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Chapter 1

Introduction

In this paper, our purpose is to improve the CtxMatch algorithm (i) in the
type of the schemas considered, (ii) in the way we make the meaning of the
elements explicit and (iii) in the way we retrieve information from knowledge
bases.

Firstly, we extend the methodology to hierarchical classifications with at-
tributes. Intuitively, each element of a schema can be associated with a set of
attributes which specify the features that the objects classified under that ele-
ment must own. For example, it could be required for all the images under the
nodes Images to specify their format, if they are multi–colored or black–and–
white, the corresponding subject and the place where they have been taken.
Note that attributes delineate the meaning of the nodes. For example, the
node Mountain on the left would represent ‘images of a given format in multi–
or black–and–white colors whose subject is Tuscan mountains and which have
been taken in a certain place’. Moreover, the selection of a precise value for each
attribute further restricts the node meaning. For example, it may become ‘large
multi–colored images of Tuscan mountains taken in Florence’, where ‘large’ rep-
resents the image format.

The second improvement we present is the use of a different formal language
to represent the meaning of the nodes. CtxMatch was essentially based on
propositional logic. Therefore, the actual intepretation of the node Mountain

on the left was ‘images and Tuscany and mountain’. The different concepts
were simply connected by the operator of conjunction. In this thesis, we discuss
the possibility of fully exploiting the expressive power of Description Logic to
formalize the meaning of the nodes. In fact, we employ DL roles and the
corresponding constructors in order to semantically connect the schema concepts
which are involved in the meaning of a certain element. Intuitively, we expect to
interpret the node Mountain on the left as ‘images about mountains located in
Tuscany’, where ‘about’ and ‘located’ represent the roles between the concepts
‘images’ and ‘mountains’ and between ‘mountains’ and ‘Tuscany’, respectively.

The need of relating elements has motivated the third innovation presented
in this thesis, i.e. a methodology for drawing possible sematic relations between

3



concepts from existing knowledge bases. For example, given the two concepts
‘photo’ and ‘mountain’, we aim at deriving that a ‘photo’ may show a ‘mountain’
or that the ‘photo’ could have been taken on a ‘mountain’ top. In particular, we
have developed a method to extract complex relations from ontologies expressed
in the Description Logic (or equivalent) language.

The paper is organized as follows: Chapter 2 defines the type of schemas we
consider. Chapter 3 defines the matching problem, introduces the possibility
of solving it by means of semantic methods and presents a notion of soundness
which aims at representing a guideline for the evaluation of schema matching
techniques. Chapter 4 presents our own methodology in the scope of semantic
methods and Chapter 5 illustrates our approach to the approximation of seman-
tic relations between concepts. Chapter 6 introduces the steps of the algorithm
we apply to coordinate two given structures. Chapter 7 presents the system ar-
chitecture and the implementation details of our prototypal application whose
tests on a simple case are discussed in Chapter 8. Chapter 9 presents the re-
lated works in the field of semantic explicitation. Finally, Chapter 11 draws the
conclusions of the whole work.
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Chapter 2

Hierarchical classifications

with attributes

2.1 Overview

It would be a great advantage to be able to coordinate schemas in general, i.e.
with no regards to any particular model instance. Anyway, semantic methods
need to consider the purpose of the schemas they analyze since such information
is used to compute the meaning of the schema elements. Indeed, although the
basic steps of a semantic method (i.e. semantic explicitation and semantic com-
parison) are general, the way of performing them depends on the type of schema
and on the intended use. In this thesis, we focus on hierarchical classifications
with attributes. Their practical purpose is to classify objects (e.g. documents)
according to their topic.

Hierarchical classifications are one of the most widely spread models of data.
For example, file systems, web open directories (e.g. GoogleTM and Yahoo!TM )
and most of the electronic catalogs for B2B and B2C commerce are hierarar-
chical classifications. Moreover, some of the most important standards for the
classification of products and services as Unspsc [14], ECl@ss [3], Kompass [4]
and Naics [7] are based on hierarchical schemas. Attributes are not largely
considered in such real cases yet. Indeed, as far as we know, ECl@ss is the
only categorization system which uses a standardized set of attributes (SSA,
i.e. Standard Set Of Attributes). For example, it identifies the following basic
set of attributes for the category telecommunication devices (code 19-06-
92-90): Article number, EAN code, Manufacturer’s name, Product name and
Product type description.

Furthermore, hierarchical classifications are tree schemas essentially, thus
representing a very general model of data since many other schemas can be easily
converted to such a model. Relational schemas are examples of tree schemas
where nodes act as tables, columns, user–defined types, etc. XML schemas with
no shared elements can be also turned to tree schemas: tree nodes represent
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XML elements and attributes1. Anyway, tree schemas do not represent the
most general model employed in real cases. Indeed, they cannot share sub–
structures or have referential constraints and there is no way of reducing such
properties to the available features of the tree schemas2.

Hierarchical classifications are schemas used for grouping objects into cat-
egories. They are tree schemas, where nodes represent categories describing,
in some way, the objects they contain. Different kinds of objects can be cat-
egorized: for example, tuples if schemas describe relational databases, files if
schemas are file systems, images if we are dealing with photography repositories
or documents in the case of digital archives. Nodes can be associated with sets
of attributes. Attributes indicate the features which are required for the objects
in order to be classified under the node. For example, we could require that each
image is associated with its size and with its colors or that each file specifies its
dimension and its extension, etc.

In hierarchical classifications, nodes are labeled with natural language state-
ments which are composed of words and, possibly, separators between them.
They are taken from a wide variety of linguistic expressions and can be single
common words (e.g. ‘seaside’ and ‘mountain’), noun phrases (e.g. ‘last minute
offers’) and expressions containing conjunctions (e.g. ‘insurance and lost bag-
gage’). More complex formulae can be composed of prepositional phrases, verb
phrases and punctuations. Unfortunately, natural language strings are not the
only expressions which are used to tag schemas. Indeed, users often prefer
acronyms, abbreviations and compact notations to identify (complex) concepts.
Futhermore, the range of possible values of compact notations is unlimited in
practice. By looking through schemas of product classifications and ontologies,
we can easily meet expressions as ‘Public-Company’, ‘CMU Publication Entry’
and ‘BomberPlane’3, where words are separated by special characters and cap-
ital letters.

Each node can be associated to a concept which is derived by analyzing the
labels during the browsing of the schema from the root node to the node under
exam. Intuitively, an object is classified under a certain node, if it is about the
concept which is represented by that node4. An example will help to clarify the
situation.

Figure 2.1 shows a hierarchy which is used by a travel agency to classify its
vacation offers and the services it makes available for customers. The agency
has identified six different categories which are represented by the six nodes:
Vacations, Reports, Last minute offers, Insurance and lost baggage, Seaside
and Mountain. Such nodes are arranged into a schema, and the category they
represent is given by the analysis of the path from the root to the node itself. For
example, the root node Vacations contains documents about ‘holidays’ and the
node Reports contains documents concerning ‘reports of past vacations’. The

1See Madhavan, Bernstein et al. [34] for an example of conversion.
2A possible generalization of tree schemas in order to consider these properties is presented

in Madhavan, Bernstein et al. [34].
3Taken from the ontology library of the DAML site [2].
4This intuition will be formalized in Section 3.3.
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k0 : Vacations

〈location, Country〉

k1 : Reports

k2 : Last minute offers

〈departure, Date〉
〈price, {100$, 500$, 1000$}〉

k3 : Seaside k4 : Mountain

k5 : Insurance and lost baggage

Figure 2.1: A Hierarchical Classification with Attributes

same for the other nodes: Last minute offers for ‘last minute offers of va-
cations’, Insurance and lost baggage for proposals of ‘insurance policies for
vacations’, Seaside and Mountain for ‘last minute offers for seaside destina-
tions’ and ‘last minute offers for mountain destinations’, respectively. We also
expect that all the documents in the node Vacations specify one value for the
attribute location in the respective range, i.e. Country. Its value is supposed
to express the country where the vacation takes place. In other words, the
node Vacations contains documents about ‘offers of holidays to be spent in
a given country’. The same consideration holds for the nodes Reports and
Insurance and lost baggage. Similarly, documents in the node Last minute

offers should specify a value for the attribute location in the range Country
and a value for the attribute departure in the range Date. The attribute depar-
ture is supposed to indicate the departure date of the holiday. Moreover, such
documents are associated to one of the specified values (namely, 100$, 500$ and
1000$) in order to indicate the offer price, represented by the attribute price.

2.2 Formal definition

In this section, we introduce the notions of hierarchical classification, attribute
and hierarchical classification with attributes. The corresponding definitions will
refer to the whole set of non–empty strings composed of general and commonly
used expressions with the notation NL.

Definition 1 (Hierarchical classification) A hierarchical classification (CH)
is a triple H = 〈K, E, lab〉, where 〈K, E〉 is a finite rooted tree and lab : K →
NL is a function that tags each node with a string in NL.

A hierarchical classification is simply a tree where each node is labeled with
a natural language string (or in general with an identifying expression).

7



Definition 2 (Attribute) An attribute is a pair a = 〈id, F 〉, where id is a
string in NL and F is either the empty set, ∅, or a string in NL, Fr, or a set
of strings in NL, Ff .

An attribute a = 〈id, F 〉 is a pair of elements. The former represents the
attribute name, while the latter is the attribute filler. The filler can express
either the generic filler range, Fr, i.e. the type of the filler, or the definite
filler range, Ff , i.e. the possible values of the filler. An attribute has a name
necessarily, but it can lack an explicit filler, i.e. F is the empty string.

Example 1 The following pairs represent possible attributes:

• a1 = 〈location, Country〉;

• a2 = 〈departure, Date〉;

• a3 = 〈departure, ∅〉;

• a4 = 〈price, {100$, 500$, 1000$}〉.

The attribute names are ‘location’, ‘departure’ and ‘price’, respectively. The
first attribute indicates ‘Country’ as filler range. Intuitively, we are asserting
that the location must be specified in terms of a country. Similarly, the second
case indicates that the filler of the attribute departure5 must be a date. In the
third case, the filler is empty meaning that no specific type of filler is required
for this attribute. In the last case, the filler is expressed by its possible values.
Therefore, the price is forced to assume one of the specified values, namely,
100$, 500$ or 1000$.

We now define hierarchical classifcation with attributes as CH where nodes
can be associated with sets of attributes.

Definition 3 (Hierarchical classification with attributes) Let A

be a set of attributes. A hierarchical classification with attributes (ACH) is a
4-tuple H = 〈K, E, att, lab〉, where 〈K, E〉 is a finite rooted tree, att : K → 2A

is a function from the set of nodes to a (possibly empty) set of attributes, and
lab : K → NL is a function that tags each node with a string in NL.

A hierarchical classification with attributes is a rooted tree, where each node
k is associated with a label, lab(k), and with a set of attributes, att(k). att(k),
for a given node k, may be the empty set, i.e. k has no attributes. If att(k) is
the empty set for each k in K, the ACH becomes a hierarchical classification
(CH). Note that we allow attributes to be attached to the nodes of the structure
at each level.

5In the following, we will refer to an attribute 〈id, F 〉 with the corresponding name, i.e. id,
where no ambiguity exists about the attribute we are considering.
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Example 2 Figure 2.1 represents an ACH with 6 nodes, namely, k0, k1, k2,
k3, k4, k5. The nodes are connected by means of edges resulting in a tree. k0 is
the root node and k1, k3, k4, k5 are called leaves. k3 is said to be a child of k2

which conversely represents its parent. Each node in a hierarchy has one parent
(except for the root node which has no parents). Both k0 and k2 are said to be
ancestors of the node k3. All of them belong to the same E–path. Similarly,
this can be said for all the other nodes and for all the other paths.

The lab function applied to the nodes of the ACH returns the following
strings:

lab(k0) = Vacations
lab(k1) = Reports
lab(k2) = Last minute offers
lab(k3) = Seaside
lab(k4) = Mountain
lab(k5) = Insurance and lost baggage

Consider the set of attributes A defined in Example 1. The att function
applied to the ACH nodes returns the following sets of attributes:

att(k0) = {〈location, Country〉}
att(k1) = ∅
att(k2) = {〈departure, Date〉, 〈price, {100$, 500$, 1000$}〉}
att(k3) = ∅
att(k4) = ∅
att(k5) = ∅

k0 and k2 are the only nodes which are provided with a non–empty set of
attributes.

2.3 Classification

In this section, we provide a formal definition of the notion of classification of
a set of objects in a certain ACH. We allow an object to be classified under one
node of the structure only. All the nodes of the schema can contain objects and
attributes are inherited by all the descendants of the node to which they are
attached.

Definition 4 (ACH Classification) A classification of a set of objects D in
an ACH H = 〈K, E, att, lab〉 is a pair 〈τ, α〉, where τ : D → K is a partial
function from the set of objects to the set of nodes and α : D × A → NL is
a partial function from pairs object–attribute, d ∈ D and a ∈ A, to strings in
NL. α is defined as follows: if τ(d) = k and a = 〈id, F 〉 is an attribute of k,
a ∈ att(k), or of an ancestor k′ of k, a ∈ att(k′), then:

α(d, a) =

{

v ∈ Ff if F = Ff ;
s ∈ NL otherwise.
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Vacations d1

location Italy

Reports d2

location Spain

Last minute offers

departure
price
location

Seaside

departure
price
location

Mountain d3

departure 12 Dec 2004
price 1000$
location USA

Insurance and d4

lost baggage

location Italy

Figure 2.2: Classification of a set of objects in an ACH

A classification classifies a set of objects under the nodes of an ACH. Note
that it is not required that each object in D is placed in a node (i.e. the function
τ is partial). This corresponds to the intuition that a certain ACH is not right
for classifying any kind of object. Each object in an ACH is also required to
specify a value for each filler of a set of attributes established by the ACH.
In particular, for each object in the ACH, a value must be specified for each
attribute attached either to the node k where it is classified or to an ancestor
of k. If the attribute does not specify the filler (i.e. F = ∅) or if it specifies its
range type only (i.e. F = Fr), the attribute value can be a generic non–empty
string, whereas it must be a value in Ff , if the possible values of the filler are
explicit.

Example 3 Suppose we have a set of documents D = {d1, d2, d3, d4} to be
classified in the ACH of Figure 2.1, where:

• d1 is a generic offer of vacation in Italy by the travel agency;

• d2 is a report of a past vacation in Spain;

• d3 is a last minute offer for a vacation on the USA mountains; the depar-
ture date is set on the 12th of December and its price is 1000$;

• d4 is a possible insurance policy for holidays in Italy.

Figure 2.2 represents a possible classification of D. Intuitively, each docu-
ment will be classified under the node best representing its topic. In this case,
d1 is placed into the node Vacations because it is an holiday offer, d2 into
the node Reports because it is a report of a past vacation, etc. Note that if
d1 were a last minute offer of an holiday, it would be classified into the node
Last minute offers which best represents that category. Formally, τ is defined
as follows:
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τ(d1) = k0

τ(d2) = k1

τ(d3) = k4

τ(d4) = k5

Each document is associated to a set of attribute values according to its posi-
tion in the hierarchy. For example, the filler value of d1 for the attribute location
is ‘Italy’ (which we assume to be a country, since ‘Country’ represents the type
of the filler6). In fact, d1 is an holiday offer in Italy. The document d3 specifies
the value for the attribute location because Mountain (i.e. the node where d3 is
classified) is a descendant of Vacations and for the attributes departure and
price because it is a descendant of Last minute offers. Similar considerations
hold for d2 and d4. Formally:

α(d1, a1) = Italy
α(d2, a1) = Spain
α(d3, a1) = USA
α(d4, a1) = Italy
α(d3, a2) = 12 Dec 2004
α(d3, a4) = 1000$

For all the other pairs document–attribute, α is undefined.

6This intuition will be formalized in Section 3.3.
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Chapter 3

A semantic method for

schema coordination

3.1 The matching problem

Schema matching is an operation relating certain elements of a schema S1 to
certain elements of a schema S2. The semantics of the relations1 depends on the
particular instance of the problem, i.e. the cause for which schema matching
is required. Generally, the mapping elements we expect to determine between
two schemas of classification are relations between the content of the schema
elements. Indeed, when dealing with classification schemas we are usually in-
terested in the objects they contain and not in the schemas per se.

Consider the ACH of Figure 2.1, H1, and the one of Figure 3.1, H2. H1

represents a classification structure which can be used, say, by a travel agency,
whereas we may imagine H2 to categorize the contract proposals of an insurance
agency. The travel agency is not involved in the insurance business and it is not
interested in managing policies directly. However, it may want to provide its
clients with possible offers of insurance contracts for their holidays. Thus, in the
context of a partnership between the two agencies, the former decides to import
the policy offers of the latter. Obviously, the travel agency does not need all the
possible contracts of the insurance agency but only those which deal with holiday
events (in a certain country). The automatic identification of the parts of H2

containing documents which are relevant for the travel agency and which can be
reasonably imported in its classification categories can be viewed as a problem
of schema matching. So, for example, we expect that the matching function is
able to recognize that all the documents which are classified in the node Italy

of H2 can be also classified in the node Insurance and lost baggage of H1,
i.e. the relation between the node Insurance and lost baggage of H1 and the
node Italy of H2 is more general than. In fact, we suppose that the former

1Rahm and Bernstein [40] discuss a set of possible expression values which have been used
in literature.
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Insurance

Leisure time

Travels Honeymoon

Italy Europe

Car House

Figure 3.1: Classification structure for insurance policies

contains proposals of insurance policies for holidays in a given country2, while
the latter contains proposals of insurance policies for honeymoons spent in Italy.
Given that a honeymoon is a vacation, we can derive that each contract for a
honeymoon is also a possible contract for a vacation3, or better, for a particular
type of vacation.

We can formally define a mapping between two hierarchical classifications
with attributes as in the following:

Definition 5 (Mapping) A mapping MH→H′ between two ACH, H = 〈K, E, att, lab〉
and H ′ = 〈K ′, E′, att′, lab′〉, is a set of mapping elements 〈k, k′, r〉, where
k ∈ K, k′ ∈ K ′ and r ∈ {⊆,⊇,≡,⊥}.

A mapping is defined as a set of set–theoretical relations4 between the nodes
of two ACH structures. Our claim is that the type of relations we are interested
in depends critically on the use of the structure. Because of the fact that ACH
users are concerned with content classification (e.g. objects, documents) and
not with abstract schemas, and that they are primarily interested in finding
objects/documents, we derive that the relevant relations are the set–theoretical
ones. We refer to these kinds of mappings as pragmatic relations since they are
relations between the content of schema elements.

Literature does not propose a uniform and general criterium for evaluat-
ing the soundness of a mapping between two classification schemas. Thus, we
introduce a notion of soundness which can be assumed as guideline in the per-
formance evaluation of matching methods of classification schemas.

2Note that when a node label contains the ‘and’ conjunction (e.g. ‘insurance and lost
baggage’), we usually mean that, in the node, we can find elements about both the subjects
(‘insurance’ and ‘lost baggage’) mentioned in the label. Thus, from a logical point of view,
the ‘and’ conjunction corresponds to the or operator.

3But not vice-versa: not all the contracts related to vacations can be tailored to honey-
moons.

4m⊥n must be interpreted as m ∩ n = ∅, where m and n are two sets.
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In the following definition, we will use the notation µτ (k) to indicate the set
of objects classified in the node k of a given ACH H by a classification function
〈τ, α〉 of a set of objects D, i.e. µτ (k) = {d ∈ D | τ(d) = k}. Moreover, we
will use the notation µτ (k↓) to denote the objects classified under the subtree
rooted at k. Formally, let k↓= {k′ ∈ K | k′ = k or k′ is a descendant of k} be
the set of nodes in the subtree rooted at k, then µτ (k↓) =

⋃

k′∈k↓ µτ (k′).

Definition 6 (Soundness of a mapping) Let 〈τ, α〉 and 〈τ ′, α′〉 be
two classifications of a set of objects D in two ACH H and H ′, respectively.
A mapping MH→H′ is sound with respect to 〈τ, α〉 and 〈τ ′, α′〉 if the following
conditions hold for each mapping element 〈k, k′, r〉 ∈ MH→H′ :

• if r is ⊆ then µτ (k) ⊆ µτ ′(k
′↓);

• if r is ⊇ then µτ (k↓) ⊇ µτ ′(k
′);

• if r is ≡ then µτ (k) ⊆ µτ ′(k
′↓) and µτ (k↓) ⊇ µτ ′(k

′);

• if r is ⊥ then µτ (k) ∩ µτ ′(k
′) = ∅.

Mappings have to represent relations existing between sets of objects con-
tained in the schemas. Consequently, a mapping is considered sound with re-
spect to a classification if it identifies the correct set–theoretical relations be-
tween the elements of the structures we examine. Moreover, the definition
considers the way objects are usually classified. Take the ACH H1 rooted at
Vacations and a single–node ACH, Vacations. The documents classified in
the node Last minute offers of H1 would be probably classified in the node
Vacations of the single–node ACH. Thus, when considering, for example, the
mapping element 〈k, k′,⊆〉, we require that the set of objects in k is contained
in k′ and possibly in its descendants. Now, consider the relation of equality (i.e.
≡) and a corresponding mapping element, 〈k, k′,≡〉. In this case, we would be
tempted to require the equality of the objects contained in the sub–trees rooted
at the nodes k and k′, but it would not be a good notion of soundness. Con-
sider the two above mentioned ACH. An object which is classified under the
node Insurance and lost baggage of H1 would not be probably classified in
any node of the single–node ACH. The cause resides in the fact that hierarchical
classifications are not taxonomies where each object can be reasonably moved
up in the hierarchy once the corresponding node has been removed. Dual consid-
erations hold for the condition of soundness of a mapping element as 〈k, k ′,⊥〉.
Consider, for example, the ACH H1 and H2 and the two corresponding root
nodes. Probably, a node would not contain any object classified in the other
one and vice versa, anyway we have already said that the two structures could
share part of their content.

We can thus state that the goal of a matching problem is to find a sound
mapping between two schemas possibly maximizing the number of the mapping
elements identified.
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3.2 Semantic methods

We have debated that mappings relating classification structures are meaningful
if they have a pragmatic value. In order to find relations between sets of ob-
jects, we would need to check the instances contained in the two given schemas.
Obviously, we could not tackle the problem exhaustively (i.e by considering all
the possible objects of the universe which can be classified in the schemas) since
it would result in an undecidable computation. However, in literature there
are some approaches which use machine learning techniques to find mappings5.
Machine learning techniques are based on induction since they essentially try to
deduce the potential content of a node from a set of training examples6. The
main drawback of these systems is that they require a relevant set of classified
objects to work properly. Unfortunately, this is not always the case and in some
situations we can also find schemas with no available content. Furthermore, note
that considering the actual content of schema elements (without any mechanism
of induction) would not generate good answers for a matching method. In fact,
we could not discriminate between some set–theoretical relations. For example,
if the nodes Insurance and lost baggage of H1 and the node Italy of H2 con-
tained one document only concerning, say, ‘insurance policies for honeymoons
in Italy’, we would derive that the two nodes are equivalent. But this result
would have a contingent value only: it could not be true if we had some further
documents. Similar cases occur when two nodes lying in very different schemas
are both empty, and when two nodes lying in the identical position of identical
schemas contain different sets of documents.

