View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Unitn-eprints Research

UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

SAT-BASED DECISION PROCEDURES FOR
CLASSICAL MODAL LOGICS

Enrico Giunchiglia, Fausto Giunchiglia
and Armando Tacchella

January 2005

Technical Report # DIT-05-001

https://core.ac.uk/display/11829285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SAT-Based Decision Procedures for

Classical Modal Logics

Enrico Giunchiglia
DIST, V.le Causa 13
16145 Genova, Italy

Fausto Giunchiglia
DISA, Universita di Trento.
IRST, 88050 Povo,

Trento, Italy

Armando Tacchella
DIST, V.le Causa 13
16145 Genova, Italy

Abstract. We present a set of SAT-based decision procedures for various classical
modal logics. By SAT-based, we mean built on top of a SAT solver. We show how
the SAT-based approach allows for a modular implementation for these logics. For
some of the logics we deal with, we are not aware of any other implementation.
For the others, we define a testing methodology which generalizes the 3CNF
methodology by Giunchiglia and Sebastiani. The experimental evaluation shows
that our decision procedures perform better than or as well as other state-of-the-art
decision procedures.

1. Introduction

Propositional reasoning is a fundamental problem in many areas of
Computer Science. Many researchers have put, and still put, years of
effort in the design and implementation of new and more powerful SAT
solvers. Most importantly, the source code of many of these implemen-
tations is freely available and can be used as a basis for the development
of decision procedures for more expressive logics (see, e.g., (Giunchiglia
and Sebastiani, 1996a; Cadoli et al., 1998)).

In this paper, we present a set of SAT-based decision procedures for
various classical modal logics (Montague, 1968; Segerberg, 1971). By
SAT-based, we mean built on top of a SAT solver. We show how the
SAT-based approach allows for a modular implementation for these
logics. For some of the logics we deal with, we are not aware of any
other implementation. For the others, we define a testing methodol-
ogy which generalizes the 3CNFg methodology by Giunchiglia and
Sebastiani (1996a). The experimental evaluation shows that our deci-

';ﬁ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

jar.tex; 15/11/2001; 8:27; p.1

2 E. Giunchiglia, F. Giunchiglia and A. Tacchella

sion procedures perform better than or as well as other state-of-the-art
decision procedures.

Our approach, first suggested by Giunchiglia and Sebastiani (1998),
consists of two steps:

1. take off the shelf one of the fastest SAT procedures available, and
2. use it as the basis for your modal decider.

Our approach differs from most of the previous works in decision
procedures for modal logics, which are either tableau-based, (i.e., based
on Smullyan’s tableau for propositional logic (Smullyan, 1968): see,
e.g., (Fitting, 1983; Massacci, 1994; Baader et al., 1994)), or translation-
based (i.e., based on a reduction to first order logic: see, e.g., (van
Benthem, 1984; Ohlbach, 1988; Hustadt and Schmidt, 1997a)). Some
of the differences and advantages of the SAT-based approach with re-
spect to the tableau based and translation based approaches have been
already pointed out in (Giunchiglia and Sebastiani, 1996b; Giunchiglia
et al., 1998). Here we show how the SAT-based approach provides for a
simple and natural schema for the development of decision procedures
for modal logics.

Our approach differs also from the approaches by Horrocks (1998)
and Patel-Schneider (1998). These authors developed their own SAT
checker and used it as a basis for their modal decider. This approach
allows for a better integration among the different modules of the sys-
tem and for a finer tuning of the reasoning strategies. On the other
hand, it does not exploit the great amount of ongoing work on SAT
deciders. Each year, new and faster SAT engines are proposed. With
some standard modifications of the source code we can inherit in the
modal setting all the benefits of state-of-the-art propositional checkers.!

Finally, our system, called *SAT, improves also on previous works
by Sebastiani and ourselves (1996a; 1996b; 1998). In particular,

— *SAT is built on top of the SAT decider SATO (Zhang, 1997). *SAT
inherits many of the SATO configurable options, and allows for
some more options (including early pruning, caching, two forms of
backjumping, and the choice of various splitting heuristics); and

— *SAT is able to deal with 8 modal logics, namely E, EM (=M),
EN, EMN, EC, EMC (=R), ECN, EMCN (=K) (see (Chellas,
1980)). For EN, EMN, EC and ECN, we do not know of any

! A similar point is made by Kautz and Selman (1998) as an explanation for the
better performances of SATPLAN with respect to specialized engines for planning
problems.

jar.tex; 15/11/2001; 8:27; p.2

SAT-Based Decision Procedures for Classical Modal Logics 3

other implemented decision procedure, nor of any reduction to a
formalism for which a decision procedure is available.

The paper is structured as follows. In Section 2 we review some
basic definitions about classical modal logics. Then, in Section 3, we
present the idea of the SAT-based approach to modal reasoning, and
discuss in detail the algorithms for the 8 logics we consider. Section 4
is devoted to *SAT: it discusses some of the motivations underlying
its construction, and some of its features. The experimental analysis
comparing *SAT with other state-of-the-art decision procedures is done
in Section 5. Our analysis is restricted to K (for which there are several
systems available) and E (for which there exists a reduction to bimodal
K). We end in Section 6 with the conclusions and the future work.

2. Classical modal logics

Following (Chellas, 1980), a modal logic is a set of formulas (called
theorems) closed under tautological consequence. Most modal logics
are closed under the rule

(pLA...Apn) D%
(Op1 A ... AOgy,) DOy

for certain values of n. If n = 1 then the logic is said to be monotone.
If n = 2 then the logic is said to be regular. If n > 0 then the logic is
said to be normal. The smallest monotone, regular and normal modal
logics are called M, R and K respectively (see, e.g., (Chellas, 1980)).

Classical modal logics (Montague, 1968; Segerberg, 1971) are weaker
than normal modal logics. In fact, the only requirement is that the set
of theorems is closed under the rule

p=19
Op=0y °

As a consequence, the schemas
N: OT,2
M: O(p A %) D O,

C: (Op AOy) D O(p Atp),

2 The symbols T and L are 0-ary connectives representing truth and falsity
respectively.

jar.tex; 15/11/2001; 8:27; p.3

4 E. Giunchiglia, F. Giunchiglia and A. Tacchella

which are theorems in K do not necessarily hold in classical modal
logics. The three principles N, M, and C enforce closure conditions on
the set of provable formulas which are not always desirable, especially if
the O operator has an epistemic (such as knowledge or belief) reading.
If we interpret Oy as “a certain agent a believes ¢”, then N enforces
that a believes all the logical truths, M that a’s beliefs are closed under
logical consequence, and C that a’s beliefs are closed under conjunction.
These three closure properties are different forms of omniscience, and
—as such— they are not appropriate for modeling the beliefs of a real
agent (see, e.g., (Giunchiglia and Giunchiglia, 1997) and (Fagin et al.,
1995) Chapter 9). We can easily imagine situations involving a’s beliefs,
where only an arbitrary subset of the above properties holds.

There are eight possible ways to add the three schemas M, C, and
N to the smallest classical modal logic E. The resulting modal logics
are called E, EM (equivalent to the logic M), EN, EMN, EC, EMC
(equivalent to R), ECN, EMCN (equivalent to K), where EX denotes
the logic obtained adding the schemas in X to E.

3. SAT-based procedures for classical modal logics

We say that a conjunction y of propositional literals and formulas of the
form Oy or =0y is an assignment if, for any pair 1,1’ of conjuncts in
i, it is not the case that ¢ = —1)'. An assignment p satisfies a formula
@ if u entails ¢ by propositional reasoning. A formula ¢ is consistent
in a logic L (or L-consistent) if = is not a theorem of L, i.e., if ¢ ¢
L.

Consider a formula . Let S be a set of assignments satisfying ¢, and
let L be a modal logic. As noticed by Sebastiani and Giunchiglia (1997),
the following two facts hold:

— If at least one assignment in S is L-consistent then ¢ is L-consistent.

— If no assignment in S is L-consistent then ¢ is not L-consistent as
long as the set S is complete for ¢, i.e., as long as the disjunction
of the assignments in S is propositionally equivalent to .

From these facts, it follows that the problem of determining whether ¢
is L-consistent can be decomposed in two steps:

— generate an assignment y satisfying ¢, and
— test whether y is L-consistent.

