

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

INTERACTIVE ACCESS CONTROL IN AUTONOMIC
COMMUNICATION

Hristo Koshutanski and Fabio Massacci

October 2004

Technical Report # DIT-04-094

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

1

Interactive Access Control in Autonomic

Communication

Hristo Koshutanski and Fabio Massacci

{hristo, massacci}@dit.unitn.it

Dip. di Informatica e Telecomunicazioni - Univ. di Trento

via Sommarive 14 - 38050 Povo di Trento (ITALY)

Abstract

Autonomic Communication is a new paradigm for dynamic network integration. An Autonomic

Network crosses organizational and management boundaries and is provided by entities that see each

other just as business partners. Policy-based network access and management already requires a paradigm

shift in the access control mechanism: from identity-based access control to trust management and

negotiation, but this is not enough for cross organizational autonomic communication. For many services

no autonomic communication partner may guess a priori what will be sent by clients and clients may

not know a priori what credentials are demanded for completing a service requiring the orchestration

of many different autonomic nodes.

To solve this problem we propose to use interactive access control for autonomic communication:

servers should be able to get back to clients asking for missing credentials, whereas the latter may

decide to supply or decline requested credentials and so on until a final decision is made. This proposal

is grounded in a formal model on policy-based access control using abduction. We identify the key

algorithm for interactive access and show its correctness. The Web Services-based implementation that

we have developed is also sketched.

Keywords: Interactive Access Control, Adaptive Access Control, Self-Managing Systems,

Security Management, Autonomic Communication, Controlled Disclosure, Credential-Based Sys-

tems, Internet Computing, Logics for Access Control.

2

CONTENTS

I Introduction 3

I-A The Contribution of this paper . 4

II The Basic Framework 5

III A Running Example 6

IV Syntax 8

V Semantics 8

VI Logical Model 11

VII Interactive Access Control 15

VIII Correctness and Completeness 18

VIII-A Correctness and Completeness . 22

VIII-B Completeness . 23

IX Implementation 26

X Related Work 27

XI Conclusions 29

References 30

3

I. INTRODUCTION

Controlling access to services is a key aspect of networking and the last few years have seen

the domination of policy-based access control. Indeed, the paradigm is broader than simple access

control and one may speak of policy-based network self-management (See [37], [27] or the IEEE

Policy Workshop series for examples). The intuition is that actions of nodes “controlling” the

communication are automatically derived from policies. The nodes look at events and requests

presented to them, evaluate the rules of their policies according those new facts and derive the

actions [37], [38]. Policies can be “simple” iptables configuration rules for Linux firewalls1

or complex logical policies expressed in languages such as Ponder [8].

Autonomic Communication adds new challenges: a truly autonomic network is born when

nodes are no longer within the boundary of a single enterprise which could deploy its policies on

each and every node and guarantee interoperation. Services on the border are then fairly limited

to existing industry standard (again to guarantee interoperation). In an autonomic network, nodes

are partners that offer services and lightly integrate their efforts into one (hopefully coherent)

network. This cross enterprise scenario poses novel security challenges with aspects of both trust

management systems and workflow security.

From trust management systems [41], [10], [24] it takes the credential-based view. Since

access to network services is offered by autonomic nodes on their own to potentially unknown

clients, the decision to grant or deny access can only be made on the basis of the credentials

sent by the client. In contrast with trust management systems, we have a continuous process

and thus a notion of assignment of permissions to credentials that must look beyond the single

access decision.

From workflow access control systems (see e.g. [2], [4], [12], [18]) we borrow all classical

problems such as dynamic assignment of roles to users, dynamic separation of duties, and

assignment of permissions to users according the least privilege principles. In contrast with

workflow security management schemes, we can no longer assume that the enterprise will assign

tasks and roles to users (its employees) in such a way that makes the overall flow possible w.r.t.

its security constraints. The reason is that the enterprise itself no longer exists.

In an autonomic communication scenario a client might have all the necessary credentials to

1See http://www.netfilter.org/.

4

access a service but may simply not know it. Equally, it is unrealistic to assume that servers

will publish their security policies on the web so that a client can do a policy combination

and evaluation themselves. So, it should be possible for a server to ask a client on the fly for

additional credentials and the same may disclose them or decline to provide them. The server

can then re-evaluate the client request at the light of the new submitted credentials, and interate

the process until a final decision (grant or deny is made). We call this modality interactive access

control.

Part of these challenges can be solved by using policy-based self-management of networks

but not all of them. Indeed, if we abstract away the details of the policy implementation, we can

observe that the only reasoning service that is actually used by policy-based self-management

approaches is deduction: given a policy and a set of additional facts find out all consequences

(actions or obligations) of the policy and the facts. We simply look whether granting the request

can be deduced from the policy and the current facts. Policies can be different [3], [24], [5], [4]

but the kernel reasoning service is the same.

A. The Contribution of this paper

We claim that autonomic communication needs at least another reasoning service: abduction

[36]. Loosely speaking, we could say that abduction is deduction in reverse: given a policy and

a request to access a network service, we want to know which are the credentials/events that

would grant access. Logically speaking, we want to know whether there is a (possibly minimal)

set of facts that could be added to the policy so that the request can be deduced from it.

If we look again at our intuitive description of interactive access control, it is immediate to

realize that abduction is a core service needed by policy-based autonomic servers to get back to

autonomic clients. Indeed, we might even want the same service to run on both client and server

sides whenever the client also requires some evidence from the server in order to establish trust

before disclosing his own credentials.

Here, we present a framework for reasoning about interactive access control for autonomic

communication that tries to answer these challenges and that is grounded in a formal theory by

using logic-based policies.

We start by presenting the basic framework (§.II) and by introducing a running example to

make discussion more concrete (§.III). Next, we introduce the formal syntax for the formal model

5

(§.IV), identify the different formal reasoning services – deduction vs abduction (§.VI) – that

characterize the problem. At this stage we have all necessary material to introduce the interactive

access control algorithm (§.VII) and show that it delivers its promises (§.VIII): a client can only

get access if he has submitted the right credentials, and (most important) a client who has the

right set of credentials and who is willing to send them to the server, will not be left stranded

in our autonomic network. Finally, we briefly sketch our implementation based on web services

(§.IX) and conclude the paper with a brief discussion of related work.

II. THE BASIC FRAMEWORK

Using Datalog and logic programs for representing and reasoning about access control is

customary in computer security [3], [24], [5], [4] and this work is no exception. Our formal

model for reasoning about access control is based variants of Datalog with the stable model

semantics and combines in a novel way a number of features:

• logic for trust management by Li et al. [24];

• logic for workflow access control by Bertino et al. [4];

• logic for disclosure and access control by Bonatti and Samarati [5];

• some ideas from trust negotiation by Yu, Winslett and Seamons [44].

We consider the view of a single partner since we cannot assume sharing of policies between

partners.

In our framework each partner has a security policy for access control PA and a security policy

for disclosure control PD. The policy for access control is used for making decision about usage

of all web services offered by a partner. The policy for disclosure control is used to decide

credentials whose need can be potentially disclosed to a client. In other words, PA protects

partner’s resources by stipulating what credentials a requestor must satisfy to be authorized for

a particular resource while, in contrast, PD defines which credentials among those occuring in

PA are disclosable so, if needed, can be demanded from the requestor.