Therefore, we need to find an alternative way of tackling the matching prob-
lem. One possibility is to simulate the human way of acting. In order to analyze
the human behaviour in case of a matching problem, we can simply look at the
process which has led us to infer the relation more general than between the
node Insurance and lost baggage and the node Italy. We have first associ-
ated a meaning to the two nodes and we have then derived the relation existing
between such interpretations (we call the relation between the meaning of two
nodes semantic relation). Finally, we have directly derived the pragmatic rela-
tion from the semantic one.

Actually, there are three basic (and implicit) assumptions which support and
validate such derivation7:

1. our interpretation of the schemas is the same as the user (or the machine)
which has classified the objects (i.e. the classifier);

2. all the objects of the universe which can be classified in the schemas are
effectively classified under them;

3. objects are classified according to a precise criterium:

5See, for example, Doan, Madhavan et al. [25].
6Actually, they predict whether an instance d belongs to a category (node) k by training

a classifier with positive and negative examples of instances belonging to k.
7Section 3.3 is devoted to formalize these aspects.
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(a) each object d is associated to a meaning, φ(d) (i.e. its topic);

(b) each node k is associated to an interpretation, I(k) (i.e. the topic it
classifies);

(c) each object is classified under a certain node if its topic is semantically
related to the meaning of the node.

It is quite intuitive that relations between the meaning of the nodes do
not match relations between their contents if our interpretation of the nodes is
different from the one of the classifier (condition 1) or if objects are classified
casually (condition 3). Indeed, if the meaning we have given to a node is different
from the way the classifier intends it, we cannot expect that what we would
classify in that node is the same as its actual content. Moreover, any deduction
about the content of a node is tricky if the classifier puts a certain object in a
node whose category does not represent the topic of the object. Finally, when
considering semantic relations, we implicitly refer to the potential content of
schema elements (condition 2) since we do not explore what they effectively
contain.

Assuming the validity of such a process, the problem of matching hierarchical
classifications can be reduced to the problem of computing semantic relations
between the meaning of their elements. Our approach to the matching problem
is based on this process, which we summarize in the following two steps:

Semantic explicitation: its goal is to build a formal representation of the
meaning of the nodes of a given ACH. For example, it assigns a formal
representation I(k) (i.e. ‘insurance policies and lost baggage for holidays
in a given country’) to the node k, Insurance and lost baggage and
a formal representation I(k′) (i.e. ‘insurance policies for honeymoons in
Italy’) to the node k′, Italy.

Semantic comparison: its goal is to deduce the semantic relation holding
between two nodes, i.e. the logical relation between their meanings. For
example, it can derive that the interpretation I(k) of the node Insurance
and lost baggage subsumes the interpretation I(k′) of the node Italy

according to some available knowldge O, i.e. O |= I(k′) v I(k).

Our assumption is that we can then easily derive mappings from this analy-
sis8. Benerecetti, Bouquet et al. [21] define semantic methods those which are
characterized by the two steps mentioned.

In Algorithm 3.1, we present a top level representation of our semantic
method of schema matching.

CtxMatch-2 takes two hierarchical classifications with attributes and pro-
duces a mapping. In steps 1 and 2, it builds the meaning of the elements of
the two input schemas, H and H ′. This results in two structures, Hs and
H ′

s, enriched with semantic information and with the interpretations of the

8Section 3.3 presents and formalizes the manner.

16



Algorithm 3.1 CtxMatch-2 (H,H ′)
. ACH: H = 〈K, E, att, lab〉, H ′ = 〈K′, E′, att′, lab′〉

VarDeclarations

semantic ACH: Hs, H ′
s

semantic relation: rs

pragmatic relation: rp

mapping: MH→H′

1 Hs ← semantic–explicitation (H);
2 H ′

s ← semantic–explicitation (H ′);
3 for each pair of nodes k ∈ K, k′ ∈ K ′

do

4 rs ← semantic–comparison (Hs, H ′
s, k, k′);

5 rp ← conversion (rs);
6 MH→H′ ← MH→H′ ∪ {〈k, k′, rp〉};
7 Return MH→H′ ;

corresponding nodes. We call these structures semantic ACH 9. In steps 4–6,
CtxMatch-2 compares each pair of nodes of the two schemas and deduces
the corresponding semantic relation. The semantic relation is then turned into
a pragmatic relation (step 5) which is finally stored in the mapping variable
MH→H′ (step 6). The way semantic relations are turned into pragmatic rela-
tions is explained in the next section formally. Intuitively, each set–theoretical
relation is simply mapped onto the corresponding logical relation (if the mean-
ing of a node k subsumes the meaning of a node k′ then CtxMatch-2 produces
the mapping element 〈k, k′,⊇〉, if the meaning of a node k is equal to the mean-
ing of a node k′ then it produces the mapping element 〈k, k′,≡〉, etc.). Finally,
step 7 returns the result of the process.

3.3 Formalization of semantic methods

In the previous section, we have provided the intuition of what a semantic
method is and the way it works to discover mappings between schemas. We
are now going to formalize the notions it is based on and the conditions which
guarantee its soundness.

Initially, we formalize the concept of topic of a certain object d and of inter-
pretation of a certain node k. Both definitions require the notion of ontology.
Ontologies represent the knowledge of users about the world and the fundamen-
tal element of any semantic method. Indeed, they provide both the information
used by the semantic explicitation process to interpret schema elements and the
background knowledge needed to compare nodes semantically10. Essentially,
ontologies are sets of assertions defined on real world concepts.

9They will be formalized in Section 6.1.
10We investigate these topics in the next chapter.

17



Definition 7 (Ontology) An ontology O = 〈TBox, ABox〉 is a knowledge
base of a Description Logic, where TBox is a set of terminological axioms and
ABox a set of factual axioms. They are defined on a set of concept names NC ,
role names NR and individual names NI .

In the following, we will refer to the set of all the possible concepts of a given
ontology O as C and to the set of all the possible roles as R.

We define the topic of an object d as the concept which best represents
either the object itself or the subject it refers to (e.g. in case of documents,
descriptions, images).

Definition 8 (Topic) The topic of a set of objects D is a function φO : D → C
relating each object to a (complex) concept of a reference ontology O.

Note that an object may be associated to many different topics generally.
For example, this thesis could be classified as ‘semantic interoperability’ or as
‘ontology integration’ or as ‘schema matching’, etc. Anyway, we require that
only one subject is chosen, i.e. the most identifying.

We define as interpretation of an ACH node k the category it represents. It
is identified by an ontological concept.

Definition 9 (Node interpretation) The interpretation of a node k of an
ACH H = 〈K, E, att, lab〉 is a function IO : K → C relating each node to a
(complex) concept of a reference ontology O.

Note that there is not the right interpretation of a certain node but different
interpretations can be equally reasonable in the reference context. For example,
a user could refer to the node Insurance and lost baggage of H1 as ‘insurance
policies for vacations’, while another user as ‘insurance policies stipulated on
vacation’. A user could interpret the node Vacations (of the same ACH) as
‘the time devoted to rest or pleasure’, while another user as ‘the act of making
something legally void’, etc.

We also use the notion of interpretation to denote the meaning of a non–
empty string11. A string can be interpreted either as a concept or as a role of a
certain ontology.

Definition 10 (String interpretation) The interpretation of a string s ∈
NL is a function IO : NL → {C ∪R} relating each non–empty string either to
a (complex) concept or to a (complex) role of a reference ontology O.

Note that both in the case of the topic and of the interpretation, there is
no way to prevent dummy assignments, i.e. we are not able to guarantee that
the topic we associate to an object is reasonable or that a schema element or
a string are interpreted correctly. The only possible condition we can impose

11We use the same notation since the function we are referring to is determined by the
corresponding domain. Hence, no ambiguity is possible.
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is that they are validated by a human being. However, the problem is quite
general and common to semantic theories based on formal logic12.

Finally, we introduce the notion of well–formed classification. In the previous
section, we have stated that objects must be classified according to a precise
criterium in order to support and validate the implicit derivation of pragmatic
relations from semantic ones (see condition 3 in the previous section). In the
following definition, we are going to formalize such conditions which represent
the usual human behaviour when classifying objects into an ACH.

Definition 11 (Well–formed classification) A classification 〈τ, α〉 of a set
of objects D in an ACH H = 〈K, E, att, lab〉 is well–formed with respect to an
ontology O, to an interpretation IO and to a topic φO if the following conditions
hold for each d ∈ D, for each k ∈ K, for each a = 〈id, F 〉 ∈ A and for each
s ∈ NL:

• if α(d, a) = s and F = Fr then IO(s) v IO(Fr);

• if α(d, a) = s then O |= φO(d) v ∃IO(id).IO(s);

• if k = τ(d) then O |= φO(d) v IO(k);

• if k = τ(d) then there is no k′ ∈ K such that O |= φO(d) v IO(k′) and
O |= IO(k′) v IO(k);

• if there is a node k′ ∈ K such that O |= φO(d) v IO(k′) then d is classified
in H.

The first two conditions deal with attributes. The former asserts that if an
attribute is specified in terms of its filler type, the corresponding value must
represent one of its possible instances. The condition prevents from assigning
attribute values casually. So, we require that the interpretation of a value of
the attribute a1 in Example 1 is a Country (e.g. Italy, USA, France) intended as
concept of a certain ontology. The latter guarantees that the topic of each ob-
ject specifies a value for each attribute characterizing it. For example, the topic
of the document d1 in Example 3 must express the fact that the holiday it refers
to will be spent in Italy. The third condition prevents from classifying docu-
ments blindly. It is stated that the topic of an object must be subsumed by the
interpretation of the node where it is classified. It prevents, for example, from
classifying an image of a landscape in the node Insurance and lost baggage.
The fourth condition represents the principle of specificity : an object must be
classified in the node whose interpretation is the most specific among those sub-
suming the topic of the object. Note that in taxonomies, this condition implies
that objects are pushed down in the structure. In fact, a strong assumption
about taxonomies is that objects under a certain node can be classified also
under its ancestors, i.e. the ancestors of each node subsume its meaning. Un-
fortunately, hierarchical classifications do not have this property. For example,

12See the model–theoretic argument discussed by the philosopher H.Putnam [39] and the
discourse in Benerecetti, Bouquet et al. [21].
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consider the nodes Insurance and lost baggage and Reports of H1. They
classify ‘insurance policies for holidays’ and ‘reports of spent vacations’ respec-
tively, but Insurance and Report are not Vacation which is the interpretation of
their parent: they are simply related to Vacation. Finally, the fifth condition
is quite trivial: it simply states that all the objects which can be potentially
classified in the structure must be effectively classified in it. This condition is
necessary since τ in a classification is partial, thus allowing objects not to be
put in a structure.

Once we have defined the basic notions of a semantic method and we have
determined the conditions which make a classification well-formed, it is quite
intuitive to formalize the soundness of a semantic method. Note that we have
already addressed the topic in the previous section by providing the intuitive
conditions which allow to derive mappings from semantic relations correctly.

We use the notion of node interpretation with respect to two ACH H and
H ′ as IO : {K ∪ K ′} → C, where K ∈ H and K ′ ∈ H ′. Moreover, we use the
notion of well–formed classification 〈〈τ, τ ′〉, 〈α, α′〉〉 of a set of objects D in two
ACH H and H ′ with respect to an ontology O, to a node interpretation IO

(with respect to H and H ′) and to a topic φO, where 〈τ, α〉 is a well–formed
classification of D in H and 〈τ ′, α′〉 is a well–formed classification of D in H ′.

Proposition 1 Let ω be a semantic method based on an ontology Oω and on
the interpretation IOω

of two ACH H and H ′. ω is sound with respect to a
well–formed classification 〈〈τ, τ ′〉, 〈α, α′〉〉 of the whole universe of objects D in
H and H ′ (with respect to O and IO), if the following conditions hold:

• Oω v O;

• for each k ∈ H and k′ ∈ H ′, IO(k) = IOω
(k) and IO(k′) = IOω

(k′);

• ω derives mapping elements from semantic relations according to Table
3.1.

Semantic relation Mapping element
Oω |= IOω

(k) v IOω
(k′) 〈k, k′,⊆〉

Oω |= IOω
(k) w IOω

(k′) 〈k, k′,⊇〉
Oω |= IOω

(k) ≡ IOω
(k′) 〈k, k′,≡〉

Oω |= IOω
(k) u IOω

(k′) v ⊥ 〈k, k′,⊥〉

Table 3.1: Mapping from semantic to pragmatic relations

The basic assumptions for a semantic method of schema matching to be
sound (i.e. the mapping it returns is sound) are that the classification are well–
formed (see condition 3 in the previous section) and the objects they consider
represent the whole universe (see condition 2 in the previous section). These
conditions have been already debated in depth. More attention is required
for the ones we have itemized in the above proposition. First, the knowledge
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base used by the semantic method must be subsumed by the one used by the
classifier. In fact, each inference process performed by the semantic method
must be consistent with the reasoning of the classifier. Then, it is required that
the schema interpretation of the classifier is the same as the semantic method
(see condition 1 in the previous section). Finally, the semantic method must
derive mapping elements from semantic relations according to the conversion
table proposed. It is quite trivial since it associates the corresponding set–
theoretical to each logical relation. Note that this transformation represents
the mechanism used by the function conversion of Algorithm 3.1 to translate
semantic relations into pragmatic ones.

The major problem resides in the necessity to interpret the schema elements
in the same way as a human classifier. The most we can do is trying to simulate
the human behaviour and its capacity of overcoming the lack of semantics of
schemas by means of its knowledge and experience. Anyway, the process must
be led by the awareness of the non–existence of a solution but of the need of
guessing and misinterpreting as every other user does.
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Chapter 4

The methodology

4.1 Semantic explicitation

4.1.1 The problem

The first step in matching schemas with semantic methods is to reveal the
implicit meaning of schema elements. Schemas do not completely express the
semantics of the data they describe and much is left to the ability of the user
to exploit the extant information in order to build the actual meaning of the
nodes. We aim at deriving the meaning of the nodes of an ACH, in the same
way as a human being interprets the labels of the structure. In particular, we
propose a methodology to automatically build the concepts approximating the
implicit node meaning. In this thesis, we discuss the possibility of using a very
powerful logic framework as the Description Logic [20, 29, 19]. We express the
meaning of each node as a concept term of a Description Logic defined on the
set of concepts and roles of a certain ontology. We use the ALCO1 fragment
of the DL for what concerns concept constructors, while the expressiveness of
the roles is limited by the necessity of dealing with a decidable and manageable
language.

Consider, for example, the ACH of Figure 2.1. In Section 2.1, we presented
our intuitive interpretation of the meaning of its nodes, i.e. of the category that
each element in the structure represents. The goal of semantic explicitation is
both to try to achieve the same results of our reasoning and to express them in
DL. Figure 4.1 shows the desired outcome of the process with reference to such
a schema.

Each node k is associated to a concept term, IO(k), expressing the node
interpretation. Concept names, role names and nominals used in the formulae
are assumed to belong to the reference ontology O. Each of them represents
the interpretation of the words in the ACH labels and attributes. For example,
Vacation is the interpretation of the string ‘vacation’ in the label of k0, location

1O allows named individuals, called nominals [29], to occur in concepts.
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k0 : Vacation u ∃location.Country

k1 : Report u ∃about.(Vacationu
∃location.Country)

k2 : LastMinuteOffer u ∃location.Countryu
∃departure.Date u ∃price.({100$}t
{500$} t {1000$})

k3 : LastMinuteOffer u ∃location.Country
u∃departure.Date u ∃price.({100$}t
{500$} t {1000$}) u ∃type.Seaside

k4 : LastMinuteOffer u ∃location.Country
u∃departure.Date u ∃price.({100$}t
{500$} t {1000$}) u ∃type.Mountain

k5 : (Insurance t (Baggage u ∃state.Lost))u
∃about.(Vacation u ∃location.Country)

Figure 4.1: The expected result of the semantic explicitation process
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of ‘location’ in the name of the attribute location of k0, etc. Roles represent the
implicit relations between the concepts of the structure. For example, Report

and Vacation are assumed to be related by the role about (representing the
subject of the report), LastMinuteOffer (here intended as ‘last minute offer of
vacation’) and Seaside by type (representing the type of vacation, e.g. vacation
at the seaside, on mountain), etc. Concept names, role names and nominals
are assembled by means of the concept constructors of conjunction, disjunction
and existential restriction. For example, k0 respresents those instances which
belong to the concept Vacation and which have a location–successor of the type
Country, k1 represents instances of Report which have an about–successor of the
type of the concept represented by the root node, etc.

4.1.2 Knowledge for semantic explicitation

In order to make the meaning of schema nodes explicit, we need to consider
different sources of information. The meaning of a node depends on its label
and on its attributes but also on its position in the classification hierarchy.
We refer to the information given by the node label and by its attributes as
local knowledge, while we consider the information provided by its vicinities as
contextual knowledge. The analysis of node labels, which are natural language
strings, requires grammatical knowledge and lexical knowledge able to associate
words with their possible meanings. Furthermore, we need ontological knowledge
to connect semantically the different concepts which are involved in the meaning
of the node in exam. The ontological knowledge is also the main support to
disambiguate the possible meanings of a node and select the interpretation which
is the most likely in the context of the given structure. The next sub–sections
detail these sources of information.

Note that the semantic interpretation of a schema strongly depends on the
knowledge used. Users having different perceptions and models of the world may
interpret the same structure (or the same natural language sentence) in different
ways. Furthermore, even if each user interacting with the ACH had the same
knowledge, it would not be guaranteed that the respective interpretations are
equal (see Section 3.3).

Local and Contextual knowledge

Let us consider the node Insurance and lost baggage of Figure 2.1 and the
corresponding intuitive interpretation (see Section 2.1). Local knowledge, i.e.
the node label, informs us that we are dealing with ‘insurance policies’. On the
other hand, the fact that Insurance and lost baggage is a child of Vacations
makes us aware that we are not dealing with ‘life policies’ or ‘car policies’ but
with ‘insurance policies related to vacations’.

The information which is provided by the vicinities of the node in exam and
which is involved in its meaning is called contextual knowledge. Our methodol-
ogy considers the ACH path from the root node to k as the context of a given
node k. We assume that all the information which is needed to interpret k can
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be found in that part of the ACH. Formally, a node context can be defined as
follows:

Definition 12 (Node context) Let H = 〈K, E, att, lab〉 be an ACH and k ∈
K one of its nodes. The context of k is the ACH Hk = 〈K ′, E′, att′, lab′〉, where
K ′ ⊆ K contains exactly k and its ancestors, and all the other elements are the
restriction of the corresponding component of H on K ′.

However, we may also draw more information from a larger context. For
example, ‘vacations in a given country’ does not represent the most precise
interpretation of the node Vacations of Figure 2.1. Actually, the presence of
the child node Last minute offers affects its meaning: we could also interpret
it as ‘vacations in a given country which are not last minute offers’. This is due
to the principle of specificity discussed in Section 3.3 that pushes last minute
offers, which are also vacation offers, down in the hierarchical classification.
Anyway, note that we are not wrong with the first interpretation: we are simply
less precise. Other cases where out–of–context nodes may influence the meaning
of a given node can be considered. Imagine, for example, the ACH in Figure
4.2.

vacation

sea void theories

Figure 4.2: Context–tricky ACH

If we focused on the node sea only, we would be probably tempted to con-
sider ‘vacation’ in its main meaning: ‘leisure time away from work devoted to
rest or pleasure’. However, this interpretation disagrees with the meaning of
the node void theories that would probably intend ‘vacation’ as ‘the act of
making something legally void’. Thus, it is not clear whether we need either to
preserve both meanings of ‘vacation’ or to focus on the meaning of ‘vacation’ in
the given context only.

We may solve the problem by considering different notions of context of
a given node. In Bouquet, Serafini et al. [23], the context of a node k was
intuitively defined as the nodes lying in the path from the root to k and all the
correponding children. Other notions can be imagined, till the extreme case
when the whole hierarchical structure is considered. For the sake of simplicity,
in this thesis we focus on the simplest notion of node context as in Definition
12.

Ontological knowledge

We have said so far that the context of a node contributes to its meaning and
that the context is given by the nodes on its path. Unfortunately, such nodes
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are not semantically related in hierarchical classifications (and in schemas, in
general). Indeed, the ACH edges does not represent relations between concepts,
but simply relations between elements of the structure. However, if we want
to interpret a certain node, we need to link the concepts represented by the
nodes in its context. For example, a user could refer to the node Insurance

and lost baggage of Figure 2.1 as ‘insurance policies about vacations’, while
another as ‘insurance policies stipulated on vacation’. In the former case the
nodes Vacations and Insurance and lost baggage would be related by means
of about, whereas in the second case by means of stipulated on. Each user
will select the most appropriate and probable connection according to its own
sensibility. The user’s sensibility is mainly given by its experience and perception
of the world. Such sensibility (at least the rational one) can be considered as the
knowledge of the user about the world. We refer to this knowledge as ontological
knowledge, and it can be formalized with ontologies (see Definition 7).

We define the ability of a user (or machine) to choose the most appropriate
and probable semantic connection between two concepts according to its own
knowledge as follows:

Definition 13 (Semantic Relation) Let SRO : C × C → R∗ be a partial
function from two concept terms of an ontology O to a possibly empty sequence
of role terms, R = 〈R1, R2, . . . , Rn〉 of the same ontology. R represents a
semantic relation between the two input concepts.

The function SRO takes two concepts as input and returns a sequence of
roles. Intuitively, the output is the sequence of relations which is needed to go
from the first input concept to the second by means of conceptual reasoning. In
the previous examples, the concepts Insurance and Vacation were connected by
the role about or stipulated on (i.e. R is a single–element set). If we considered
the concepts Insurance and Seaside, we could say that the corresponding seman-
tic relation is the sequence composed by the elements about and spending. In
fact, we can think that Insurance is about-related to Vacations which in turn is
spent-related to Seaside.

The function is not defined for a given input if the reference ontology cannot
provide a reasonable relation between the two terms. When it returns an empty
set, we mean that the former input concept is subsumed by the latter, i.e. they
are IsA-related.

In Chapter 5, we formalize the concept of semantic relation and we define
the function SRO from an algorithmic point of view.

Lexical knowledge

Local and contextual knowledge deal with labels and attributes which are natu-
ral language strings (i.e. words). On the other side, ontological knowledge deals
with concepts. Now we need a bridge relating the space of words to the space
of ontological concepts and roles. Such knowledge is called lexical knowledge
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and it represents the ability to associate a word2 with its possible meanings (i.e.
concepts). We model lexical knowledge as a lexicon, which we formally define
as follows:

Definition 14 (Lexicon) The lexicon LO : Lemma×POS → 2C is a function
relating each lemma (with its part of speech) to a set of (atomic) concepts of a
given ontology O.