In all the logics we consider, testing the consistency of an assignment
¢ amounts to determining the consistency of other formulas whose

jar.tex; 15/11/2001; 8:27; p.4

SAT-Based Decision Procedures for Classical Modal Logics 5

depth (i.e., the maximum number of nested O operators) is strictly mi-
nor than the depth of u. This implies that we can check the consistency
of these other formulas by recursively applying the above methodology,
at the same time ensuring the termination of the overall process. The
above methodology can be implemented by two mutually recursive
procedures:

— LsAT(p) for the generation of assignments satisfying ¢, and

— LconsisT(u) for testing the L-consistency of each generated as-
signment y.

In order to simplify the presentation, we first present LCONSIST(u),
and then LsAT(¢p).

3.1. LCONSIST(p)

Whether an assignment is consistent, depends on the particular logic
L being considered. Furthermore, depending on the logic L considered,
the consistency problem for L (i.e., determining whether a formula is
consistent in L) belongs to different complexity classes. In particular,
the consistency problem for E, EM, EN, EMN is NP-complete, while
for EC, ECN, EMC, EMCN it is PSPACE-complete (see (Vardi, 1989;
Fagin et al., 1995)). Here, to save space, we divide these eight logics in
two groups. We present the algorithms for checking the L-consistency
of an assignment first in the case in which L is one of E, EM, EN, EMN,
and then in the case in which L is one of the others.

3.1.1. Logics E, EM, EN, EMN
The following Proposition is an easy consequence of the results pre-
sented in (Vardi, 1989).

PROPOSITION 1. Let p = A;Oa; A /\j -0 A 7y be an assignment
in which vy is a propositional formula. Let L be one of the logics E, EM,
EN, EMN. p is consistent in L if for each conjunct -Of; in p one of
the following conditions is satisfied:

— (a; = ~B;) is L-consistent for each conjunct Doy in p, and L=E;
— (a;A—pB;) is L-consistent for each conjunct Doy in p, and L=EM;

— —B; and (o = —fj) are L-consistent for each conjunct Doy in
W, and L=EN;

— —f; and (a; A —B;) are L-consistent for each conjunct Oa; in p,
and L=EMN.

jar.tex; 15/11/2001; 8:27; p.5

6 E. Giunchiglia, F. Giunchiglia and A. Tacchella

function LoNsIST(A; Doy A A; —OB; A 7)
foreach conjunct Of; do
foreach conjunct Oa; do
if M[i,j] = Undef then M[i, j] := LSAT(a; A =f;);
if L € {EN,EMN} and M[i, j] = True then M[j,j] := True;
if L € {E,EN} and M[i, j| = False then
if M[j,i] = Undef then M][j,i] := LSAT(—a; A B});
if L = EN and M[j,i] = True then M][i,i] := True;
if M[j,i] = False then return False
end
if I € {EN,EMN} then
if M[j,j] = Undef then M[j,j] := LSAT(8;);
if M[j,j] = False then return False
end;
return True.

Figure 1. LconsisT for E; EM, EN, EMN

When implementing the above conditions, care must be taken in order
to avoid repetitions of consistency checks. In fact, while an exponential
number of assignments satisfying the input formula can be generated by
LSAT, at most n? checks are possible in L, where n is the number of “0”
in the input formula. Given this upper bound, for each new consistency
check, we can cache the result for a future possible re-utilization in a
n X n matrix M. This ensures that at most n? consistency checks will
be performed. In more detail, given an enumeration 1, @9, ..., ®, of
the boxed subformulas of the input formula, M[i,j], with 7 # j, stores
the result of the consistency check for (p; A—¢;). M[i,i] stores the result
of the consistency check for —;. Initially, each element of the matrix
M has value Undef (meaning that the corresponding test has not been
done yet). The result is the procedure LCONSIST in Figure 1.

Counsider Figure 1 and assume that L=E or L=EN. Given a pair of
conjuncts Oa; and ~0Of;, we split the consistency test for (a; = —f3;)
in two simpler sub-tests:

— first, we test whether (a; A —f;) is consistent, and

— only if this test gives False, we test whether (-a;AS;) is consistent.

jar.tex; 15/11/2001; 8:27; p.6

SAT-Based Decision Procedures for Classical Modal Logics 7

Notice also that, in case L=EN or L=EMN, if we know that, e.g.,
(o A =Bj) is consistent, then also —f; is consistent and we store this
result in M[j,j].

PROPOSITION 2. Let p = \;Oa; A /\j —0B; A v be an assignment
in which v is a propositional formula. Let L be one of the logics E, EM,
EN, EMN. Assume that, for any formula ¢ whose depth is less than
the depth of p, LSAT(yp)

— returns True if ¢ is L-consistent, and
— Fulse otherwise.

LCONSIST(i) returns True if p is L-consistent, and False otherwise.

Proof: The Proposition is an easy consequence of the hypotheses and
Proposition 1. [

3.1.2. Logics EC, ECN, EMC, EMCN
The following Proposition is an easy consequence of the results pre-
sented in (Vardi, 1989).

PROPOSITION 3. Let p = A;Oa; A \; =OB; A 7y be an assignment
in which 7y is a propositional formula. Let A be the set of formulas o
such that Oa; 4s a conjunct of u. Let L be one of logics EC, ECN,
EMC, EMCN. p is consistent in L if for each conjunct ~Of; in p one
of the following conditions is satisfied:

— ((Ag;ear @i) = —Bj) is L-consistent for each non empty subset
A’ of A, and L=EC;

— ((Aa,enr @) = —Bj) is L-consistent for each subset A’ of A, and
L=ECN:

— A is empty or ((Ay,en @) A—Bj) is L-consistent, and L=EMC;
— ((Ag,en @i) A —B;) is L-consistent, and L=EMCN.

Assume that L=EC or L=ECN. The straightforward implementation
of the corresponding condition may lead to an exponential number of
checks in the cardinality |A| of A. More carefully, for each conjunct
—0p; in p, we can perform at most |A| + 1 checks if

1. for each formula «o; in A, we first check whether (-a; A ;) is
consistent in L. Let A’ be the set of formulas for which the above
test fails. Then,

jar.tex; 15/11/2001; 8:27; p.7

8 E. Giunchiglia, F. Giunchiglia and A. Tacchella

function LoNsIST(A; Doy A A; —OB; A 7)
A := {a; | O is a conjunct of p};
foreach conjunct Of; do
Al = A
if L € {EC, ECN} then
foreach conjunct Oo; do
if M[j,i] = Undef then M][j,i] := LSAT(—a; A B});
if M[j,i] = True then A" = A"\ {a;}
end;
if L € {ECN, EMCN} or A’ # () then
if not LsAT(A, A @i A —B;) then return False
end;
return True.

Figure 2. LconsisT for EC, ECN, EMC (R), EMCN (K)

2. in case L=ECN or A’ # 0, we perform the last test, checking
whether ((A,.car @) A =B;) is consistent in L.

Furthermore, the result of the consistency checks performed in the first
step can be cached in a matrix M analogous to the one used in the
previous subsection.

If L=EC or L=ECN, the procedure LCONSIST in Figure 2 imple-
ments the above ideas. Otherwise, it is a straightforward implementa-
tion of the conditions in Proposition 3.

PROPOSITION 4. Let p = A;Oc; A \;—0B; A v be an assignment
in which vy is a propositional formula. Let L be one of logics EC, ECN,
EMC, EMCN. Assume that, for any formula ¢ whose depth is less than
the depth of p, LSAT(p)

— returns True if ¢ is L-consistent, and
— False otherwise.

LconsisT(u) returns True if p is L-consistent, and False otherwise.

Proof: The Proposition is an easy consequence of the hypotheses and
Proposition 3. [

jar.tex; 15/11/2001; 8:27; p.8

SAT-Based Decision Procedures for Classical Modal Logics 9

function LsAT(yp)
return LsATpp (enf(p), T).

function LSATpp(p, i)

if ¢ = T then return LCONSIST(u); /* base */
if p = 1 then return False; /* backtrack */
if { a unit clause (/) occurs in ¢ } /* unit */

then return LsaTpp(assign(l, ¢),u Al);
[:= choose-literal(p, p1);
return LsATpp (assign(l,p),u A1) or /* split */
Ly

LsaTpp(assign (1, ©),pu A).

Figure 3. LSAT and LSATpp

3.2. LsaT(p)

Consider a formula ¢. Let L be a modal logic. The generation of as-
signments satisfying ¢ is independent of the particular logic L being
considered. Furthermore, it can be based on any procedure for SAT:

— if the SAT decider is complete, then we can generate a finite and
complete set of assignments for ¢ as follows:

e at step 0, ask for an assignment satisfying ¢, and

e at step ¢ + 1, ask for an assignment satisfying ¢ and the
negation of the assignments generated in the previous steps.

By checking the L-consistency of each assignment, we obtain a
correct and complete decider for L.