Other approaches (e.g. Yu et al [44, page 38] and Winsborough et al [43, page 12] examples)

offers the two policies into one. However, we believe that the separation of access and disclosure

policies is useful for practical reason in spite of the additional complication that the two-policies

system requires for evaluation. The double query system is immaterial to the human administrator

who might simply buy a faster machine. In contrast, the specification of policies is normally

6

done by humans and is a costly and error prone process. The integration of disclosure and access

policy into one policy would imply that a change in the disclosure policy requires modification

to the access policy which might have been unchanged. Furthermore the separation of access

and disclosure policies allows for separation of duties among administrators: one administrator

can modify the access policy and another the disclosure policy.

We keep a set of active credentials CP that have been presented by the client in past interactions

within the same service session and a set of declined credentials CN also compiled from the

client’s past interactions. So, to execute a service of the fragment of a partner a user will submit

a set of presented credentials Cr and a service request r. In the same context, CN is computed

as a difference between the missing credentials CM, the client was asked in the last interaction,

and the credentials presented in the current step, namely CN = CM \ Cr .

III. A RUNNING EXAMPLE

Let us assume that we have a Planet-Lab shared network between the University of Trento and

Fraunhofer institute in Berlin in the context of the E-NEXT network. For the sake of simplicity

let us also assume that there are three main access types to the resources: disk – (read) access

to data residing on the Planet-Lab machines; run – (execute) access to data and possibility to

run processes of the machines; and configure – (addService) including the previous two types

of accesses plus the possibility of configuring network services on the machines.

We also suppose that all Planet-Lab credentials (certificates) are signed and issued by trusted

authorities and that the validation of these credentials is performed before the actual access con-

trol process. This can be done by plugging in any standard Privilege Management Infrastructure

(PMI).

We can now formalize our running example. Fig. 1 shows the joint hierarchy, the roles and

their relative hierarchy. The partial order of roles is indicated by arcs, where higher the role in

the hierarchy, more powerful it is. A role dominates another role if it is higher in the hierarchy

and there is a direct path between them.

The access policy says:

– Rules (1) and (2) give access to the shared network content to everybody from the University

of Trento and Fraunhofer institute, regardless the IP and roles at these institutions.

7

Fig. 1. Joint Hierarchy Model

– Rules (3) and (4) allow access from those machines that are internal for the two institu-

tions and located in the internal LANs (dedicated machines only for Planet-Lab acccess)

distinguished by their fixed IPs.

– Rule (5) relaxes the previous two and allows access from any place of the institutions pro-

vided users declare their ID and present some role-position certificate of their organization

or at least a Planet-Lab membership credential.

– Rules (6) and (7) say that if a user has got a light access and is at minimum researcher at

UnivTrento or junior researcher at Fraunhofer, it has additional rights.

– Rules (8) and (9) relaxed associate professors and senior researchers from the fact that they

can access the network resources from any place they want under the respective country

domain (e.g. home, other universites, etc).

– Rules (10) and (11) give full access, from any place of the world, only to members of board

of directors and to full professors.

The disclosure policy says:

– Rules (1) and (2) disclose the need for the client to declare its ID if the same comes from

an authorized network of the respective organizations;

– Rule (3) discloses the need for Planet-Lab membership credential if the client has already

declared its ID;

– Rule (4) discloses (upgrades) the need of a higher role-position credential.

Now, examine the case in which a senior researcher at Fraunhofer institute wants to have

access to the system from his home place (decided to work from home) presenting its employee

8

Role :Ri � Role :Rj when role Role :Ri dominates role Role :Rj .

Role :Ri �WebServ:S Role :Rj when role Role :Ri dominates, just for service WebServ :S, the role Role :Rj .

assign (P, WebServ :S) when an access to the service WebServ :S is granted to P . P can be either a Role :R or

User :U .

forced (P, WebServ :S) when access the service WebServ : S must be forced to P . P can be either a Role : R or

User :U .

(a) Predicates for assignments to Roles and Services

declaration (User :U) it is a statement by the User :U for its identity.

credential (User :U, Role :R) when User :U has a credential activating Role :R.

credentialTask (User :U, WebServ :S) when User :U has the right to access WebServ :S.

(b) Predicates for Credentials

running (P, WebServ :S, number :N) when the N th activation of service S is executed by P .

abort (P, WebServ :S, number :N) if the N th activation of service S within a workflow aborts.

success (P, WebServ :S, number :N) if the N th activation of service S within a workflow successfully executes.

grant (P, WebServ :S, number :N) if the N th request of service S has been granted

deny (P, WebServ :S, number :N) if the N th request of service S has been denied.

(c) Predicates describing the current status of services

Fig. 2. Predicates used in the model

certificate. So, according to rules (8) and (9) the system should deny access. But is it always the

behaviour we want from the system? Shall we leave him harassing of being idle for the whole

day simply because he did not know or just has forgotten that access from home to the system

needs another certificate? The full formalization of the example we will see in §VII.

IV. SYNTAX

For the syntax we build upon [4], [5], [24]. We have three disjoint sets of constants: one for

users identifiers denoted by User : U ; one for roles denoted by Role : R; and one for services

denoted by WebServ :S.

9

The predicates can be divided into three classes: predicates for assignments of users to roles

and services (Fig. 2a), predicates for credentials (Fig. 2b), and predicates describing the current

status of the system (Fig. 2c). The last class of predicates keeps track on the main activities

done by users and services.

Furthermore, for some additional workflow constraints we need to have some meta-level

predicates that specify how many statements are true. We use here a notation borrowed from

Niemela smodels system, but we are substantially using the count predicates defined by Das

[9]:

n ≤ {X. Pr} where n is a positive integer, X is a set of variables, and Pr is a predicate, so

that intuitively n ≤ {X. Pr} is true in a model if at least n instances of the grounding

of X variables in Pr are satisfied by the model. The {X. Pr} ≤ n is the dual predicate.

We assume additional comparison predicates (for instance for equality or inequalities) or some

additional monadic predicates for instance to qualify services or users.

We note here that the model, presented in the this section, can be adapted to any generic policy

framework. The information we need from the underlying policy model is shown in Figure 2(a,

b) and that infromation can be found in (extracted from) most policy languages.

V. SEMANTICS

The semantics is based on normal logic programs [1]. These are sets of rules of the form:

A ← B1, . . . , Bn, not C1, . . . , not Cm (1)

where A, Bi and Ci are (possibly ground) predicates among those described in §IV. A is called

the head of the rule, each Bi is called a positive literal and each not Cj is a negative literal,

whereas the conjunction of the Bi and not Cj is called the body of the rule. If the body is

empty the rule is called a fact. A normal logic program is a set of rules.

In our framework, we also need constraints that are rules with an empty head.

← B1, . . . , Bn, not C1, . . . , not Cm (2)

One of the most prominent semantics for normal logic programs is the stable model semantics

proposed by Gelfond and Lifschitz [11] (see also [1] for an introduction). The intuition is to

interpret the rules of a program P as constraints on a solution set S (a set of ground atoms)

10

for the program itself. So, if S is a set of atoms, rule (1) is a constraint on S stating that if all

Bi are in S and none of Cj are in it, then A must be in S. A constraint (2) is used to rule out

from the set of acceptable models the situation in which Bi are true and all Cj are false is not

acceptable.

We now consider ground rules, i.e. rules where atoms do not contain variables.

Definition 5.1: The reduct P S of a ground logic program P with respect to a set of atoms

S is the definite program obtained from P by deleting:

1) each rule that has a negative literal not C in its body with C ∈ S;

2) each negative literal in the bodies of the remaining rules.

