

meets Sj only in one point. Then if we consider the homology classes [δ] ∈ H1(RP3,Z/2Z) and

[Sj ] ∈ H2(RP
3,Z/2Z), we would have [δ] · [Sj ] = 1, in contradiction with the fact that [Sj ] = 0.

(2) When S is even-degree, we get the thesis arguing in a similar way. �

As a consequence of the previous result, there is a 1-1 correspondence between the closures of

the connected components of S \ Sing S and the edges of G(S), except for odd-degree surfaces

when the closure of the component Γ given by Proposition 2.4 is not represented in G(S).

Moreover, as a consequence of Lemma 2.2, it is not hard to see that

Proposition 2.5. The 2-adjacency graph G(S) is isomorphic to the adjacency graph G(T ).

Apparently, not all information about the mutual position of distinct regions of RP
3 \ S can

be derived from the 2-adjacency graph G(S). For instance, if S consists of two spheres tangent

at a point and each external to the other, the graph G(S) has 3 vertices and the two vertices

corresponding to the interior parts of the two spheres are not joined by an edge, just as if the two

spheres were disjoint. As a matter of fact, using the lists l1, . . . , lm relative to the singularities

which are not isolated points in S, we can realize whether two regions not joined by an edge in

G(S) ' G(T ), and therefore not adjacent with respect to the surface T , meet at one or more points

of their boundaries after the collapsing process that yields S starting from T .

Recall that a subset A ⊂ RP3 is called contractible if any loop in A is contractible (i.e. homo-

topically trivial) as a loop in RP
3, non-contractible otherwise. Using this notion we can endow the

vertices of G(T ) with weights by means of the function wT : {vertices of G(T )} → {c, nc} that

marks each vertex of G(T ) (i.e. each region of RP
3 \ T ) as contractible or non-contractible.

Observe that an edge of G(T ) (i.e. a connected component of T ) is non-contractible if and only

if its two vertices are both non-contractible; hence the knowledge of the function wT is sufficient

to know which components of T are contractible and which components are not. Let us recall that

a contractible connected component W of T disconnects RP
3 in two connected regions, only one

of which is contractible and called the interior part of W . For such components it is possible to

define a natural partial order relation. The graph G(T ) can be endowed with a set of roots r(T )

from which it is possible to reconstruct such a partial order; for a detailed presentation of these

notions and some properties of them, we refer to the paper [FGLP].

The triple (G(T ), wT , r(T )) will be called the weighted adjacency graph of T .

We can fix the same system of weights {c, nc} also on the vertices of the 2-adjacency graph

G(S) by means of wS : {vertices of G(S)} → {c, nc}. We will denote by Gnc(S) the subgraph of

G(S) formed by the non-contractible vertices and by the edges having both vertices marked nc;

instead we will denote by Gc(S) the subgraph formed by all the contractible vertices, all the edges

where at least one vertex is contractible and all the vertices of these edges. By means of arguments

similar to those used in the proof of Proposition 2.4, one can see that, if S has an odd degree, all

the regions of RP
3 \ S are contractible and hence Gnc(S) = ∅. Instead, when the degree of S is

even, the closure Sj of each connected component of S\Sing S disconnects RP
3 into two connected

regions and at least one of them is non-contractible (possibly both, as in the case of a one-sheeted

hyperboloid); in particular Gnc(S) is not empty.
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In the singular case, it is no longer true that the weights on the two vertices of an edge are

sufficient to determine the contractibility of the edge. For instance, if S is a cone, G(S) has two

vertices, one marked c, the other nc and still the only edge of G(S) (i.e. the cone itself) is non-

contractible. However the knowledge of the weights on the vertices of G(S) is sufficient to define

a partial order relation in the set of the closures of the connected components of S \ Sing S as

precised in the following:

Definition 2.6. Let Si and Sj be distinct connected components of S \ Sing S. We say that Si

is inside Sj if the following two conditions hold:

(1) Sj disconnects RP
3 into two regions and one of these is contractible,

(2) Si is contained in the contractible component of RP
3 \ Sj .

All the information necessary to know the previous partial order among the sets Si can be

obtained by choosing some roots in the 2-adjacency graph G(S). The way in which this can be

done depends on the degree of S.

If S has an even degree, each connected component of Gc(S) is a tree that contains exactly

one vertex weighted nc: we choose these vertices as a set of roots of G(S). In this way the order

induced on each connected component of Gc(S) by the only root contained in it coincides with the

partial order described in Definition 2.6.

If S has an odd degree, Gnc(S) is empty; however we are able to choose a root in G(S) also in

this case: we will call root of G(S) the unique region of RP
3 \S which is adherent to the connected

component Γ given by Proposition 2.4.

Note that, while for even-degree surfaces the information about which vertices are the roots of

G(S) is obtained from the weights, for odd-degree surfaces this notion is independent of the weights

on G(S) because in this case each vertex is marked c. However this information is quite important

since sometimes it is the only one that allows to realize that two pairs (RP3, S) and (RP3, S′) are

not homeomorphic: if, for instance, S consists of a projective plane and two topological spheres,

only the knowledge of the root allows to recognize whether the two spheres are mutually external

or one of them encircles the other one.

If r(S) denotes the set of roots of S defined as above, the triple (G(S), wS , r(S)) will be called

the weighted 2-adjacency graph of S. With the previous definitions it is easy to see that

Proposition 2.7. (i) The weighted 2-adjacency graph of S is an invariant of the pair (RP
3, S)

up to homeomorphism.

(ii) The weighted 2-adjacency graph of S is isomorphic to the weighted adjacency graph of T .

The isolated points of S do not appear at all in G(S). While their number is sufficient for the

topological characterization of S, in order to take into account the embedding of S in RP
3 we need

to know in which regions of the complement they lie. For that it will be sufficient to compute a

list q = [q1, . . . , qs] where qi is the region of RP
3 \ T containing the i-th isolated point Ri.

We will collect all the mentioned data concerning the surface in a single list of data

D(S) = [χ(T ), G(T ), wT , r(T ), l1, . . . , lm, q].

By the previous considerations we have that

(1) D(S) is an invariant up to homeomorphism of the pair (RP
3, S),

(2) D(S) completely determines the topological type of S,

(3) though not sufficient to determine the pair (RP
3, S), the set D(S) gives useful informa-

tion on the surface up to ambient-homeomorphism. For instance the surfaces S and S ′

represented in Figure 3 are homeomorphic but the pairs (RP
3, S) and (RP

3, S′) are not

homeomorphic since the weighted adjacency graphs of T and T ′ are not isomorphic.
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ncc

cnc

c
c

Figure 3. Two surfaces that are homeomorphic, but not ambient-homeomorphic.

The next sections will be devoted to show that all the data in D(S) can be computed starting

from an equation of S, even if T is not algebraic.

3. The compact affine case

In this section we describe a constructive procedure to compute the list of data D(S) =

[χ(T ), G(T ), wT , r(T ), l1, . . . , lm, q] when the real algebraic surface S = {F (x, y, z, t) = 0} having

only isolated singularities does not intersect in real points the plane “at infinity” {t = 0} ⊂ RP
3.