— if the SAT decider is correct but incomplete, then we cannot gen-
erate a complete set of assignments for ¢, but we can still build
a correct but incomplete decider for L by checking each generated
assignment. Of course, whether an incomplete effective procedure
for SAT can be turned into an effective incomplete procedure for
a modal logic L, is still an open point.

The above method for generating a complete set of assignments
for ¢ has the advantage that the SAT decider is used as a blackbox.

jar.tex; 15/11/2001; 8:27; p.9

10 E. Giunchiglia, F. Giunchiglia and A. Tacchella

The obvious disadvantage is that the size of the input formula checked
by the SAT solver may become exponentially bigger than the original
one. A better solution is to invoke the test for L-consistency inside the
SAT procedure whenever an assignment satisfying the input formula
is found. In the case of the Davis-Putnam (DP) procedure (Davis and
Putnam, 1960), we get the procedure LSAT represented in Figure 3. In
the figure,

— cnf(p) is a set of clauses —possibly with newly introduced proposi-
tional variables— such that, for any assignment u in the extended
language, the following two properties are satisfied:

1. if p satisfies cnf(p) then the restriction of p to the language of
 satisfies ¢, and

2. if u satisfies ¢ then there exists an assignment in the language
of enf(p) which (i) extends x4 and (i%) satisfies cnf(¢p).

Examples of such conversions are the “classical conversion” (which
given a formula in negative normal form recursively distribute
conjunctions over disjunctions), and the conversions based on “re-
naming”, such as those described in (Tseitin, 1970; Plaisted and
Greenbaum, 1986; de la Tour, 1990).

— choose-literal(p, u) returns a literal occurring in ¢ and chosen
according to some heuristic criterion.

— if [is a literal, [stands for A if | = A, and for A if | = = A;

— for any literal [and formula ¢, assign(l,) is the formula obtained
from ¢ by (i) deleting the clauses in which / occurs as a disjunct,
and (7i) eliminating ! from the others.

As can be observed, the procedure LSATpp in Figure 3 is the DP-
procedure modulo the call to LCONSIST(1) when it finds an assignment
1 satisfying the input formula. Notice that in this procedure the pure
literal rule, used by some DP implementations, is not implemented.
In fact, our main interest is in correct and complete modal deciders.
With the pure literal rule, the set of assignments checked by LCONSIST
—assuming that each of such call returns False— is not ensured to be
complete.?

3 Let p be an assignment in a language L. Let L' C L be a language. The
restriction of u to L' is the assignment obtained from u by deleting the conjuncts
not in I'. Let p' an assignment. u’ extends p if each conjunct of u is also a conjunct
of u'.

4 According to some authors (see, e.g., Freeman (1995)) the pure literal rule only
helps for a few classes of SAT problems. Furthermore, when this rule does help, it
does not result in a substantial reduction in search tree size.

jar.tex; 15/11/2001; 8:27; p.10

SAT-Based Decision Procedures for Classical Modal Logics 11

In the following, for any formula ¢ and for any assignment g in
the (possibly extended) language of cnf(¢), p, is the restriction of
u to the language of ¢. Analogously, for any set of assignments T,

Ty ={pp | pneT}.

PROPOSITION 5. Let ¢ be any modal formula. Assume that, for
any assignment p, LCONSIST(u) prints u and returns False. Let T' be
the set of assignments printed as the result of invoking LSAT(p). The
disjunction of the assignments in L'y, is propositionally equivalent to .

Proof: In the hypotheses of the Proposition, what we need to prove is

that
o=\ 1
KETy

First, it is clear that cnf(¢) = V o p- For the thesis, the right-to-left
implication is an easy consequence of the first of the two properties of
enf(¢). Assume that the left-to-right implication is false. This means
that there exists an assignment g in the language of ¢ such that

(1) for any propositional atom A, either A or —A4 is a conjunct of y,

(2) for any formula Ot in the language of ¢, either Oy or =0 is a
conjunct of u,

(3) u satisfies ¢, and
(4) p does not satisfy VMEW L.

Given (3) and the second of the properties of cnf(p), there must exist
an assignment p’ in the language of cnf(y) which

(5) extends p,
(6) satisfies cnf(¢), and thus also V/ ,cr p.

(6) means that u' entails \/ uer 4 by propositional reasoning. Thus,
there must exist an assignment p” in T such that —given (1), (2), (5)—
each conjunct of /z;', is also a conjunct of ufp and thus of y. This implies
that u entails pg. Since py, € T'y, p entails Vuel“go , contradicting (4). &

We can now state and prove soundness and completeness results for
our procedures.

Theorem [Soundness and Completeness] Let L be one of the log-
ics E, EM, EN, EMN, EC, ECN, EMC, EMCN. LSAT is sound and

jar.tex; 15/11/2001; 8:27; p.11

12 E. Giunchiglia, F. Giunchiglia and A. Tacchella

complete for L, i.e., for any modal formula ¢, LSAT(p) returns True if
@ is L-consistent, and False otherwise.

Proof: First observe that LSAT(yp) returns
— True if there exists a call to LCONSIST(u) which returns True, and
— False if each call to LCONSIST(u) returns False.

The proof is by induction on the depth d of ¢. If d = 0 the Theorem
is trivial. Assume that d = m + 1. By induction hypothesis, for any
formula v whose depth is less than d, LSAT(v) returns True if ¢ is L-
consistent, and False otherwise. In the following, we use the following
two facts:

(1) For any two assignments p and u' differing only for propositional
conjuncts, p is L-consistent iff y' is L-consistent.
This is a trivial consequence of Proposition 1 and Proposition 3.

(2) Let u be an assignment such that LCONSIST(u) is invoked during
the execution of LSAT(p). LCONSIST(p) returns True if p is L-
consistent and False otherwise.

Given that the depth of y is less than or equal to d, this is a
consequence of the the induction hypothesis, Proposition 2 and
Proposition 4.

There are two cases:

1. ¢ is L-consistent. From Proposition 5, it follows that there exists a
call to LcONSIST(x) in which the assignment yu (%) satisfies enf(y),
and (i7) is such that u,, is L-consistent. Since u possibly extends p,
in that it may assign some newly introduced propositional variables,
from (1) it follows that u is L-consistent, and from (2) it follows
that LCONSIST(u) —and thus also LSAT(p)— returns True.

2. is not L-consistent. From Proposition 5, it follows that for each
call LCONSIST(u), the assignment (i, is not L-consistent. As above,
from (1) it follows that p is not L-consistent, and from (2) it follows
that LCONSIST(u) returns False. [)

4. *sAtT
*SAT is built on top of SATO ver. 3.2 (Zhang, 1997). The choice of

adopting SATO as the basis for our system has been driven by the
following motivations:

jar.tex; 15/11/2001; 8:27; p.12

SAT-Based Decision Procedures for Classical Modal Logics 13

— SATO is fast. We have not performed and are not aware of any
up-to-date extensive comparison among the different SAT solvers
publicly available.® However, according to some experiments we
have done and to the results presented in (Zhang, 1997), SATO
seems to behave better than most of the currently available SAT
solvers.

— SATO has many options, including various splitting heuristics and
backjumping. We have inherited some of these options, and they
are available for experimentation.

— SATO has been written using some Software Engineering conven-
tions which have made and will make much easier to tune it for
our goals.

Besides the options inherited from SATO, our system allows for other
possibilities that we have developed while implementing the system.
It is out of the goals of this paper to describe *SAT structure, opti-
mizations and configurable options. For a more detailed presentation,
see (Tacchella, 1999) and the manual distributed with *sAT. For our
goals, it suffices to say that the core of *SAT is a C implementation of
the procedures LSAT and LCONSIST in Figures 1, 2, 3. In particular,
with reference to Figure 3, in *SAT

— cnf(p) is the set of clauses obtained from ¢ by applying a con-
version based on renaming, such as those described in (Tseitin,
1970; Plaisted and Greenbaum, 1986).

— choose-literal(p, 1) returns a literal according to a MOMS heuristic
(Maximum Occurrences in clauses of Minimum Size) (Freeman,

1995).

— assign(l,) is a highly optimized procedure which takes time linear
in the number of occurrences of [in ¢.

*SAT also implements two important optimizations which have been
used in the tests presented in the next Section:

Early-pruning. Before each splitting step in LSAT, the L-consistency of
the assignment generated so far is checked by a call to LCONSIST.
As in KsATC, care is taken to avoid the repetition of L-consistency
checks on the same branch of the propositional search tree.’ Early

® Seehttp://aida.intellektik.informatik.th-darmstadt.de/ hoos/SATLIB/
for a list of publicly available SAT solvers and more.