The reduct P S is a definite logic program. Let M(P S) = MP S be the semantics of the definite

logic program P S, i.e. its minimal model.

Definition 5.2: A set of atoms S is a stable model of a normal logic program P iff S =

M(P S).

A program can have none, one or many stable models. The definition of stable models captures

the two key properties of solution sets of logic programs.

1) Stable models are minimal: a proper subset of a stable model is not a stable model.

2) Stable models are grounded: each atom in a stable model has a justification in terms of

the program, i.e. it is derivable from the reduct of the program with respect to the model.

Though this definition of stable models in terms of fix points is non-constructive there are

constructive definitions [1] and systems [32], [23] that can cope with ground programs having

tens of thousands of rules.

Logic programs with variables can be given semantics in terms of stable models.

Definition 5.3: The stable models of a normal logic program P with variables are those of

its ground instantiation PH with respect to its Herbrand universe2.

If logic programs are function free, then an upper bound on the number of instantiations is rcv,

where r is the number of rules, c the number of the constants, and v the upper bound on the

number of distinct variables in each rule.

2Essentially, we take all constants and functions appearing in the program and combine them in all possible ways. This yields

the Herbrand universe. Those terms are then used to replace variables in all possible ways thus building its ground instantiation.

11

Definition 5.4 (Logical Consequence and Consistency): Let P be a logic program and L be

a (positive or negative) ground literal. L is a logical consequence of P (P |= L) if L is true in

every stable model of P . P is consistent (P �|= ⊥) if there is a stable model for P .

Definition 5.5 (Security Consequence): A request r is a security consequence of a policy PA

if (i) PA is logically consistent and (ii) r is a logical consequence of PA.

Definition 5.6 (Abduction): Let P be a logic program, H a set of predicates (called hypothesis,

or abducibles), L a (positive or negative) ground literal, and ≺ a partial order (p.o.) over subsets

of H . A Cautious solution of the abduction problem is a set of ground atoms E such that

(i) E ⊆ H ,

(ii) P ∪ E |= L,

(iii) P ∪ E �|= ⊥,

(iv) any set E ′ ≺ E does not satisfy all conditions above.

Traditional p.o.s are subset containment or set cardinality. Other solutions are possible with

orderings over predicates.

VI. LOGICAL MODEL

In this section we give formal definitions of the security policies introduced informally at the

beginning of the paper.

Definition 6.1 (Access Policy): An access control policy PA is a logic program over the

predicates defined in Section IV in which

(i) no credential and no execution atom can occur in the head of a rule,

(ii) role hierarchy atoms occur as facts,

An access request r is a ground instance of an assign (User :U, WebServ :S) predicate.

In contrast to the proposal by Bertino et al. [4] for workflows, we don’t need any special rule

for determining which services cannot be executed and which services must be executed by a

specific user or role. Logic constraints guarantee the same result.

Definition 6.2 (Disclosure Policy): A disclosure policy PD is a logic program in which no

role hierarchy atom and no execution atom can occur in the head of a rule.

Following is the full formalization of the running example introduced in §III. There is a prepro-

cessing step that validates and transforms certificates to predicates suitable for the formal model

– credential (User :U, Role :R). The new predicate used in the example is

12

Access Policy:

(1) assign (∗, request(read)) ← authNetwork (∗, ∗.unitn.it).

(2) assign (∗, request(read)) ← authNetwork (∗, ∗.fraunhofer.de).

(3) assign (∗, request(execute)) ← authNetwork (193.168.205.∗, ∗.unitn.it).

(4) assign (∗, request(execute)) ← authNetwork (198.162.45.∗, ∗.fraunhofer.de).

(5) assign (User, request(execute)) ← assign (User, request(read)), declaration (User),

credential (User,Role), Role � memberP lanetLab.

(6) assign (User, request(addService)) ← assign (User, request(execute)), declaration (User),

credential (User,Role), Role � researcher.

(7) assign (User, request(addService)) ← assign (User, request(execute)), declaration (User),

credential (User,Role), Role � juniorResearcher.

(8) assign (User, request(addService)) ← authNetwork (∗, ∗.it), declaration (User),

credential (User,Role), Role � assProf.

(9) assign (User, request(addService)) ← authNetwork (∗, ∗.de), declaration (User),

credential (User,Role), Role � seniorResearcher.

(10) assign (User, request(addService)) ← authNetwork (∗, ∗), declaration (User),

credential (User,Role), Role � fullP rof.

(11) assign (User, request(addService)) ← authNetwork (∗, ∗), declaration (User),

credential (User,Role), Role � boardOfDirectors.

Disclosure Policy:

(1) declaration (User) ← authNetwork (∗, ∗.unitn.it).

(2) declaration (User) ← authNetwork (∗, ∗.fraunhofer.de).

(3) credential (memberP lanetLab,User) ← declaration (User).

(4) credential (RoleX, User) ← credential (RoleY,User), RoleX � RoleY.

Fig. 3. Proxy Access and Release Policies for an Online Library

authNetwork (IP, DomainName). It is a tuple with first argument the IP address of the autho-

rized network endpoint (the client’s machine) and the second argument the domain name where

the IP address comes from. Figure 3 shows the complete formalization of the policies.

Example 1 (Policy Constraints): Consider a security policy in which having a credential for

the role accountant is incompatible with the assignment of any role manager, and that the

execution of a service phoneCall from user billG requires that the service answer must be

executed by anybody having the role headOfStaff . The following rules guarantees the desired

13

behavior:

← credential (User :U, Role :accountant), assign (User :U, Role :manager).

forced (Role :headOfStaff, WebServ :answer)← running (User :billG, WebServ :call, number :N).

assign (P, WebServ :S)← forced (P, WebServ :S).

Example 2 (Access Policy and Separation of Duty Constraints): Consider an e-stock portal where

we have roles associated to services as follows: role eSeller – for selling shares and bonds on the

floor; role eBuyer – for buying shares and bonds; role eAdvisor – used by accredited consultants

to sell their advice to other customers of the portal. Then examine the case where one could

send the eAdvisor credential to the service publishing advisories and suggest to sell shares, and

at the same time the eBuyer credential to the service hosting bids.

In such situations we can define separation of duty rules:

customer(eSeller)←.

customer(eBuyer)←.

←assign (User :U, Role :R1), customer(R1), assign (User :U, Role :eAdvisor).

The access control rule on reviewing selling bids is the following:

assign (User :U, WebServ :S) ← credential (User :U, Role :R), assign (Role :R, WebServ :S).

assign (Role :R, WebServ :reviewSell) ← Role :R � Role :eSeller.

As mentioned, we will use the disclosure policy PD to decide which missing credentials are to

be asked from the client.

Example 3 (Disclosure Policy): Considering again the access policy in Example 2. A possible

(part of) the disclosure policy PD could be:

credential (User :U, Role :eUser)←declaration (User :U).

credential (User :U, Role :eSeller)←credential (User :U, Role :eUser).

credential (User :U, Role :eSellerV IP)←credential (User :U, Role :eSeller).

The second rule says: to reveal the need for a eSeller credential there should be already a

credential attesting the client as a valid user (Role :eUser) of the system.

So, the request assign (User :fm, WebServ :reviewSell) together with

credential (User :fm, Role :eUser) and declaration (User :fm) will yield a counter request –

14

credential (User :fm, Role :eSeller) – specifying the need for additional privileges necessitated

to get the service.