In this case S is contained in the affine chart {[x, y, z, t] ∈ RP3 | t 6= 0} ' R3 and can be studied

working in affine coordinates; namely f(x, y, z) = F (x, y, z, 1) = 0 is an affine equation for S.

Denote by p : S → R the projection defined by p(x, y, z) = z. A point P ∈ S is a critical point

for p if it is non-singular but it annihilates the first partial derivatives fx and fy; in this case p(P ) is

called a critical value. Recall (see [M] Corollary 2.8) that p can have at most finitely many critical

values, and that under our hypotheses S can have at most finitely many (real) singular points.

Up to a generic linear change of coordinates we can assume (see for instance [BPR]) that our

system of coordinates (x, y, z) is a “good frame”, that is

i) the projection p is a Morse function (i.e. any critical point for p is non-degenerate or

equivalently it does not annihilate the determinant of the Hessian matrix

(
fxx fxy

fxy fyy

)
)

ii) if P1 and P2 are either singular or critical and P1 6= P2, then p(P1) 6= p(P2).

Recall that by index of a non-degenerate critical point P for p one means the number of negative

eigenvalues of the Hessian matrix of p at P with respect to local coordinates; it can be computed

from fz and the Hessian matrix of f . In this section we assume to have already checked that S

has only isolated singularities and that the given system of coordinates (x, y, z) is a good frame;

also we assume to have already computed the critical points and their indexes, the singularities

and the radius of a Milnor disk at each of them. In Section 4 we will see how these preliminary

tests and computations can be performed.

Let [−N,N ] be an interval containing all the critical values of p and all the images through p

of the singular points of S (that, for simplicity, we will call singular values). We can subdivide it

as [−N,N ] = [−N = a0, a1] ∪ [a1, a2] ∪ . . . ∪ [au, au+1 = N ] so that each ai is neither critical nor

singular and each interval (ai, ai+1) contains only one critical value or one singular value.

For each a ∈ R we will denote by Ca the level curve p−1(a) = S ∩ {z = a} and by Sa the level

surface p−1([−N, a]) = S ∩ {z ≤ a} having Ca as its boundary.

Assume that ε ∈ Q is positive and so small that

– D(Qi, ε) is a Milnor disk at the singular point Qi for any i = 1, . . . ,m,

– D(Rj , ε) is a Milnor disk at the isolated point Rj for any j = 1, . . . , s,

– D(Qi, ε) ∩ {z = ah} = ∅ ∀i = 1, . . . ,m and ∀h = 0, . . . , u+ 1

– D(Rj , ε) ∩ {z = ah} = ∅ ∀j = 1, . . . , s and ∀h = 0, . . . , u+ 1.
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Thus each Milnor disk of radius ε centered at a singular point is contained in a single open strip

R2 × (ah, ah+1) and does not intersect any level plane {z = ah}.

Denote by T the embedded topological surface without boundary obtained from S removing

the points R1, . . . , Rs and applying Lemma 2.2 to all the Milnor disks D(Qi, ε); then, for each

h = 0, . . . , u+ 1, we have that

(1) Cah
= S ∩ {z = ah} = T ∩ {z = ah}

(2) Tah
= T ∩{z ≤ ah} is a topological surface with boundary Cah

obtained from Sah
removing

the points Ri that lie in {z < ah} and applying Lemma 2.2 to the Milnor disks D(Qi, ε)

contained in {z < ah}.

Thus each Sah
is homeomorphic to the disjoint union of the isolated points Rj lying in {z < ah}

and the quotient space Tah
/Rh, where Rh is the restriction to Tah

of the equivalence relation R

introduced in Section 2. Hence at each level we can compute the needed topological data concerning

Sah
studying the topological level surface Tah

.

More precisely, since TN = T , the data χ(T ), G(T ), l1, . . . , lm, q contained in the list D(S) will

be obtained after applying to the intervals [−N, a1], . . . , [au, N ] the following

Iterative Step : if [a, b] is an interval such that a and b are regular values and R2 × (a, b) contains

only one point Q which is either critical for p or singular for S, then one computes

Output(Sb) = {G(Cb), χ(Tb), G(Tb),Mb, l1(Tb), . . . , lm(Tb), q(Tb)}

starting from Output(Sa), where

i) Cb = S∩{z = b} = T ∩{z = b} and G(Cb) is the adjacency graph of the pair ({z = b}, Cb)

whose vertices are the regions of {z = b} \ Cb and where two distinct vertices are joined

by an edge if their closures are not disjoint,

ii) Tb = T ∩ {z ≤ b} and χ(Tb) is the list of the Euler characteristics of the connected

components of Tb

iii) G(Tb) is the adjacency graph of the pair ({z ≤ b}, Tb) whose vertices are the regions of

{z ≤ b}\Tb and where two distinct vertices are joined by an edge if their boundaries share

a 2-dimensional subset,

iv) Mb : G(Cb) → G(Tb) is the graph morphism that associates to each vertex v of G(Cb) the

vertex of G(Tb) representing the region of {z ≤ b} \ Tb having in its boundary the region

of {z = b} \ Cb represented by v

v) li(Tb) = [ni1, . . . , nir] where nij is the number of points of Z(Qi) lying in the j-th compo-

nent of Tb (note that r depends on b)

vi) q(Tb) is a list of length s where the i-th element is the region of {z ≤ b} \ Tb containing

the i-th isolated point Ri if Ri ∈ {z ≤ b}, it is 0 otherwise.

Note that at the initial step both C−N and T−N are empty, so that G(C−N ) and G(T−N )

consist of a single vertex. The lists l1, . . . , lm, q are initialized as the zero lists; during the iterative

procedure only the lists li(Tb) concerning the singular points Qi lying in {z < b} are non-zero.

At the end of the iterative procedure, having computed χ(T ), G(T ), l1, . . . , lm, q, the only data

that we still need to compute to get D(S) are the function wT and the roots r(T ). In the affine case

this is straightforward: since T is contained in the affine chart {t 6= 0} of RP
3, all its components

are contractible and all the regions of RP3 \ T are contractible except the only one external to all

the components of T . The algorithm easily recognizes this external region as the only vertex in

G(T−N ); we choose it as the only root ofG(T ), mark it as non-contractible and mark as contractible

all other vertices in G(T ).

Example 3.1. Consider again the surface of Example 2.3 represented in the left-hand side of

Figure 2. Focusing for instance our attention on the reconstruction of χ(T ), l1, l2, q, we want to
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see how these data (already announced in Example 2.3) are obtained at the end of the iterative

procedure in the strips represented in Figure 4.

Q1

R1

a6

a

a

5

4

a3
2a

a1
a0

a7

a8

Q
2

Figure 4. Level planes and strips for the iterative reconstruction process.

Output(Sa1
): Sa1

= Ta1
is a disk, hence χ(Ta1

) = [1], l1 = [0], l2 = [0], q = [0].

Output(Sa2
): we pass through a point which is isolated in S, hence χ(Ta2

) = [1], l1 = [0], l2 =

[0], q = [1] (where we label 1 the region of {z ≤ a2} \ Ta2
containing the isolated point).