8 This is obtained through a pointer in the assignment stack which keeps track
of the portion of the current assignment which has been already verified to be
L-consistent.

jar.tex; 15/11/2001; 8:27; p.13

14 E. Giunchiglia, F. Giunchiglia and A. Tacchella

pruning has proved to be very effective at least on some of the
tests presented in the next Section (see (Giunchiglia et al., 1998)).

Caching for K. In the case of the logic K, *SAT uses an additional data
structure which allows to associate to any formula ¢ the result of
LsAT(p). Before invoking LSAT on a formula 1, LCONSIST checks
whether the K-consistency of 1 has already been determined. As in
DLP, caching introduces some additional costs, but it may produce
dramatic speedups (see (Horrocks and Patel-Schneider, 1999b)).

We have not yet conducted an exhaustive experimental analysis to
see, for each class of formulas, which combination of *SAT options leads
to the best results (see (Horrocks and Patel-Schneider, 1999b) for a
similar study of DLP options). In all the tests in the next Section, we
used *SAT options which seemed more reasonable to us. In particular,
we have set *SAT as to use

— early pruning on all tests, and

— caching (for K) when the depth of the input formula is greater
than 1.

5. A comparative analysis

The availability of decision procedures for the logics we consider varies
significantly. For EMCN, that we recall is equivalent to K, there are
many implemented decision procedures available, see, e.g., (Franconi
et al., 1998; de Swart, 1998). For E, EM and EMC, Gasquet and
Herzig (1996) provide a reduction to normal modal logics: by imple-
menting this reduction we indirectly obtain decision procedures for
these logics. Fitting (1983) calls U the logic EM, and defines a tableau
system for it. More recently, Governatori and Luppi (1999) define a
tableau-like proof system for classical, monotonic and regular modal
logics. We are not aware of any implementation of these tableau sys-
tems. For EN, EC, EMN and ECN we are not aware of any other
implemented decision procedure, nor of any reduction into a formalism
for which a decision procedure is available.

Our comparative analysis is restricted to K and E. In fact, both our
decision procedures for E and EM, and Gasquet and Herzig’s reductions
for E and EM, are similar. We expect that the experimental analysis
for EM would lead to results similar to the ones we have for E. For

jar.tex; 15/11/2001; 8:27; p.14

SAT-Based Decision Procedures for Classical Modal Logics 15

EMC, Gasquet and Herzig’s reduction is to a normal modal logic for
which we do not have a system available.”

5.1. MobaL K

As we said, there are several systems able to solve the consistency
problem for K. In our comparative experimental analysis, we consider
the four systems *sAT, KSATC (Giunchiglia et al., 1998), DLP (Patel-
Schneider, 1998) and TA (Hustadt and Schmidt, 1997a), i.e., some
among the fastest solvers for K. We remember that TA, given a modal
formula ¢, first determines a corresponding first order formula ¢* and
then it performs conventional first-order theorem proving. In our tests,
as in (Hustadt and Schmidt, 1997a), TA uses FLOTTER to convert ¢*
in a set of clauses Cl(¢*), and then the theorem prover SPASS to solve
Cl(p™*). For a brief description of FLOTTER and SPASS, see (Weidenbach
et al., 1996).8

We test these systems on three problem sets of randomly gener-
ated 3CNF g formulas. A 3CNFg formula is a conjunction of 3CNF g
clauses, each with three disjuncts. Each disjunct in a 3CNF g clause
is either a propositional literal or a formula having the form OC or
—0C, where C is a 3CNFg clause. See (Giunchiglia and Sebastiani,
1996a) for a more detailed presentation. We only remark that for any
formula ¢ there exist a 3CNF g formula which is K-consistent iff ¢ is
K-consistent.

Sets of 3CNFg formulas can be randomly generated according to
the following parameters:

(i) the modal depth d;

(ii) the number L of clauses at depth d = 0;

" The reduction maps the consistency problem for a formula ¢ in EMC, into the
consistency problem for a formula ¢’ in the smallest normal modal logic with two
modal operators O0;, Oy and augmented with the schema

¥ D 01,

See (Gasquet and Herzig, 1996) for more details.

8 The experimental results have been obtained with DLP ver. 3.1, TA
ver. 1.4 (Spass/FLOTTER ver. 0.55), KsSATC wver. 1.0, and *sAaT ver. 1.2.
To compile the systems we have used sml-nj 110.0.3, sicstus prolog
3, ACL 5.0, and gcc 2.7.2.3. The tests have been run on several In-
tel PCs, whose configuration varies from P200MHz with 64MbRAM, up to a
PII350MHz with 256 MbRAM. All platforms are running Linux 5.x RedHat. DLP
is available at http://www-db.research.bell-labs.com/user/pfps. TA is avail-
able at http://www.doc.mmu.ac.uk/STAFF/U.Hustadt/mdp. KsATC is available at
ftp://ftp.mrg.dist.unige.it/ in pub/mrg-systems. *sAT is available at the WEB
page http://www.mrg.dist.unige.it/ " tac/StarSAT.html.

jar.tex; 15/11/2001; 8:27; p.15

16 E. Giunchiglia, F. Giunchiglia and A. Tacchella

(iii) the number N of propositional variables;

(iv) the probability p with which a disjunct occurring in a clause at
depth < d is purely propositional.

Care is taken in order to avoid multiple occurrences of a formula in a
clause, at the same time ensuring that the modal vs. the propositional
structure of each generated formula only depends on p. In more detail,
a clause is generated by randomly generating its disjuncts. When gen-
erating a disjunct, we first decide whether it has to be a propositional
literal or not. Then a disjunct of the proper type is repeatedly generated
as long as it does not occur in the clause generated so far.

In the tests we consider, a problem set is characterized by N and
p: d is fixed to 1, while L is varied in such a way to empirically cover
the “100% satisfiable — 100% unsatisfiable” transition. For each L in
a problem set, 100 3CNF g formulas are randomly generated, and the
resulting formulas are given in input to the procedure under test. Then,
for each run, we consider the time the systems take for the main process-
ing of the formula, thus excluding the negligible time the systems take
to read and somehow normalize the input formula. (In particular, for
TA this means that we take into account only the time needed by SPASS
to solve the formula generated at the end of the translation process.)
For practical reasons, a timeout mechanism stops the execution of the
system on a formula after 1000 seconds of CPU time. Even more, for
any pair N, p, the execution of *sAT, KSATC and TA is stopped after
the system exceeds the timeout on 51 of the 100 samples corresponding
to the fixed NV, p. DLP instead, stops its execution on the 100 samples
corresponding to a pair N,p if a super-majority of the first n tests
timeout.” When this happens, it is assumed that DLP exceeds the
timeout for more than 50% of the tests with that N, p.

The first three problem sets we consider have N = 4,5,6 while p is
fixed to 0%: according to Hustadt and Schmidt (1997b), fixing p = 0%
corresponds to particularly difficult tests. We call these problem sets
PKN4p0, PKN5p0, and PKN6p0 respectively. PKN4p0 and PKN6p0
are called PS12 and PS13 respectively in (Hustadt and Schmidt, 1997b).
In order to better highlight the behavior of *SAT and KSATC, we also
run these systems on a problem set (called PKN7p0) having N = 7
and p = 0%. In Figure 4, satisfiability percentages and the median of
the CPU times for the four systems are plotted against the number

9 In more detail, DLP stops its execution if there are at least 5 tests so far and
more than 90% of them timeout, or if there are at least 10 tests so far and more
than 75% of them timeout, or if there are at least 20 tests so far and more than 55%
of them timeout (Patel-Schneider, 1999).

jar.tex; 15/11/2001; 8:27; p.16

CPU TIME [SEC]

CPU TIME [SEC]

SAT-Based Decision Procedures for Classical Modal Logics 17

Systems comparison - N=4, d=1, %p=0
T T T

—x— TA
—+— DLP
—— KsatC
2| | —e— vsAT
9% satisf

107

0 20

40 60 80
OF CLAUSES (L)

Systems comparison - N=6, d=1, %p=0
T * T

100

120

107

TA
DLP
KsatC
*SAT

% satisf

0 50

100 150 200
OF CLAUSES (L)

250

300

CPU TIME [SEC]

107

CPU TIME [SEC]

107

107

Systems comparison - N=5, d=1, %p=0
T T * T

¥

% satisf

20 40 60 80 100 120 140 160 180 200
OF CLAUSES (L)

Systems comparison - N=7, d=1, %p=0
T T T T T

\\

—+— KsatC
—6— *SAT

0

100 200 300 400 500 600 700 800
OF CLAUSES (L)

Figure 4. Logic K. *saT, KsaTC, DLP, and TA median CPU time. N = 4,5,6,7.
p = 0%. 100 samples/point. Background: satisfiability percentage.

of clauses L. Notice the logarithmic scale on the vertical axis, which
causes that values equal to 0.00 do not get plotted.