Note that the need for a credential attesting the role eSellerVIP, disclosed together with eSeller,

should not be considered as a potential output by the system because the ”intuition” says that

eSeller is enough.

Remark 1 (Notion of Minimality): The choice of the partial order has a major impact in

presence of complex role hierarchies. The ”intuitive” behavior of the abduction algorithm for

the extraction of the minimal set of security credentials is not guaranteed by the straightforward

interpretation of H (abducibles) as the set of credentials and by the set cardinality or set

containment orderings.

Consider the following program:

Role :r2 � Role :r1 ← .

assign (User :U, WebServ :ws) ← credential (User :U, Role :R), Role :R � Role :r1.

Request assign (User :fm, WebServ :ws) has two ⊆-minimal solutions:

{credential (User :fm, Role :r1)} , {credential (User :fm, Role :r2)}

Yet, our intuition is that the first should be the minimal one.

So, we need a more sophisticated partial order rather than set cardinality or set containment

(rf. Remark 1). For example, we could stipulate that E
 E ′ is such that for all credentials

c ∈ E there is a credential c′ ∈ E ′ where c = c′, we can revise it so that E ≺ E ′ if for

c ∈ E there is a credential c′ ∈ E ′ where c′ is identical to c except that it contains a role R′

that dominates the corresponding role R in c. This p.o. generates the “intuitive” behavior of the

abduction algorithm.

An effective approximation of the above criterion, currently implemented in out prototype, is to

include extra information in credentials from the hypotheses (abducibles), specifying the position

of a role in the role lattice hierarchy. We called the extra information role weight indicating the

highest possible position of a role in the lattice. The counting is bottom-up starting from the

most bottom role(s) and reflects the number of roles the current one dominates with the direct

path between them. So, if a role occurs in two different paths in the lattice, for example, once

with weight 5 and once with 4 we select 5 as the role weight. Then it is easy to select those

sets with lowest possible role weights – addressing in this case the least privileged principle.

15

This is why we need the highest possible value because we can accurately compute the minimal

privilege of the maximal importance of a role. After slecting the minial sets (there could be

more than one equally minimal) we perform a minimal set cardinality filtering to choose the

final one. After having obtained the set of missing credentials, we drop this extra information

from the set that is to be sent back to the client.

VII. INTERACTIVE ACCESS CONTROL

In this section we show how the various notions that we have seen so far can be combined

into a comprehensive authorization mechanism. An authorization system receives a request r,

processes it according to the access control algorithm and eventually takes a decision. A decision

may have involved interactions and so we also keep track of the current set of active credentials

CP .

Since a client must have all relevant credentials (if required) for getting access to a service,

one could borrow mechanisms for certificate chain discovery from [26], [7]. It is essential and

important for any trust management system.

Once again it is worth noting that this view is partial as we only focus on the knowledge of

one single autonomic node: there is no authorization domain crossing partnerships.

Our interactive access control solution is shown in Figure 4. The intuition behind the interactive

access control algorithm is the following. Initially a client will submit a set of credentials C r and

a service request r (step 1). Cr is optional and so initially may be also an empty set. Once the

client has initiated a session, the interactive algorithm is strated with internal input: the policy

for access control PA and policy for disclosure control PD.

Then the client’s profile (CP , CN) is update as: active credentials CP are updated with the

newly presented credentials Cr ; and declined credentials are updated as a set difference of what

the client was asked in the last interaction (CM) minus what he presents in the current interaction

(Cr). Steps 2 and 3. After the client’s profile is updated, the algorithm checks whether the request

r is granted by PA according to the client’s set of active credentials CP (step 4).

In the case of denial (step 5c), the algorithm computes all credentials disclosable from PD

according to CP and from the resulting set removes all already declined and already presented

credentials. In this case we avoid dead loops of asking something already declined or presented.

Then we compute (using abduction reasoning) all possible subsets of CD that are consistent with

16

Global vars: CN , CP , CM; Initially CN = CP = CM = ∅;

Internal input: PA, PD;

Output: grant/deny/ask(CM);

1) client’s input: Cr and r,

2) update CP = CP ∪ Cr ,

3) update CN = (CN ∪ CM) \ Cr , where CM is from the last interaction,

4) verify whether the request r is a security consequence of the policy access PA and

presented credentials CP , namely PA ∪ CP |= r and PA ∪ CP �|= ⊥ ,

5) if the check succeeds then return grant else

a) compute the set of disclosable credentials CD as

CD = {c | c credential that PD ∪ CP |= c} \ (CN ∪ CP) ,

b) use abduction to find a minimal set of missing credentials CM ⊆ CD such that

both PA ∪ CP ∪ CM |= r and PA ∪ CP ∪ CM �|= ⊥ ,

c) if no such set exists then return deny else

d) return ask(CM) and iterate the process.

Fig. 4. Interactive Access Control Algorithm

the access policy PA and, at the same time, grant r. Out of all these sets (if any) the algorithm

selects the minimal one.

Example 4 (A Running Scenario): A senior researcher at Fraunhofer institute FOKUS wants

to reconfigure an online service for paper submissions of a workshop. The service is part of a

big management system hosted at the University of Trento’s network that is part of Planet-Lab.

So, for doing that, at the time of access, he presents his employee membership token, issued by

a Fraunhofer certificate authority, presuming that it is enough as a potential customer.

Formaly speaking, the request comes from a domain fokus.fraunhofer.de with credential for

Role : employee together with a declaration for a user ID, John Milburk. The set of credentials

17

is:
{authNetwork (198.162.193.46, fokus.fraunhofer.de),

credential (JohnMilburk, employee),

declaration (JohnMilburk)}
So, according to the access policy the credentials are not enough to get full access and the

request would be denied (rf. rule 6 of Policy Access in Figure 3). Then, following the algorithm

(step 5a in Figure 4) it is computed the set of disclosable credentials from the disclosure policy

and the user’s set of active credentials. In our case, CP is the set of credentials mentioned above.

The algorithm computes CD as the need of all roles higher in position than Role :employee (rf.

Figure 3 rule 4 of Disclosure Policy):

{credential (User :JohnMilburk, Role :juniorResearcher),

credential (User :JohnMilburk, Role :seniorResearcher),

credential (User :JohnMilburk, Role :boardOfDirectors)}
The next step, abduction (Figure 4 step 5b), computes the minimal set of credentials, out of those,

that satisfies the request. The resulting set is {credential (User :JohnMilburk, Role :juniorResearcher)}.

Then the need for this credential is return back to the user.

On the next interaction step, because the user is a senior researcher, the same declines to

present the requested credential as just returning the same query with no presented credentials

(Cr = ∅). So, the algorithm updates the user’s session profile marking the requested creden-

tial credential (User :JohnMilburk, Role :juniorResearcher) as declined. The difference comes

when the algorithm re-computes the disclosable credentials as all disclosable credentials from

the last interaction minus the newly declined one:

{credential (User :JohnMilburk, Role :seniorResearcher),

credential (User :JohnMilburk, Role :boardOfDirectors)}
Abduction computation returns, as a missing set, the need for credential

credential (User :JohnMilburk, Role :seniorResearcher).

Then, because John Milburk is a senior researcher, he presents the just required certificate back

to the system and gets the requested service.

Remark 2: Using declined credentials is essential to avoid loops in the process and to guar-

antee the success of interaction in presence of disjunctive information.