A lexicon is a function from lemmas (and the corresponding parts of speech)
to set of concepts, where lemmas and parts of speech have to be intended as in
the NLP domain3. We assume to be able to recognize the lemma and the part
of speech of a given word. Note that both the lemma and the part of speech
are context–dependent, i.e they depend on the label and on the position in the
structure where they occur.

Example 4 Suppose that we have the string ‘sea vacations’ and that Word-
Net4 is used as lexicon. Moreover, suppose we are interested in the lexical
knowledge concerning the word ‘vacations’, whose context is given by the word
‘sea’. We can easily derive that the lemma of ‘vacations’ is ‘vacation’ and that
its part of speech in the given context is noun. The output of the lexicon function
is {Vacation#1, Vacation#2}, where the elements of the set are the following
concepts:

1. Vacation#1: leisure time away from work devoted to rest or pleasure;

2. Vacation#2: the act of making something legally void.

The ability to identify the actual meaning of a word in a given context is a
problem which is commonly referred to as word sense disambiguation5 in the
NL community. In the following, we will present our methodology of word sense
disambiguation which is based on the following two observations: (i) we identify
in the concatenation of the two words ‘sea’ and ‘vacations’ the concept ‘holidays
spent at the seaside’ and (ii) we do not recognize any reason for associating the
concept Vacation#2 with the possible meanings of ‘sea’ (the context of the
word ‘vacations’). Note that it is our ontological knowledge (actually, semantic
relations) which allows us to make such kind of reasoning.

2Note that in natural language, we can also find multi–words, i.e. words composed by
multiple words to be considered as a single one. Some examples are: ‘north America’, ‘last
minute tour’, etc.

3Lemmas are the ‘standard’ entries of a dictionary. For example, in English, we have the
singular form for nouns (so that, for example, ‘girls’ and ‘girl’ refer to the same lemma: ‘girl’),
the infinite form for verbs (so that, for example, ‘going’ and ‘went’ refer to the same lemma:
‘to go’), etc.

4In all the examples in the thesis, we have used WordNet as lexicon. WordNet synsets
represent ontological concepts.

5See Chapter 9 for a survey of the major approaches.
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Grammatical knowledge

ACH labels and attributes are usually composed by more than one word6 (or
expression). The analysis of the concept they represent depends on the ability
to identify their atomic parts (as the words composing the statement), and, for
each atomic element, its part of speech (i.e. noun, adjective, adverb, verb. etc.),
its syntactical category (i.e. the dependency occurring with the other elements,
e.g. it can be the subject of the phrase or the modifier of some subject) and
its lexicon. The elements have to be subsequently connected semantically in
order to derive the complex concept they represent. In other words, we need to
identify the grammatical structure of a phrase. This is a common problem in
NLP techniques and it is usually solved by building a parse trees. Formally, we
define a parse tree as in the following:

Definition 15 (Parse Tree) A parse tree PL = 〈N, G〉 is a finite rooted tree.
Nodes are defined as 5-tuples 〈Word, Lemma, SynCat, POS, Senses〉 or as the
symbol @. Word is an expression in NL whose lemma, Lemma, is an entry of
a lexicon LO (= L). SynCat and POS are respectively the syntactical category
and the part of speech of Word in the given context, and Senses is the output of
lexicon applied to Lemma and SynCat, Senses = LO(Lemma, SynCat).

Parse trees are structures that point out the dependencies between the ele-
ments of a phrase or a string. Such elements are represented by the parse tree
nodes and are single– or multi–words. Each element is associated with some
grammatical information and with its possible meanings.

Example 5 Let us consider the phrase ‘sea vacations’ of Example 4. We can
identify two words: ‘vacations’ and ‘sea’. The respective lemmas are ‘vacation’
and ‘sea’. Due to the grammatical structure of the English/American language,
‘vacation’ is a noun (part of speech) and it represents the phrase subject (syn-
tactical category), whereas ‘sea’ is an adjective (part of speech) which qualifies
the subject (i.e. it is the modifier). The corresponding parse tree is represented
in Figure 4.3. The node which refers to ‘sea’ is classified as child of ‘vacation’.
By accessing the lexicon, it is possible to consider the possible word meanings:
‘vacation’ can denote the concepts Vacation#1 and Vacation#2, while ‘sea’ can
denote the concept Sea#1.

Parse trees will be further investigated in Section 6.2.

4.1.3 Complete example

We are now going to present a complete example which starts from a node of
a schema and creates the corresponding concept term. In particular, we will
explore the different phases of the process by showing what steps human beings

6In case of compact notations, we can also find more words appearing as a single non–spaced
word (e.g. ‘BomberPlane’ can be decomposed in ‘Bomber’ and ‘Plane’, ‘Public Company’ in
‘Public’ and ‘Company’).
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W vacations
L vacation
SC Head

PS Noun

S
Vacation#1

Vacation#2

W sea
L sea
SC Mod

PS Adj

S Sea#1

Figure 4.3: Parse tree of the label ‘sea vacations’

implicitly do when interpreting classification structures. Our methodology is a
simulation of such a process for what concerns the output of each step. The
algorithms which lead to the intermediate results will be discussed in detail in
Chapter 6.

The node we will analyze in the rest of the section is Insurance and lost

baggage of Figure 2.1. Our goal is to use all the described sources of knowledge
to derive its meaning. We expect that the result of the process is a concept term
expressing that the node concerns ‘insurance policies and lost baggage related
to vacations spent in a given country’.

Firstly, we focus on the part of the ACH which contains information which we
consider relevant for the interpretation of the node meaning, i.e. the node con-
text. In this case, it is represented both by the node Insurance and lost baggage

and by the root node, Vacations. Figure 4.4 shows the context of the node in
exam.

k0 : Vacations

〈location, Country〉

k5 : Insurance and lost baggage

Figure 4.4: Context of the node Insurance and lost baggage

The next step analyzes the local meaning of each node in the given context
by parsing the corresponding label and attributes. Figure 4.5 shows the parse
tree of the node Insurance and lost baggage. We have identified two subjects,
‘insurance’ and ‘baggage’ (the symbol @ indicates that the corresponding chil-
dren are not dependent, i.e. they are coordinate terms) and ‘lost’ as modifier of
the latter.

Figure 4.6 shows the parse tree of Vacations. It has ‘vacation’ as root node
and ‘country’ as modifier. The modifier represents the filler of the attribute
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@

W insurance
L insurance
SC Head

PS Noun

S

W baggage
L baggage
SC Head

PS Noun

S

W lost
L lost
SC Mod

PS Adj

S

Figure 4.5: Parse tree of the label ‘insurance and lost baggage’

W vacation
L vacation
SC Head

PS Noun

S

W country
L country
SC Mod

PS Noun

S

Figure 4.6: Grammatical structure of Vacations
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location. A node attribute represents something that qualifies the concept ex-
pressed by that node. Therefore, we can consider its filler as a modifier of the
label subject(s).

Note that the two structures identify the dependencies among the terms
of the nodes but they do not highlight the type of semantic relation existing
between them.

Words do not actually represent concepts. Thus, the next step is to ex-
ploit lexical knowledge to relate each word with its possible meanings. We have
already discussed the two possible meanings of the word ‘vacation’ as noun,
namely Vacation#1 and Vacation#2. Moreover, we assume that ‘country’ and
‘insurance’ as nouns and ‘lost’ as adjective have one possible meaning, respec-
tively:

1. Country#1: a particular geographical region of indefinite boundary;

2. Insurance#1: promise of reimbursement in the case of loss;

3. Lost#1: no longer in your possession or control.

Finally, we associate ‘baggage’ to two possible concepts:

1. Baggage#1: used to carry belongings when traveling;

2. Baggage#2: a worthless or immoral woman.

Note that the lemma and the part of speech of each word (which are re-
quired to access the lexicon function) are provided by grammatical compe-
tence according to the context in exam (i.e. the phrase which the word be-
longs to). The structure in Figure 4.7 represents the parse tree of the node
Insurance and lost baggage enriched with concepts, while Figure 4.8 that of
Vacations.

@

W insurance
L insurance
SC Head

PS Noun

S Insurance#1

W baggage
L baggage
SC Head

PS Noun

S
Baggage#1

Baggage#2

W lost
L lost
SC Mod

PS Adj

S Lost#1

Figure 4.7: Parse tree of Insurance and lost baggage enriched with the lex-
icon
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W vacation
L vacation
SC Head

PS Noun

S
Vacation#1

Vacation#2

W country
L country
SC Mod

PS Noun

S Country#1

Figure 4.8: Parse tree of Vacations enriched with the lexicon

By means of this operation, we have considered all the possible meanings
of each word. Actually, words do not usually represent all the concepts they
can refer to but their meaning depends on the corresponding context. All of us
would probably interpret ‘vacation’ as Vacation#1 and ‘baggage’ as Baggage#1
in the given ACH. In order to interpret with good precision the meaning of
the node Insurance and lost baggage, we need to perform the same selection
automatically. Given that the meaning of each word depends on its context, the
corresponding disambiguation can occur by analyzing how each concept can be
semantically linked to the rest of the context.

Thus, the next step in semantic explicitation is to search possible semantic
relations existing between the concepts in the context (we call it semantic en-
richment). Ontological knowledge supports us during this process. We assume
that it provides us with the most likely semantic relation, if any, between two
given concepts through the SRO function. Suppose it returns the following
semantic relations composed by one role:

1. Baggage#1 is related to Lost#1 by means of state#3;

2. Insurance#1 is related to Vacation#1 by means of about#1;

3. Vacation#1 is related to Insurance#1 by means of organizedBy#1.

Note that Description Logic roles are returned as senses and not as strings
which can be ambiguous. In the first case, state#3 refers to ‘the way something
is with respect to its main attributes’, in the second case, about#1 refers to
‘imprecise but fairly close to correct’, and in the third case organizedBy#1

refers to ‘planned and directed’. In the case of attributes, the semantic relation
between the node concept and the filler is already explicit in the form of a natural
language string, i.e. the name of the attribute. Unfortunately, a string does not
express a role (which must be associated to the intended meaning), therefore we
need to look out for possible meanings of the attribute name which represent
possible relations between one (or more) meanings of the subject of the node
label and one (or more) meanings of the filler. In the example, we assume that
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‘location’ can only refer to ‘a point or extent in space’, location#1, and that it
represents a reasonable semantic connection between the concepts Vacation#1
and Country#1 only.

Now, all the semantic information derivable from the structure has been
elicited. Hence, it is time to make precise choices about the meaning of each
word and the way it is linked to the rest of the context. Note that such choices
are the result of experience and reason, i.e. of heuristic criteria based on the
available semantic information.

For example, we may discard the sense Vacation#2 of ‘vacation’ because it
is not related to any other concept in the context. On the contrary, the other
meaning of ‘vacation’ is semantically connected both to Country#1 by means
of location#1 and to Insurance#1 by means of about#1 and organizedBy#1.
In other words, we are saying that ‘vacation’ as ‘the act of making something
legally void’ is completely disjoint from the rest of the schema. Similarly, we
may discard the concept Baggage#2 because it is independent from the rest of
the context, whereas Baggage#1 is related to Lost#1 by means of state#3. The
result of this operation (we call it semantic filtering) is that we have associated
each word with a more precise meaning. The criteria we have used to perform
the process are very similar to the ones human beings implicitly use. In fact, we
have considered the meaning which better fits in the given context as the most
probable.

The last step before formalizing the meaning of the node in exam is to choose
a set of semantic relations which allow a sensible interpretation. For example,
the nodes Vacations and Insurance and lost baggage could be linked both
as ‘insurance policies for holidays’ and as ‘vacations organized by insurance
(agencies)’ according to the relations previously found. We could certainly say
that the interpretation of the node Insurance and lost baggage is ‘insurance
policies for holidays or vacations organized by insurance (agencies)’. Anyway,
we would lack precision since the intended meaning is probably only one of
those we have mentioned. Unfortunately, the choice is not easy and the criteria
human beings use are based on their sensibility and on the evaluation of the
coherence of the choice with respect to the rest of the context. For this example,
suppose we prefer the first possible interpretation, thus discarding the relation
organizedBy#1 (and the concepts it links if they are not related to any other
element in the context).

The process of semantic explicitation of the node Insurance and lost

baggage ends by assembling the concepts of the context in such a way to rep-
resent the meaning of the node. Our formal language is the Description Logic
framework defined on the set of concepts and roles which we have met during
the process.

First of all, we must identify the concept term representing the local meaning
of the nodes in the context. The corresponding grammatical structures suggest
the dependency subject–modifier between the node elements, while the semantic
relations identify the type of dependency. Intuitively, we formalize a dependency
subject–modifier as a concept (i.e. the subject) with an existential restriction
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of the involved relation on the modifier7.
With reference to the node Vacations, we thus express its interpretation as:

Vacation#1 u ∃location#1.Country#1

which represents the intuitive concept ‘holidays spent in a given country’.

7Section 6.6 futher investigates the way of formalizing a node meaning in DL.
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Similarly, we interpret Insurance and lost baggage as:

Insurance#1 t (Baggage#1 u ∃state#3.Lost#1)

representing ‘insurance policies and lost baggage’.
Finally, we need to semantically link the concepts expressed by the two

nodes. Note that in this case the ACH structure does not provide any infor-
mation about which is the subject and which is the modifier. Thus, we must
only rely on the semantic relations we have found between the two nodes, i.e.
about#1 between Insurance#1 and Vacation#1. The composition of the inter-
pretations of the two nodes results as follows:

(Insurance#1 t (Baggage#1 u ∃state#3.Lost#1))u
∃about#1.(Vacation#1 u ∃location#1.Country#1)

It corresponds to the intuitive interpretation of the node Insurance and lost
baggage as ‘insurance policies and lost baggage about vacations in a country’.
Note that the meaning of the root node represents the modifier of that of the
child node. Finally, note that an attribute keeps the semantic connection with
the node to which it is attached. In other words, location refers to ‘vacations’
independentely from the node we are examining.

4.1.4 The algorithm

In the previous sections, we have presented the information which is required
to make the meaning of a schema explicit and the expected process which leads
from the pure structure to the concepts it represents. In this section, we propose
an algorithm to simulate this process. In particular, we define the steps which
we have discussed in the previous section from an operative point of view.

The function semantic–explicitation in Algorithm 3.1 takes an ACH
as input and returns a semantic ACH, Hs, containing the interpretation I(k)
of each node k. The process adds and arranges grammatical and semantic
information in Hs, gradually, till the final synthesis in the schema intepretation.

Algorithm 4.1 reproduces the process by clearly indicating the macro–steps
of the procedure. Chapter 6 will be devoted to investigate the corresponding
sub–steps.

For each node of the structure, the algorithm performs the steps we have
presented in the previous section. We first focalize on the context of k (step
2). Then, we associate each node of the context to the corresponding parse
tree (step 3), i.e. we add grammatical and lexical information to the input
ACH. The resulting structure is a semantic ACH. In step 5 and 6, we complete
the local analysis of the nodes by searching all the possible semantic relations
which connect the different elements of a single node (step 5). Moreover, we
discard some possible meanings (step 6) according to some local analysis. The
steps we have presented so far are local processes because they act on each
node independently, whereas steps 7 and 8 work on the basis of contextual
considerations. Step 7 searches all the semantic relations between different
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Algorithm 4.1 semantic–explicitation (H)
. ACH: H = 〈K, E, att, lab〉

VarDeclarations

context: Hk

semantic ACH: Hs

1 for each k ∈ K do

2 Hk ← context(H, k);
3 Hs ← parse–tree(Hk);
4 for each node k′ ∈ Hs do

5 Hs ← local–semantic–enrichment(Hs, k
′);

6 Hs ← local–semantic–filtering(Hs, k
′);

7 Hs ←global–semantic–enrichment(Hs);
8 Hs ← global–semantic–filtering(Hs);
9 Hs ← choose–coverage(Hs);
10 I(k) ← composing–the–meaning(Hs);
11 Return Hs;

nodes by means of ontological knowledge. Step 8 performs the same filtering
as step 6 but with a global perspective (i.e. with respect to the context of k).
Indeed, it discards all those node meanings which are not related to the rest
of the context. Note that step 6 and 8 jointly work by simulating the same
reasoning that led us to discard the concepts Vacation#2 and Baggage#2. Step
9 selects a set of semantic relations so that we can interpret k in a univocal
way. It results in a filtering of the relations (and of the senses accordingly) in
the semantic ACH. This process is the one which made us discard the relation
organizedBy#1. Finally, step 10 builds the DL term expressing the meaning of
the node k and it stores the result in the variable I(k) of the semantic ACH
which will be finally returned to CtxMatch-2. The expansion of the function
composing–the–meaning in Section 6.6 will show that we first formalize the
local interpretation of the contextual nodes and we subsequently assemble them
in I(k).

Note that the algorithm is not optimized computationally. In fact, it must
interpret all the nodes of the structure thus making some operations repetitive.
In particular, steps 3–7 can be executed only once because they do not depend
on the node we are analyzing or, in other words, they are not context dependent.

4.2 Semantic comparison

4.2.1 The problem

The second step in matching schemas with semantic methods is to derive re-
lations between nodes (i.e. mappings) by the relations between the associated
meanings. We named these relations semantic relations because they hold be-
tween concepts expressed in some formal language. In our case, a node meaning
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is a term in Description Logic. Thus, the relations we are interested in are the
set of DL logical operators {v, w, ≡}. Moreover, we use the notation ⊥ to
indicate that two concepts are disjoint, i.e. C⊥D means that C u D v ⊥ (the
empty concept). Then, each symbol will be mapped out on the set–theoretical
relation ⊆, ⊇, ≡ and ⊥, respectively. According to Section 3.3, such a transla-
tion allows us to derive pragmatic relations from semantic ones and it provides
the elements for a mapping MH→H′ between two ACH structures H and H ′.

Semantic comparison is based on the use of DL reasoners and it is supported
by ontological knowledge8 to make inference, as we show in the next section.

4.2.2 Complete example

Suppose we have to match the ACH of Figure 2.1 and the one of Figure 3.1 and
that we are interested in the relation holding between the nodes Insurance and lost baggage

and Italy, respectively.
We expect that the process of semantic explicitation has produced the fol-

lowing concept term, C, for the former node:

(Insurance#1 t (Baggage#1 u ∃state#3.Lost#1))u
∃about#1.(Vacation#1 u ∃location#1.Country#1)

The most intuitive interpretation of the node Italy is ‘insurance policies
for honeymoons spent in Italy’. Assuming that the only meaning of ‘honey-
moon’ and ‘Italy’ are respectively ‘a holiday taken by a newly married couple’,
Honeymoon#1, and ‘a republic in south Europe’, Italy#1, we can formally ex-
press the meaning, D, of the node Italy as:

Insurance#1 u ∃about#1.(Honeymoon#1 u ∃location#1.Italy#1)

Moreover, suppose we have an ontology O containing the following axioms:

Honeymoon#1 v Vacation#1

Italy#1 v Country#1

Semantic comparison evaluates if it is possible to infer some relation between
the meaning of the nodes according to the knowledge available. By means of a
DL reasoner we can easily entail from O that D v C, i.e.:

O |= D v C

We can conclude that the semantic relation between the meaning of the
nodes Insurance and lost baggage, k, and Italy, k′, is more general than.
This result will finally produce the mapping element 〈k, k′,⊇〉 according to the
conversion table of Section 3.3.

8Note that the knowledge base used in semantic comparison is not necessarily the same
as employed in semantic explicitation. Moreover, the reference ontologies used to interpret
the two input schemas of the matching problem may be different, too. In the worst case, the
different parties will be not able to communicate because they do not share the same concept
and role names thus not finding any match.
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4.2.3 The algorithm

The algorithm of semantic comparison uses the notion of logical consequence to
derive the relation holding between two DL terms. The degree of DL expressivity
used to formalize the ACH semantics strongly affects the algorithm efficiency
and decidability. The crucial choice is represented by the complexity of the
roles returned by the function SRO (see Definition 13). The decidability of the
DL framework made of the ALCO fragment and the role constructors involved
guarantees the same property to the semantic comparison algorithm, as well.

Algorithm 4.2 is that we apply to identify the semantic relation holding
between two nodes k and k′ of two ACH H and H ′.

Algorithm 4.2 semantic–comparison(Hs, H
′
s, k, k′)

. semantic ACH: Hs, H′
s

. node: k ∈ Hs, k′ ∈ H′
s

VarDeclarations

reference ontology: O
semantic relation: r

1 if O |= (I(k) u I ′(k′)) v ⊥ then r ← ⊥;
2 else if O |= (I(k) ≡ I ′(k′)) then r ← ≡;
3 else if O |= (I(k) v I ′(k′)) then r ← ⊆;
4 else if O |= (I(k) w I ′(k′)) then r ← ⊇;
5 else r ← ∗;
6 Return r;

The input of the algorithm is given by two semantic ACH and the two re-
spective nodes we need to sematically compare. Steps 1–4 determine the logical
relation existing between their concept terms, I(k) and I(k ′). The variable O
represents the knowledge source we use to support the entailment process.

Note that if we do not find any relation between the concepts, we return
the relation ∗ which we interpret as possible intersection or compatibility. Es-
sentially, we want to have a placeholder for potential relations that we cannot
deduce, but we cannot reject, either. For example, ‘dogs’ and ‘cats’ will be
evaluated as compatible unless we have positive information that dogs and cats
are disjoint. Of course, one might say that this conclusion is wrong, but we
need to consider that in other cases (e.g. ‘churches’ and ‘monuments’) it would
be right (for the sake of argument, let us imagine that there is no explicit con-
nection between churches and monuments in the knowledge base in use). So
the decision is between reasoning under a closed world assumption, which would
prevent us from finding any relation in both cases, or reasoning under an open
world assumption, which would allow us to find a relation of compatibility in
both cases. The open world assumption increases the recall, but decreases the
precision of the algorithm, whereas the closed world assumption has the oppo-
site effect. Our decision was to go for an open world solution. In fact most
concrete ontologies are not rich enough to support the conjecture that anything
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which cannot be deduced is false.
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Chapter 5

Discovering semantic

relations between concepts

5.1 Introduction

Semantic relations are a way to connect different concepts: given a certain
context and a set of concepts, we identify the possible ways of connecting them
and we choose the most appropriate in that case.

Consider, for example, the concepts ‘person’ and ‘name’. All of us would
probably associate them by asserting that each person has a name, where ‘hav-
ing a name’ represents the relation which occurs between the two concepts.
However, one could also relate them by ‘having a nickname’ or ‘writing’, etc.,
and none of them may be considered the right one or wrong.