Output(Sa3
): passing through a critical point of index 1 influences only the Euler characteristic

and we get χ(Ta3
) = [0], l1 = [0], l2 = [0], q = [1].

Output(Sa4
): the strip {a3 ≤ z ≤ a4} contains the singular point Q1; Ta4

is the disjoint union of

three disks and, apart from the isolated point R1, Sa4
is homeomophic to Ta4

/R where R collapses

to one point a set of three points lying respectively in the three connected components of Ta4
.

Hence χ(Ta4
) = [1, 1, 1], l1 = [1, 1, 1], l2 = [0, 0, 0], q = [1].

Output(Sa5
): two connected components of Ta4

glue together, so that Ta5
is the union of two

disks and consequently the length of the lists l1 and l2 becomes 2. We get χ(Ta5
) = [1, 1], l1 =

[1, 2], l2 = [0, 0], q = [1].

Output(Sa6
): we pass through the singular point Q2; Ta6

is the union of a sphere and two disks;

Q2 is obtained collapsing one point in that sphere with two points chosen respectively in the two

disks so that χ(Ta6
) = [2, 1, 1], l1 = [1, 2, 0], l2 = [1, 1, 1], q = [1].

Output(Sa7
): only the Euler characteristics are modified passing through the critical point of index

2 contained in this strip and we get χ(Ta7
) = [2, 1, 2], l1 = [1, 2, 0], l2 = [1, 1, 1], q = [1].

Output(Sa8
): passing through the last critical point of index 2 we get the final expected data

χ(Ta8
) = χ(T ) = [2, 2, 2], l1 = [1, 2, 0], l2 = [1, 1, 1], q = [1]. �

The remaining part of the section will be devoted to see how it is possible to compute Output(Sb)

from Output(Sa) in the Iterative Step described above.

A crucial remark that we want preliminarily to emphasize is that all the needed computations,

which have an algebraic nature, can be performed even if we are reconstructing the topology of T

which is not an algebraic surface but a 2-dimensional topological manifold. In particular T is not

defined by a polynomial equation. Nevertheless, as we will see, the only information about T that

we need to compute concerns the behaviour of T outside the union of the Milnor disks centered at

the singular points, where T coincides with S; this will enable us to study T outside those disks

starting from the equation defining S.

In the iterative step the main algorithm makes use of two special-purpose procedures. At first

we need to study the shape of the level curve Cb. Since b is a regular value for p, the affine compact

algebraic curve Cb is non-singular, so that all its connected components are ovals. Recall that an

oval is called empty if it contains no other oval in its interior part, and a list [ω1, . . . , ωt] of ovals

of a curve is called a nest of depth t if ω1 is empty, ωi is contained in the interior part of ωi+1 for
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all i = 1, . . . t− 1 (and any other oval containing ωi contains also ωi+1) and ωt is not contained in

the interior part of any oval of the curve.

The pair ({z = b}, Cb) is determined up to homeomorphism by the list of its nests or equivalently

by the adjacency graph G(Cb). The first “black box” algorithmically computes G(Cb) starting from

the equation f(x, y, b) = 0 of Cb. It is also possible (see for instance [FGPT]), by means of standard

techniques, to enrich the curve-algorithm with special functions; namely, for a non-singular curve

C,

– the function findRegion, given a point P ∈ R2 \C, returns the connected component (or region)

findRegion(P ) of R2 \ C containing P ,

– the function findOvals, given a point P ∈ R2, returns the list of the ovals of C containing P

ordered by inclusion starting from the innermost oval,

– the function findPoint, given an oval ω of C, returns a point lying inside ω, more precisely a

point R such that ω is the first oval of the sequence findOvals(R).

The second goal in the iterative step is to lift and relate information from the level {z = a}

to the level {z = b}. This will be done by means of connecting paths : if P ∈ {a ≤ z ≤ b} \ S,

we will denote by pathUp(P, b) (resp. pathDown(P, a)) the final point α(1) of a continuous path

α : [0, 1] → {a ≤ z ≤ b} not intersecting S and such that α(0) = P and α(1) ∈ {z = b} (resp.

α(1) ∈ {z = a}).

Let us now see how, using these techniques, we can reconstruct Output(Sb) according to the

nature of the “special point” Q contained in the strip R2 × (a, b).

Case 1: Q is a critical point for p.

When the strip contains a critical point Q, using only the index of Q and computing finitely

many connecting paths, it is possible (see [FGPT], [FGL] and [FGLP]) to detect the correspondence

among the regions of {z = a}\Ca and those of {z = b}\Cb, and hence to reconstruct χ(Tb), G(Tb)

and Mb. As for the lists li(Tb) and q(Tb), we observe that

– if Q has index 0, a new component appears in Tb so that, for each i, we have that length(li(Tb)) =

length(li(Ta)) + 1. More precisely, li(Tb) is obtained from li(Ta) inserting a zero in the new

additional position, while q(Tb) = q(Ta);

– if Q has index 1 and passing through it we have the glueing of two distinct connected components

of Ta, say Σ1 and Σ2, then, for each i, length(li(Tb)) = length(li(Ta)) − 1. Each list li(Tb) is

obtained from li(Ta) removing the position corresponding to one of the glued components, say

Σ2, and adding the integer number contained in the cancelled position to the integer appearing in

li(Ta) in the position corresponding to the component Σ1. The glueing of two components goes

along with the glueing of two regions of the complement, so it may occur that isolated points lying

in different regions of {z ≤ a} \ Ta lie in the same region of {z ≤ b} \ Tb: we modify q(Tb) starting

from q(Ta) accordingly;

– if Q has index 2 or index 1 but there is no glueing of distinct components of Ta, then li(Tb) = li(Ta)

for all i and q(Tb) = q(Ta).

Case 2: Q is a singular point for S.

As announced in the introduction, when passing through a singular point we will get the nec-

essary information from the curve C(Q, ε) = S ∩ S(Q, ε) where the surface meets the Milnor disk

centered at Q = (α, β, γ). The algebraic curve C(Q, ε) is not plane, but it can be studied by investi-

gating a plane curve homeomorphic to it. Namely, assuming that the “north pole” N = (α, β, γ+ε)

of S(Q, ε) does not lie in C(Q, ε) and denoting by ψ : S(Q, ε)\{N} → R2 a stereographic projection

from N , the curve C̃ = ψ(C(Q, ε)) is algebraic, compact, non-singular, homeomorphic to C(Q, ε)

and the pairs (S(Q, ε) \ {N}, C(Q, ε)) and (R2, C̃) are homeomorphic. Up to a linear change of

coordinates, we can also assume that C(Q, ε) is transversal to S(Q, ε) ∩ {z = 0}.
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A preliminary use of this section curve is to realize whether Q is an isolated point for the surface,

since this happens if and only if C(Q, ε) (and hence C̃) is empty. In this case the reconstruction

of Output(Sb) is easy, because it is sufficient to lift the data from the level a to the level b by

means of finitely many connecting paths. In order to update q(Tb), we only need to detect the

region of {z ≤ b} \ Tb containing Q. To do that, we compute the point Q′ = pathUp(Q, b): if

findRegion(Q′) = Σ and Mb(Σ) = RΣ, then Q lies in the region RΣ of {z ≤ b} \ Tb.