18

For example suppose we have alternatives in the partner’s policy (e.g., “present either a VISA

or a Mastercard or an American Express card”). An arbitrary alternative can be selected by the

abduction algorithm and on the next interaction step (if the client has declined the credential) the

abduction algorithm is informed that the previous solution was not accepted. The process can

continue until all credentials have been declined (and access is denied) or a solution is found

(and access is granted).

This is all we need for business processes made up by stateless web services, in which all

decisions are taken on the basis of the current input set of credentials, and which envisaged to

be the large majority. This type of decision is characteristic of most logical approaches to access

control [24], [4], [5]: we only look at the policy, the request and the set of credentials.

It is possible to extend the approach to stateful autonomic nodes [20] and to a mutual process

of trust negotiation [22].

VIII. CORRECTNESS AND COMPLETENESS

At first we introduce some preliminary definitions.

Definition 8.1 (Completeness): If a client has a solution for a request r then he always gets

grant r.

Definition 8.2 (Soundness): If a client gets grant r then he has a solution for r.

Definition 8.3 (Solution Set for a Resource r): Let PA is an access policy and r be a request.

A set of credentials CS is a solution set for r according to PA if r is a security consequence of

PA and CS (PA ∪ CS |= r and PA ∪ CS �|= ⊥).

Definition 8.4 (Disclosable and Hidden Credentials): Let PD be a disclosure policy, creden-

tial c is disclosable if there is a set of credentials C s.t. c �∈ C and C together with the disclosure

policy PD entails c, namely PD ∪ C |= c.

A credential c is hidden if it is not disclosable.

The intuition behind hidden credentials is that the system does not ask for them but expects them

from the client. So, the information for hidden credentials is obtained by out-of-band sources.

Also, from the point of view of a client, hidden credentials are just credentials that someone has

told him to provide them when requests a specific service. Hidden credentials are used either

to unlock more credentials needed to grant access or used directly to unlock a resource or used

for both. So, a client must provide them when initially requests a service. Essentially, the client

19

can work in pull mode with disclosable credentials and must work in push mode with hidden

credentials.

Definition 8.5 (Hidden Credentials for a Resource r): Hidden credentials for a resource r is

the set {CH1,. . . ,CHn} where:

1) CS i, i = [1..n], are all possible solution sets for r,

2) CHi ⊆ CS i, i = [1..n], is the set of all hidden credentials for CS i.

In particular all solution sets for a resource r could be hidden, i.e. CHi = CS i, i = [1..n], and we

fall back in the standard, classical, access control framework of having only grant/deny decisions.

On the other hand, every solution CS for r with hidden credentials equal to an empty set is just

a solution for r, or can be interpreted as any solution is a solution with hidden credentials where

hidden credentials might be equal to empty set. Also it might be a case that some solution sets

for r have the same sets of hidden credentials.

Definition 8.6 (Fair Access): Let PA be an access control policy and let CPA be the set of

ground instances of all credentials occurring in PA. The policy PA guarantees fair access if for

any request r there exists a set CS ⊆ CPA that is a solution for r.

We can check fair access property by simply running the interactive algorithm for all resources

r ∈ PA and set up the disclosable credentials to all credentials occuring in PA. Then for each

request r the algorithm should return ask(CM). If for some r it returns deny then the fair

access property fails.

Definition 8.7 (Fair Interaction): Let PA and PD be, respectively, an access and disclosure

control policies. The policies guarantee fair interaction if

1) PA guarantees fair access and

2) if CS is a solution for a request r and CH is the set of hidden credentials for CS holds that

the visible part of CS is disclosable by PD ∪ CH, i.e. ∀c ∈ (CS \ CH), PD ∪ CH |= c.

The intuition of the fair interaction is that the hidden credentials in a solution set are all that

is needed to obtain the disclosure of the remaining disclosable credentials. For example setting

up an e-mail account my name@google.com is an example of fair interaction with hidden

credentials. One needs a form that is not available on the site but after the form, duly filled, has

been sent some additinal information (credentials) is asked and the account is granted.

The intuition behind unfair interaction policies is that, even if we have all credentials necessary

to access, even if we know that some credentials (the hidden ones) must be sent in push mode, yet

20

this will not be enough to get an answer from the server. We will need to push other credentials

that are not needed for access but just to disclose the information on missing credentials.

Assuming that for each request r ∈ PA a service provider knows a priori the set of all hidden

credentials CH1, . . . , CHn we can check the fair interaction property by running the interactive

algorithm n-times with input: r and CHi, i = [1..n]. Then for each request r and each run the

algorithm should return either ask(CM) or grant. If for some r in some runs it returns deny

then the fair interaction property fails.

If a service provider does not know the set of hidden credentials these can again be calculated

from the disclosure policies by using the abduction algorithm on the disclosure policy.

Definition 8.8 (Powerful Client): A powerful client is a client that whenever receives ask(CM)

returns CM.

Definition 8.9 (Cooperative Client): A client with a set of credentials C is a cooperative client

if whenever receives ask(CM) returns CM ∩ C.

Definition 8.10 (Client with Hidden Credentials for a Resource r): A client with hidden cre-

dentials for a resource r is any client that has the set of hidden credentials CH of a solution set

for r and whenever requets r it sends CH initially.

Definition 8.11 (Monotonic and Non-monotonic Policy): A policy P is monotonic if when-

ever a set of statements C is a solution set for r according to P (P ∪ C |= r) then any superset

C′ ⊃ C is also a solution set for r acccording to P (P ∪ C ′ |= r).

In contrast, a non-monotonic policy is a logic program in which if C is a solution for r it may

exists C ′ ⊃ C that is not a solution for r, i.e. P ∪ C ′ �|= r

Definition 8.12 (Resource r Additive Policy): A policy P is a resource r additive if for every

two sets of statements C and C ′, where C �⊂ C′ and C′ �⊂ C, that unlock the resource r according

to P then also C ∪ C ′ unlocks r according to P .

In other words, if you have two solutions for a service you can ”add” them and you will still

get the service.

Definition 8.13 (Resource r Subset Consistent Policy): A policy P is a resource r subset con-

sistent if for every solution set CS for r holds that each C ⊆ CS preserves consistency in P , i.e.

P ∪ C �|= ⊥.

The intuition behind a subset consistent policy is that inconsistency occurs because of separation

of duty. So this type of constraints rule out situation in which a client has too many privileges.

21

Situations where having less credentials than enough to get a service makes the system incon-

sistent are neither practical nor intuitive from an access logic point of view.

Proposition 8.1 (Sufficient Condition for Subset Consistency): Let PA be an access policy. If

the number of negations from a literal in the body of a constraint to a credential in PA is even

then PA is subset consistent.

Proof: Let assume that the number of negations from a literal in the body of a rule

to a credential in PA is even and the policy PA is not subset consistent. Then let CS be a

solution set for a request r and let C ⊆ CS such that PA ∪ C |= ⊥. Then because CS preserves

consistency and the fact that no credential occures in a head of a rule in PA (rf. Def. 6.1) follows

that inconsistency occures from reducing the number of credentials in the system. Reducing

credentials either directly affects a constraint having negation of a literal that is a credential

belonging to CS \ C or indirectly affects a constraint that has a positive literal, which by its

side is deduced from a rule in PA that has either negation or a positive literal in the body. If

negation in the latter case then it is a missing credential. In both cases the number of negations

is 1 which is odd. If we apply recursively the same rule for a positive literal in the latter case

we will compute again odd number of negations. In any way we have a contradiction with what

we assumed. With this we finish the proof.