Consider also this further example: ‘person’ and ‘John’. In this case, we
cannot state that each person’s name is John but we can guess that, if a relation
between the concepts must occur, it would be probably of the type ‘has name’.
In other words, we are saying that the name of a person is not John necessarily,
but it could be. Anyway, even in this case, other possible relations may be
considered.

Note that each user relates concepts according to its own knowledge, i.e. to
its own model of the world and to some evaluations which are influenced by the
context.

Ontologies contain the knowledge about semantic relations and the possible
ways of connecting concepts. The fact that each person, Person, has a name,
Name, may be formalized in an ontology O as:

Person v ∃hasName.Name

where Person and Name are in NC and hasName in NR. The axiom expresses
that each person has to have a name. On the other hand, the fact that ‘John’
is a possible name for a person may be formalized as follows:
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Person v ∃hasName.Name

{John} v Name

where the former axiom states that each person has a name, while the latter
that John is a name. Actually, John is one possible name, since other concepts
(or individuals) could be names too. In the following, we will refer to the first
type of relations between concepts as necessary, while to the second type as
possible. Our goal is to investigate a formal definition of semantic relation and
a methodology to extract this kind of knowledge from ontologies. Section 5.2
formally defines what we mean for two concepts to be semantically related,
while Section 5.3 presents a decidable algorithm to extract semantic relations
from ontologies (i.e. the SRO function of Definition 13). Finally, Section 5.4
will discuss the formal differences between possible, necessary and tautological
relations with respect to a certain ontology.

5.2 Semantically related concepts

We first introduce the notion of simple semantic relation and then we extend it
to the one of semantic relation.

Before the definitions, we present a notation which we will use in the follow-
ing in order to simplify the reading. Given an ontology O = 〈TBox,ABox〉 and
two concept terms C and D in C, O |= C @ D means that:

• O |= C v D;

• O 6|= D v C.

The notation simply introduces the notion of strict subsumption.

Definition 16 (Simple semantic relation) Given an ontology O = 〈TBox, ABox〉,
two concepts C and D in C are semantically related if there is a role R in R
satisfying one of the following conditions:

1. O |= C v ∃R.D;

2. there is a concept E in C such that:

(a) O |= C v ∃R.E and O |= D @ E;

(b) there is no concept F in C such that: O |= C v ∃R.F and O |= F @ E.

and C u ∃R.D is satisfiable with respect to O, i.e.:

O 6|= C u ∃R.D v ⊥

R represents a simple semantic relation between concepts C and D.
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The first condition refers to the definition of necessary relation as presented
intuitively in the introduction. It states that C is semantically related to D by
means of R, if each instance of C is required to have an R-successor which is
an instance of D. The second condition corresponds to possible relations. It
requires the existence of a concept E with the same property of D in the first
condition and which subsumes (strictly) the target concept D. Condition 2.b
allows to prevent from some tricky cases which can emerge when expressing
possible relations in DL. Indeed, we must guarantee that the relation between
C and E is directly asserted in the ontology. Consider, for example, an ontology
composed of the following axioms:

Sunset v ∃hasColor.{Red}
{Red} v Color

{Green} v Color

Condition 2.a would find a simple semantic relation of the type hasColor

between Sunset and {Green}, which does not match what we intend for semantic
relation. Indeed, if the ontology considered the possibility for a sunset to be
green, it would assert that (assuming that no other colors are present in the
ontology):

Sunset v ∃hasColor.Color

Instead, by linking Sunset with {Red} only, it is explicitly excluding the
case that a sunset is of a color different from red. Thus, hasColor cannot be
considered a possible relation between Sunset and {Green}.

Finally, note that an ontology could also return no simple semantic relations
between two concepts or it could return more relations (i.e. there are more roles
satisfying the conditions of Definition 16).

Example 6 Consider an ontology O = 〈TBox, ABox〉 defined on the set of
concept and role names of Table 5.1 and suppose the TBox to be composed as
in Table 5.2.

NC NR

Insurance about
Vacation spendingPlace
Honeymoon departure
Location
Leisure
Date

Table 5.1: Concept and role names

According to Definition 16, we can identify at least 7 simple semantic re-
lations between atomic concepts. We represent the pairs which are related by
means of the about role in the left–hand part of Table 5.3, those which are re-
lated by means of the spendingPlace role in the center and those related by means
of the departure role in the right–hand part.
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Axioms
Insurance v ∃about.Vacation
Vacation v Leisure
Honeymoon v Vacation
Leisure v ∃spendingPlace.Location
Honeymoon v ∃departure.Date

Table 5.2: TBox axioms

about spendingPlace departure

(1) Insurance → Vacation (1) Leisure → Location (1) Honeymoon → Date
(2) Insurance → Leisure (2) Vacation → Location
(3) Insurance → Honeymoon (3) Honeymoon → Location

Table 5.3: Simple semantic relations between atomic concepts

All the semantic relations, except for the number 3 of the about role, are
given by the first condition of Definition 16. In fact, we can entail them from the
given ontology. On the contrary, Insurance and Honeymoon are about–related for
condition 2 of Definition 16 because Honeymoon is subsumed by Vacation which
is an about-successor of the Insurance concept.

Actually, we could identify some more simple semantic relations if we con-
sidered complex roles. For example, Insurance and Location are semantically
related by the role term:

about ◦ spendingPlace

where ◦ represents the DL role constructor of composition. Moreover, any other
role term which subsumes those we have pointed out is a valid semantic relation
between the concepts which the subsumee role refers to.

Conditions 1 and 2 of Definition 16 only identify those relations which rep-
resent potential candidates for semantically connecting C and D. Stating that
C and D are related through R implicitly means that we are deriving and ex-
porting the presence of a concept like Cu∃R.D. Thus, we also require that it is
satisfiable with respect to the given ontology.

We now recursively extend the notion of simple semantic relation between
concepts by the following definition of semantic relation:

Definition 17 (Semantic relation) Given an ontology O = 〈TBox, ABox〉,
two concepts C and D in C are semantically related by a sequence of roles R =
〈R1, R2, . . . , Rn〉 in R∗ if there is a concept E in C satisfying the following
conditions:

1. R1 is a simple semantic relation between C and E;

2. E and D are semantically related by means of R
′ = {R2, . . . , Rn}.

R represents a semantic relation between concepts C and D.
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A particular instance of Definition 17 occurs when R is the empty sequence,
i.e. C is subsumed by D. In this case, we say that C and D are related by an
IsA relation.

Definition 17 allows to consider semantic relations which are not contem-
plated by Definition 16. This is the case of one (or more) role of R = {R1, R2, . . . , Rn},
other than Rn, representing a possible semantic relation according to condition
2 of Definition 16. The presence of possible relations in a chain of roles rep-
resents one of the reasons which differentiate the concept of semantic relation
from the role composition (i.e. the operator ◦). The other divergence concerns
the necessity for a semantic relation to specify the “bridge” concepts (e.g. E

in Definition 17) univocally, contrary to the semantics of the role composition
constructor (see Baader and Sattler [20]).

Summing up, we say that two concepts are semantically related if it exists
a role R satifying the conditions of Definition 16 or a sequence of roles R as
in Definition 17. In the former case, R is said to be a simple semantic rela-
tion between the concepts, whereas in the latter case R respresents a semantic
relation.

Example 7 With reference to Example 6, all the semantic relations we have
identified are simple relations, i.e. R = {R} is composed of one element only.
R is either an atomic role as in the case of about, spendingPlace and departure

or a composed role as in the case of about◦ spendingPlace. Furthermore, we can
say that Insurance and Date are related, too. Indeed, there is a possible relation
between Insurance and Honeymoon and a necessary relation between Honeymoon

and Date. R is thus composed of two elements, R = 〈about, departure〉, and the
role of concept E in Definition 17 is played by Honeymoon. Note that such a
semantic relation can only be captured by Definition 17, therefore, it is not a
simple semantic relation.

5.3 The algorithm

Once we have formally defined the concept of semantic relation, we introduce
the algorithm to extract them from a certain knowledge base. In other words,
we show the internal mechanisms of the function SRO of Definition 13. Our
goal is to identify the semantic relations which occur between two concepts of
an ontology O, according to Definition 17. Actually, the SRO function requires
that only one relation is effectively returned. It should represent the most likely
semantic connection between the two input concepts and the relation which best
fits in the context. In this version of the algorithm, we consider the relation R
with the minimum number of elements as most probable. In fact, it represents
the most intuitive relation, that is the one which requires the smallest reasoning
effort for connecting the two concepts. The reasoning minimization is allowed
by the minor number of concepts which are needed to be involved in the process
(i.e. “bridge” concepts).

Before presenting the algorithm, we must point out some observations related
to the decidability of the procedure. Note that:
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Algorithm 5.1 SR (C, D)
. atomic concepts: C, D

VarDeclarations

ontology: O
relation matrix: M

semantic relation: R

1 if (O |= C v D) Return 〈〉;
2 M ← relation–matrix(O);
3 While(true)
4 R ← next-shortest-path(M,R, C, D);
5 if (R=null) Return null;
6 if (consistency–check(O,R, C, D)) Return R;

1. in Definition 16, it is stated that any role term R can represent a simple
semantic relation between two concepts;

2. condition 2 of Definition 16 requires the existence of a concept E subsuming
the target concept D and being a successor of the source concept C;

3. condition 2.b of Definition 16 needs to check the non–existence of a concept
F with well–defined properties;

4. definition 17 involves bridge concepts (i.e. concept E) which are qualified
as general concept terms.

An algorithm searching semantic relations between concepts must obviously
iterate over all the possible values of such generic terms (role term R in case 1,
concept term E in case 2 and 4 and concept term F in case 3), thus affecting the
decidability of the procedure. In order to guarantee the property, we restrict
the analysis to atomic concepts, C in NC , in cases 2, 3 and 4 and to atomic
roles, R in NR, in case 1. The simplification we make in 1, 2 and 4 does affect
the completeness of the algorithm but not its correctness, whereas the trick
used in case 3 impacts the correctness, too. In fact, we could find no atomic
concepts of the type expressed in condition 2.b but it may exist some complex
concept satisfying that condition. This means that the algorithm could return
some relations which do not meet point 2.b. In order to maximize the number
of relations which are found by the algorithm and to minimize those which do
not fulfil condition 2.b, we assume that each complex concept in the ontology
is the definition of an atomic concept1. Finally, we remark that under the
simplifications mentioned, the possible number of elements in a relation R is
limited by the number of concept names in the ontology, i.e. it is finite.

Algorithm 5.1 shows the procedure. The variable O represents the knowledge
source we use for supporting the process of semantic relation discovery. Each

1Formally, for each complex concept D in the ontology O, there is a concept name C in
NC and a concept definition C

.
= D in the TBox .
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entailment process of the Algorithms 5.1 and 5.2 can be performed with well-
known DL reasoners. In the first step, we check if D subsumes C. It corresponds
to the case when R equals the empty sequence in Definition 17. Step 2 builds
the relation matrix associated to the ontology. The matrix rows and columns
are the concept names of the given ontology, C in NC , while the cross points
contain the role names, R in NR, which satisfy conditions 1 and 2 of Definition
16, between the corresponding concepts. In other words, the relation matrix
contains all the simple semantic relations between pairs of concepts. Actually,
they are all the possible candidates, since we have not performed the check of
consistency yet. Further details will be provided in Algorithm 5.2.

Steps 4–6 compute the “shortest” semantic relation (i.e. R with the mini-
mum number of elements) between the two input concepts. In particular, step 4
builds a finite oriented graph, 〈N, E〉, according to the relation matrix. Nodes,
n in N , represent concept names, i.e. the relation matrix rows (and columns),
and arcs, e in E, the simple semantic relations between the concepts associated
to nodes. Note that for each pair of nodes, we can have either no links, if the
corresponding concepts do not have any candidate to relate them semantically
(i.e. the matrix cross point is empty), or one link, if the corresponding concepts
do have some candidates (i.e. the matrix cross point contains one or more ele-
ments). We assume that each graph edge has the same cost (weight) and we do
not differentiate the possible different relations which connect the same pair of
concepts2. The next-shortest-path function returns the “shortest” relation
between the input concepts, if any, while the consistency–check procedure
checks the consistency of the ontology once added the relation derived. If the
relation affects the consistency of the ontology, we search the next “shortest”
relation. Thus, the next-shortest-path function will have to take care of the
previously returned relation in order to identify the next shortest one. Finally,
we return null if no semantic relation between the input concepts can be found
in the given ontology O (step 5).

In Algorithm 5.2, we analyze the relation–matrix function in detail. The
ACN and the ARN array variables contain all the concept names and all the
role names of the input ontology, respectively. Step 1 builds a matrix whose
rows and columns represent the elements of ACN . Steps 2–8 fill the matrix.
For each row and column, i.e. for each pair of atomic concepts, we search the
roles which are candidates for connecting them semantically. Steps 5 and 7
correspond to conditions 1 and 2 of Definition 16. Note that step 7 requires two
more iterations over the content of the ACN array in order to check both the
presence of the A element and the lack of an element like B. Finally, steps 6
and 8 add those roles which satisfy the conditions (i.e. they are candidates for
being simple semantic relations) to the corresponding matrix cross point.

2This is object of studies in the next future.
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Algorithm 5.2 relation–matrix(O)
. ontology: O

VarDeclarations

relation matrix: MR

array of concept names: ACN

array of role names: ARN

1 MR ← array[card(ACN )][card(ACN )];
2 for each row rw in MR do

3 for each column cm in MR do

4 for each role R in ARN do

5 if (O |= ACN [rw] v ∃R.ACN [cm])
6 MR[rw][cm] = MR[rw][cm] ∪ {R};
7 if (exists A ∈ ACN (O |= ACN [rw] v ∃R.A and O |= ACN [cm] @ A

and not exists B ∈ ACN (O |= ACN [rw] v ∃R.B and O |= B @

A)))
8 MR[rw][cm] = MR[rw][cm] ∪ {R};
9 Return MR;

5.4 Some theoretical remarks

We believe that ontology reasoning in the field of semantic explicitation must be
performed in open world assumption because we cannot assume that practical
ontologies contain all the possible knowledge about the world. Thus, we must
consider the possibility that something which is not asserted in the knowledge
base is true anyhow. This necessary assumption makes a concept as C u ∃R.D

satisfiable most of the times, for any C, D and R in the ontology. In fact, in order
to make the concept unsatisfiable, it should be explicitly stated, in some way,
that C v ∀R.¬D (assumed that C and D are satisfiable). However, we cannot
allow that each role is considered as a candidate for semantically relating any
pair of concepts (thus making it an actual semantic relation most of the times,
given the above consideration). This would make the work of relation extraction
dummy because we would not employ the knowledge contained in the ontology
effectively. Instead, our goal is to extract relations with respect to which the
ontology tells something which is not tautological. This is the difference between
relevant and non–relevant relations as far as our methodology considers them.
Relevant relations are the previously named necessary and possible, while the
non–relevant are called tautological. This section presents the difference among
these three types of relations from an ontological point of view.

Necessary relations are those which can be inferred from the ontology as in
the following examples:

• TBox1 = {E v ∃R.D, C v E} |= C v ∃R.D;

• TBox2 = {C v ∃R.E, E v D} |= C v ∃R.D.

The evidence of the reasons supporting the inference can be achieved by
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considering number restrictions in Description Logic. Consider the following
two knowledge bases in a DL with qualified number restrictions. They represent
the extension of the previous examples with cardinalities (n > 0, m is not
constrained):

• TBox′1 = {E v (≥ nR.D u ≤ mR.D), C v E};

• TBox′2 = {C v (≥ nR.E u ≤ mR.E), E v D}.

Inferential reasoning leads to the following conclusions:

• TBox′1 |= C v (≥ nR.D u ≤ mR.D);

• TBox′2 |= C v (≥ nR.D).

Both the minimum and the maximum cardinalities are inherited by the in-
ferred relation in the former case. In the latter case, nothing can be deduced
about the maximum cardinality. The inheritance of the minimum cardinality
represents the common feature of the two examples and the implicit reason
which validates the inference in the case of lack of number restrictions.

We consider this type of relation between C and D as necessary and it is con-
sidered in the first condition of Definition 16. It defines R as a simple semantic
relation between C and D, if all the instances of C must be R–antecedents with
respect to an instance of D, for any model of the given ontology. In other words,
it captures all those relations which are required to occur for each instance of
the source concept C and whose range is represented by an element of the target
concept D. These relations can be directly inferred from the knowledge base
(necessary relations).

Now consider two more examples about inferential reasoning (similarly to
what introduced in Section 5.2, we use C @ D to denote that C v D and
C u D v ⊥):

• TBox3 = {C v ∃R.E, D @ E} |= C ? D;

• TBox4 = {E v ∃R.D, E @ C} |= C ? D.

In both cases, we cannot deduce any kind of relation between C and D.
Now, consider their extension with qualified number restrictions (n > 0, m is
not constrained):

• TBox′3 = {C v (≥ nR.E u ≤ mR.E), D @ E};

• TBox′4 = {E v (≥ nR.D u ≤ mR.D), E @ C};

Inferential reasoning leads to the following conclusions:

• TBox′3 |= C v (≥ 0R.D u ≤ mR.D);

• TBox′4 |= C v (≥ 0R.D);
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The inference about the relation between C and D in the latter case is tau-
tological, i.e. the minimum cardinality is 0 and the maximum cardinality is
unlimited. This means that in any model of the ontology, an instance of C

could have no R-subsequents of the type of D or an unlimited number, that says
nothing (we are reasoning in open world assumption). On the contrary, the
relation inherits the maximum cardinality in the former case. The minimum
cardinality set to 0 prevents from inferring the presence of the relation if car-
dinalities are not considered (i.e. the relation is not necessary), however what
has been deduced is not tautological because of the inheritance of the maximum
cardinality.

We do not consider tautological relations because it is as if the ontology did
not say anything (i.e. we would find such relations for any pair of concepts
unless explicitly forbidden as explained at the beginning of the section), while
we identify a possible relation in those cases where the maximum cardinality is
preserved (although the minimum is set to 0). The second condition of Definition
16 approximates these cases.

More complex situations must be dealt with when considering different sub-
sumees of the same concept, one of which representing the range of an existential
constraint. Consider, for example, the following knowledge base:

TBox5 = {C v ∃R.E, E @ F, D @ F, E u D v ⊥}

According to what we have stated about possible relations, we would be
tempted to consider concepts C and D semantically related by means of R. In
fact, C is inferentially related to F and D is a subset of F. Thus, we may conclude
that a possible relation between C and D exists. Unfortunately, a more careful
analysis denies this conclusion. Intuitively, if R is constrained by minimum and
maximum cardinalities, n and m respectively, the inferred relation between C

and F loses the superior boundary (see the case of TBox2) and the relation
between C and D through F does not result necessary (i.e. minimum cardinality
set to 0). Thus, the final relation is tautological. Condition 2.b of Definition 16
avoids these misunderstandings by requiring that E is the most specific concept
representing the range of the existential constraint for C with respect to the role
R (i.e. there is no concept F such that: O |= C v ∃R.F and O |= F @ E).
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Chapter 6

CtxMatch 2

6.1 Algorithm and data structures

In Chapter 4, we have discussed the semantic method we apply for matching
hierarchical classifications. The methodology is based on the derivation of the
node meaning and on their logical comparison. Since semantic comparison is
simply a matter of reasoning on Description Logic terms, the hardest step is
represented by semantic explicitation. In Section 4.1.4, we have introduced the
macro–steps which are required to perform the process. We have identified the
necessity of (i) analyzing the grammatical structure of natural language strings,
(ii) associating each node with the respective lexicon, (iii) enriching the schema
with the semantic relations which connect the different concepts and (iv) finally
filtering and selecting the most appropriate interpretation for the nodes of the
structure. In this chapter, we discuss the way of effectively executing the single
macro–steps. In some cases, our contribution is only in terms of procedures
(e.g. building of the parse tree, semantic enrichment), while in other cases, we
propose the heuristic criteria we adopt for simulating those steps which humans
usually perform according to their own sensibility and experience (e.g. semantic
filtering, choosing one interpretation).

Before presenting the algorithm details, let us introduce the notion of se-
mantic ACH formally. We have already discussed that the process of meaning
derivation requires a sequence of steps aimed at collecting all the possible se-
mantic information. A semantic ACH is simply a data structure whose purpose
is to store the information collected. The algorithms we describe in this chapter
elaborate the content of the semantic ACH and generate the formalization of
the node interpretations.

We refer to the elements of a node n = 〈Word,Lemma,SynCat,POS,

Senses〉 of a parse tree PL as Word(n), Lemma(n), SynCat(n), POS(n) and
Senses(n), respectively. Moreover, ‘wordLemma’ and ‘wordPOS’ represent the
lemma and the part of speech of the word ‘word’, respectively.
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Definition 18 (Semantic ACH) The semantic labeling of an ACH H = 〈K, E, att, lab〉
is the 5-tuple Hs = 〈H, PT, EACH , EPT , labs〉, where:

1. PT : K → {PL}, is a function which relates each node k ∈ K to a parse
tree, PL;

2. EPT is a set of 3-tuples 〈〈k, nA, sA〉, 〈k, nB, sB〉,R〉, where k ∈ K, nA and
nB are different nodes of PT (k), sA ∈ Senses(nA), sB ∈ Senses(nB) and
R = SRO(sA, sB);

3. EACH is a set of 3-tuples 〈〈kA, nA, sA〉, 〈kB, nB, sB〉,R〉, where kA and kB

are different nodes of H, nA and nB are nodes of PT (kA) and PT (kB),
respectively, sA ∈ Senses(nA), sB ∈ Senses(nB) and R = SRO(sA, sB);

4. labs : K → C, is a function that relates each node k ∈ K to a concept of
the ontology O.

The resulting structure, Hs, is called semantic ACH.

PT associates each node of an ACH to a parse tree representing the gram-
matical structure of the node and storing the lexicon of its elements with respect
to a lexicon function, L. EPT is a set of ontological relations connecting the
different elements of the same node. Similarly, EACH is a set of relations con-
necting the different nodes of the ACH. Finally, labs represents the result of the
semantic explicitation process, i.e. the interpretation we have assigned to each
node k of the structure, i.e. I(k).

Next sections describe the procedures which add semantic information to the
ACH and elaborate its content. Section 6.2 describes the mechanisms to define
the PT function, Section 6.3 those to enrich the ACH with semantic relations
(i.e. defines EPT and EACH) and Section 6.4 presents the heuristic criteria and
the algorithm to filter those concepts which do not fit in the context. Section
6.5 further discards concepts and relations in order to select a unequivocal in-
terpretation. Finally, Section 6.6 builds the concept term describing the content
of the ACH nodes by defining the labs function.

6.2 Parse tree building

The first step in semantic explicitation is to analyze labels and attributes in
order to identify the corresponding constituents (e.g. single– and multi–words)
and the grammatical dependencies existing between such elements. This is a
common problem in the field of NLP as already claimed in Section 4.1.1. The
parsing of natural language strings leads to the building of a parse tree (see
Definition 15) representing the grammatical structure of the phrase, identifying
the grammatical nature of its elements and associating each of them with the
corresponding lexicon.