The case when Q is singular but not an isolated point in S is far less trivial. In this situation

C(Q, ε) is non-empty and we know that S ∩D(Q, ε) is topologically a cone over C(Q, ε). In order

to compute the topology of Tb, and hence of Sb, we will need to determine, for each connected

component of the curve C(Q, ε), the connected component of Tb \ D(Q, ε) in whose boundary it

lies.

Though C(Q, ε) is not a plane curve, we will call its connected components ovals. The position

of the ovals of this curve on the sphere S(Q, ε) is very important and gives crucial information on

the connected components of Tb that we will use to reconstruct Output(Sb). Namely, if ω is an

oval of C(Q, ε) and Sω is the connected component of (S \D(Q, ε)) ∩ {a ≤ z ≤ b} that contains ω

in its boundary, then

(i) if ω is contained in the positive halfsphere S(Q, ε) ∩ {z > γ}, then Sω, besides ω, has in

its boundary only another oval ω′ of Cb; attaching a 2-cell along ω, there appears in Tb a

new connected component homeomorphic to a disk and with boundary ω′; it is therefore

topologically equivalent to passing through a critical point of index 0;

(ii) if ω is contained in the negative halfsphere S(Q, ε) ∩ {z < γ}, then the boundary of Sω is

the union of ω and a unique oval ω′ of Ca; the attachment of a 2-cell along ω is therefore

topologically equivalent to the attachment of a 2-cell along ω′ and hence equivalent to

passing through a critical point of index 2;

(iii) if ω intersects the plane {z = γ} (transversally, as precised above), then the boundary

of Sω contains both an oval of Ca and an oval of Cb; the component of Tb containing ω

intersects the planes {z = a} and {z = b} in those two ovals that it will be necessary to

recognize and relate in the process of data lifting.

In other words, passing through a singular point, Tb can be obtained from Ta by the simultaneous

attachment of a few 0-cells and a few 2-cells with combined effects on the topology of the level

surface. This explains why the situation is more complex with respect to passing through a critical

point, so that the reconstruction of the data is much more delicate and has to be organized

accurately. This is precisely what we are going to do, starting from the analysis of the surface

components that meet the Milnor sphere S(Q, ε).

Definition 3.2. If Q = (α, β, γ), a subset X of S(Q, ε) is called

(1) of type (+) if X ⊆ {z > γ}

(2) of type (−) if X ⊆ {z < γ}

(3) of type (+−) if X ∩ {z = γ} 6= ∅.

If ω is an oval of C(Q, ε) of type (+) (resp. of type (−)), ω disconnects the positive (resp.

negative) halfsphere containing it into two parts: the one containing the circle S(Q, ε) ∩ {z = γ}

will be called the exterior part of ω, while the other one will be called the interior part of ω. Using

this terminology it is possible to arrange the ovals of C(Q, ε) of type (+) and those of type (−) in

nests, extending the usual definition for plane curves recalled above.

In Section 4 we will see how, via stereographic projection, it is possible

– to compute the list of the nests of type (+) and of type (−) of C(Q, ε),

– for each nest [ω1, . . . , ωn] of type (−), to compute a point ξ− lying in the interior part of ω1,

– for each nest [ω1, . . . , ωn] of type (+), to compute a point ξ+ lying in the interior part of ω1,
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– to detect the regions of S(Q, ε) \C(Q, ε) of type (+−) and for each such region A to compute a

pair of points (ξ+, ξ−) such that ξ+ ∈ A ∩ {z > γ} and ξ− ∈ A ∩ {z < γ}.

These data will enable us to reconstruct Output(Sb).

To some extent the knowledge of the types of all ovals of C(Q, ε) combined with the observations

made above already give some partial information. For instance, as for the effect on the Euler

characteristic, each oval of type (−) (resp. of type (+)) is “equivalent” to passing through a

critical point of index 2 (resp. of index 0); instead, no effect is caused by ovals of type(+−). But

the reconstruction of G(Tb) and Mb, being related to the embedding of the various components,

requires a more careful analysis. For this reason we will proceed in the following fixed order of

reconstruction.

First of all we consider the nests of type (−). The previous considerations guarantee that, if

[ω1, . . . , ωn] is a nest of type (−) of C(Q, ε), when using Lemma 2.2 in D(Q, ε) to construct Tb in

the Milnor disk, we have the attachment of a 2-cell along each of the corresponding n ovals of Ca.

To determine these ovals, it is sufficient to take a point ξ− contained in the interior part of ω1

and to compute E− = pathDown(ξ−, a): the desired n ovals of Ca are the first n ovals of the list

findOvals(E−). We can therefore modify the Euler characteristic of the connected components

of Ta having those n ovals in their boundaries exactly as when we pass through a critical point

of index 2. Accordingly we update G(Tb) and Mb: in particular the presence of ovals of type (−)

causes no change in G(Tb).

As a second step, we consider the regions of S(Q, ε)\C(Q, ε) of type (+−): for each such region

A we use the pair of points (ξ+, ξ−) relative to A to compute the points E+ = pathUp(ξ+, b)

and E− = pathDown(ξ−, a). If findRegion(E+) = R+ and findRegion(E−) = R−, then we

realize that R+ and R− bound a connected region of {a ≤ z ≤ b} \ Tb and consequently we set

Mb(R
+) = Ma(R

−). No change occurs in G(Tb) and χ(Tb).

The only ovals that we still need to consider are those of type (+). We already know that each

such oval originates a new connected component in Tb and that each component is topologically a

disk, which is sufficient to update χ(Tb). Also we know that G(Tb) contains one more vertex and

one more edge than G(Ta) for each oval of type (+), but it is necessary to decide how the new

edges have to be attached to the graph G(Ta). To do that, if [ω1, . . . , ωn] is a nest of type (+)

and ξ+ is a point inside ω1, we compute E+ = pathUp(ξ+, b). The first n ovals of findOvals(E+)

respectively lie in the boundaries of the new components of Tb. These new components have to

be attached to a vertex v of G(Ta) as a path formed by n edges and n + 1 vertices. In order to

determine v, recall that the outermost oval ωn of the nest lies in the closure of a unique region A

of type (+−) that we have already considered in the previous step of this reconstructive process.

If we have found that the pair of connecting paths starting from the points (ξ+, ξ−) in A relates

the regions R+ of {z = b} \ Cb and R− of {z = a} \ Ca, then the n-length path corresponding to

the nest [ω1, . . . , ωn] has to be attached to G(Ta) in the vertex Ma(R−).

We have so completed the computation of χ(Tb), G(Tb) and of the action of Mb on the vertices

and edges of G(Cb) reached by means of the connecting paths starting from points in S(Q, ε)

computed so far. At this point it is sufficient to complete the reconstruction of Mb via connecting

paths starting from the regions of {z = a}\Ca not reached in the previous steps of this procedure.

A schematic representation of the procedure just explained to reconstruct G(Tb) and Mb passing

through an isolated singularity is shown in Figure 5.