Consider Figure 4. The first observation is that *sSAT and KsATC
are the fastest. The two systems perform roughly in the same way, with
*SAT performing better when L = 4,5. For L = 6,7, the two systems
have similar performances, one system performing better than the other
for some values of L, but worse for other values of L. This comes at no
surprise: the two systems have the same underlying structure, both use
early pruning and a MOMS heuristic to select the splitting literal. The
two systems do not have an identical behavior because they use different
data-structures and implement slightly different MOMS strategies.

Considering the other systems, for PKN4p0 the gap between *SAT/KSATC

and DLP [resp. TA] is of more than one order of magnitude at the
cross-over point of 50% of satisfiable formulas, and goes up to almost
2 [resp. 4] orders of magnitude at the right end side of the horizontal
axis. For PKN5p0 and PKN6p0, TA median values exceed the timeout
for L = 85 and L = 90 respectively, while the corresponding values of

jar.tex; 15/11/2001; 8:27; p.17

18 E. Giunchiglia, F. Giunchiglia and A. Tacchella

*SAT [resp. KSATC] are 1.22 [resp. 1.83] and 3.32 [resp. 5.64] seconds.
TA keeps exceeding the timeout for all the successive values. The gap
between *SAT/KSATC and DLP on PKN5p0 is of more than one order
of magnitude at the cross-over points of 50% satisfiable formula, and
goes up to almost 3 orders at the very right of the plot. When N = 6,
DLP median values exceed the timeout for L = 120 and L = 150. For
L > 150, DLP does not terminate gracefully.!® Comparing *SAT and
DLp on PKN4p0 and PKN5p0, we see that

— the gap between *SAT and DLP seems to increase with L. Both for
PKN4p0 and PKNb5p0, the difference in logarithmic scale between
*SAT and DLP is (almost always) monotonically increasing.

— At the crossover point of 50% satisfiable formulas, the gap between
*SAT and DLP [resp. TA] is roughly 1s [resp. 60s] for PKN4p0; and
>220s [resp. >1000s] for PKN5pO0.

Such good performances by *sAT and KSATC are due to early pruning,
which has revealed to be very effective on these problem sets. For
example, if we disable early pruning in *SAT and rerun it on PKN5pO0,
the system keeps exceeding the time limit for 65 < L < 200.

When p = 0%, the better behavior of *SAT and KSATC than DLP
and TA, is confirmed by the Q%-percentile graphs in Figure 5, corre-
sponding to N = 4. Formally, the Q%-percentile of a set S of values is
the value V such that Q% of the values in S are smaller or equal to
V. The median value of a set thus corresponds to the 50% percentile
of the set. Figure 5 reports the 50%, 60%, 70%, 80%, 90% and 100%
percentile values of the CPU-times when *SAT (top left), KSATC (top
right), DLP (bottom left) and TA (bottom right) are run on PKN4p0.
The percentile plots for PKN5p0 and PKN6p0 look similar to the plots
in Figure 5. This means that all the systems perform in roughly the
same way on the 50 most difficult samples of the 100 tests corresponding
to a fixed N and L.

We also run the four systems on problems with N = 4,5,6,7 while
p is fixed to 50%. We call these problem sets PKN4p50, PKN5p50,
PKN6p50, and PKN7p50. In Figure 6 the satisfiability percentages and
the median of the CPU times for the four systems are plotted against
the number of clauses L. As for p = 0%, *sAT and KsATC perform
roughly in the same way and are the fastest. Differently from the tests
in which p = 0%, at the transition point of 50% of satisfiable formulas,
the gap between *sAT/KSATC and DLP seems to diminish when the
number of variables increases. Horrocks and Patel-Schneider (1999a)

0 DLp ver. 3.2 is able to successfully handle formulas with N = 6, p = 0% and
L > 150.

jar.tex; 15/11/2001; 8:27; p.18

CPU TIME [SEC]

CPU TIME [SEC]

SAT-Based Decision Procedures for Classical Modal Logics 19

*SAT CPU TIME - N=4, d=1, %p=0 KsatC CPU TIME - N=4, d=1, %p=0

CPU TIME [SEC]

percentiles # OF CLAUSES (1) percentiles # OF CLAUSES (L)

DLP CPU TIME - N=4, d=1, %p=0 TA CPU TIME - N=4, d=1, %p=0

CPU TIME [SEC]

percentiles #OF CLAUSES (1) percentiles # OF CLAUSES (L)

Figure 5. Logic K. 50%-100% percentile CPU times of *sAT, KsaTC, DLP, and TA.
N = 4. p = 0%. 100 samples/point.

show that for values of L bigger than 7, DLP performances are superior
to those of KSATC when d = 1 and p = 50%. They also conclude
that DLP performs better than KSATC when p is high and worse
when p is low. We have not yet done such a broad comparison using
*sSAT instead of KSATC. However, we believe that Horrocks and Patel-
Schneider’s conclusions should extend also to *SAT, if *SAT is used with
the parameter settings we have currently used, i.e., those which make
*SAT most similar to KSATC. Of course, a big role can be played by
*SAT already available configurable options, and this will be the issue
of future research. In any case, both *sAT and KSATC perform better
than the other systems for large values of L, when the formulas are
trivially unsatisfiable. This is due to the fact that for large values of
L, formulas become propositionally unsatisfiable, and thus both *sAT
and KSATC mostly take advantage of their SAT-based nature, e.g., of
their optimized data structures for handling large formulas.

As for p = 0%, the percentile plots of the timings of the systems
on PKN7p50, do not show big differences with respect to the plots of

jar.tex; 15/11/2001; 8:27; p.19

CPU TIME [SEC]

CPU TIME [SEC]

20 E. Giunchiglia, F. Giunchiglia and A. Tacchella

Systems comparison - N=4, d=1, %p=50
10 T T T T T

—— TA
—*— DLP
—— KsatC
—6— *SAT
% satist

-

o L

0 50 100 150 200 250 300 350 400
OF CLAUSES (L)

Systems comparison - N=6, d=1, %p=50
T T T

—=— TA
—*— DLP

2| —— *sAT ||
% satist

107

0 100 200 300 400 500 600
OF CLAUSES (L)

o
i
@,
w
2
=
>
a
13}

CPU TIME [SEC]

107

Systems comparison - N=5, d=1, %p=50
T T T T T

—— TA

—*— DLP

—— KsatC

—6— *SAT
% satist

50 100 150 200 250 300 350 400 450 500
OF CLAUSES (L)

Systems comparison - N=7, d=1, %p=50
T T T

% satisf | 3

100 200 300 400 500 600 700
OF CLAUSES (L)

Figure 6. Logic K. *saT, KSATC, DLP, and TA median CPU time. N = 4,5,6,7.
p = 50%. 100 samples/point. Background: satisfiability percentage.

the medians. Considering DLP and *SAT 100% percentile plots, it is
interesting to observe that DLP has a lower maximum than *SAT; on
the other hand, *SAT values decrease more rapidly than those of DLP.

Finally, we see that for most of the problem sets we consider, all the
systems seem to have an easy-hard-easy pattern, whose peak roughly
correspond to the 50% of satisfiable formulas. When p = 0%, this
phenomenon is best evident for *sSAT and KsaTC.

We also consider the benchmarks formulas for K used at the Com-
parison of Theorem Provers for Modal Logics at Tableaux’98 (see (de
Swart, 1998)). These consist of nine provable parameterized formu-
las (ending with “_p”) and nine unprovable parameterized formulas
(ending with “.n”). For each parameterized formula A(n), the test
consists in determining the greatest natural number n < 21 satisfying

the following two conditions:

1. the prover returns the correct result for the formulas A(1), A(2),...

in less than 100 seconds, and

jar.tex; 15/11/2001; 8:27; p.20

CPU TIME [SEC]

percentil

SAT-Based Decision Procedures for Classical Modal Logics

*SAT CPU TIME - N=7, d=1, %p=50

|
\d

100 200 300 400 500 600 700 800

)

OF CLAUSES (L)

DLP CPU TIME - N=7, d=1, %p=50

800
* % 100 200 300 400 500 600 700

OF CLAUSES (L)

percentil

21

KsatC CPU TIME - N=7, d=1, %p=50

100 200 300 400 500 600 700 800

OF CLAUSES (L)

TA CPU TIME - N=7, d=1, %p=50

o 700 800

60!
les 50 100 200 300 400 500

OF CLAUSES (L)

Figure 7. Logic K. 50%-100% percentile CPU times of *sAT, KsaTC, DLP, and TA.