In this section, we describe how parse trees can be composed, i.e. we present
the function parse–tree of Algorithm 4.1. In particular, we rely on existing
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functions in the field of NLP both to perform the grammatical analysis of the
labels (and attributes) and to add lexical information to the elements of a parse
tree. We refer to such functions as nlp–parsing. Note that we also assume that
a nlp–parsing function is able to recognize and deal with acronyms, abbrevia-
tions, compact notations and all those expressions which are commonly used in
labels. Our contribution is to include the node attributes as part of a parse tree,
since they can be considered as modifiers of the concept expressed by the node
label. Actually, attribute fillers (i.e. F ) are modifiers of the node subject(s),
whereas attribute names (i.e. id) represent the semantic relation connecting the
node concept to the attribute filler. Thus, we append attribute fillers to the
parse tree structure as children of the label subject(s) (i.e. parse tree elements
whose synctactical category is set to Head) and we add attribute names to the
set of semantic relations (i.e. EPT ). Unfortunately, attribute names are natural
language strings, therefore we do not know their actual meaning in the current
context. In other words, we would need a process of word sense disambiguation
for them, too. In this version of the algorithm, we simply refer to them as the
disjunction of all their possible meanings.

We now analyze in detail the function parse–tree of Algorithm 6.1. It takes
an ACH, H = 〈K, E, att, lab〉, and returns a semantic ACH, Hs = 〈H, PT, EACH , EPT , labs〉,
where EACH , EPT and labs are undefined. Its goal is to build the PT function,
i.e. to associate each node of H to a parse tree.

The same set of operations (steps 2–19) is repeated independently for each
node of the input ACH structure. Step 2 parses the label, lab(k), of a node k

and builds a parse tree object. Note that the root of a parse tree can be also a
virtual node @. The symbol @ is used when the phrase contains more than one
subject. In that case, all the subjects are identified as children of the virtual
node. Actually, we will also use the node @ to introduce sub–trees representing
attributes. The cause will be clearer in Section 6.6, where we will present the
symbol semantics. Steps 3–19 aim at including into the parse tree of a node its
attributes a = 〈id, F 〉. Step 5 sets the variable R (i.e. the semantic relation
between the label subject and the attribute filler) to the disjunction of all the
possible meanings of the attribute name, id. We assume that the attribute
name is a string which can be directly mapped onto ontological concepts, i.e.
it is a lexicon entry. This guarantees that no further parsing is required for
the id string, except for the recognition of its lemma and its part of speech,
idLemma and idPOS, respectively. Step 6 creates the virtual node, @, which is
used to precede any attribute and which will be finally appended to the parse
tree headers in step 16. Steps 7–15 build the tree structure representing the
attribute a. It will be then appended to the virtual node @ (see steps 9 and
14). Steps 8–10 and 12–15 represent the different algorithm behaviour according
to the possible values of the attribute filler F , namely ∅, Ff and Fr. In case
F = ∅, we assume it represents the ontological top concept > (i.e. the attribute
value can be of any type). Thus, we create a node corresponding to the top
concept (step 8) and we semantically link it to the virtual node (step 10) by
means of the relation R. Note that the syntactical category (SynCat) of the
attributes must be always set to Mod because they always represent modifiers
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Algorithm 6.1 parse–tree (H)
. ACH: H = 〈K, E, att, lab〉

VarDeclarations

semantic ACH: Hs = 〈H, PT, EACH , EPT , labs〉
parse tree: PL = 〈N, G〉
semantic relation: R

parse tree node: v

1 for each node k ∈ K do

2 PL←nlp–parsing(lab(k));
3 for each node n ∈ N where SynCat(n) = Head do

4 for each attribute a = 〈id, F 〉 ∈ att(k) do

5 R←〈tC∈LO(idLemma,idPOS)C}〉;
6 m←@;
7 if (F = ∅) then

8 v←〈 , ,Mod, , {>}〉;
9 PL←APPEND(m,v);
10 EPT = EPT ∪ {〈@, 〈k, v,>〉,R〉};
11 else

12 for each f ∈ Ff (or f = Fr) do

13 v←nlp–parsing(f);
14 PL←APPEND(m,v);
15 for each sv ∈ Senses(v) do EPT = EPT ∪

{〈@, 〈k, v, sv〉,R〉};
16 PL←APPEND(n,m);
17 for each sn ∈ Senses(n) do

18 EPT = EPT ∪ {〈〈k, n, sn〉, @,R〉};
19 PT (k)←PL;
20 Return Hs;
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W vacation
L vacation
SC Head

PS Noun

S
Vacation#1

Vacation#2

@

W country
L country
SC Mod

PS Noun

S Country#1

Figure 6.1: Parse tree of Vacations

of the label subject(s). The cases F = Ff and F = Fr are managed in the same
way, since Ff is a set of strings and Fr, which is a string, can be considered
a single–element set. In step 13, we create a node for each element f of this
set. The node is the result of the parsing procedure applied to the element.
Note that f could be a string of any complexity (e.g. ‘Republican countries and
nations’), thus the result of the parsing of a filler is a parse tree rooted at v.
For the sake of simplicity, we assume that it is a single–node structure, however,
the extension to the general case is quite immediate. In step 15, we enrich the
set of the parse tree relations, EPT , with the links between the virtual node @
and all the possible senses of f . Note that if F = Fr, the procedure results in a
single iteration of the cycle at step 12. Once we have created the tree rooted at
@ representing the attribute a, we append it to the existing parse tree structure
(step 16). In step 18, we add the relation R from all the senses of the subject
n of the node label to the virtual node (preceding the attribute). Note that at
this step, we do not know not only the meaning which an attribute name refers
to, but also the concept which is represented by the subject of the ACH node
and by the attribute filler. Hence, we link any sense of the subject(s) to any
sense of the filler element(s) by means of the node @. Finally, step 20 returns
the semantic ACH with the PT function defined.

Example 8 Consider the node Vacations, k, of the ACH in Figure 2.1. The
resulting parse tree is represented in Figure 6.1. Two elements have been iden-
tified: the node which refers to the label ‘vacations’ and the node which refers to
the filler ‘country’. ‘Vacation’ is both the word and the lemma, it is the header
of the label and a noun. Moreover, we relate it to the two concepts Vacation#1
and Vacation#2. The ACH node has one attribute, a = 〈location, Country〉.
We link the corresponding node to the parse tree header by means of the virtual
node @ and we set its syntactical category to Mod. Finally, given the lexicon,
location#1, of the attribute name ‘location’, we enrich the EPT set with three
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W insurance
L insurance
SC Head

PS Noun
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L baggage
SC Head
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Baggage#1
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W lost
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SC Mod

PS Adj

S Lost#1

Figure 6.2: Parse tree of Insurance and lost baggage

triples representing the semantic relation from the node label to the attribute
filler, namely, 〈〈k, n, Vacation#1〉, @, location#1〉, 〈〈k, n, Vacation#2〉, @, location#1〉,
〈@, 〈k, m, Country#1〉, location#1〉, where n is the parse tree element which
refers to ‘vacation’ and m to ‘country’.

Example 9 In this example, we consider the node Insurance and lost baggage
of Figure 2.1. The resulting parse tree is depicted in Figure 6.2. It has no at-
tributes but two headers and a modifier. The headers are respectively ‘insurance’
and ‘baggage’ which are rooted at @. The adjective ‘lost’ generates one more
parse tree node: it is a modifier and we can identify the word it refers to by
means of the tree structure: ‘baggage’.

6.3 Semantic enrichment

The research of the semantic relations between the elements of an ACH is the
major enhancement that our methodology introduces with respect to traditional
techniques of matching. Indeed, we propose both to disambiguate and to build
the interpretation of a node in the structure by finding and using the semantic
relations between those concepts which are contextually involved in the node
meaning. In particular, we search semantic relations (i) between the elements
belonging to the grammatical structure of an ACH node (i.e. local semantic
enrichment) and (ii) between the concepts which are associated to the ACH
nodes (i.e. global semantic enrichment). With respect to local enrichment, we
intuitively need to discover relations between words in labels and attributes in
order to make the meaning of natural language strings explicit. Consider, for ex-
ample, the following part of the label of the node Insurance and lost baggage:
‘lost baggage’. We know that ‘lost’ is an adjective for ‘baggage’ but we are also
interested in realizing how the adjective specifies the corresponding noun. In
this case, we could deduce that ‘lost’ represents the state of the baggage, as
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Algorithm 6.2 local–semantic-enrichment(Hs, k)
. semantic ACH: Hs = 〈H, PT, EACH , EPT , labs〉

. Node: k ∈ H

VarDeclarations

parse tree: PL = 〈N, G〉
semantic relation: R

1 PL←PT (k)
2 for each pair m, n ∈ G where n =CHILD (m)
3 for each pair sm ∈ Senses(m), sn ∈ Senses(n)
4 R ← SRO(sm, sn);
5 if (R != null)
6 EPT ← EPT ∪ {〈〈k, m, sm〉, 〈k, n, sn〉,R〉};
7 Return Hs

Algorithm 6.3 global–semantic-enrichment(Hs)
. semantic ACH: Hs = 〈H, PT, EACH , EPT , labs〉

VarDeclarations

semantic relation: R

1 for each pair k, k′ ∈ E

2 for each pair m ∈ PT (k), n ∈ PT (k′) (SynCat(m) = SynCat(n) =
Head)

3 for each pair sm ∈ Senses(m), sn ∈ Senses(n)
4 R ← SRO(sm, sn);
5 if (R != null)
6 EACH ← EACH ∪ {〈〈k, m, sm〉, 〈k

′, n, sn〉,R〉};
7 Return Hs

well as we could say that ‘large’ represents its size, if we had a label like ‘large
baggage’. Moreover (considering the global enrichment), the meaning of a node
in an ACH depends on its context, thus its semantic relation with the corre-
sponding ancestors is fundamental for its interpretation as pointed out since the
first lines of our dissertation.

Semantic enrichment is supported by the SRO function which returns the
most probable semantic relation between two concepts with respect to an on-
tology O.

local–semantic–enrichment in Algorithm 6.2 takes a semantic ACH,
Hs = 〈H, PT, EACH , EPT , labs〉, and a node k ∈ H, as inputs whereas global–
semantic–enrichment in Algorithm 6.3 takes the semantic ACH structure
only. The former function fills the EPT set with the relations between the
elements of the node k, while the latter searches the inter–node relations, i.e.
the elements of the EACH set. The two procedures are actually very similar.

In both cases, the structures on which semantic enrichment works are trees:
the parse tree of a node in local semantic enrichment and the input ACH in
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global semantic enrichment. Step 2 in Algorithm 6.2 corresponds to step 1 in
Algorithm 6.3. Indeed, step 2 triggers a cyclic repetition applied to each node
pair of the parse tree, while step 1 does the same for each node pair of the ACH.
In this version of the algorithm, we only search relations between nodes on the
same path1: of the parse tree in one case, i.e. m, n ∈ G, and of the ACH in
the other one, i.e. k, k′ ∈ E. The main difference between the two algorithms
can be identified in the code where n=CHILD(m) of step 2 of Algorithm 6.2. In
parse trees, the structure suggests the entities between which the relation must
be searched. Indeed, the edges of the structure start from a subject and point
to its modifier(s) and analogously, semantic relations are directional: from the
relation subject to the object. Therefore, we can seek only the relations from
a node to its children which are all and only the modifiers of that node (given
the way parse trees are built). The same does not hold for global enrichment
where we must also search relations from a node to its ancestors and between
nodes at any distance. Step 2 of Algorithm 6.3 selects the header nodes of the
parse trees of the ACH nodes we are analysing. In fact, we are only interested
in relating the subjects of different nodes since modifiers can only refer to an
element of the corresponding ACH node. Steps 3–6 of both algorithms extract
the relations between each pair of senses of the nodes selected and, if any, they
add it to the corresponding set: EPT in local enrichment and EACH in global
enrichment. The nodes selected are two different nodes of the same parse tree
in the former case and two headers of two different nodes of the ACH in the
latter. Note that if one of the two nodes is a virtual node @, the algorithm
does not perform the usual process: if @ represents the parse tree root, there
is no point in searching relations from @ to its children, while if @ introduces
an attribute we do not have to link it to any other concept since the semantic
relation from the label subject(s) to the attributes have already been identified
and considered in the function parse–tree. Finally, step 7 in both algorithms
returns the semantic ACH where either the EPT set or the EACH set have been
defined.

Example 10 Consider the node Insurance and lost baggage of the ACH in
Figure 2.1 and its context Vacations. The tree structure in Figure 6.3 is a
partial representation of the corresponding semantic ACH.

The research of elements of EPT concerning the node Vacations does not
give any result because the corresponding parse tree has only one node which
does not represent an attribute: the concept Country#1 is an attribute filler,
thus its relation with the header is already identified by the attribute name. In-
stead, the relations in Insurance and lost baggage are not explicit. Suppose
that local semantic enrichment finds the relation R = {state#3} between the
concept Baggage#1 and the concept Lost#1. Note that the relation is found
between a node (i.e. the one which refers to the concept Baggage#1) and its

1Future work will investigate the possibility of enhancing the algorithm performances by
considering relations between non–directly dependent nodes (i.e. nodes which do not belong
to the same path). In the case of ACH trees this corresponds to the extension of the concept
of context.
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Figure 6.3: Part of the semantic ACH associated to the context of Insurance
and lost baggage
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child (i.e. the one which refers to the concept Lost#1). Global semantic en-
richment searches relations between the headers of the two parse trees, i.e. be-
tween the senses of ‘vacation’ and those of ‘insurance’ and ‘baggage’. We sup-
pose that SRO returns a non-null element for the concepts Insurance#1 and
Vacation#1, R’ = {about#1}, and between Vacation#1 and Insurance#1,
R” = {organizedBy#1}. R′ and R′′ are then added to the EACH set.

6.4 Semantic filtering

Semantic filtering is the opposite process compared to semantic enrichment.
Summing up: (i) parse–tree has associated each element (i.e. lexicon entry)
to all the corresponding concepts, (ii) semantic–enrichment has detected all
the possible relations between them, (iii) semantic filtering aims at filtering both
of them. The presence of many concepts for the same word and the presence
of many possible semantic relations are a source of ambiguity to determine the
meaning of the nodes. At this step, the semantic ACH contains all the informa-
tion we need to make the semantics of the nodes explicit but unfortunately we
can interpret them in many different ways. The goal of semantic filtering is to
disambiguate the sense of words similarly to how human beings do by examining
the context.

The criteria for filtering the possible meanings are heuristic and their choice
and definition strongly influence the algorithm performances. Let us suppose we
have collected all the information which is necessary to establish the meaning
of the structure (it is a matter of linguistic resources and ontology selection in
the functions parse–tree and semantic-enrichment), we may achieve the
maximum recall by providing all the possible interpretations for each node but
we would lack precision. Therefore, we must reduce the ambiguity in order to
balance the two performance indexes. The heuristic criteria we adopt are based
on the intuitive assumption that the most likely meaning of a word is the one
which best fits in its own context.

We apply two different methodologies which are respectively based on the
two following intuitions:

Semantic rule: suppose we have a natural language word, w, which is associ-
ated to more than one concept (i.e. possible meanings). We assume that
the right meaning of w is one of those which are semantically related to
some other elements of the context. In other words, we trust the phase of
semantic enrichment and we only keep the word interpretations which are
linked to the rest of the context.

Subsumption rule: suppose we have a natural language word, w, which is
associated to more than one concept and suppose that one of them, C

in the lexicon of w, is related by an IsA or PartOf relation with another
element of the context. Hence, we assume that C is the right meaning of
w. In other words, we are biased towards structures which are based on
IsA and PartOf relations.
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Algorithm 6.4 local–semantic–filtering(Hs, k)
. semantic ACH: Hs = 〈H, PT, EACH , EPT , labs〉

. node: k ∈ H

VarDeclarations

parse tree PL = 〈N, G〉

1 PL ← PT (k)
2 for each n ∈ N

3 for each s ∈ Senses(n)
4 if (¬∃e (e = ePT

〈k,n,s〉↔ ) u ∃s′ ∃e (e = ePT
〈k,n,s′〉↔))

5 remove s from Senses(n) and each e = e〈k,n,s〉↔ ;

6 if (∀e (e = ePT
〈k,n,s〉↔ ⇒ (Re 6= IsA u Re 6= PartOf)) u

7 ∃s′∃e (e = ePT
〈k,n,s′〉↔ u (Re = IsA tRe = PartOf)))

8 remove s from Senses(n) and each e = e〈k,n,s〉↔ ;
9 Return Hs

Note that such criteria do not fully solve the ambiguity because each of them
continues considering all the concepts which satisfy its conditions and does not
discard any meaning if no element satisfies them.

We distinguish between two phases of semantic filtering: local filtering and
global filtering. The former considers the label and the attributes of a node
independently from the rest of the ACH, whereas the latter takes care of all (or
part of) the structure. Let w be a word of the label or of an attribute of a node
k. Local filtering considers the other elements of the label and of the attributes
of k as context of the disambiguation process of w. Instead, such a context is
represented by the elements of the other nodes of the ACH in global filtering.
Actually, we only consider the nodes in the context of k and the corresponding
headers. Anyway, local and global filtering are based on the same above criteria
and work very similarly.

Local–semantic–filtering in Algorithm 6.4 takes a semantic ACH, Hs =
〈H, PT, EACH , EPT , labs〉 and a node k ∈ H, whereas global–semantic–
filtering in Algorithm 6.5 the ACH structure only. The former filters the
senses of the elements in PT (k) and the corresponding relations in EPT , while
the latter the senses of the headers of the nodes in H and the relations in EACH .

We have introduced a compact notation for the relations in EACH and in
EPT to simplify the reading. e = eACH indicates that e belongs to the EACH

set, while e = ePT indicates that e belongs to the EPT set. If the top index
is not present, e can be an element both of EACH and of EPT . e = e〈k,n,s〉→

means that e has 〈k, n, s〉 as first element of its triple (i.e. the antecedent of this
relation), while e = e〈k,n,s〉← means that e has 〈k, n, s〉 as second element of its
triple (i.e. the subsequent of this relation). e = e〈k,n,s〉↔ is used if 〈k, n, s〉 can
be both the antecedent and the successor of e. Note that if the top index or an
element of the triple in the bottom index are not present, it means that their
value can be any. Finally, Re indicates the third element of a triple in EPT or
EACH , i.e. the semantic relation.
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Algorithm 6.5 global–semantic–filtering(Hs)
. semantic ACH: Hs = 〈H, PT, EACH , EPT , labs〉

1 for each k ∈ H

2 for each n ∈ PT (k) where SynCat(n) = Head

3 for each s ∈ Senses(n)
4 if (¬∃e (e = e〈k,n,s〉↔ ) u ∃s′ ∃e (e = eACH

〈k,n,s′〉↔))
5 remove s from Senses(n) and each e = e〈k,n,s〉↔ ;

6 if (∀e (e = e〈k,n,s〉↔ ⇒ (Re 6= IsA u Re 6= PartOf)) u
7 ∃s′∃e (e = eACH

〈k,n,s′〉↔ u (Re = IsA tRe = PartOf)))
8 remove s from Senses(n) and each e = e〈k,n,s〉↔ ;
9 Return Hs

EP T EACH

〈Vacation#1, @, 〈location#1〉〉 〈Insurance#1, Vacation#1, 〈about#1〉〉
〈Vacation#2, @, 〈location#1〉〉 〈Vacation#1, Insurance#1, 〈organizedBy#1〉〉
〈@, Country#1, 〈location#1〉〉
〈Baggage#1, Lost#1, 〈state#3〉〉

Table 6.1: EPT and EACH sets

The algorithms apply the same rules but with respect to different sets of
relations: EPT in case of local filtering and EACH in case of global filtering.
Algorithm 6.4 focuses on each sense of each node of a given parse tree (steps
1–3), while Algorithm 6.5 on each sense of each header (steps 1–3). Steps 4–
5 and 6–8 of both the algorithms are respectively the semantic rule and the
subsumption rule. Note that semantic–filtering removes a sense s when it
matches the rule conditions both locally and globally in global filtering (steps 4
and 6–7: e = e〈k,n,s〉↔), while it only checks local relations in local filtering (steps
4 and 6–7: e = ePT

〈k,n,s〉↔). When it removes a sense s from the corresponding
set, it also removes all the relations involving it both as antecedent and as
subsequent. Finally, step 9 returns the input semantic ACH with a subset of
the pre–existing senses and relations.

Example 11 Consider the results of the semantic enrichment process of Exam-
ple 10. Figure 6.4 represents part of the current semantic ACH. In particular,
we have highlighted the concepts associated to each parse tree node.

We can summarize the composition of the sets EPT and EACH as in Table
6.1 (we omit the ACH nodes and the parse tree nodes in the triples).

By applying the heuristic rules of filtering for each parse tree (i.e. locally),
we can notice that both the concepts of ‘vacation’ are internally related with
Country#1 through the node @, while only the concept Baggage#1 of ‘baggage’
is related to other elements of the corresponding parse tree. Thus, we only trigger
the semantic rule in the latter case and we remove the concept Baggage#2. No
global rule is triggered. The filtering result is shown in Figure 6.5.
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Figure 6.4: Part of the semantic ACH associated to the context of Insurance
and lost baggage before semantic filtering
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Figure 6.5: Part of the semantic ACH associated to the context of Insurance
and lost baggage after semantic filtering
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Figure 6.6: Part of the semantic ACH associated to the context of Last minute

offers before semantic filtering

EP T EACH

〈Vacation#1, @, 〈location#1〉〉 〈LastMinuteOffer#1, Vacation#1, 〈〉〉
〈Vacation#2, @, 〈location#1〉〉 〈LastMinuteOffer#2, Vacation#1, 〈about#1〉〉
〈@, Country#1, 〈location#1〉〉

Table 6.2: EPT and EACH sets

Example 12 Suppose to consider the node Last minute offers of Figure 2.1
and the corresponding context: Vacations. For the sake of simplicity, we only
consider the attributes of the node Vacations. Suppose that the function parse–
tree works on the node Vacations as described in Section 6.2 and that it
associates the label ‘last minute offers’ to the following two concepts:

1. LastMinuteOffer#1: a vacation proposal which occurs just before the de-
parture date with advantageous economic conditions;

2. LastMinuteOffer#2: an offer of something which occurs just before a
deadline is off.

Moreover, suppose that the function semantic–enrichment has provided
two relations: an IsA from LastMinuteOffer#1 to Vacation#1 and a relation
About#1 from LastMinuteOffer#2 to Vacation#1. Figure 6.6 represents the
concepts associated to each parse tree element.

We can summarize the composition of the sets EPT and EACH as in Table
6.2 (we omit the ACH nodes and the parse tree nodes in the triples).