As for q(Tb), since G(Ta) is a subgraph of G(Tb) and no regions were glued together, we have

that q(Tb) = q(Ta).

The only remaining task is the computation of the lists l1(Tb), . . . , lm(Tb). Since the length of

each of them coincides with the number of connected components of Tb, each list li(Tb) has a length

equal to length(li(Ta)) increased by the number of ovals of C(Q, ε) of type (+). Moreover, if Q is
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G(C  )b
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Figure 5. Reconstruction of G(Tb) and Mb passing through an isolated singular point; the
wavy lines represent the connecting paths starting from the six sample points on the Milnor
sphere centered at the singularity.

the j-th element of the list [Q1, . . . , Qm], then we reconstruct the lists li(Tb) as follows:

1) for all i 6= j, li(Tb) is obtained from li(Ta) appending to the list li(Ta) as many zeros as the

number of ovals of C(Q, ε) of type (+),

2) lj(Tb) is obtained from lj(Ta) appending as many integers 1 as the number of ovals of C(Q, ε)

of type (+) and then iteratively, for each oval of C(Q, ε) of type (−) and of type (+−), increasing

by 1 the integer that appears in the position relative to the component of Tb containing that oval

in its boundary.

4. Preliminary tests and computations

In the previous section we have seen how it is possible to compute the set of data D(S) assuming

that S is an affine surface in R3 having at most isolated singularities, that the working system of

coordinates is a good frame and assuming to have already computed the singular points, the critical

points and their indexes and the other needed data concerning the behaviour of the surface locally

at the singular points. In this section we describe how these preliminary tests and computations

can be performed.

1. Computation of the singular points.

Using the notation of the previous section, assume that S is given as an affine surface in R3 by

means of the defining equation f(x, y, z) = 0 with f a square-free polynomial with real coefficients.

Denote by J = (f, fx, fy, fz) the ideal generated by f and its first partial derivatives, and by

V (J) the set of the complex zeros of J . We need to decide whether the set VR(J) of the real zeros

of J contains only finitely many points and, in this case, to compute all of them. This can be done

by suitably modifying the procedure described in [FGPT], where the problem was deciding about

the emptiness of VR(J).

Since f is square-free, J cannot have dimension 2; if it has dimension 0 we can compute the

finitely many points in V (J) by means of any of the methods available in the literature and then

select the real ones.

If J has dimension 1, V (J) is a complex curve in C3. Up to a generic linear change of coordinates

we can assume that the projection π : C3 → C2, π(x, y, z) = (y, z) is a “good projection” for V (J),

i.e. the restriction π|V (J) : V (J) → π(V (J)) is finite and 1 − 1 except for at most a finite number

of points. In [FGP] one can find a method, based on the use of the reduced lex Gröbner basis

for J , to test whether π is a good projection. The Zariski closure of π(V (J)) is defined by the

ideal I = J ∩ C[y, z] which is the product of a principal ideal (g) generated by the gcd of a set



REAL ALGEBRAIC SURFACES WITH ISOLATED SINGULARITIES 15

of generators of I and a zero-dimensional ideal I0 obtained from I by dividing out g from the

generators of I .

The real points in V (J) project to real points in V (I), that is π(VR(J)) ⊆ VR(I) = VR(I0)∪VR(g),

but the inclusion can be strict because some complex points in V (J) can project to real points

in VR(I). Since the projection π is good, this can happen only for finitely many points. As a

consequence, VR(g) cannot contain any 1-dimensional connected component intersecting the line

at infinity, because S has no point at infinity and therefore VR(J) ∩ {t = 0} = ∅. Moreover, the

surface S has at most isolated real singularities if and only if VR(g) contains no 1-dimensional

compact components.

Note that, without changing V (g), we can assume that g is square-free, so that V (g) has at most

finitely many singular points; moreover, since VR(g) cannot contain any real line, dividing g by

its univariate factors in z (necessarily without real roots) we can also assume that V (g) does not

contain any 1-dimensional irreducible component of critical points with respect to the projection to

the z-axis σ : C2 → C, σ(y, z) = z. The zero-set defined by the ideal K = (g, ∂g
∂y

) ⊆ C[y, z] contains

the points of V (g) which are either singular for V (g) or critical with respect to the projection σ.

Thus we can assume that the dimension of K is at most 0, so that we can easily compute VR(K).

If VR(g) contains some 1-dimensional compact component, then it necessarily contains some

singular points or some critical points with respect to σ. Then, in order to check that VR(g)

contains no 1-dimensional components, it is sufficient to check that VR(g) = VR(K).

If ω1, . . . , ωh are the points in σ(VR(K)) and we choose η0, . . . , ηh ∈ Q such that η0 < ω1 < η1 <

ω2 < . . . < ηh−1 < ωh < ηh, then VR(g) = VR(K) if and only if VR(g) ∩ {z = ηi} = ∅, i.e. if and

only if, for all i, the equation g(y, ηi) = 0 has no real roots, which is easy to check. If that is true,

we are sure that S has only finitely many real singular points that lie in the fibers over the points

in VR(I0 ·K); in order to compute them it is sufficient to compute the points in VR(I0 ·K, J), where

the ideal (I0 ·K, J) ⊆ C[x, y, z] is at most zero-dimensional since π has finite fibers.

2. Good frame test and computation of the critical points.

We want now to test that all (real) critical points for p are non-degenerate and, if so, to compute

them.

The zero-set defined in C3 by the ideal K = (f, fx, fy) contains all the singular points of

SC = {f = 0} ⊂ C3 and all the critical points of the projection SC ⊂ C3 → C, p(x, y, z) = z.

Let u denote the product of all the univariate factors of f in the variable z. Then u cannot

have any real root z0, because otherwise the plane {z = z0} would be contained in S which has no

points at infinity. Thus, dividing f by u (which does not modify the real zero-set), we can assume

that f is not divisible by any univariate polynomial in z.

As a consequence, the ideal K cannot have dimension 2: otherwise, if h = 0 is the equation of

a 2-dimensional irreducible component of V (K), since h divides f, fx and fy, then h would be a

univariate polynomial in z dividing f which cannot exist after our previous reduction.

A critical point P ∈ S is degenerate for p if it annihilates the function D(x, y, z) = detH , where

detH denotes the determinant of the matrix H =

(
fxx fxy

fxy fyy

)
. Thus p is a Morse function if

and only if VR(K,D) ⊆ VR(J). In order to test whether this condition holds, it is helpful to use

the following result (for a proof see [FGPT], Proposition 6.5)

Lemma 4.1. Any point P lying in a 1-dimensional component of V (K) is necessarily either

singular for SC or degenerate.

Hence, if we remove from V (K) the points lying in V (J)∪ V (D), we remove from V (K) all the

1-dimensional components; in other words the ideal L defining the set V (K) \ (V (J) ∪ V (D)) =

V (K) \ V (fz ·D) is zero-dimensional and VR(L) contains exactly the real non-degenerate critical

points. Recall that L can be easily computed by saturating K with respect to (fz ·D).
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If we denote by #A the number of elements of a finite set A, we get

Proposition 4.2. The projection p is a Morse function if and only if VR(K) is a finite set and

#VR(K) = #VR(L) + #VR(J).