N

= 7. p = 50%. 100 samples/point.

2. the prover cannot do the formula A(n + 1) in less than 100 seconds

or n = 21.

Even though it has been proved that most of these tests can be easily
solved by current solvers, these are still interesting because

— they are not 3CNFg formulas, and

some of these tests have not been solved yet.

The results for *sAT, TA and DLP are reported in Table I. KSATC has
not been tested since KSATC is able to deal with 3CNF g formulas only.
We also show the CPU time requested by the system to solve the last
instance A(n). Notice that *sSAT has been run with caching enabled,
since the depth of all the formulas in the Table is greater than 1. For
TA, we do not take into account the time needed to compute the first
order formula A*(n) corresponding to A(n) (which is negligible), but we
do take into account the time requested by FLOTTER to convert A*(n)

jar.tex; 15/11/2001; 8:27; p.21

22 E. Giunchiglia, F. Giunchiglia and A. Tacchella

Table I. Logic K. *saT, DLP and TA performances on Tableaux’98 benchmarks

*SAT DLp TA
Test Size Time Size Time Size SpAss FLOTTER
k_branch_n 12 94.49 12 52.29 6 84.21 12.23
k_branch_p 21 0.21 18 44.56 6 51.95 13.81
k.d4n 21 2.87 21 3.43 14 1.14 42.92
k.ddp 21 0.06 21 0.17 15 0.64 70.47
k_dum.n 21 0.12 21 0.13 16 1.75 64.07
k_dum_p 21 0.04 21 0.07 17 3.32 61.67
k_grz.n 21 0.01 21 0.20 21 0.16 0.17
k_grz_p 21 0.04 21 0.11 21 0.35 0.16
k_lin_n 21 47.80 21 0.70 21 16.07 63.94
k lin_p 21 0.01 21 0.08 21 1.03 8.21
k_pathn 21 0.96 21 1.29 4 58.70 2.14
k_path_p 21 0.72 21 1.19 5 22.85 2.18
k_phn 12 0.60 9 40.16 9 45.21 9.92
k_ph_p 8 48.54 6 11.34 6 42.19 0.97
k_polyn 21 2.25 21 0.65 4 1.23 7.86
k_poly_p 21 1.73 21 0.34 5 2.48 51.00
k_tdpn 21 1.28 21 0.45 9 3.37 84.35
k_t4dp_p 21 0.29 21 0.21 16 3.91 84.75

into a set CI(A*(n)) of clauses (reported in the FLOTTER column), and
the time requested by SPASS to determine the consistency or inconsis-
tency of Cl(A*(n)) (reported in the SPASS column). Furthermore, we
stopped TA on A(n) with n < 21, either because FLOTTER does not
terminate gracefully when computing CI(A*(n + 1)), or because SPASS
or FLOTTER exceed the 100 seconds time limit. In the table, these three
cases correspond to the rows in which the value for n/SPASS/FLOTTER
respectively is underlined.

As can be observed from Table I, the three systems are able to solve
all the instances of a formula in four cases. *SAT and DLP are able
to solve all the instances except for k_branch n, k_branch_p, k_ph_n,
k_ph_p. Except for the first of these four parameterized formulas, *SAT
is able to solve more instances than DLP. For k_branch_n, both *SAT
and DLP are able to solve the 12th instance, with DLP taking less time
than *SAT to solve it.

jar.tex; 15/11/2001; 8:27; p.22

SAT-Based Decision Procedures for Classical Modal Logics 23

5.2. MobAL E

Gasquet and Herzig (1996) provide a translation which maps any for-
mula ¢ into a formula gy in Kag, i.e., the smallest normal modal logic
with two modal operators O0; and Os. The translation is such that ¢ is
satisfiable in E iff oy is satisfiable in Ks. This translation is defined
in the following way:

— @eH = ¢, if ¢ is a propositional variable,

— weu = "017(02par A O1~%an), if ¢ = O,

and homomorphic for the cases of the propositional connectives.

Consider a formula ¢. We compare *SAT performances on ¢ with
respect to *SAT, DLP and TA performances on ¢gy. We could not
run KsATC on ¢gg, since KSATC accepts only 3CNF g formulas with
at most one modality. To make evident when a system is run using
Gasquet and Herzig’s translation, we append the string “+GH” to
the name of the system. Therefore, in the following, we will have the
systems *SAT, *saT+GH, DLP+GH, and TA+GH.

In E, the 3CNF g test methodology is not suited. Indeed, it is no
longer the case that for any modal formula ¢ there exists a 3CNF g
formula which is E-satisfiable iff ¢ is E-satisfiable. Furthermore, check-
ing the consistency of an assignment y in E amounts to determine the
counsistency of (a = =) for each pair of conjuncts Oa and =04 in u:
most of these tests, in case a and 8 are 3CNF g clauses, can be trivially
satisfied.

We therefore consider sets of 3CNFg formulas. A 3CNFg formula
is a conjunction of 3CNFg clauses, each with three disjuncts. Each
disjunct in a 3CNFEg clause is either a propositional literal or a for-
mula having the form OC or —0OC, where C is a 3CNF g formula. For
example,

D((D(ll VipVv 13) VigVv l5) A (l6 ViV lg))

where each [; (1 <14 < 8) is a propositional literal, is a 3CNF g formula.
For any formula ¢, there exist a 3CNFg formula logically equivalent
to ¢ in E.

Sets of 3CNF g formulas can be randomly generated according to the
parameters used to generate 3CNF g formulas, and a new parameter C
representing the number of clauses at depth d > 0. A 3CNFf is thus
a 3CNFg formula in which C = 1. As in the previous subsection, a
problem set is characterized by N and p: d and C are fixed to 1 and L
respectively; L is given increasing values in such a way to empirically
cover the “100% satisfiable — 100% unsatisfiable” transition. We also

jar.tex; 15/11/2001; 8:27; p.23

CPU TIME [SEC]

CPU TIME [SEC]

24 E. Giunchiglia, F. Giunchiglia and A. Tacchella

Systems comparison - N=4, d=1, %p=0

—x— TA+GH
—+— *SAT+GH
—#— DLP+GH
2 —e— *SAT

£ % satisf

CPU TIME [SEC]

Systems comparison - N=5, d=1, %p=0

—+— *SAT+GH
—*— DLP+GH
—6— *SAT

% satisf

0 5 10 15 20 25 30
OF CLAUSES (L)

Systems comparison - N=6, d=1, %p=0

—+— *SAT+GH
—%— DLP+GH
—e— *SAT

, 9% satisf

0 10 20 30 40 50 60
OF CLAUSES (L)

CPU TIME [SEC]

10 15 20 25 30 35 40 45 50
OF CLAUSES (L)

Systems comparison - N=7, d=1, %p=0

—— TA+GH
—+— *SAT+GH
—*— DLP+GH
—6— *SAT

% satisf

10 20 30 40 50 60 70
OF CLAUSES (L)

Figure 8. Logic E. *sat, *saT+GH, DLp+GH, and TA4+GH median CPU time.
N =4,5,6,7. p=0%. 100 samples/point. Background: satisfiability percentage.

check that in each sample there are no multiple occurrences of a for-
mula in a clause, at the same ensuring that the propositional vs. the
modal structure of the formula only depends on p. Notice that while
increasing L also C is increased. As a consequence, for each pair of
formulas Oc; and —0p; in an assignment satisfying a 3CNF i formula,
the recursive E-consistency check for (o; = —f;) has itself a phase
transition from 100% satisfiable to 100% unsatisfiable when increasing
L. Overall, for low [resp. high] values of L we expect that each satisfying
assignment should be trivially determined to be E-consistent [resp. not

E-consistent].

As before, for each value of L in a problem set, 100 3CNF g formulas
are randomly generated, and the resulting formulas are given in input to
the procedure under test. A timeout stops the execution of the system
on a formula after 1000 seconds of CPU time. We consider the following

problems sets:

jar.tex; 15/11/2001; 8:27; p.24

SAT-Based Decision Procedures for Classical Modal Logics 25

*SAT CPU TIME - N=7, d=1, %p=0 *SAT+GH CPU TIME - N=7, d=1, %p=0

CPU TIME [SEC]

H
S,

percentiles 50 4 50 60

o w0 2 3
#OF CLAUSES (L) #OF CLAUSES (L)

DLP CPU TIME - N=7, d=1, %p=0 TA CPU TIME - N=7, d=1, %p=0

CPU TIME [SEC]

percentiles 50 40 percentiles 50 50 60

o w0 2 3 o w0 2 3
#OF CLAUSES (L) #OF CLAUSES (L)

40

Figure 9. Logic E. 50%-100% percentile CPU times of *saT, *saT+GH, DLP+GH,
and TA+GH. N = 7. p = 0%. 100 samples/point.