Heuristic rules applied locally do not alter the composition of the semantic
ACH. Global filtering considers the headers of the parse trees: we can identify
the presence of an IsA relation between LastMinuteOffer#1 and Vacation#1

which makes it so that any other sense of ‘last minute offer’ and ‘vacation’ is
removed for the subsumption rule. Note that this process removes also all the

63



vacation
Vacation#1

@

country
Country#1

last minute offer
LastMinuteOffer#1

Figure 6.7: Part of the semantic ACH associated to the context of Last minute

offers after semantic filtering

relations involving the concepts deleted, i.e. the second relation in EPT and in
EACH . The remaining concepts are shown in Figure 6.7.

6.5 Choosing an interpretation

We have claimed that the process of semantic filtering is not able to fully dis-
ambiguate the meaning of each word in the ACH and the way concepts are
semantically related. Node interpretations can be arbitrarily complex but we
expect that an interpretation of an ACH node (by human beings) is subject to
some widely applied rules. For example, the concept Insurance#1 in Example
11 could be semantically related to the concept Vacation#1 through either the
role about#1 or the inverse of organizedBy#1. Probably, a human will not con-
sider both the possibilities but it will only select one of the two: either ‘insurance
(policy) for vacations’ or ‘vacations organized by an insurance agency’. Since
our goal is to reproduce as accurately as possible the human behaviour, we need
to capture the empirical rules that make a node interpretation unequivocal. In
other words, we aim at identifying all and only the concepts and relations which
are essential for the meaning of a certain node. Such concepts and relations rep-
resent the interpretation of the node though they have not been expressed and
assembled in a DL term yet.

Definition 19 (Node coverage) Let Hk be the context of the node k in the
ACH H and Hs,k = 〈H, PT, EACH , EPT , labs〉 the restriction of the semantic
ACH Hs on Hk. A set E ⊆ {EACH ∪EPT } is said to be a coverage for the node
k, if it satisfies the following conditions (e and e′ represent generic elements of
E):

1. E is acyclic;

64



2. ∀e ∀e′(e = eACH
〈k, , 〉← ∧e′ = eACH

〈k, , 〉← ⇒ (Re = Re′)∧∃k′(e = eACH
〈k′, , 〉→ ∧e′ =

eACH
〈k′, , 〉→));

3. ∀e ∀e′(e = ePT
〈k,n, 〉← ∧ e′ = ePT

〈k,n, 〉← ⇒ Re = Re′);

4. ∀e(e = e〈k,n,s〉→ ⇒ ∃e′(e′ = e〈k,n,s〉←) ∨ ¬∃e′(e′ = e〈k,n, 〉←)).

Condition 1 prevents the semantic relations from being cyclic. Note that
this constraint is applied only to global relations, because local ones, e in EPT ,
are mono–directional (see Algorithm 6.2). Given two ACH nodes, condition
1 avoids, for example, that the corresponding meanings are both subject and
modifier mutually. Condition 2 ensures that there are not two ACH relations,
e in EACH , converging to the same ACH node unless they come from the same
node and they refer to the same semantic relation. Intuitively, it means that
a node can be modifier of another ACH node at most. In this way, we also
prevent two nodes from being related by different semantic relations. Condition
3 is similar to condition 2 but it refers to the local case: a modifier and the
corresponding subject can be linked by one semantic relation at most. Finally,
condition 4 ensures that the meaning of each parse tree element (including
headers) stays consistent. Intuitively, it means that if we have associated a
certain concept to a certain parse tree element (in order to link it with its
subject), we cannot change the element meaning (i.e. choosing another concept)
in order to link the element with its modifier(s). As an example, imagine a parse
tree element containing the word ‘bank’. We cannot choose the sense ‘bank as
credit institute’ to semantically relate it with its subject, and then choose the
sense ‘bank as part of a river’ to relate it with its modifier(s).

Example 13 Consider the node Insurance and lost baggage of Example 11
and the corresponding semantic ACH. A possible coverage (E1) is represented
by the following set of relations:

〈Vacation#1, @, location#1〉
〈@, Country#1, location#1〉
〈Insurance#1, Vacation#1, about#1〉
〈Baggage#1, Lost#1, state#3〉

Another possible coverage (E2) is given by the following set:

〈Vacation#1, @, location#1〉
〈Vacation#2, @, location#1〉
〈@, Country#1, location#1〉
〈Vacation#1, Insurance#1, organizedBy#1〉
〈Baggage#1, Lost#1, state#3〉

They mainly differ for the selection of the semantic relation connecting the
concepts Vacation#1 and Insurance#1. Moreover, in the first case, we cannot
consider the edge 〈Vacation#2, @, location#1〉 because Vacation#2 is not the
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modifier of any other concept and the other sense of ‘vacation’ has such a role
(see condition 4 of Definition 19).

Note that the empty set is a possible coverage (E3), too, since all the condi-
tions are automatically satisfied.

From Definition 19 and from the above example, we can easily deduce that
a set of semantic relations can generate more possible node coverages, i.e. in-
terpretations. Formally, it exists one possible coverage, only if no semantic
relations have been found (i.e. EACH = EPT = ∅). Indeed, if one semantic re-
lation has been found, at least two possible coverages exist, the one considering
no relations at all, and the one considering the relation found.

Let us call Γ ⊆ 2{EACH∪EP T } the set of all the possible coverages of a given
node k. In the following, we propose three heuristics in order to choose one (or
a subset) of them. As a support, we first introduce some further definitions.

Definition 20 (Senses induced by a node coverage) Let Hs,k =
〈H, PT, EACH , EPT , labs〉 be the semantic labeling of the context of a node k

and E ∈ Γ a possible coverage for k. The set of senses induced by E, I(E), is
defined as follows:

I(E) = {s | ∃k ∈ H ∃n ∈ PT (k) (s ∈ Senses(n) ∧ (∃e ∈ E

(e = e〈k,n,s〉↔) ∨ ¬∃e ∈ E(e = e〈k,n, 〉↔)))}

The senses induced by a node coverage are those which are involved as
antecedents or subsequents of its relations. If a parse tree node is neither the
starting point nor the arrival point of any relation, we select all the senses of
that parse tree element.

Definition 21 (Taxonomic relations) Let Hs,k = 〈H, PT, EACH ,

EPT , labs〉 be the semantic labeling of the context of a node k and E ∈ Γ a
possible coverage for k. The set of taxonomic relations in E, T (E), is defined
as follows:

T (E) = {e ∈ E | ∃k ∃k′ ∈ H (e = eACH
〈k, , 〉→ ∧ e = eACH

〈k′, , 〉← ∧

k′ ∈ DESCENDANT (k))}

where DESCENDANT : K → 2K is a function that relates a node k in H to
the set of its descendants with respect to the hierarchy 〈K, E〉.

We define as taxonomic the global relations which have the same direction of
the edges of an ACH structure. The edges of an ACH structure point from a node
to all its children. Intuitively, they are called taxonomic because they consider
a descendant node as a modifier of an its ancestor, therefore a specification of
its concept.

We now present three heuristics to filter the set of possible coverages Γ =
{E1, E2, . . . , En} of a certain node k.

Maximization of semantic relations:

ΓM = {E ∈ Γ | card(E) = max{card(E1), . . . , card(En)}}.
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Minimization of senses:

Γm = {E ∈ Γ | card(I(E)) = min{card(I(E1)), . . . , card(I(En))}}.

Taxonomy biasing:

Γtb = {E ∈ Γ | card(T (E)) = max{card(T (E1)), . . . , card(T (En))}}.

The first rule prefers the coverages with the largest amount of relations.
Intuitively, it selects the interpretations which best connect the concepts in the
structure. The second rule selects the coverages which involve the smallest
number of senses. In other words, it prefers those which best disambiguate the
meaning of the nodes. Since all the senses of a parse tree element are considered
if the element is not related to the rest of the context, the minimization of
the senses generally implies the maximization of the relations and vice versa.
Finally, the third rule prefers the coverages with the largest number of relations
connecting the ACH nodes to their descendants.

Example 14 Let us consider Example 13 and three of the possible coverages of
the node Insurance and lost baggage, namely E1, E2 and E3. The following
table shows the corresponding number of relations, of senses induced and of
taxonomic relations.

card I T

E1 4 5 0
E2 5 6 1

E3 0 6 0

E1 minimizes the number of senses, whereas E2 maximizes both the number
of semantic relations and of taxonomic relations. The final choice of one cov-
erage for the node Insurance and lost baggage depends on the priority which
is assigned to each heuristic.

Algorithm 4.1 uses the function choose–coverage to select one coverage
among those which are allowed by the semantic information available. It takes
a semantic ACH Hs = 〈H, PT, EACH , EPT , labs〉 representing the context (en-
hanced with semantic information) of a given node k and it selects one of the
possible coverages E in Γ, according to one (or more) heuristic criterion (and
possibly randomly). Moreover, it discards all the relations in {EACH ∪ EPT }
which do not belong to the coverage E, and all the senses in PT which are not
induced by E. It finally returns the resulting semantic ACH containing only the
senses and the relations in E.

6.6 Composing the meaning

The previous steps of semantic explicitation have led to gather the essential and
unequivocal information for the interpretation of a given node: a set of senses
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denoting the meaning of each element in the context of the node and a set of re-
lations holding between such concepts. In this section, we intend to express and
formalize the interpretation (represented by a coverage) in Description Logic.

When combining different elements in a logic formula, we need to choose
the way of expressing the intended global concept with the fragment of the DL
framework we are going to consider. As already claimed, we employ the ALCO
fragment for what concerns concept constructors, while the choice about role
constructors depends on the roles returned by the function SRO. Obviously,
the decision is not free from relevant consequences, since it strongly impacts on
the algorithm decidability and efficiency.

In general, we express that the concept M is a modifier of the concept S

through the semantic relation R = 〈R1, R2 . . . , Rn〉 (R 6= ∅) with a DL existential
restriction as follows:

S u ∃R1.∃R2 . . .∃Rn.M

We will use the above expression when linking different elements of the same
ACH node or the concepts which refer to different nodes in the context of the
one we are examining. In case R = 〈R〉 is a single–element set, the term reduces
to:

S u ∃R.M

We express that two concepts S1 and S2 are coordinate (i.e. each of them is
independent from the other) by means of a disjunction term:

S1 t S2

The expression is needed in those cases where node labels have more subjects
(e.g. ‘insurance and lost baggage’) or where attribute fillers are sets of values (i.e.
F = Ff ). In both cases, the alternatives (i.e. different subjects and different
attribute values, respectively) are linked with the disjunction operator.

In Algorithm 6.6, we propose the algorithm to compose the meaning. It
takes the semantic ACH (containing one coverage) referring to a node k and
returns the corresponding node interpretation, i.e. a concept term.

The algorithm has two distinct parts: the former (steps 1–4) builds the
DL terms expressing the local meaning of each node in the context, while the
latter (steps 5 and 6) assembles them and produces the final interpretation.
The local interpretations are generated by the function build–local–meaning
and stored in an array, F , indexed by the nodes. The input of build–local–
meaning is composed by three elements: the parse tree of the current node
k, the corresponding root (see step 3) and the set of relations connecting the
elements of k (see step 2). Step 5 collects in M all the ACH nodes, m, which are
not modifiers of any other node, i.e. they are not subsequents of any relation
in the coverage. Step 6 builds the final term by arranging the DL formulae
representing the context subjects, m (and their modifiers). Note that if the
coverage is a connected graph (all the nodes are related), the context has one
subject only (i.e. the cardinality of M is 1). Thus, we use the conjunction
operator of step 6 only if we have not been able to relate all the nodes in
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Algorithm 6.6 composing–the–meaning(Hs)
. semantic ACH: Hs = 〈H, PT, EACH , EPT , labs〉

VarDeclarations

set of relations: Ek

parse tree node: n

array of DL terms: F

set of ACH nodes: M

DL concept term: t

1 for each node k ∈ H

2 Ek← {e| e = ePT
〈k, , 〉↔};

3 n ← ROOT(PT (k));
4 F (k) = build–local–meaning(PT (k), n, Ek);
5 M ← {k ∈ H | ¬∃e (e = eACH

〈k, , 〉←)};

6 t ←umi∈M build–global–meaning(H, F, mi, EACH);
7 Return t;

the context. In this case, we assume the DL constructor u as default logical
connection between the subjects. For example, consider a node Vacations

representing the concept Vacation and its context Insurance representing the
concept Insurance. Moreover, suppose that a possible coverage for the latter
node does not include any relation between them. In this case, the interpretation
of Vacations would be:

Vacation u Insurance

We now analyze Algorithm 6.7 which builds the meaning of a single ACH
node. The algorithm works in a recursive way by building the term of the input
node and connecting it to the one of its modifiers. The input elements are a
parse tree, a set of relations between its elements and one of its nodes. In steps
1 and 2 we deal with the virtual nodes, @. They are used within a node label
either when it has more headers or to introduce an attribute. In the former
case, the children of @ are the different subjects, while in the latter case they
are the possible attribute values (see the Algorithm 6.1). In both cases, the
children are required to be in disjunction as the following examples show.

Example 15 A label as ‘insurance and baggage’ with two subjects, ‘insurance’
and ‘baggage’, will be interpreted as:

Insurance t Baggage

where Insurance and Baggage are assumed to be two concepts of a given ontology.

Example 16 Let us consider the node Last minute offers of Figure 2.1 and
its attribute price: 〈price, {100$, 500$, 1000$}〉. In order to express the possible
values of the filler, we will write:

{100$} t {500$} t {1000$}
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Algorithm 6.7 build–local–meaning(P, n, E)
. parse tree: P

. parse tree node: n

. set of relations: E

VarDeclarations

DL term: t

array of semantic relations: A

1 if (n = @)

2 Return (tc∈CHILD(n) build–local–meaning (P, c, E));

3 t ← (ts∈Senses(n)s);
4 for each c ∈ CHILD(n)
5 if (∃e ∈ E (e = e〈 ,n, 〉→ ∧ e = e〈 ,c, 〉←))
6 A(c) = Re;
7 else A(c) = R

∗;

8 t ← (t u uc∈CHILD(n)∃A(c). build–local–meaning(P, c, E));
9 Return t;

where {100$}, {500$} and {1000$} are assumed to be nominals of a given on-
tology.

Step 3 produces the DL term of the input node. We combine all its possible
meanings (i.e. those which are induced by the coverage) through the disjunction
operator. Actually, we have more concepts in disjunction only if we have not
been able to fully disambiguate the meaning of the parse tree element. Steps
4–7 identify the semantic relation holding between the current node and its
children (i.e. its modifiers) and store it in the array A (step 6). Note that from
Definition 19, if more than one relation exists between the same elements, e.g.
e1 and e2, they must refer to the same semantic relation, i.e. Re1

= Re2
. When

we cannot identify a relation between an element and one of its modifiers, we
apply a special role, R∗, whose purpose is to be a placeholder for maintaining
the dependency between the two elements according to the parse tree structure2.
Step 8 connects the DL term of the current node with those of its modifiers by
means of the previously set semantic relations. A(c) = R = 〈R1, R2, . . . , Rn〉
is actually expanded as follows3 (see the discussion at the beginning of the
section): R1.∃R2 . . .∃Rn. Finally, note that all the modifiers are in conjunction
one with each other.

Example 17 Suppose that in Example 14, we prefer the coverage which maxi-
mizes the number of senses induced: E1. The function build–local–meaning

2In semantic comparison, its semantics will be any relation. For example, consider the
following three terms: (t1) Cu ∃R.D, (t2) Cu ∃R1.∃R2.D and (t3) Cu ∃R∗.D. In this case, we
would assert that t3 = t1 and t2 = t1 but not necessarily t1 = t2.

3If R = 〈〉, it represents the relation IsA. In this case, we simply connect the two concepts
by means of the conjunction operator. For example, given two (complex) concepts C and D,
we return C u D.
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Algorithm 6.8 build–global–meaning(H, F, k, E)
. ACH: H = 〈K, E, att, lab〉

. array of DL terms: F

. ACH node: k

. set of relations: E

VarDeclarations

set of ACH nodes: C

relation: ek→c

array of semantic relations: A

DL term: t

1 C←{c ∈ K | ∃e ∈ E (e = e〈k, , 〉→ ∧ e = e〈c, , 〉←)};
2 for each c ∈ C

3 ek→c← e ∈ E (e = e〈k, , 〉→ ∧ e = e〈c, , 〉←);
4 A(c)←Rek→c

;

5 t ← (F (k) u uc∈C∃A(c).build–global–meaning(H, F, c, E));
6 Return t;

returns the following DL term for the node Vacations:

Vacation#1 u ∃location#1.Country#1

For the header ‘insurance’ of the node Insurance and lost baggage, it re-
turns:

Insurance#1

Whereas the DL term associated to the header ‘baggage’ is:

Baggage#1 u ∃state#3.Lost#1

Finally, step 2 connects these two headers through the disjunction operator:

(Insurance#1) t (Baggage#1 u ∃state#3.lost#1)

Finally, we present build–global–meaning in Algorithm 6.8. Its goal is
to connect the meaning of the nodes in the context to build the contextual
interpretation of a given element.

Algorithm 6.8 takes a set of relations, E, through which contextual nodes are
connected. Furthermore, it is provided with the DL terms, F , representing the
local interpretation of each of these nodes. The process is recursive: given a node
k as input, the algorithm combines its term, F (k), with the one of its modifiers
(step 5). Step 1 identifies all the modifiers of the current node according to the
coverage E, whereas steps 2–4 store the corresponding semantic relation in the
array A. The way of treating A(c) is the same as in build–local–meaning.
Step 6 returns the resulting complex concept. Note that the procedure is very
similar to Algorithm 6.7.
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Example 18 With reference to the coverage E1 of Example 14 and to the local
interpretations of Example 17, build–global–meaning combines the meaning
of the nodes Vacations and Insurance and lost baggage as follows:

((Insurance#1) t (Baggage#1 u ∃state#3.lost#1)) u
∃about#1.(Vacation#1 u ∃location#1.Country#1)

It represents the formalization in Description Logic of the coverage E1, i.e.
the node interpretation of Insurance and lost baggage contextualized with the
node Vacations.
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Chapter 7

Implementation

7.1 Process flow and technologies

One of the main goals of our investigations was the development of a schema
matching system based on a semantic method. Our intent was the evaluation
of the algorithm precision in computing the meaning of the schema elements
compared to the previous version, CtxMatch, and the comparison with the
results of traditional methodologies for schema matching. Hence, we have im-
plemented a prototypal application for the experimentation of our theories on
simple test cases, whereas the development of a full–featured system for perfor-
mance comparison represents the work of the next future.

In this section, we analyze the whole process of schema matching, focusing
on the system components and on the corresponding interactions. We will
explain the technologies we have employed for their realization and the external
resources which support the system. In the next section, we will deal in detail
with some aspects which depend on the implementation technology adopted.

We can identify two main components in the architecture of the system.
They correspond to the two basic steps of semantic methods: semantic explici-
tation and semantic comparison.

We start by analyzing the first component. Figure 7.1 shows the correspond-
ing process flow. The first process is the context extractor which corresponds to
the function context in Algorithm 4.1. It works on the input ACH which we
implement as an XML document. The browsing and the processing of the tree
structure of the ACH is performed with the help of the Saxon technology by
Michael Kay [12]. While working on a Java application, it can be accessed from
it by using the standard JAXP API. The context of the node in exam is then
passed to the process of tree parsing (corresponding to the function parse tree
in Algorithm 4.1), which parses the labels and the attributes of the nodes. We
use MiniPar [6], a broad–coverage parser for the English language, as default tree
parser (it corresponds to the function nlp–parsing in Algorithm 6.1). The next
step is the lexical enrichment of parse trees, i.e. the association of each word (or
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Figure 7.1: Semantic explicitation processes and interaction with external re-
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multi–word) with the corresponding lexicon. We use the WordNet dictionary
[16] as lexicon function (see Definition 14). Semantic explicitation continues by
enriching the ACH with semantic relations and by filtering the possible word
senses. Semantic enrichment and semantic filtering are first performed locally
(i.e. independently from the contextual nodes) and then globally. The extrac-
tion of semantic relations from existing ontologies is executed by the component
SR. It corresponds to the homonymous function (see Definition 13) and it has
been implemented according to the algorithm proposed in Section 5.3 (see the
next section for implementation details). It derives semantic relations between
ontological concepts by interacting with RACER [11] (or Pellet [10]), a Descrip-
tion Logic reasoning system by Volker Haarslev and Ralf Mller. We use OWL
DL [15] (or equivalent languages, e.g. DAML, RACER language) ontologies as
supporting knowledge bases. However, they present one main drawback: con-
cepts and roles in ontologies are usually expressed as strings of natural language,
whereas WordNet returns senses. Thus, passing from WordNet synsets to
ontological concepts (and roles) and vice versa is not trivial1. At the current
time, we have solved the problem by simply tagging the ontologies of interest
with WordNet senses, manually. This problem does not exist if we directly
use the knowledge contained in WordNet. Thus, for practical purposes, we
have also used the linguistic relations which WordNet makes available (e.g.
hypernymy, hyponymy, meronymy, holonymy) by assigning an ontological value
to them2. So, for example, hyponymy has been mapped onto the IsA semantic
relation, holonymy onto the PartOf relation, etc.

The process of semantic explicitation ends by choosing one possible coverage
for the node in exam and by representing it through the process composing the
meaning.

We point out that those processes which are depicted in grey in Figure 7.1
work in a global perspective with the aim of contextualizing the local meaning
of the node in exam. These also represent those steps which must be performed
independently for each node we need to interpret. On the contrary, white boxes
are processes acting locally, i.e. node by node, thus they can be computed all
in one batch for each node of the ACH and then be re–used in the semantic
explicitation of any schema element. Finally, Figure 7.1 presents the main type
of knowledge required by each step of the process on the left.

The second main component of the schema matching system is semantic
comparison whose goal is to compute the semantic relation existing between
two (or a set of) DL concept terms. Figure 7.2 presents an overall view of the
system with particular emphasis on this component (in grey color). Its input
is a pair of DL concept terms. Each term is the result of the computation
performed by some semantic explicitation process. We can imagine that XML1
and XML2 in Figure 7.2 are two independent schemas (sited at any geographical
distance) and each process of semantic explicitation produces the corresponding
interpretation. Note that the external resources (e.g. lexicon, knowledge bases)

1We discuss this problem and the possible ways of solving it in Chapter 9.
2See Chapter 9 for a more formal discussion about this issue.
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which each process uses are not required to be the same (e.g. each party can
employ its own background knowledge). The component semantic comparison
compares the results of the two mentioned processes and identifies the logical
relation between the terms. It is based on DL inferential procedures (see Section
4.2.3), thus it needs the support of a DL reasoner interacting with a background
knowledge base. Note that semantic comparison and its external resources
are independent from the processes and the resources which have produced
the interpretation of the two schemas to be matched. The decidability of the
algorithm of semantic comparison is ensured by the employment of ontologies in
OWL DL which return roles guaranteeing the decidability of our logic framework
(see Section 4.2.3).