Proof. We can split V (K) as

V (K) = V (L) ∪ V (J) ∪ V (K,D)

where V (L) ∩ V (J) = ∅ by construction. Since both V (L) and VR(J) are finite sets, from the

previous splitting we get that VR(K,D) is finite if and only if VR(K) is finite.

If VR(K) is not finite, then VR(K,D) cannot be contained in VR(J) and hence p is not a Morse

function. If VR(K) is finite, then VR(K,D) ⊆ VR(J) if and only if #VR(K) = #VR(L)+#VR(J). �

Since we can check whether VR(K) is a finite set by means of the procedure used to investigate

VR(J) in the previous Step 1, Proposition 4.2 gives a method to test whether p is a Morse function.

If this is true, we need only to compute VR(L), which contains exactly the (real) critical points

of p, and the indexes of these points. Additional remarks concerning the possibility of computing

only the real critical values and their indexes via eigenvalue computations, avoiding the whole

computation of the real critical points, can be found in Section 5 of [FGLP].

3. Computation of the radius of a Milnor disk at a singular point.

Let Q = (α, β, γ) be a (real) singular point of S; by Theorem 2.1 there exists a real r0 > 0 such

that, for all positive ε ≤ r0, S ∩D(Q, ε) is homeomorphic to the cone over S ∩ S(Q, ε). In order

to compute such a radius it suffices to compute an r0 such that the disk D(Q, r0) contains neither

singular points of S nor critical points for the function ρ : S → R, ρ(x, y, z) = (x − α)2 + (y −

β)2 + (z − γ)2 except Q itself.

The points that are either singular for S or critical for ρ are the points P = (x, y, z) ∈ S such

that the rank of the matrix M =

(
fx fy fz

x− α y − β z − γ

)
is lower or equal to 1. If we denote by

M1,M2,M3 the determinants of the three square submatrices of order 2 of M , then the mentioned

points are the real solutions of the system of four equations f = 0,M1 = 0,M2 = 0,M3 = 0.

Let d(x, y, z, r) = r−(x−α)2−(y−β)2−(z−γ)2 and consider the ideal G = (f,M1,M2,M3, d) ⊂

C[x, y, z, r]. Then V (G) = Σ ∪ Γ ⊂ C4, where

Σ = {(P, ρ(P )) | P ∈ Sing SC} and

Γ = {(P, ρ(P )) | f(P ) = 0, P 6∈ Sing SC and P is a critical point for ρ}.

If σ : C4 → C is the projection defined by σ(x, y, z, r) = r, then 0 ∈ σ(V (G)) since (Q, 0) ∈

V (G); we look for a real positive r0 such that {r ∈ R | 0 < r < r0} does not contain any point in

σ(VR(G)).

At first we can compute δ ∈ R+ such that {z ∈ C | 0 < |z| < δ} ∩ σ(Γ) = ∅. Namely, by

Milnor’s result on the critical values of polynomial maps already recalled, the set σ(Γ) is finite in

C; in particular it coincides with its Zariski closure σ(Γ)
Z
. Then σ(Γ) ⊆ σ(Γ

Z
) ⊆ σ(Γ)

Z
= σ(Γ)

and hence σ(Γ) = σ(Γ
Z
).

Since Γ
Z

= V (G) \ Σ
Z

and Σ = V (J, d), the algebraic set Γ
Z

is the zero-set of the ideal

IΓ obtained by saturating G with respect to the ideal (J, d). Hence σ(Γ) = σ(Γ
Z
) is the zero-

set of the elimination ideal IΓ ∩ C[r] that we can easily compute. It is then sufficient to take

δ = min{|θ| : θ ∈ V (IΓ ∩ C[r]), θ 6= 0}.

Thus the interval (0, δ) ⊂ R does not contain any point in σ(ΓR), but it can still possibly contain

some point in σ(ΣR). We can easily avoid this: since ΣR is finite (by our hypothesis that the real

singular locus Sing S is finite), it is sufficient to compute η = min{‖Q−Pi‖ | Pi ∈ Sing S, Pi 6= Q}

and to take r0 = min(δ, η).
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4. Computation of the “sample points” on a Milnor sphere.

The reconstruction of Output(Sb) when passing through a singular point Q used the ability to

decide whether an oval on the Milnor sphere S(Q, ε) and a region of S(Q, ε) \ C(Q, ε) is of type

(+),(−) or (+−) and the ability to choose on the sphere some “sample points” to be used as

starting points for connecting paths. We want now to see how all this can be done effectively.

Using the notation introduced in Section 3, if ψ : S(Q, ε) \ {N} → R2 is the stereographic

projection that transforms the circle S(Q, ε) ∩ {z = γ} onto the unit sphere S1 ⊂ R2, the ovals of

C(Q, ε) of type (−) (resp. of type (+)) are mapped onto ovals of C̃ = ψ(C(Q, ε)) internal to S1

(resp. external to S1), while the images of the ovals of type (+−) intersect transversally S1. A

similar correspondence holds for the regions of S(Q, ε) \ C(Q, ε).

This allows us to translate our problem on C(Q, ε) into the analogous one on C̃ and to solve it

working with a plane curve.

Here we can compute the needed data through the following steps:

1) by means of the curve-algorithm compute the nests of C̃,

2) compute the points in C̃ ∩ S1 using for instance a rational parametrization of S1,

3) choose a point in each of the arcs of S1 \ C̃ and collect them into a set M = {M1, . . . ,Mk},

4) for each Mi ∈ M compute the region findRegion(Mi) of R2 \ C̃ containing it. Since distinct

points Mi,Mj may belong to the same region, remove duplicates from M so that distinct points lie

in different regions. Denote by R+− = {R1, . . . , Rt} the set of regions so found: they are precisely

the regions of type (+−). Since an oval is of type (+−) if and only if the two adjacent regions are

both (+−), looking at the graph G(C̃) we determine also the ovals of type (+−),

5) moving a little each point M ∈ M outside and inside S1, following for instance a radius, we

compute a pair (ξ+, ξ−) in each region of type (+−),

6) for each nest n = [σ1, . . . , σh] of C̃ , by means of findPoint, choose a point P (n) in the center of

the nest (i.e. inside the innermost oval of n). If we denote by R(σi) the region comprised between

σi−1 and σi, let j be the least integer in {1, . . . , h} such that R(σj) is a region (+−). Then the list

of ovals [σ1, . . . , σj−1] is a nest of type either (+) or (−): precisely it is of type (+) if ‖P (n)‖ > 1,

of type (−) otherwise. Respectively we choose P (n) as ξ+ or ξ−,

7) all the ovals of C̃ not found so far are ovals containing S1 in their interior part, thus they are

of type (+). In particular they are necessarily ordered by inclusion into a unique list [η1, . . . , ηp]

that can be computed removing for instance from findOvals(0) the ovals already found in the

previous steps. Then the list [ψ−1(ηp), . . . , ψ
−1(η1)] is a nest of type (+) on S(Q, ε) for which we

can choose the point N as ξ+.