Definition 8.14 (Well-behaved Policy): A policy P is well-behaved if for all resources r ∈ P

(i) P is resource r additive and

(ii) P is resource r subset consistent.

The set of well-behaved policies resides between monotonic and non-monotonic policies.

Proposition 8.2: All monotonic policies are well-behaved but the converse is not true.

In one direction the property is immediate: if a policy PA is monotonic then, according Def. 8.11,

if a set CS is a solution for a request r then also any superset is. So if CS ′ is as another solution

set for r, so also CS ∪ CS ′ is a solution because of the superset property.

For the other way round we show a counter-example:

r1 ← CA.

r1 ← CB.

r2 ← CC .

← CA, CB, CC .

22

In our case having {CA, CB, CC} bans the client to get either service, which clearly shows that

the example is a non-monotonic policy. At the same time, for each of the services we have

additive and subset consistent properties so that the policy is well-behaved.

Remark 3: Hereinafter all access policies PA will be well-behaved policies and all disclosure

policies PD will be monotonic policy unless explicitily specified otherwise.

Also we assume that a client initiates a service request with an empty set of presented credentials

or, if hidden credentials needed, the presented credentials are the hidden ones. The assumption

is important to avoid initial inconsistency and to assure that a client has a successful first step.

Whenever hidden credentials are not explicitly linked in the theorems we assume that for each

request r in PA its set of hidden credentials CH = ∅. The assumption mainly reflects the use of

Definition 8.7 for fair interaction. We apply the same definition but with no CH meaning that

for any request r each of its solution sets is disclosable by the disclosure policy.

A. Correctness and Completeness

Theorem 8.1 (Soundness): Let PA be an access policy, PD be a disclosure policy and r a

request. If a client gets grant r then he has a solution set CS that unlocks r according to PA.

This proof is rather straightforward. Let suppose that the client, requested service r, got grant.

The only way to get it is when PA ∪ CP |= r. There are two cases: either CP = ∅ or CP �= ∅.

If CP = ∅ then the resource r is not protected by PA, i.e. PA |= r. So, the ∅ is a solution for

r and the client has it.

If CP �= ∅ then the only way to introduce a credential in CP is by step 2 of the algorithm.

Since initially CP = ∅ so the client has sent a sequence of sets of credentials Cr 1, . . . , Cr n such

that
⋃n

i=1 Cr i = CP . Then the client has a set of credentials that unlocks it.

Theorem 8.2 (Termination): Let PA be an access policy, PD be a disclosure policy and r a

request. The access control algorithm always terminates.

To prove this claim simply observe that at each interaction the union of the presented credentials

or the declined credentials occuring in the access policy always increases. Since this set is

bounded by the credentials occuring in the access policy there is always a stage in which either

a grant is given (enough presented credentials to unlock the service) or a deny is sent (too many

declined credentials to find another set of missing credentials).

23

B. Completeness

The most important thing is also the most difficult to prove: a client who has the right set

of credentials and who is willing to send them to the server, will not be left stranded in our

autonomic network and will eventually get a grant.

We prove this result in stages: first for powerful clients and then for cooperative clients.

We notice that it is fairly difficult to prove any results for non-cooperative clients: if they are

unwilling to send the credentials to the server, how can ever the server grants them access?

However, if at least the client is willing to give his credentials if the server guess the right

combination can also be captured.

Theorem 8.3 (Completeness for a Powerful Client): Let PA be a non-monotonic access pol-

icy, PD be a disclosure policy and r a request. If PA and PD guarantee fair access and interaction

then a powerful client always gets grant r.

Proof: A powerful client requests r with an initial set of presented credentials equal to

empty set. Then the algorithm runs steps 1-3. If step 4 succeeds (no credentials are needed for

r) then the algorithm returns grant at step 5 and we are done.

If step 4 does not succeed then the algorithm goes to step 5a. At this point CN = CP = ∅.

In this case CD consists of all credentials disclosable by PD. Then in step 5b the abduction

algorithm will return a set CM that unlocks r because

(i) PA guarantees fair access and so a solution set CS for r exists,

(ii) since PD satisifies the property fair interaction and CH = ∅ so CS is disclosed by PD,

(iii) clearly CS is a subset of CD, because CD consists of all credentials disclosable by PD.

So, step 5c is not reached and in step 5d the algorithm returns ask(CM) which satisfies the

two conditions of step 5b.

If there is only one solution that unlocks r then CM = CS .

Since the client is a powerful client then on the next interaction he returns CM. Then the

algorithm updates CP = CM and CN = ∅ and because CM satisfies the two conditions in step

5b, in the last interaction, so it also satisfies the conditions in step 4 and in step 5 it returns

grant.

Theorem 8.4 (Completeness for a Cooperative Client): Let PA be an access policy, PD be a

disclosure policy and r a request. If PA and PD guarantee fair access and interaction then if

24

a cooperative client has a set of credentials CS that unlocks r according to PA then the client

always gets grant r.

Proof: We will proof it in two steps. First step, by induction, showing that in a single

interaction if a cooperative client does not get grant r then he gets ask(CM). In other words,

he will never receive denial by the algorithm. Second step, we will show that if the first step is

true then a cooperative client with a solution set CS always gets grant r.

Step 1.

Proof by induction on the interaction steps:

Inter. 1: Client requests service r together with an initial set of credentials Cr = ∅ and we

fall back exactly in the proof of Theorem 8.3 for that interaction step.

Inter. N: Here we use the induction hypothesis that the client fails to get grant r and gets

ask(CM).

Inter. N+1: Here, let suppose that the client fails to get grant r in step 4. The only way

it fails is that there is no solution set in CP . It is because in CP there are only credentials

partially compiled from solutions for r, i.e. CP ⊂ (CM1 ∪ . . . ∪ CMn). Then since PA is

well-behaved so CP preserves consistency in PA.

So, after the check failed in step 4 the algorithm computes the set of disclosable credentials

CD as all credentials disclosable by PD ∪ CP minus all already declined and presented

credentials.

Because PA and PD guarantee fair access and interaction so CS ⊆ (CD ∪CP) but CS �⊆ CP .

Then at least the set difference CS \ CP will be computed by the abduction engine because:

(i) (CS \ CP) ⊆ CD and (ii) (CS ∪ CP) ⊂ (CM1 ∪ . . .∪ CMn ∪ CS) preserves consistency (rf.

Def. 8.14 and Def. 8.13). And so the step 5c is skipped the client gets ask(CM).

Step 2. So in Step 1 we proved that if a cooperative client does not get grant r, in a single

interaction step, he gets ask(CM). Then we have to prove that in a finite number of steps a

cooperative client will always get grant r.

There is a finite number of solutions for each request r simply because PA consists of a

finite number of statements. The abduction reasoning service at each interaction computes dif-

ferent solution wrt the solutions computed in previous interactions because from the disclosable

credentials we remove all those credentials from the previous interactions (rf. step 5a in Fig. 4).

So, since there are finite solution sets for r and since the client has one of them therefore

25

according to what we proved in Step 1 the client in a finite number of interaction steps will

disclose CS , i.e. CS ⊆ CP , and get grant r.

Theorem 8.5 (Completeness for a Powerful Client with Hidden Credentials): Let PA be an ac-

cess policy, PD be a disclosure policy and r a request. If PA and PD guarantee fair access and

interaction then a powerful client with hidden credentials CH for r always gets grant r.