7.2 Java components

The need to integrate and interact with numerous existing technologies (e.g.
Saxon, RACER, tree parsers) whose implementation or API is in Java represents
the main cause which has led us to the employment of the same technology for
developing our prototypal application.

In this section, we analyse in more detail two specific aspects of the system
architecture: how the semantic ACH data structure has been realized and how
the component SR has been implemented.

The semantic ACH presented in Section 6.1 reproduces the tree structure of
the corresponding ACH and stores the different types of information which are
needed to interpret the schema. It stores (i) the grammatical structure and the
lexicon of the ACH labels (and attributes) in parse trees (see the PT function),
(ii) the semantic relations holding between ACH concepts in EPT and EACH

and (iii) the concept terms expressing the node interpretations in labs.
Figure 7.3 shows the implementation details of the semantic ACH. Let us

focus on the classes Context and ContextElement which realize the structure
of the ACH as a tree. Context represents the ACH. It contains the root node
(represented by the variable root) which in turn is linked to all its children
(represented by the variable children). Each node k of the ACH is implemented
as an object belonging to the class ContextElement. It is provided with a set of
variables as follows:

• an identification number id ;

• the path of the node in the ACH xPath;

• the node label (i.e. lab(k)) label ;

• the identification number of the father fatherId ;

• the link to its children (i.e. E) children;

• the node interpretation (i.e. labs(k)) globalConcept.
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Figure 7.3: Class diagram highlighting the semantic ACH structure
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The link to the children is allowed by means of Java Hash Tables both to
avoid the introduction of an order among them (as in the case of Vectors or
Arrays) and for the sake of an efficient and easy access to the single elements
of the set. Note that in the current implementation, attributes are not contem-
plated yet. The methods of ContextElement are the typical get and set functions
defined for each variable. Each element of the type ContextElement is associ-
ated to the corresponding parse tree (due to the PT function) implemented as
ParseTree. The relation existing between ParseTree and ParseTreeElement is
the same as between Context and ContextElement, i.e. ParseTree represents the
whole parse tree by containing the parse tree root (represented by the variable
root) which in turn is linked to all its children (represented by the variable chil-
dren). Indeed, remember that both ACH and parse trees are organized as trees.
Each parse tree node is implemented as an object of the class ParseTreeElement.
A ParseTreeElement is composed by:

• an identification number id ;

• the word it represents (i.e. Word) word ;

• the word lemma (i.e. Lemma) lemma;

• the word part of speech (i.e. POS) pos;

• the word syntactical category (i.e. SynCat) synCat ;

• the word lexicon (i.e. LO applied to Word) concept ;

• The link to its children children.

Even in this case, the access to the children of the element and to the word
lexicon occurs by means of Hash Tables, and the class methods are the typical
get and set functions.

An important variable of the class ParseTree is headerHS which keeps track
of all the header elements of the parse tree (i.e. the subject(s) of the corre-
sponding label).

Relations in EPT and EACH are represented by the class SemanticRelation.
Each element of such sets is composed by a triple as follows: 〈〈kA, nA, sA〉, 〈kB, nB, sB〉,R〉.
The terms of the relation are mapped 1:1 onto the variables of the class Seman-
ticRelation:

• kA onto sourceNodeId ;

• nA onto sourceParseElementId ;

• sA onto sourceConcept ;

• kB onto targetNodeId ;

• nB onto targetParseElementId ;
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• sB onto targetConcept ;

• R onto semRel.

Note that the semantic relation R is here represented as a string, i.e. the
concatenation of the names of the roles composing R. The relations in EPT are
stored in the Hash Set localAxioms of the class ParseTree, whereas the relations
in EACH in the Hash Set globalAxioms of the class Context.

Context and ParseTree are provided with all those methods implementing
the algorithms of semantic explicitation as presented in Chapter 6. Context
methods work at global level (i.e. with respect to all the contextual nodes),
whereas local operations (i.e. working on a single ACH node) are directly per-
formed by ParseTree. With reference to the process flow described in the pre-
vious section, we can recognize the methods which realize the single processes,
respectively:

• focus in Context extracts the context of a given ACH node;

• parse trees and the corresponding lexicon are automatically built when
defining a new ContextElement (in the class constructor);

• semanticEnrichment in ParseTree performs local semantic enrichment;

• semanticFiltering in ParseTree performs local semantic filtering;

• semanticEnrichment in Context performs global semantic enrichment;

• semanticFiltering in Context performs global semantic filtering;

• extractNodeCoverages and chooseNodeCoverage in Context choose one
node coverage;

• buildLocalFormula in ParseTree builds the concept term expressing the
interpretation of a single ACH node;

• composingMeaning in Context builds the concept term expressing the con-
textual interpretation of a given ACH node.

All the methods reproduce the corresponding algorithm presented in Chapter
6. For the sake of relevance from an implementation point of view, we point out
that the procedures for building local formulas and for composing contextual
interpretations are recursive algorithms.

We finally present the architecture of the component SR which extracts se-
mantic relations from existing ontologies, i.e. implementing the algorithm of
Section 5.3. Figure 7.4 shows the classes involved. The main class is ExtractRe-
lation. It is fed with an ontology and provides some functionalities to explore
it. It can identify all the concept names (i.e. NC) and the role names (i.e.
NR) by means of the methods getConcepts and getRoles, respectively. The core
method is getSemanticRelation which corresponds to the function SR. It needs
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Figure 7.4: Classes involved in the extraction of semantic relations from ontolo-
gies
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three more classes in order to work properly: Reasoner, RelationMatrix and
DijkstraAlgorithm.

The first class allows to edit and make inference on the given ontology (repre-
sented by the variable Kb) by the interaction with a DL reasoner (e.g. RACER).
The methods addConceptAxiom and isKBConsistent are used to add concept
axioms to the ontology and to check its consistency, respectively. They are
mainly used in step 6 of Algorithm 5.1 in order to check the consistency of the
knowledge base after having derived and stated the possible presence of a certain
semantic relation between two given concepts. Inference is performed by means
of the methods conceptSubsumesQ, conceptSupsumesQ, conceptDisjointQ and
conceptEquivalentQ, which search possible logical relations between two input
concepts as it can be easily imagined by looking at the names of the methods.

Class RelationMatrix represents the homonymous data structure. It is im-
plemented as a matrix of Vectors (represented by the variable relation matrix ),
where each element of a Vector is a candidate for sematically relating the con-
cepts represented by the matrix coordinates of the vector. RelationMatrix em-
ploys Reasoner in order to make inference as largely visible in Algorithm 5.2.
We finally mention the method isNecessaryRelation: it allows to check whether
a certain semantic relation between two given concept is possible or necessary
(see Section 5.2).

Class DijkstraAlgorithm implements the Dijkstra algorithm for calculating
the shortest path between two nodes in an oriented graph. The graph is realized
as a matrix (represented by the variable graph) of integers (i.e. edge costs). Each
step of the algorithm is represented by an object belonging to the class atom.
We finally mention the method getCost which computes the cost of a given path
between two nodes.
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Chapter 8

Running example

In this section, we present one of the simple test cases we have dealt with. In this
thesis we have not been able to perform complex and complete testing since it
would have required a lot of extra–work. The implementation of an architecture
to support intensive testing and to compare performances with other matching
systems will be the object of future work.

One of the main limits of the practical part of the thesis has been the lack of
ontologies being both general (i.e. describing a range of concepts widely shared)
and precise (i.e. rich in information describing and constraining concepts). We
believe that satisfying both requirements is very hard when considering non–
specific domains as our analysis on some of the most popular ontologies (e.g.
SUMO [13], OpenCyc [9], Mikrokosmos [5]) has confirmed. This is the reason
which has led us to focus on specific domains and not on large–scale contexts
like web directories. In specific domains satisfying these requirements is much
simpler and some existing ontologies can effectively do this (see for example the
DAML library [1]). Anyway, we are still far from having a large repository of
well–founded knowledge bases: think for example that at the moment a large
percentage of the ontologies in the DAML library are non–consistent as we have
verified by means of RACER.

We now present our simple example tested on the prototypal architecture.
It allows us to make a first check about the possible results of our methodology
and to make some considerations concerning the use of the system in real cases.

Suppose to match the hierarchical classifications of Figure 8.1. In the fol-
lowing, we will refer to the left structure as H1 and to the right as H2.

First of all, we need to define the knowledge base which supports the process
of semantic explicitation and comparison. We have not found any existing
ontology providing a number of semantic relations between the terms of H1 and
H2 (i.e. being general and precise with respect to the domain of interest). So,
using the OWL DL language, we have created a small knowledge base, which
formalizes concepts and relations in the music domain as in Table 8.1. We are
aware of affecting the reliability of the test by creating the ontology on our
own. Anyway, we think that no more significant axioms relating the possible
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k1 : Classic music

k2 : Baroque

k3 : Organ

c1 : Holy music

c2 : Bach

Figure 8.1: Classification structures for test case

TBox axioms
Music v ∃style.MusicStyle
Holy v MusicStyle
Classic v MusicStyle
Baroque v Classic
Music v ∃composed.Composer
Music v ∃played.(Instrument t Voice)
Bach v Composer
Organ v Instrument
∃style.Holy v ∃played.Organ
∃composed.Bach v ∃style.Baroque

Table 8.1: Music domain ontology

meanings of the terms of H1 and H2 can be given1. Thus, the semantic relations
which we are able to derive can be considered fairly complete with respect to the
terms of the structures (and to the specific domain considered). Furthermore,
the assertions of Table 8.1 seem reasonable and not biased towards our way of
working.

The formalization given in Table 8.1 is the common way of expressing ontolo-
gies. However, as we have already claimed in Section 7.1, the use of WordNet
as lexicon makes it necessary to map the ontological concepts and roles (ex-
pressed as natural language strings) on WordNet senses. Hence, we have
manually tagged each term in the ontology with the corresponding senses as
given in Table 8.2. A term as example#Xn means sense number n of the entry
example of WordNet 2.0. X refers to the corresponding part of speech (N
= noun, A = adjective, V = verb). The top index ‘−1’ in case of verbs means
that we refer to its passive form.

Once defined the knowledge base, we have started the process of semantic
explicitation whose results are reported in the following tables:

• Tables 8.3 and 8.6 contain the results of those operations which are inde-

1We could assert, for example, that instruments are built according to some style (e.g.
baroque). This would certainly introduce some more relations between the concepts in H1,
however, it would be a piece of information not strictly related to the music domain as we
intend it here (i.e. not referring to the way instruments are built).
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Terms WordNet senses
Music Music#N1, Music#N3
MusicStyle Style#N3

Classic Classic#A1

Baroque Baroque#A1

Holy Holy#A1

Instrument Instrument#N6

Composer Composer#N1

Voice Voice#N2, Voice#N7
Organ Organ#N5, Organ#N6
Bach Bach#N1

style style#N3

composed compose#V2
−1

played play#V3
−1

Table 8.2: Mapping ontological concepts and roles on WordNet senses

pendent from the node to be interpreted, i.e. tree parsing, lexical enrich-
ment, local semantic enrichment and local semantic filtering. Table 8.3
refers to H1, while Table 8.6 to H2.

• Tables 8.4 and 8.7 contain the results of global semantic enrichment and
global semantic filtering, i.e. contextual processes. The tables report the
results once focused on the context of each node of H1 and H2, respectively.

• Tables 8.5 and 8.8 contain the results of the processes choose coverage
and composing the meaning (both locally and globally). The heuristic
applied for choosing the coverage has been the maximization of semantic
relations. However the results would be the same as in case of taxonomy
biasing. Table 8.5 refers to H1, while Table 8.8 to H2.

• Table 8.9 shows the matching results, i.e. the mapping elements.

Note that semantic relations are represented as pairs where the former term
represents the direction of the relation (from subject to modifier) and the latter
the role (P stays for possible semantic relation, whereas N for necessary).

The results of the test appear quite encouraging since the expected relations
between schema elements have been actually found and selected. This has led
to a relevant improvement with respect to CtxMatch. In fact, if concepts were
simply assembled through the logical operator of conjunction (as CtxMatch
does), all the mapping elements would be compatibility relations, ∗. In other
words, both versions are correct (we assume that CtxMatch selects the same
senses as version 2 for each schema element) with respect to the knowledge avail-
able and to the intuitive interpretation of the schemas, but only CtxMatch–2
guarantees the completeness.

The process of word sense disambiguation has reduced the word senses by
more than 50%. Both the disambiguation process and the selection of the ex-
pected relations are strictly dependent on the background knowledge.

The more general the ontologies are, the more semantic relations between
the same words we find, because more of their possible meanings are considered
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Tree parsing – Lexical enrichment

k1 k2 k3

W music
L music
SC Head

PS Noun

S

Music#N1

Music#N2

Music#N3

Music#N4

Music#N5

W classic
L classic
SC Mod

PS Adj

S
Classic#A1

Classic#A2

W baroque
L baroque
SC Head

PS Adj

S Baroque#A1

W organ
L organ
SC Head

PS Noun

S

Organ#N1

Organ#N2

Organ#N3

Organ#N4

Organ#N5

Organ#N6

Local semantic enrichment

Music#N1 → Classic#A1, style#N3 (P )
Music#N3 → Classic#A1, style#N3 (P )

Local semantic filtering

k1 k2 k3

W music
L music
SC Head

PS Noun

S
Music#N1

Music#N3

W classic
L classic
SC Mod

PS Adj

S Classic#A1

W baroque
L baroque
SC Head

PS Adj

S Baroque#A1

W organ
L organ
SC Head

PS Noun

S

Organ#N1

Organ#N2

Organ#N3

Organ#N4

Organ#N5

Organ#N6

Table 8.3: Local processes applied to H1
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Node Global enrichment Global filtering

k1

music
Music#N1

Music#N3

classic
Classic#A1

k2
Music#N1 → Baroque#A1, style#N3 (P )
Music#N3 → Baroque#A1, style#N3 (P )

music
Music#N1

Music#N3

classic
Classic#A1

baroque
Baroque#A1

k3

Music#N1 → Baroque#A1, style#N3 (P )
Music#N3 → Baroque#A1, style#N3 (P )

Music#N1 → Organ#N5, play#V3
−1 (P )

Music#N3 → Organ#N5, play#V3
−1 (P )

Music#N1 → Organ#N6 play#V3
−1 (P )

Music#N3 → Organ#N6, play#V3
−1 (P )

music
Music#N1

Music#N3

classic
Classic#A1

baroque
Baroque#A1

organ
Organ#N5

Organ#N6

Table 8.4: Global processes applied to H1
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Node Coverage Senses induced Local meaning Global meaning

k1
Music#N1 → Classic#A1, style#N3 (P )
Music#N3 → Classic#A1, style#N3 (P )

music
Music#N1

Music#N3

classic
Classic#A1

k1 : (Music#N1 t Music#N3)u
∃style#N3.Classic#A1

(Music#N1 t Music#N3)u
∃style#N3.Classic#A1

k2

Music#N1 → Classic#A1, style#N3 (P )
Music#N3 → Classic#A1, style#N3 (P )
Music#N1 → Baroque#A1, style#N3 (P )
Music#N3 → Baroque#A1, style#N3 (P )

music
Music#N1

Music#N3

classic
Classic#A1

baroque
Baroque#A1

k1 : (Music#N1 t Music#N3)u
∃style#N3.Classic#A1

k2 : Baroque#A1

((Music#N1 t Music#N3)u
∃style#N3.Classic#A1)u
∃style#N3.Baroque#A1

k3

Music#N1 → Classic#A1, style#N3 (P )
Music#N3 → Classic#A1, style#N3 (P )
Music#N1 → Baroque#A1, style#N3 (P )
Music#N3 → Baroque#A1, style#N3 (P )

Music#N1 → Organ#N5, play#V3
−1 (P )

Music#N3 → Organ#N5, play#V3
−1 (P )

Music#N1 → Organ#N6, play#V3
−1 (P )

Music#N3 → Organ#N6, play#V3
−1 (P )

music
Music#N1

Music#N3

classic
Classic#A1

baroque
Baroque#A1

organ
Organ#N5

Organ#N6

k1 : (Music#N1 t Music#N3)u
∃style#N3.Classic#A1

k2 : Baroque#A1

k3 : Organ#N5 t Organ#N6

((Music#N1 t Music#N3)u
∃style#N3.Classic#A1)u
∃style#N3.Baroque#A1u

∃play#V3−1(Organ#N5t
Organ#N6)

Table 8.5: Interpretation of H1
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Tree parsing – Lexical enrichment

c1 c2

W music
L music
SC Head

PS Noun

S

Music#N1

Music#N2

Music#N3

Music#N4

Music#N5

W holy
L holy
SC Mod

PS Adj

S Holy#A1

W Bach
L Bach
SC Head

PS Noun

S
Bach#N1

Bach#N2

Local semantic enrichment

Music#N1 → Holy#A1, style#N3 (P )
Music#N3 → Holy#A1, style#N3 (P )

Local semantic filtering

c1 c2

W music
L music
SC Head

PS Noun

S
Music#N1

Music#N3

W holy
L holy
SC Mod

PS Adj

S Holy#A1

W Bach
L Bach
SC Head

PS Noun

S
Bach#N1

Bach#N2

Table 8.6: Local processes applied to H2
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Node Global enrichment Global filtering

c1

music
Music#N1

Music#N3

holy
Holy#A1

c2
Music#N1 → Bach#N1, compose#V2

−1 (P )

Music#N3 → Bach#N1, compose#V2
−1 (P )

music
Music#N1

Music#N3

holy
Holy#A1

Bach
Bach#N1

Table 8.7: Global processes applied to H2

and related in the ontology. This increases the complexity of the selection of
one coverage as the amount of possible coverages is larger. Furthermore, gen-
eral ontologies allow to relate a concept to many others and in many different
ways. The same concept is in fact not only analyzed and defined in a given
small domain but in many different perspectives. The disambiguation process
is therefore made very effective because the risk of leaving an element not con-
textually related (which could cause the selection of all its possible meanings)
is very low.

Similarly, the more precise the ontologies are, the more concepts are re-
lated to others, since for each concept there are many restricting axioms. This
increases the complexity of the selection of one coverage as in the case of gen-
eral ontologies. Moreover, if concept descriptions are very detailed, concepts
are unequivocal (intuitively, the mapping on WordNet senses is 1:1 and not
1:n), thus making the disambiguation process very effective. In fact, relations
are found between single senses and not groups of senses representing ontology
concepts.

We can come to a conclusion: the more general and precise the ontologies,
the more complex the coverage choice but the more effective the disambiguation.
This empirical though inductive result, given by our methodology, matches in-
tuition: the more our knowledge, the more the possible ways of interpreting
schemas but also the more precise the final result.

Finally, notice that most of the ways to relate concepts (all in this case) are
semantic relations of the type possible (P ).
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Node Coverage Senses induced Local meaning Global meaning

c1
Music#N1 → Holy#A1, style#N3 (P )
Music#N3 → Holy#A1, style#N3 (P )

music
Music#N1

Music#N3

holy
Holy#A1

c1 : (Music#N1 t Music#N3)u
∃style#N3.Holy#A1

(Music#N1 t Music#N3)u
∃style#N3.Holy#A1

c2

Music#N1 → Holy#A1, style#N3 (P )
Music#N3 → Holy#A1, style#N3 (P )
Music#N1 → Bach#N1, compose#V2

−1 (P )

Music#N3 → Bach#N1, compose#V2
−1 (P )

music
Music#N1

Music#N3

holy
Holy#A1

Bach
Bach#N1

c1 : (Music#N1 t Music#N3)u
∃style#N3.Holy#A1

c2 : Bach#N1

((Music#N1 t Music#N3)u
∃style#N3.Holy#A1)u

∃compose#V2−1.Bach#N1

Table 8.8: Interpretation of H2
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H1 H2 Mapping element

k1 c1 ∗
k1 c2 ⊇
k2 c1 ∗
k2 c2 ⊇
k3 c1 ∗
k3 c2 ⊇

Table 8.9: Mapping between H1 and H2
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Chapter 9

Related works

Our approach to schema matching is based on the ability to establish the mean-
ing of each schema element according to the information available. This problem
requires both the interpretation of strings in natural language (or general ex-
pressions commonly used) and the capacity to generate the semantics which is
not present in schemas. Both these aspects are subject to scientific research. In
this section, we present the main contributions mentioned in literature to the
corresponding fields.

We can compare the problem of enriching hierarchical classification with
semantic information to the work done by Woods [45] on conceptual indexing.
Woods parses each phrase into one or more conceptual structures representing
how the elements of the phrase are assembled to form its meaning. Then,
he uses taxonomies of concepts identifying generality relationships among the
individual elements of the phrase in order to determine when the meaning of
a phrase is more general than the meaning of another. For example, he can
automatically determine that ‘car washing’ is a kind of ‘automobile cleaning’,
given the information that a ‘car’ is a kind of ‘automobile’ and that ‘washing’
is a kind of ‘cleaning’. Even if similar methodologies are applied, our approach
aims at interpreting already existing taxonomies in order to make a number of
semantic relations explicit, while in conceptual indexing the starting point is
extracting terminology from documents.

The contextual interpretation of schema elements has been also suggested by
Kavalec and Svatek [31] with particular emphasis on Web directories. However,
their goal is different since they use the knowledge embedded in the structure to
obtain labeled training data with limited human effort for information extraction
from Web documents. Otherwise, our goal is to interpret schema elements in
order to discover the content of the documents classified without analysing them.

The interpretation of node labels and attributes in an ACH requires the
identification of the concept to which each word refers in that particular context.
This problem is commonly named as word sense disambiguation. In literature,
it is widely studied as shown in the detailed survey provided by Ide and Veronis
[30]. Word sense disambiguation is usually tackled through two macro–steps:
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(i) the identification of the word senses relevant to the context (e.g. phrase,
text, structure) under consideration and (ii) the assignment of the word to the
appropriate sense. The first step usually occurs by associating the word to some
specific information which can characterize it, e.g.:

• the corresponding definition (e.g. dictionaries);

• groups of features, categories, or associated words (e.g. synonyms, as in a
thesaurus);

• entries in a transfer dictionary (e.g. the corresponding translations in
other languages).

However, the precise definition of a sense is still subject to considerable de-
bate within the community and it seems to have not easy and definitive solution
in short time (see the argument by Ide and Veronis [30]).

The second step is achieved by relying on two major sources of information:

• the context of the word, in the broad sense;

• external knowledge resources (e.g. lexical and encyclopedic resources),
which provide data useful to associate words with senses.

The disambiguation process works like this: it can either match the context
where we find the instance of the word to be disambiguated with information
from an external knowledge resource (see the approach by Lesk in the following),
or it matches the word context with information about the context (derived
from corpora) of previously disambiguated instances. Association methods are
then used to determine the best match between the current context and one of
these information sources. The best match indicates the most likely sense to be
associated to each word occurrence.