5. The general case and examples

The Affine-Case-Algorithm described in Section 3 can be used to compute the set of data D(S)

only when S is contained in an affine chart of RP3. In this section we show that in the general

case we can achieve the same goal constructing an affine real algebraic surface Ŝ ⊂ R3, computing

D(Ŝ) by means of the Affine-Case-Algorithm and then recovering D(S) from D(Ŝ).

The strategy is the same already used in [FGL] and [FGLP] respectively to compute the topo-

logical type and the weighted adjacency graph in the case of a non-singular algebraic surface. Here

we see that the previous construction can be helpful even when S has isolated singularities and

can be used to compute also the lists l1, . . . , lm and q containing the needed information about the

singularities of S. In the same spirit of the previous sections we only briefly recall the essential

features of the construction of Ŝ and some of its properties that can be found in detail in the two

papers mentioned above; here we focus our attention on the new aspects due to the presence of

the singularities and on the way to “descend” the data in D(Ŝ) concerning the singular points to

recover the lists l1, . . . , lm, q.
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Denote by π : S3 → RP
3 the map that associates to any point (x, y, z, t) of the 3-sphere S3 the

point of homogeneous coordinates [x, y, z, t] in RP
3; then each fiber contains two antipodal points

on the sphere and S3 turns out to be a 2-sheeted covering space of RP
3. If S is defined by the

homogeneous equation F (x, y, z, t) = 0 and we lift S through π, the surface

S̃ = π−1(S) = {(x, y, z, t) ∈ R4 | F (x, y, z, t) = 0} ∩ S3

is invariant with respect to the antipodal map ap : S3 → S3 defined by ap(v) = −v. If (0, 0, 0, 1) 6∈

S̃ (what we can assume up to an affine translation of S) and if ϕ : S3 \ {(0, 0, 0, 1)} → R3 denotes

the stereographic projection given by ϕ(x, y, z, t) = ( x
1−t

, y
1−t

, z
1−t

), then the image Ŝ = ϕ(S̃) is

a compact algebraic surface in R3, homeomorphic to S̃ and defined implicitely by the polynomial

equation F (2X, ‖X‖2 − 1) = 0 where X = (x, y, z). Furthermore, if inv = ϕ ◦ ap ◦ ϕ−1 : R3 \

{0} → R3 \ {0} denotes the involution inv(X) = − X
‖X‖2 corresponding to ap via the stereographic

projection, then Ŝ is invariant with respect to inv.

In [FGL] and [FGLP] it was shown that, when S is non-singular, the ability to recognize the

action of inv on the set of the connected components of Ŝ and on the set of the regions of R3 \ Ŝ,

together with the topology of Ŝ and the adjacency graph G(Ŝ), is sufficient to compute χ(S) and

the weighted adjacency graph of S.

In the case we are examining, when S has at most isolated singularities, in order to compute

D(S) we make use of the topological surface T obtained from S applying the modifications of

Lemma 2.2 inside the Milnor disks at the singularities of S that are not isolated points. Also

the topological surface ϕ(π−1(T )) is invariant with respect to inv; more precisely inv induces an

involution on the set F of the connected components of ϕ(π−1(T )) and on the set R of the regions

of R3 \ ϕ(π−1(T )).

Hence we can split F as the union of F1 ∪ F2, where

F1 = {Ŷ ∈ F | inv(Ŷ ) = Ŷ } and F2 = F \ F1

and split R as the union of R1 ∪ R2, where

R1 = {Σ̂ ∈ R | inv(Σ̂) = Σ̂} and R2 = R \R1.

Our descending procedure to derive the needed data relative to T (and hence to S) from the

data on ϕ(π−1(T )) is based on the following characterization:

Proposition 5.1. Let Y be a connected component of T and Σ a region of RP
3 \ T . Then

(1) ϕ(π−1(Y )) is either a connected component of ϕ(π−1(T )) (so that it belongs to F1) or it

is the union of two distinct connected components of ϕ(π−1(T )) transformed each into the

other by inv,

(2) Y is non-contractible if and only if ϕ(π−1(Y )) ∈ F1,

(3) Σ is non-contractible if and only if ϕ(π−1(Σ)) ∈ R1.

The previous results were proved in the mentioned papers [FGL] and [FGLP] for the components

and regions of a non-singular algebraic surface; since the proof uses only the fact that (S3, π,RP3) is

a double covering, it holds also for singular surfaces and even for topological 2-manifolds contained

in RP3.

Since S has only isolated singularities, also the singularities of Ŝ are isolated, so that we can

compute D(Ŝ) by means of the Affine-Case-Algorithm; we obtain these data from the study of the

topological 2-manifold T̂ associated to Ŝ after applying the modification of Lemma 2.2 inside the

Milnor disks at the singularities of Ŝ. Note that T̂ is homeomorphic to ϕ(π−1(T )) and also the

pairs (R3, T̂ ) and (R3, ϕ(π−1(T ))) are homeomorphic.

The fact that the pairs (R3, T̂ ) and (R3, ϕ(π−1(T ))) are homeomorphic is very important because

it allows us to recover χ(T ), G(T ), wT and r(T ) by means of a “descending procedure” based on the
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properties of ϕ(π−1(T )) with respect to inv but using the data relative to the surface T̂ computed

by the Affine-Case-Algorithm. In particular the procedure to split the set F of the connected

components of ϕ(π−1(T )) and the set R of the regions of its complement can be performed working

with the connected components of T̂ . The procedure, described in detail in the previous papers,

is based on the investigation of the plane level curve T̂ ∩ {z = 0}. Since we can assume that 0 is

neither a critical value for the projection p nor a singular value for Ŝ, we can choose 0 as one of the

levels ai to be studied in the iterative procedure applied to Ŝ. In particular T̂ ∩ {z = 0} coincides

with Ŝ ∩ {z = 0} and it is a non-singular algebraic curve, invariant w.r.t. inv.

The only data of D(S) that we still need to compute are the lists l1, . . . , lm, q that we want

to derive from the analogous lists computed for Ŝ by means of T̂ . The reconstruction of q(T ) is

straightforward: if R is an isolated point for S contained in a region Σ of RP
3 \T , then ϕ(π−1(R))

consists of two points that lie in the same region of R3 \ T̂ if ϕ(π−1(Σ)) ∈ R1 (i.e. it is connected)

or that lie in different components if Σ splits into two regions of R2. Since we know the sets R1

and R2, accordingly we recover the list q(T ) of length s from the list q(T̂ ) of length 2s.

Also the number of singularities that are not isolated points doubles when passing from S to Ŝ,

hence for Ŝ we get 2m lists l̂1, . . . , l̂2m. Up to reordering we can assume that l̂1, . . . , l̂m are the lists

relative to the points Q̂1, . . . , Q̂m and l̂m+1, . . . , l̂2m are relative to the points inv(Q̂1), . . . , inv(Q̂m).

Let us see how, for instance, from the lists l̂1 and l̂m+1 we recover the list l1.