Proof: A powerful client requests r with an initial set of presented credentials equal to the

set of hidden credentials, i.e. Cr = CH. Then the algorithm runs steps 1-3. At this point CP = CH
and CN = ∅. If step 4 succeeds, CH itself is a solution set for r, then the algorithm returns grant

at step 5 and we are done.

If step 4 does not succeed then the algorithm goes to step 5a. In this case CD consists of all

credentials disclosable by PD and CH because CP = CH. Then in step 5b the abduction algorithm

will return a set CM because at least one such set exists:

(i) PA and PD guarantee fair access and interaction and so for the solution set CS , corresponding

to the set of hidden credentials CH that the client has, its visible part CS\CH will be disclosed

by PD and CH (rf. Def. 8.7),

(ii) clearly (CS \ CH) ⊆ CD, because CD consists of all credentials disclosable by PD ∪ CH,

(iii) according to Definition 8.5 the set CH ⊆ CS and so the set CS \CH together with CP preserve

consistency in PA (simply because (CS \ CH) ∪ CP = CS is a solution set),

So, step 5c is not reached and in step 5d the algorithm returns ask(CM) which satisfies the

two conditions of step 5b.

It may be the case in which the set CH unlocks more than one solution sets if those soluiton

sets have the same set of hidden credentials.

Since the client is a powerful client then on the next interaction he returns CM. Then the

algorithm updates CP = CH ∪ CM and CN = ∅ and because CM satisfies the two conditions in

step 5b, from the last interaction, so it also satisfies the conditions in step 4 and in step 5 it

returns grant. With this we finish the proof.

Theorem 8.6 (Completeness for a Cooperative Client with Hidden Credentials): Let PA be an

access policy, PD be a disclosure policy and r a request. If PA and PD guarantee fair access

and interaction then if a cooperative client with hidden credentials CH for r has a solution set

CS for CH then the client always gets grant r.

Proof: Analogously of theorem 8.4 we will proof it in two steps. First step, by induction,

26

showing that in a single interaction if the client does not get grant r then he gets ask(CM).

In other words, he will never receive denial by the algorithm. Second step, we will show that if

the first step is true then the client with a solution set CS always gets grant r.

Proof by induction on the interaction steps:

Inter. 1: Client requests service r together with an initial set of credentials Cr = CH and

we fall back exactly in the proof of Theorem 8.5 for that interaction step.

Inter. N: Here we use the induction hypothesis that the client fails to get grant r and gets

ask(CM).

Inter. N+1: Now, let suppose that the client fails to get grant r in step 4. Then the only

difference with the respective interaction step in the proof of Theorem 8.4 is that the client’s

solution set CS is still disclosable by PD and CP because CH is already in the set CP , see

Definition 8.5. So, according to fair interaction property follows that CS \ CH is visible and

the abduction service at least finds it as a solution.

The rest of the proof can be done along the same line as in Theorem 8.4.

IX. IMPLEMENTATION

We have actually implemented the system for access control for abduction and deduction using

protocols over web services and a front-end to a state-of-the-art abduction/deduction engine and

integrating it with a system for PMI (privilege management infrastructure).

For the implementation of the framework we have chosen Collaxa3 manager. Collaxa server

supports many standards as BPEL4WS, WSDL, SOAP, etc. and interoperates with platforms

as BEA’s WebLogic and Microsoft .NET. So, this makes it well-suited for the purposes of

the framework. The main idea of the work is that using BPEL4WS specification [30] we can

orchestrate the requirements and communications between client and partners in an automatic

and transparent way via a main authorization server.

A preliminary prototype of the system, especially the authorization server, has been done

under Collaxa. We have also defined all WDSL interfaces and XML schemas for the messages

that entities in the framework exchange with each other.

3www.collaxa.com | www.oracle.com/technology/bpel

27

For the actual crypto infrastructure we decided to use PERMIS4 [6]. We chose PERMIS

because it implements RBAC using entirely X.509 Identity and Attribute Certificates [15]. It

allows for creating, verifying and validating attribute certificates and for storing and allocating

them using LDAP directories [40]. For the integration with PERMIS, we extend the PERMIS’s

Access Decision Function (ADF) with the functionality of our model such that PERMIS validates

and gathers client’s credentials on its own and then asks our algorithm for an access decision

(next possible step) presenting the newly collected credentials.

For the implementation of the algorithm, presented in the paper, we use DLV5 (a disjunctive

datalog system with negations and constraints) as a core engine. We have done a wrapper to the

DLV system that manages all internal computations, queries and transformations to and from

DLV. Additional details on the implementation of the logical steps can be found in [21].

X. RELATED WORK

As we mentioned in the introduction, access control for autonomic communication borrows

some aspect of trust management and some aspects of workflow security. Among these models

we find a number of relevant works: for workflows[4], web services [33], role based access

control on the web [13], [34], tasks [17] and DRM [33], possibly coupled by sophisticated policy

combination algorithms. However, they have mostly remained within the classical framework –

all decisions of grant/deny are based on checking that request would follow from the policy and

the presented set of credentials.

The works on trust negotiations[35], [44] focus on communication and infrastructure and

assume that requests and counter requests have been somehow calculated from the access policy.

Also the formal models on credential-based access control and policy combination [4], [24],

[16], [42] dont treat the problem of inferring missing credentials from failed requests, as they

are within the same frame of mind of inferring successful requests from present credentials.

Also standardization efforts like the XACML proposals [14] gives rules for deriving what is

right (evaluating policies) and not rule for understanding what went wrong.

Also a recent proposal by Bonatti and Samarati [5] that has the explicit focus on access and

release control is not fully on target. In a nutshell, the request is received, the policy rules are

4www.permis.org

5www.dlvsystem.com

28

filtered for relevance, the relevant rules are partially evaluated and sent to the client. The client

will have to figure out which are the credentials (this is not discussed in the paper) and then

will evaluate these credentials according its release policy.

The first problem is that demanding clients to analyse security policies is not acceptable here.

The second problem is that after a suitable number of queries the entire policy of the server

would be disclosed to the client or to the server orchestrating the process. Here we only disclose

the needed credentials and not the rules of the policy whose structure remains hidden to the

client. Furthermore, the relevancy filtering approach only works for flat (monotone) policies, in

which for every request we list all its credentials.

The other key proposal on trust negotiation by Yu et al. [44], offers a dual view w.r.t Bonatti and

Samarati[5]. Loosely speaking, each credential is associated to a policy (a boolean expression)

denoting the credentials that a client must have already provided for its safe disclosure. By a

step wise process the parties can exchange credentials or policy rules until the desired resource

is released. The paper provides safe sequences of disclosure in a rather ad-hoc fashion building

upon trees rather than logical formalization. As a consequence they can only treat monotone

policies and it is not possible to define notions of consistency of policies and disclosure of

policies in presence of constraints (e.g. separation of duty). Another limitation of the paper is

that it interlocks the access and the release policy into one. So, as the authors acknowledge

[44, page 21], it is impossible to access resources if some of the needed credentials cannot be

disclosed at some point. Furthermore, the need for intermediate credential disclosure calls for a

structuring of policy rules that may be counter-intuitive from the point of view of access control.

For the disclosure process to take place such natural composition is not possible when using Yu

et al. framework [44].

From the literate of policy-based network management (or self-management), we have a

number of works that also follow within the same mindset: given some fact and our policy

we derive the actions. For example, the IETF Policy working group is defining a framework for

QoS based on the X.500 directory [39]. The IETF “policies” have the form if “set of conditions”

then do “a set of actions”. These rules are also fairly limited as they do not support rules that can

be dynamically activated by events to reconfigure the system according to changed circumstances.