One of the first works on word sense disambiguation was carried out by Lesk
[32]. He proposed to disambiguate the sense of the words in a given context
according to the co–occurence of words in the corresponding definitions. For
example, given a context as “there was ash from the coal fire”, ‘ash’ was resolved
as “the soft grey powder that remains after something has been burnt” instead
of “a forest tree common in Britain”, since it contained the verb ‘to burn’, which
was also contained in the definitions of coal (i.e. “a black mineral which is dug
from the earth, which can be burnt to give heat”) and fire (i.e. “the condition
of burning; flames, light and great heat”). An evolution of this methodology
has been proposed by Manabu in [36].

Another relevant proposal is the one of Agirre and Rigau [18]. They pro-
pose a procedure for lexical ambiguity resolution based on an elaboration of the
conceptual distance among concepts, i.e. conceptual density [17]. The system
clusters words in semantic classes according to the word lexicon and analyzes
how classes are hierarchically organised. Then, the system resolves the lexi-
cal ambiguity by finding the combination of senses which maximizes the total
conceptual density.
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This procedure and many others in the field of word sense disambiguation
are based on the notion of conceptual distance among concepts. In literature,
we can find many different approaches to the reckoning of such a distance. The
one proposed by Agirre and Rigau [18] and the one by Resnik [41] are among
the most relevant. Resnik states that the more information two concepts share
in common, the most similar they are. The information shared by two concepts
is indicated by the information content of the concepts that subsume them in a
given taxonomy. The information content of a concept is computed as negative
the log likelihood, according to the information theory. So, the more abstract
a concept, the lower its information content.

Many other approaches to word sense disambiguation can be found in lit-
erature as the one of Yarowsky [46], of Li, Szpakowicz et al. [33], of Okumura
and Honda [38], of Sanderson [42], etc.

Some of these methodologies and our work, too, are based on the use of
WordNet [16]. WordNet is an online lexical reference system whose de-
sign is inspired by current psycholinguistic theories of human lexical memory.
English nouns, verbs, adjectives and adverbs are organized into synonym sets,
each representing one underlying lexical concept. Different relations link the
synonym sets (e.g. hypernym, hyponym, meronym, holomyn). However, such
relations are only few among the possible relations existing between concepts
and have a linguistic value mainly. Thus, the use of WordNet as ontological
resource is quite limited. Anyway, some researchers are currently involved both
in the analysis of WordNet as semantic resource and in its possible extension
as ontology. For example, Gangemi, Guarino et al. [26] discuss the semantic lim-
itations of WordNet and propose an upgrade of its top–level synset taxonomy
in order to make it more conceptually rigorous and cognitively transparent.

A different approach to the ontological enhancement of WordNet is to align
it with existing available ontologies. Ontologies [27] are formal descriptions of
the concepts and relations which can exist for an agent or a community of agents.
However, concepts and relations are usually represented as strings in ontologies,
thus they are subject to the same problem of a natural language text: the
word ambiguity. The solutions to the problem are basically two: (i) applying
techniques of semantic explicitation (as the one we have presented in this thesis)
to the strings representing ontological concepts and relations or (ii) aligning
ontologies with a lexical system as WordNet manually or semi–automatically.
The first possible solution has not been implemented yet, whereas the second
way has been considered in some recent works, e.g. the mapping of WordNet
to the SUMO ontology by Niles [37].

One of the most important topics discussed in this thesis and related to on-
tologies is the extraction of possible semantic relations from knowledge bases.
As far as we know, there is no approach in literature which is directly compa-
rable to ours. However, it is our duty to mention some similar works which
focus either on ontology exploration or on the extraction of conceptual relations
from texts. With respect to the former case, we only remark the existence of
a tool called OntoXpl [8] by Ying Lu of the Concordia University. Ontoxpl
retrieves the implicit information in a given ontology and reorganizes it in a
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way such that users can get a global picture of ontology information and ex-
plore the knowledge base efficiently (e.g. discovering all the role restrictions of
a given concept, finding out all the instances of a given concept). The second
category of works is studied in the field of ontology learning, i.e. methodologies
to build up and expand existing ontologies (semi–)automatically. Generally,
systems for conceptual relation discovery can search both unnamed and named
relations. Unnamed relations express the fact that two concepts are more or
less strongly related, although the exact nature of the relation is unknown. In
order to find unnamed relations, the technique of collocations is usually em-
ployed. Collocations are occurrences of two or more words within well–defined
units of information (e.g. a document). Significant collocations are selected
according to different possible measures as discussed by Smadja in [44], e.g.
Heyer, Luter et al. [28] use a measure quite similar to the log likelihood index
(applied to the number of sentences containing one of the two words or both
of them). Once significant collocations have been found, the relation strength
between two given words is usually computed by means of statistical methods.
For example, Maedche and Staab [35] use association rules and calculate the
relation strength according to the confidence and the support of the two given
words. Relevant relations are then identified through suitable thresholds. Note
that words in texts are not concepts, however word sense disambiguation can
help recognizing the particular concept which the word in the text refers to,
thus allowing to discover relations not between words but concepts.

Named relations, i.e. relations with a well–defined type, are stipulated when
a concept occurs in a certain expected grammatical pattern in the text. When
concepts are encountered in a pattern, a triple is extracted: two concepts
and a relation which is found to hold between them. Consider the example
proposed by Byrd and Ravin [24]: if we define a pattern as: ‘PERSON, ...
of ORGANIZATION’, it is matched, for example, by this occurrence in the
text: “Today, Gerstner, the CEO of IBM, announced that the company...”, to
yield the conceptual relation CEO between Gerstner and IBM.

A number of variants to the problem exist and usually differ for the class of
pattern they use, e.g.:

• patterns which anchor the positions of both concepts and allow for the
discovery of the relation name in the remainder of the pattern;

• patterns which anchor the positions of both concepts within a constant
pattern and yield a fixed relation name;

• patterns which anchor the position of one of the concepts and of a fixed
relation name and allow for the discovery of the second concept.

For a more detailed discussion, refer to the paper by Byrd and Ravin [24] or
by Sintex, Junker et al. [43]. Note that all these methodologies are based on the
availability of large corpora to discover new relations from texts, whereas our
methodology focuses on the extraction of relations defined in existing ontologies,
thus not requiring any data instance. Their purpose is to build ontologies, i.e.
our exact opposite: exploiting knowledge present in ontologies.
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Chapter 10

Future works

Our proposal only represents a preliminary version of the CtxMatch–2 algo-
rithm and a lot of work remains to do in order to guarantee pragmatic relevant
matchings between concept hierarchies. The efforts must be directed towards
the improvement and the refinement of the different steps of the semantic ex-
plicitation process. The intended objective is to provide a schema interpretation
which matches the classifier’s as claimed in Chapter 3. The key of the success
of semantic methods resides in the ability of exploiting all the contextual infor-
mation which is available in the schemata and in the capacity of selecting and
filtering the background knowledge which is required for the interpretation of
the given schemas.

In the following, we provide a list of possible enhancements of the procedures
at the different steps of the semantic explicitation algorithm.

Natural language parsing

The node label parsing is sensible to the improvements of the natural language
processing but some more work can be done for tailoring such techniques to
structured schemas. Indeed, schemata spread semantically related expressions
throughout different nodes, depriving the parsing process of the single node of
useful information. The key challange is the adoption of methodologies which
are able to guarantee a synergy among the different and independent (in this
version) processes of node label parsing. One proposal is about the multiwords
recognition across multiple nodes. Consider that the presence of multiwords
ease the interpretation process because it minimizes the number of concepts to
be semantically linked within a given context. A trivial example is represented
by the following phrase, ‘soccer player’, which is tagged as multiword in the
WordNet dictionary. A possible ACH could be rooted at ‘player’ and it could
have a son representing ‘soccer’ as in the following:
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Player

Soccer

The interpretation of the Soccer node would be eased by any process able
to recognize that the concatenation of the root node label with ‘soccer’ results
in a multiword. In this case, the Soccer node would be associated with the
respective multiword concept, Soccer player, and we would be prevented from
semantically connecting the two nodes, namely the concept Player and the con-
cept Soccer.

Semantic enrichment and relations extraction

The semantic enrichment is based on the extraction of semantic relations from
a knowledge base. This step represents one of the most innovative issues of our
methodology but it still requires a lot of study whose results will strongly influ-
ence the success of semantic methods. In the Appendix 5, we provide our own
definition of semantic relation with respect to a given ontology and an algorithm
for deriving connections between concepts. Anyway, other methodologies can
be found in literature as the one which proposes of extracting semantic relations
from natural language texts according to statistical methods []. The synergy
of the different algorithms, their refinement and the filtering of the knowledge
on which they work according to the domain of interest represent some of the
major challanges in this field.

Some work must be also carried out in the ACH attributes managing. In
the current version, we simply connect each possible interpretation of a given
node with each possible interpretation of the attribute fillers by means of a DL
role representing the disjunction of all the possible intepretations of the attribute
meaning. We do not exploit at all the information which is given by the attribute
itself. Consider, for example, the Vacation node and the respective attribute
of Figure 2.1. If we are able of deriving that the only reasonable interpretation
of the node is ‘vacation (as leisure time) whose location (as point in space) is
a country (as geographical region)’, we could avoid of linking any other sense
of ‘vacation’ (different from ‘leisure time’) with any other sense of ‘country’
(different from ‘geographical region’). Moreover, we could disambiguate the
attribute role by associating it only with the intended sense. We can modify
our algorithm for this purpose with a two–steps procedure: (i) eliminating the
steps 12, 18 and 21 in the Algorithm 6.1 and (ii) adding to EPT only those
relations which can be derived from the given knowledge and which correspond
to one of the possible meanings of the attribute, in the Algorithm 6.2. If we
are not able of disambiguating the attribute meaning, we keep all the possible
semantic connections as in the current version of the algorithm.
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Semantic filtering

The process of semantic filtering is based on heuristic procedures. In the Section
6.4, we presented two rules, respectively the subsumption and the semantic rules,
which we apply in the current version of the algorithm. They prefer those senses
which are semantically linked to the rest of the context and, in particular, those
which are IsA or PartOf–related. The choice of such criteria was driven by
their semplicity and ease of implementation. Furthermore, they represent a
point of continuity with respect to the first version of the algorithm [] where
their effectiveness has been partially experimented with good results. Anyway,
the employment of different procedures represents one of the next challanges.
The experimental results will track the way to be followed and will help to find
the set and the sequence of heuristics which guarantee the best performances.
In particular, the heuristics selectivity will influence the algorithm precision
proportionally.

The success of some heuristic procedures also depends on the organization
and categorization criteria which have been applied in the schema design. In
the following, we present a new proposal which highlights this dependency. In
many concept hierarchies and in the most of the taxonomies, we can identify a
sort of symmetry or similarity among the siblings of the same node. Consider
the following CH examples:

Red Green Blue

In this case, all the labeled nodes represent a color, that is they are IsA–
related with the Color concept.

Mouse Printer Scanner

‘Mouse’, ‘Printer’ and ‘Scanner’ belong to the same domain. For example,
WordNet classifies all of them in the ‘computer science’ domain.

Vacations

Reports News Stories
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All the second level nodes can be related to the Vacation node by means of
the about relations.

We can notice that in the first two cases, the nodes have some kind of
similarity while in the third case they are semantically related to the same node
of the structure by means of the same relation. These measures of similarity can
be used for filtering the nodes senses and, consequently, the semantic relations.
For example, we could define a rule as follows: we remove a sense s of a node k

if it is not similar to a sense of all its siblings and there exists another sense of
the same node which has such a property. Note that we can use many different
metrics and clustering methodologies as similarity measures: domains as defined
in WordNet, ontological distances 1, etc. Analogously, we could define a rule
for filtering the nodes senses according to their contextual linkage: we remove a
sense s of a node k if it is not semantically connected to the context in the same
way of a sense of all its siblings and there exists another sense of the same node
which has such a property.

The success of these two heuristics strongly depends on the regularity and
symmetry of the schemas to which they are applied. Finally, note that these
procedures have the main advantage of exploiting the contextual information
in a more integrated way. Indeed, the current version of the algorithm focuses
on the path from the ACH root to the node to be interpreted for retrieving the
necessary information, while these methodologies involve all the siblings of the
path nodes too.

Explicitation of the nodes meaning

The most stimulating challenge for the next period is to study the notion of
horizontal and vertical coherence of the nodes coverages. When we interpret a
given node k of an ACH, we choose a coverage, we build the local interpretations
of all the path nodes and we compose them by means of semantic relations in
order to shape the meaning of k. Note that we build a local interpretation for
a specific set of nodes and the contextual meaning only for the node in exam.
We could also explicit the contextual meaning of all the path nodes for the
sake of efficiency but we would not get any improvement because the contextual
meaning of a node changes according to the node we are interpreting. Thus, we
cannot exploit the semantic explicitation process of a given node for interpreting
its ancestora 2. Consider the following example:

1See [], [], ...
2This consideration does not hold for taxonomies.
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Images

Mountains

Vacations

When we interpret the Mountains node, we associate it with the following
concept: ‘images about mountains’, which is very different with respect to the
role of the node in the intepretation of the Vacations element. Indeed, the
most obvious meaning for the Vacations node is ‘images about vacations in
mountain’. In the former case, the local concept of Mountains is the modifier
of Images by means of the about role, while in the latter case it has become
the modifier of the Vacations concept by means of the in role. Anyway, the
principles of vertical and horizontal coherence aim at constraining the local
interpretation of the single nodes to be constant independently on the schema
element we are analyzing. With reference to the above example, we can require
that the concept we associate with the Vacations node is ‘leisure time’ in the
interpretation of each node of the structure (which could be much larger). Note
that the local interpretations are influenced by the context, thus they cannot
be performed independently from it.

We can identify two levels of coherence: (i) vertical coherence preserves the
meaning of a node along a given path, while (ii) horizontal coherence preserves
the meaning of a node in different contexts. Consider the following example:

News

Stars

Black holes

X Y

Cinema

Let us focus on the Stars node. It can refer to ‘highly skilled characters’ or
to ‘celestial bodies’. Vertical coherence requires that each descendant agree on
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its meaning: if we consider its second acception for interpreting the Blackholes
node, we must keep it for any other node along the same path (i.e. X and Y) and
viceversa. On the other hand, horizontal coherence requires that nodes which
share the same context 3 agree on the meaning of the context nodes. Thus,
the two nodes Blackholes and Cinema must be in agreement on the semantics
of the Stars (and News) node. Note that the semantics of a node can be very
complex and it can involve more senses of the same word.

The algorithm complexity increases a lot when we apply the principles of co-
herence. In particular, the composing–the–meaning function needs to check
the consistency of the available interpretations of schema nodes each time a
new element is processed. When it detects an incoherence, it must identify the
(most likely) cause and solve the problem. Our proposal is to have a backtrack
function which decides, in some sense, which coverage is the most responsible
for incoherence. In the following, we propose the composing–the–meaning
function of the Algorithm 6.6 with the backtrack enhancement.

Algorithm 10.1 composing–the–meaning-B(Hs, k)
. semantic ACH: Hs = 〈H, PT, EACH , EPT , labs〉

. node: k ∈ H

VarDeclarations

semantic ACH: Hs,k = 〈H ′, PT ′, E′
s, lab

′
s〉

set of node coverages: W

coverage: CKk

set of relations: Ek′

parse tree node: n

array of DL terms: F [ ]
set of ACH nodes: M

set of relations: EACH

1 Hs,k ← extract-semantic-ACH-generated-by-node(Hs, k);
2 W ← extract-node-coverages(Hs,k, k);
3 CKk ← choose-node-coverage(W );
4 update-agenda(k,CKk);
5 if (agenda-is-consistent())
6 for each node k′ ∈ H ′

7 Ek′← {e ∈ CKk | e = e〈k′, , 〉↔};
8 n ← root(PT ′(k′));
9 F (k′) = build–local–meaning(PT ′(k′), n, Ek′);
10 M ← {k ∈ H ′ | ¬∃e ∈ CKk(e = eACH

〈k, , 〉←)};

11 EACH← {e ∈ CKk | e = eACH};

12 labs(k) ←umi∈M build–global–meaning(F, mi,CKk);
13 else backtrack();
14 Return Hs;

Once we have selected the node coverage for the input node k (step 3), we
update the agenda containing the choices we have made so far about the local

3In the current version, a node context is given by the path from the root to itself.
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meaning of the single nodes (step 4). In step 5, we check the coherence of the
different interpretations and we apply the same steps of the Algorithm 6.6 if we
have detected no conflicts. In case the set of interpretations is not consistent,
we apply the backtrack function (step 13). Its tasks can be be summarized as
follows:

• Identify the conflict;

• Investigate for the cause;

• Rearrange the interpretations coherently.

The way of performing such steps goes beyond the scope of our preliminary
work and represents one of the most stimulating and complex challanges of the
next period.

A strictly related consequence of the employment of the principles of coher-
ence and of a backtrack function is that we can completely remove the filtering
procedures. Indeed, we leave to the coverages choice step the task of determining
the best set of senses and relations which represents the optimum interpretation
of a node in the context of its schema. The filtering criteria become the dis-
criminant for selecting the most coherent coverage of a given node with respect
to the whole structure.
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Chapter 11

Conclusions

The thesis has moved along two distinct but synergetic directions: the investi-
gation of a methodology for schema matching based on semantic methods and
its implementation in a prototypal application. The former has allowed us to
work out the theoretical foundations of our proposal and to formalize the condi-
tions which guarantee its soundness. The latter has provided for an immediate
verification of the effectivity of the approach.

The work has been very complex and has introduced many innovative con-
tributions both from a theoretical point of view and in terms of algorithms
and heuristics. Its relevance is both in the field of semantic interpretation of
(semi–)structured data and in the schema matching.

The first step has been the presentation and the formal definition of the
schemas we have considered: hierarchical classifications with attributes. They
are one of the most general and widely spread schemas for the classification of
objects and documents. Furthermore, the data model they represent can be
adapted to several other models, thus making our dissertation quite general.
CtxMatch considers only hierarchical classifications, whereas we have taken
into account the possibility to characterize schema content with attributes, too.

The semantics of mappings between hierarchical classifications has been de-
fined in terms of set–theoretical relations between the content of their elements.
Furthermore, since we lacked a uniform and general criterium to evaluate the
soundness of a mapping, we have proposed one possible definition of soundness
which can be assumed as a guideline when evaluating matching methods of
classification schemas.

We have then formalized semantic methods as a solution to the matching
problem and we have investigated the conditions which guarantee their sound-
ness. The two most relevant conditions can be summarized as follows: (i) we
need to produce an interpretation of the schema elements equal to the one by
the classifier and (ii) we need the availability of a background knowledge consis-
tent with that of the classifier’s. As the second condition lends only to practical
considerations, we focused our efforts on the development of an algorithm able
to generate reasonable interpretations of schema elements.
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We have thus analyzed how the meaning of schema elements can be ef-
fectively made explicit. NLP techniques are needed to parse the grammatical
structure of the phrases in schemas, whereas lexical knowledge provides the pos-
sible meanings of each word in these phrases. Our contribution to this phase
is quite limited since existing functions and external resources well support its
execution. The most challanging step is to build the semantics which schemas
do not express, i.e. the concept which each word actually refers to (word sense
disambiguation) and the way concepts are related. Since we think that the sense
of a word is likely to be the one which best fits in the word context, the two
problems are all dependent on the ability to approximate the semantic relations
holding between pairs of concepts.

We have largely investigated this issue resulting in a methodology which
is supported by theoretical considerations about the semantics of existential
restrictions in DL knowledge bases. Furthermore, we have provided an algorithm
for the extraction of semantic relations between pairs of concepts from existing
ontologies and we have discussed the conditions which guarantee its decidability.

We have finally presented the algorithms that we need to apply in order to
build the meaning of schema elements. In some cases, our contribution has been
only in terms of procedures, whereas in other cases we have proposed heuristics
to deal with phases solved by humans through sensibility and experience. In
fact, the possible interpretation of an element is not unambiguously determined
but each human provides its own.

Once we have worked out our methodology, we have developed a prototypal
application whose architecture has been discussed in Chapter 7. In particu-
lar, we have pointed out its interactions with external libraries and resources
and the need of usage of numerous technologies for its realization. The cur-
rent implementation represents a good starting point to test the effectivity of
our methodology. The results of our experiments, though performed on small
examples, have shown a relevant improvement with respect to CtxMatch.

The main limitations of our proposal can been seen (i) in the lack of rich
ontologies able to support the process of semantic explicitation and comparison
and (ii) in the lack of alignment of the concepts in ontologies with WordNet
(or any other similar resource) senses. These points represent general problems
in the Semantic Web, thus we expect that they will be gradually addressed
and solved. For these reasons, it is likely that our methodology cannot succeed
in large–scale contexts (e.g. web directories) in the short term. Instead, its
most imminent possible application is in specific and restricted domains where
a detailed definition of the common background and of the shared terminology
is already a current achievement as well as their formalization, in many cases.

This thesis has fully explained the methodology which has been used. How-
ever, a lot of work can still be performed in order to enhance algorithms and
heuristics as we briefly discuss in the next lines.

The label parsing is subject to the improvements of NLP but some work
can be done to tailor such techniques to schemas. In fact, schemas spread se-
mantically related expressions throughout different nodes, depriving the parsing
process of the single node of relevant information. The challange is the adoption
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of techniques which are able to guarantee a synergy among such processes. A
proposal may be the recognition of multi–words dispersed across multiple nodes.

Some work must also be carried out in the way attributes are managed.
In the current version we do not worry about disambiguating attribute names.
However, the node to which they are attached and their filler provide a good
context to derive their intended meaning. For example, consider the node
Vacations of Figure 2.1. If we are given that only the sense ‘a determina-
tion of the location of something’ of ‘location’ is semantically related to a sense
of ‘vacation’ and of ‘country’, we may use this information to disambiguate the
meaning of the three words.

The extension of the definition of context of a node can introduce new heuris-
tics for filtering word senses. In many classification schemas, it exists a sort of
symmetry (or similarity) among siblings. For example, all the children of a cer-
tain node could be intended as colors or as belongings of the same domain (e.g.
it exists a sense of ‘mouse’, ‘printer’ and ‘scanner’ in the domain ‘computer sci-
ence’). Thus, the possible senses of sibling elements can be clustered according
to some similarity measure (e.g. domains as defined in WordNet, ontological
distance: all techniques already used in word sense disambiguation), which is
then used to filter out non–matching senses.

In the next future, we aim at enhancing the methodology and the algorithms
according to these directions and then developing a full–featured version of
the system. This will result in an application to be used in extensive testing
and in performance comparison with the other most relevant methodologies of
schema matching. Finally, the architecture will be re–engineered in order to be
integrated into the commercial tool KEEx1, where CtxMatch already runs.

1A peer–to–peer tool for distributed knowledge management [22].
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