If F1 contains h components, say Ŷ1, . . . , Ŷh, and F2 contains 2k components Ŷh+1, . . . , Ŷh+k,

inv(Ŷh+1), . . . , inv(Ŷh+k), then the length of both l̂1 and l̂m+1 is h + 2k, while the length of l1
will be h + k. For simplicity assume that l̂1 contains in the first h positions the data relative to

the components in F1, in the successive k positions the data relative to Ŷh+1, . . . , Ŷh+k and in the

last k positions the data relative to inv(Ŷh+1), . . . , inv(Ŷh+k). In particular (if we denote by l(i)

the i-th element in a list l) we have that l̂1(j) = l̂m+1(j) for each j = 1, . . . , h and, because of the

pairing induced in F2 by inv, that l̂1(h+ j) = l̂m+1(h+ k+ j) and l̂1(h+ k+ j) = l̂m+1(h+ j) for

all j = 1, . . . , k.

Then it is easy to see that the list l1 has to be filled according to the following rule

l1(j) = l̂1(j) = (l̂m+1(j)) ∀j = 1, . . . , h and

l1(h+ j) = l̂1(h+ j) + l̂1(h+ k + j) ∀j = 1, . . . , k.

Before exemplifying the descending procedure on some simple non-affine surfaces, let us conclude

the paper with a brief schematic summary of how our algorithm and its two main functions work.

AFFINE-CASE-ALG

Input: f(x, y, z) = 0 with f a square-free polynomial in Q[x, y, z]

Output: D(S) = [χ(T ), G(T ), wT , r(T ), l1, . . . , lm, q] if S has at most isolated singularities, error

otherwise.

• Compute the singular locus: if S has non-isolated singularities, error

• Compute the real critical points, check that (x, y, z) is a good frame (otherwise perform a

linear change of coordinates and start again) and compute the indexes of the critical points

• Split [−N,N ] = [−N = a0, a1] ∪ [a1, a2] ∪ . . . ∪ [au, au+1 = N ]

• Initialize Output(S−N )

• for i = 1, . . . , u repeat Output(Sai
) = lift(Output(Sai−1

))

(the lifting and reconstruction process is explained in Section 3)

• Compute r(T ) choosing as root of G(TN ) the only vertex in G(T−N )

• Compute wT : mark the root as non-contractible vertex and mark all other vertices as

contractible
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• Assemble the list D(S) extracting χ(T ), G(T ), l1, . . . , lm, q from Output(SN ) and complet-

ing with r(T ) and wT .

GENERAL-CASE-ALG

Input: F (x, y, z, t) = 0 with F a homogeneous square-free polynomial in Q[x, y, z, t]

Output: D(S) = [χ(T ), G(T ), wT , r(T ), l1, . . . , lm, q] if S has at most isolated singularities, error

otherwise.

• If the curve C∞ = {F (x, y, z, 0) = 0} is empty, then

D(S) = AFFINE-CASE-ALG(F (x, y, z, 1))

• else

f(x, y, z) = F (2X, ‖X‖2 − 1) with X = (x, y, z)

D(Ŝ) = AFFINE-CASE-ALG(f(x, y, z))

D(S) = descend D(Ŝ) (the descending process is explained in Section 5)

Example 5.2. Consider the surface represented in the left-hand side of Figure 6 consisting of a

cone and two isolated points.

Σ1

Σ2

Y 1

Y 1

Σ2

Σ2

Y 2

Y 2

Σ1

Σ3

Σ3Σ1

Y 1

Y 1

S

Σ1

Σ1 Σ2

nc c

S

Figure 6. An even degree non-affine surface.

The right-hand side represents the doubled surface Ŝ and the adjacency graph G(T̂ ), where T̂

is the union of two spheres. Note that the symbols used in the figure, according to the notation

used in this section, indicate the components and regions of T and T̂ , even if these surfaces are

not represented in the figure.

Using the method described above we get the following data concerning T̂ :

Regions: inv(Σ̂1) = Σ̂1 and inv(Σ̂2) = Σ̂3; hence, labelling by means of the index i each region

Σ̂i, we have R1 = {1} and R2 = {2, 3}

Components: inv(Ŷ1) = Ŷ2; hence, again labelling by means of the index i each connected compo-

nent Ŷi, we get F1 = ∅ and F2 = {1, 2}. Morever χ(T̂ ) = [2, 2]

Singularities: l̂1 = [1, 1], l̂2 = [1, 1], q(T̂ ) = [1, 1, 2, 3].

The descending procedure yields χ(T ) = [2], l1 = [2], q(T ) = [1, 2], so we recognize that T

is a sphere and that S is the union of two isolated points and the space obtained collapsings two

points in the sphere T . The weighted 2-adjacency graph of S is represented in Figure 6 below S.

Example 5.3. The surface S represented in the left-hand side of Figure 7 contains a cone and

a plane passing through the vertex of the cone, thus there is only one singular point which is not

isolated in S.

Proceeding as in the previous example, using the notations appearing in the figure and the same

way of labelling, we compute:

Regions: inv(3) = 4 and inv(1) = 2; hence R1 = ∅ and R2 = {1, 2, 3, 4}
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Figure 7. An odd degree non-affine surface.

Components: inv(1) = 1, inv(2) = 3; hence F1 = {1} and F2 = {2, 3}. Moreover χ(T̂ ) = [2, 2, 2]

Singularities: l̂1 = [1, 1, 1], l̂2 = [1, 1, 1], q(T̂ ) = [ ].

By means of the descending procedure we get χ(T ) = [1, 2], l1 = [1, 2], q(T ) = [ ], i.e. T is the

disjoint union of a projective plane and a sphere and S is obtained from it collapsing a point in

the plane with two points in the sphere.

Example 5.4. Also the surface in Figure 8 contains a projective plane and only one singular

point.

Y 2

Σ1

Y 1

Y 2

S

Y 2 Y 1 Y 3

Σ1Σ3 Σ2 Σ4

Σ3

Y 2 Y 3

Σ1

S

Σ2

Y 1

Σ1

cc

2Σ

Σ4

2Σ

Figure 8. Another odd degree non-affine surface.

The usual procedure yields:

Regions: inv(3) = 4 and inv(1) = 2; hence R1 = ∅ and R2 = {1, 2, 3, 4}

Components: inv(1) = 1, inv(2) = 3; hence F1 = {1} and F2 = {2, 3}. Moreover χ(T̂ ) = [2, 2, 2]

Singularities: l̂1 = [1, 2, 0], l̂2 = [1, 0, 2], q(T̂ ) = [ ].

By means of the descending procedure we get χ(T ) = [1, 2], l1 = [1, 2], q(T ) = [ ], i.e. T is the

disjoint union of a projective plane and a sphere and S is obtained from it collapsing a point in

the plane with two points in the sphere.

Observe that the output D(S) obtained coincides with the one of the surface S of Example 7,

in spite of the fact that the two surfaces cannot be mapped each into the other by means of a

homeomorphism of RP
3. However also in this case there is an invariant that distinguishes the two

surfaces: the lists l̂1, l̂2. This shows that the method of “doubling” S into Ŝ is not only a useful

technical device to compute D(S) but also provides new additional invariants by homeomorphism.
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