— PEN4p0, PEN5p0, PEN6p0, PENTp0 in which p = 0% while L =
4,5,6,7 respectively, and

— PEN4p50, PEN5p50, PEN6p50, PEN7p50 in which p = 50% while
L =4,5,6,7 respectively.

Given the huge amount of time that FLOTTER takes to prepare the
formula for SPAss, we run TA+GH only on the problems sets PEN4p0
and PEN4p50. For PEN7p0 and PEN7p50, we run TA+GH only on the
initial points. As in the preceding subsection, we only take into account
the time the systems take for the main processing of the formula. In
particular, for each system, we do not take into account the time needed
to perform the Gasquet and Herzig’s conversion; and for TA+GH we
take into account only the time taken by SPAsSS. The median and the
percentile plots of the systems on PEN4p0, PEN5p0, PEN6p0, PEN7p0
are shown in Figure 8 and Figure 9 respectively.

Consider Figure 8. As can be observed, *SAT is the fastest: the gap
with the other systems is of more than one order of magnitude for

jar.tex; 15/11/2001; 8:27; p.25

CPU TIME [SEC]

CPU TIME [SEC]

26 E. Giunchiglia, F. Giunchiglia and A. Tacchella

Systems comparison - N=4, d=1, %p=50 Systems comparison - N=5, d=1, %p=50

—+— *SAT+GH
—%— DLP+GH
—6— *SAT

, 9% satisf

% satisf

CPU TIME [SEC]

0 5 10 15 20 25 30 10 15 20 25 30 35 40 45 50
OF CLAUSES (L) # OF CLAUSES (L)

Systems comparison - N=6, d=1, %p=50 Systems comparison - N=7, d=1, %p=50

—+— *SAT+GH —— TAYGH
—%— DLP+GH — 1+ *SAT+GH
—— *SAT —— DLP+GH

2 % satisf 2 —— *SAT

0 E E 0 E 9% satist |

CPU TIME [SEC]

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70
OF CLAUSES (L) # OF CLAUSES (L)

Figure 10. Logic E. *saT, *saT+GH, DLP+GH, and TA+GH median CPU time.
N =4,5,6,7. p=50%. 100 samples/point. Background: satisfiability percentage.

certain values of L. However, both *sAT+GH and DLP+GH perform
quite well, better than one could have imagined given that the consis-
tency problem for E and Ks belongs to two different complexity classes.
However, a closer look to Gasquet and Herzig’s reduction reveals that,
considering a 3CNF g formula ¢, and an assignment p = A, Oa; A
/\;-l:1 —0pB; A v (as usual we assume that y is a propositional formula)
in the language of ¢,

1. u satisfies ¢ iff ugp satisfies wgm-

2. for checking the E-consistency of u, *SAT performs at most 2mn
consistency checks involving the formulas a1, ..., @, B1,---, Bm-

3. for checking the Ks-consistency of ug g, both *sAT+GH and DLP+GH

perform at most 2mn consistency checks involving the formulas
QIGH -+ s OmGH PIGH s - - -, BmGH -

jar.tex; 15/11/2001; 8:27; p.26

CPU TIME [SEC]

percenties

CPU TIME [SEC]

percenties

SAT-Based Decision Procedures for Classical Modal Logics

*SAT CPU TIME - N=7, d=1, %p=50

OF CLAUSES (L)

DLP CPU TIME - N=7, d=1, %p=50

50
OF CLAUSES (L)

CPU TIME [SEC]

percenties

percenties

27

*SAT+GH CPU TIME - N=7, d=1, %p=50

50
OF CLAUSES (L)

TA CPU TIME - N=7, d=1, %p=50

50

OF CLAUSES (L)

Figure 11. Logic E. 50%-100% percentile CPU times of *SAT, *saT+GH, DLP+GH,
and TA+GH. N = 7. p = 50%. 100 samples/point.

The first two points are obvious. To understand the last, it suffices to
notice that pugg is propositionally equivalent to

m

n

N\ “01-(Oscign ADi~aign) A J\ O1(=D2Bjan V ~01-Bjan) A 7.
i=1

i=1

Given that both *sAT+GH and DLP+GH use caching, these procedures
will perform at most a quadratic number of checks in the number of
subformulas of ¢g . This is not the case for TA+GH, since SPASS does
not have any caching mechanism. This explains the good behavior of
*sAT+GH and DLP+GH, and the bad behavior of TA+GH.

It is interesting to compare *sAT+GH and DLP+GH performances.
As can be observed, DLP+GH performs better than *sAT+GH for low
values of L, but worse for high values of L. This behavior reflects
the different mechanisms used by *sAT+GH and DLP+GH to prune
the search space when checking the K-consistency of an assignment.
As we said in Section 4, in all the tests we have set *SAT+GH as to

jar.tex; 15/11/2001; 8:27; p.27

28 E. Giunchiglia, F. Giunchiglia and A. Tacchella

use the early pruning strategy. DLP+GH instead implements a back-
jumping schema in the spirit of (Baker, 1995): when an assignment is
discovered to be not K-consistent, backtracking to a point which does
not lead to the same contradiction is enforced. While implementing
early pruning does not introduce overheads, this is not the case for
backjumping, where a dependency set of each derived clause has to be
maintained (see (Patel-Schneider, 1998) for more details). Despite the
additional costs introduced, backjumping clearly wins if compared to
early pruning in logic K, for low values of L. In this case, almost each
assignment is K-consistent and early pruning may cause additional (i.e.,
not performed by a backjumping strategy) checks. On the other hand,
for high values of L, when the formula under test is not K-consistent but
there are still assignments satisfying it, *sAT+GH is able to greatly cut
off the search by checking the inconsistency of the assignment generated
so far. DLP4+GH instead checks the consistency of an assignment only
when it satisfies the current formula. DLP4+GH may therefore generate
many assignments which, even though they satisfy the input formula,
are not K-consistent. When L is so high that the input formulas become
propositionally unsatisfiable, *sAT+GH may still perform additional
K-consistency checks, but these get compensated by (i) *sAT+GH
SAT-based nature and (i) the costs DLP+GH has because of back-
jumping. Considering Figure 9, we see that DLP+GH has a better
behavior than the other systems on some of the hardest instances.
Evidently, on these tests, backjumping leads to a more uniform behavior
than early pruning. Horrocks and Patel-Schneider (1999a) show that
for some randomly generate 3CNF g formulas, early pruning leads to a
more uniform behavior than backjumping.

For N = 4,5,6,7 and p = 50%, *sAT, *sAT+GH, DLP+GH and
TA+GH median and percentile times are plotted in Figure 10 and
Figure 11 respectively. As it can be observed, the situation is very
similar to the case in which p = 0%. The only difference is that
now *SAT+GH performs better than DLP+GH for a lower value of L.
This is reasonable, since for each L, the number of consistency checks
performed by *sAT+GH because of early pruning, diminishes when p
increases.

Finally, notice the easy-hard-easy pattern of *sAT. To better appre-
ciate it, Figure 12 shows the number of calls to LSAT done by LLCONSIST
on PEN4p0-PENTp0 (left), PEN4p50-PEN7p50 (right) against the ra-
tio % between L and N. As can be observed, *SAT performs a number of
LSAT calls whose maximum roughly correspond to the 50% of satisfiable
formulas. This transition happens when % is close to 5 for p = 0% and
to 6 for p = 50%. This behavior reflects the above stated intuition

jar.tex; 15/11/2001; 8:27; p.28

30

SAT-Based Decision Procedures for Classical Modal Logics

Consistency checks d=1 %p=0
T T T

Consistency checks d=1 %p=50
P T T T

29

250

OF CHECKS
= N
o S
3 3

H
]
3

50

&

®

*

+
o

&

7 variables
6 variables
5 variables

4 variables |

OF CHECKS

®

®

% —%— 7 variables

—%— 6 variables
; —+— 5variables
Bl —6— 4variables

2

3

RATIO CLAUSES/VARIABLES (L/N)

8

+
9

10

RATIO CLAUSES/VARIABLES (L/N)

Figure 12. Logic E. *SAT median number of calls to LsaT. N =
p = 0% (left) and p = 50% (right). 100 samples/point. Background: satisfiability

percentages.

4,5,6,7.

according to which for low [resp. high] values of L all the formulas
should be easily determined to be E-consistent [resp. not E-consistent].

6. Conclusions and future work

We have presented a set of SAT-based decision procedures for eight
classical modal logics. We have shown how the SAT-based approach
allows for efficient and modular implementations for these logics. We
have presented *SAT. *SAT is the only system that is able to deal with
EN, EC, ECN and EMN. In the case of the logic E, we have defined
a testing methodology which generalizes the 3CNF g methodology by
Giunchiglia and Sebastiani (1996a), and which is suitable for test-
ing systems for non-normal modal logics. The experimental evaluation
shows that *SAT performances are superior to or comparable to the
performances of other state-of-the-art systems.
In the future, we plan to conduct an extensive experimental analysis
(similar to that presented in (Horrocks and Patel-Schneider, 1998; Hor-
rocks and Patel-Schneider, 1999b)) to understand, for each class of
formulas, which combination of *SAT options leads to the best results.
We also plan to extend *SAT in order to handle more expressive de-
cidable logics. We will also consider logics, like S4, for which more
sophisticated methods than that described in Section 4 have to be
employed in order to ensure the termination of the decision procedure.

jar.tex; 15/11/2001; 8:27; p.29

30 E. Giunchiglia, F. Giunchiglia and A. Tacchella

Acknowledgments

We are grateful to Ullrich Hustadt, Peter F. Patel-Schneider, and Han-
tao Zhang for the assistance they provided on their systems. Special
thanks to Roberto Sebastiani for the many useful discussions related
to the subject of this paper. Thanks also to the anonymous reviewers
for their helpful comments and suggestions. The first and last authors
are partially supported by the Italian Spatial Agency.

References

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An Empirical
Analysis of Optimization Techniques for Terminological Representation Systems
or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management, 4:109-132, 1994.

. Baker. Intelligent backtracking on the hardest constraint problems. Journal of
Artificial Intelligence Research, 1995.

. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified
boolean formulae. In Proc. AAAI 1998.

. F. Chellas. Modal Logic — an Introduction. Cambridge University Press, 1980.

. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201-215, 1960.

T. Boy de la Tour. Minimizing the Number of Clauses by Renaming. In Proc. of
the 10th Conference on Automated Deduction, pages 558-572. Springer-Verlag,
1990.

H. de Swart, editor. Automated Reasoning with Analytic Tableauz and Related
Methods: International Conference Tableaur’98, number 1397 in Lecture Notes
in Artificial Intelligence. Springer-Verlag, May 1998.

R. Fagin, J.Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge.
MIT Press, 1995.

M. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing,
1983.

E. Franconi, G. De Giacomo, R. M. MacGregor, W. Nutt, C. A. Welty, and F. Se-
bastiani, editors. Collected Papers from the International Description Logics
Workshop (DL’98). CEUR, May 1998.

Jon W. Freeman. Improvements to propositional satisfiability search algorithms.
PhD thesis, University of Pennsylvania, 1995.

O. Gasquet and A. Herzig. From classical to normal modal logics. In Heinrich
Wansing, editor, Proof Theory of Modal Logics, volume 2 of Applied Logic Series,
pages 293-311. Kluwer Academic Publishers, 1996.

E. Giunchiglia and F. Giunchiglia. Ideal and Real Belief about Belief. Techni-
cal Report 96-0138, DIST, University of Genoa, Italy, September 1997. Also
IRST-Technical Report 9605-04. Submitted for the publication to JLC, Jour-
nal of Logic and Computation. A short version of the paper appeared in the
Proc. International Conference on Formal and Applied Practical Reasoning,
(FAPR’96).

F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from
propositional decision procedures - the case study of modal K. In Proc. CADE-

z »

= W

jar.tex; 15/11/2001; 8:27; p.30

SAT-Based Decision Procedures for Classical Modal Logics 31

96, Lecture Notes in Artificial Intelligence, New Brunswick, NJ, USA, August
1996. Springer Verlag.

F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In Proc.
of the 5th International Conference on Principles of Knowledge Representation
and Reasoning - KR’96, Cambridge, MA, USA, November 1996. Also DIST-
Technical Report 9607-08 and IRST-Technical Report 9601-02.

E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella. More evaluation
of decision procedures for modal logics. In Sizth International Conference on
Principles of Knowledge Representation and Reasoning (KR’98), 1998.

G. Governatori and A. Luppi. Labelled tableaux for non-normal modal logics. In
Sizth Conference of the Italian Association for Artificial Intelligence, AT*IA ’99,
Bologna, Italy, September 14-17, 1999: proceedings, 1999.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption optimizations. In
E. Franconi, G. De Giacomo, R. M. MacGregor, W. Nutt, C. A. Welty, and
F. Sebastiani, editors, Collected Papers from the International Description Logics
Workshop (DL’98), pages 90-94. CEUR, May 1998.

I. Horrocks and P. F. Patel-Schneider. Advances in propositional modal satisfiability,
1999. Manuscript.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 1999. To appear.

I. Horrocks. Using an expressive description logic: FaCT or fiction? In Sizth Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR’98), pages 636—647, 1998.

U. Hustadt and R.A. Schmidt. On evaluating decision procedures for modal logic. In
Proc. of the 15th International Joint Conference on Artificial Intelligence, 1997.

U. Hustadt and R.A. Schmidt. On evaluating decision procedures for modal
logic. Research report MPI-I-97-2-003, Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany, February 1997.

Henry Kautz and Bart Selman. BLACKBOX: A new approach to the application
of theorem proving to problem solving. In Working notes of the Workshop on
Planning as Combinatorial Search, held in conjunction with AIPS-98, 1998.

F. Massacci. Strongly analytic tableaux for normal modal logics. In Proc. CADE,
1994.

Richard Montague. Pragmatics. In R. Klibansky, editor, Contemporary Philosophy:
A Survey. I, pages 102-122. La Nuova Italia Editrice, Florence, 1968. Reprinted
in Formal Philosophy, by Richard Montague, Yale University Press, New Haven,
CT, 1974, pp. 95-118.

H. J. Ohlbach. Translation methods for non-classical logics - an overview. Bulletin
of the Interest Group in Pure and Applied Logic - IGPL, 1(1), 1988.

P. F. Patel-Schneider. DLP system description. In E. Franconi, G. De Giacomo,
R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani, editors, Collected
Papers from the International Description Logics Workshop (DL’98), pages 87—
89. CEUR, May 1998.

P. F. Patel-Schneider. Personal communication, June 1999.

D.A. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation.
Journal of Symbolic Computation, 2:293-304, 1986.

R. Sebastiani and F. Giunchiglia. From Tableau-based to SAT-based procedures -
preliminary report. Technical Report 9711-14, IRST, Trento, Italy, November
1997.

Krister Segerberg. An Essay in Classical Modal Logic. Philosophical Studies,
Uppsala, 1 edition, 1971.

jar.tex; 15/11/2001; 8:27; p.31

32 E. Giunchiglia, F. Giunchiglia and A. Tacchella

Jorg Siekmann and Graham Wrightson, editors. Automation of Reasoning: Classical
Papers in Computational Logic 1967-1970, volume 2. Springer-Verlag, 1983.

R. M. Smullyan. First-Order Logic. Springer-Verlag, NY, 1968.

Armando Tacchella. *SAT system description. In Collected Papers from the
International Description Logics Workshop (DL’99). CEUR, July 1999.

G. Tseitin. On the complexity of proofs in propositional logics. Seminars in
Mathematics, 8, 1970. Reprinted in (Siekmann and Wrightson, 1983).

Johan van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, Volume II: Eztensions of Classical
Logic, volume 165 of Synthese Library, chapter I1.4, pages 167-247. D. Reidel
Publ. Co., Dordrecht, 1984.

Moshe Y. Vardi. On the complexity of epistemic reasoning. In Proceedings, Fourth
Annual Symposium on Logic in Computer Science, pages 243-252, Asilomar
Conference Center, Pacific Grove, California, 5-8 June 1989. IEEE Computer
Society Press.

C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER version 0.42. In
M.A. McRobbie and J.K. Slaney, editors, Proceedings of the 13th Conference on
Automated Deduction (CADE-18), volume 1104 of Lecture Notes in Artificial
Intelligence, pages 141-145, New Brunswick, New Jersey, USA, July/August
1996. Springer.

H. Zhang. SATO: An efficient propositional prover. In William McCune, editor, Pro-
ceedings of the 14th International Conference on Automated deduction, volume
1249 of LNAI pages 272-275, Berlin, July13-17 1997. Springer.

jar.tex; 15/11/2001; 8:27; p.32