Industry solutions [29] are hardly better than the IETF proposal and sometimes turns out just to

be a graphical interface over DiffServ network policies. Other accademic proposals for DiffServ

29

such as that by Keller et al. [19] may allow for more sophisticated policies and contractual

monitoring of those policies. Other proposals make use of policies including obligations [37],

[27] but still remains in the setting if-then.

The most intriguing proposal is the bacterial algorithm presented by Marshal et al. for network

management [28]. Loosely speaking, the algorithm is constituted by autonomous (but centrally

programmed) controllers which autonomously replicate policies that improve its performance and

de-activate policies that degrade performance (policies are evaluated using a cost-revenues filter).

In this way, good policies should proliferate and poor policies should die out. This proposal is

particularly interesting because it suggest using another reasoning service: induction [31]. This

work can be the subject of future investigations.

XI. CONCLUSIONS

In this paper we proposed a framework for policy-based self-managed access control in

autonomic communication. The framework is grounded in a formal model based on Datalog

with the stable model semantics. The key idea is that in an autonomic network a client may

have the right credentials but may not know them and thus a autonomic communication server

needs a way to avoid leaving the client stranded.

We have proposed a solution to this problem by extending classical policy-based access control

models with an advance reasoning service: abduction. Building on top of this service we have

presented an interactive access control algorithm that computes on the fly the missing credentials

needed for a client to get access.

We also enriched the framework over existing policy-based approach to access control by

introducing the difference between disclosable and hidden credentials and between monotonic

and well-behaved policies. The first distinction addresses the behaviour of an autonomic node

allowing it to dynamically protect the privacy of his policies by specifying which credentials are

hidden and which are not. This allows the server to restrict access to selected clients. The latter

distinction extends our work on a wider set of policy languages wrt already existing approaches

[5], [44], [25].

We have also sketched a the implementation of the systems using web-services.

30

Future work is in the direction of characterizing the complexity of the framweork6, extending

it to cope with mutual negotiation (a preliminary result is presented in [22]), and fully integrate

our implementation with a privilege management infrastructure.

REFERENCES

[1] APT, K. Logic programming. In Handbook of Theoretical Computer Science, J. van Leeuwen, Ed. Elsevier, 1990.

[2] ATLURI, V., CHUN, S. A., AND MAZZOLENI, P. A Chinese wall security model for decentralized workflow systems. In

Proceedings of the 8th ACM conference on Computer and Communications Security (2001), ACM Press, pp. 48–57.

[3] BERTINO, E., CATANIA, B., FERRARI, E., AND PERLASCA, P. A logical framework for reasoning about access control

models. In Proceedings of the Sixth ACM Symposium on Access control models and technologies (2001), ACM Press,

pp. 41–52.

[4] BERTINO, E., FERRARI, E., AND ATLURI, V. The specification and enforcement of authorization constraints in workflow

management systems. ACM Transactions on Information and System Security (TISSEC) 2, 1 (1999), 65–104.

[5] BONATTI, P., AND SAMARATI, P. A unified framework for regulating access and information release on the web. Journal

of Computer Security 10, 3 (2002), 241–272.

[6] CHADWICK, D. W., AND OTENKO, A. The PERMIS X.509 role-based privilege management infrastructure. In Seventh

ACM Symposium on Access Control Models and Technologies (2002), ACM Press, pp. 135–140.

[7] CLARKE, D., ELIEN, J.-E., ELLISON, C., FREDETTE, M., MORCOS, A., AND RIVEST, R. L. Certificate chain discovery

in SPKI/SDSI. Journal of Computer Security 9, 4 (2001), 285–322.

[8] DAMIANOU, N., DULAY, N., LUPU, E., AND SLOMAN, M. The Ponder policy specification language. In Proceedings of

the International Workshop on Policies for Distributed Systems and Networks (POLICY) (January 2001), Springer-Verlag,

pp. 18–38.

[9] DAS, S. Deductive Databases and Logic Programming. Addison-Wesley, Reading, MA, 1992.

[10] ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B. M., AND YLONEN, T. SPKI Certificate Theory,

September 1999. IETF RFC 2693.

[11] GELFOND, M., AND LIFSCHITZ, V. The stable model semantics for logic programming. In Proceedings of the Fifth

International Conference on Logic Programming (ICLP’88) (1988), R. Kowalski and K. Bowen, Eds., MIT-Press, pp. 1070–

1080.

[12] GEORGAKOPOULOS, D., HORNICK, M. F., AND SHETH, A. P. An overview of workflow management: From process

modeling to workflow automation infrastructure. Distributed and Parallel Databases 3, 2 (April 1995), 119–153.

[13] GIURI, L. Role-based access control on the web. ACM Transactions on Information and System Security (TISSEC) 4, 1

(2001), 37–71.

[14] GODIK, S., AND MOSES, T. eXtensible Access Control Markup Language (XACML). OASIS, February 2003. www.oasis-

open.org/committees/xacml/.

6General abduction lay at the second level of the polynomial hierarchy but our problems are at the same time more specialized

(e.g. credentials are occurring only positively in the rules) and more general (we have hierarchies of roles so subset or cardinality

minimality does not really apply).

31

[15] ITU-T RECOMMENDATION X.509:2000(E) | ISO/IEC 9594-8:2001(E). The directory: Public-key and attribute

certificate frameworks.

[16] JAJODIA, S., SAMARATI, P., SUBRAHMANIAN, V. S., AND BERTINO, E. A unified framework for enforcing multiple

access control policies. In Proceedings of the 1997 ACM SIGMOD international conference on Management of data

(1997), ACM Press, pp. 474–485.

[17] JOSHI, J. B. D., AREF, W. G., GHAFOOR, A., AND SPAFFORD, E. H. Security models for web-based applications.

Communications of the ACM 44, 2 (2001), 38–44.

[18] KANG, M. H., PARK, J. S., AND FROSCHER, J. N. Access control mechanisms for inter-organizational workflow. In

Proceedings of the Sixth ACM Symposium on Access control models and technologies (2001), ACM Press, pp. 66–74.

[19] KELLER, A., KAR, G., LUDWIG, H., DAN, A., AND HELLERSTEIN, J. Managing dynamic services: A contract-based

approach to a conceptual architecture. In Eighth Network Operations and Management Symposium (April 2002).

[20] KOSHUTANSKI, H., AND MASSACCI, F. E pluribus unum: Deduction, abduction and induction, the reasoning services

for access control in autonomic communication. In Proceedings of the 1st IFIP TC6 WG6.6 International Workshop on

Autonomic Communication (WAC) (Berlin, Germany, October 2004). to appear.

[21] KOSHUTANSKI, H., AND MASSACCI, F. Interactive access control for Web Services. In Proceedings of the 19th IFIP

International Information Security Conference (SEC 2004) (Toulouse, France, August 2004), Kluwer Press, pp. 151–166.

[22] KOSHUTANSKI, H., AND MASSACCI, F. An interactive trust management and negotiation scheme. In Proceedings of the

2nd International Workshop on Formal Aspects of Security and Trust (FAST) (Toulouse, France, August 2004), Kluwer

Press, pp. 139–152.

[23] LEONE, N., PFEIFER, G., AND ET AL. The DLV system. In the 8th European Conference on Artificial Intelligence (JELIA)

(September 2002), vol. 2424 of Lecture Notes in Computer Science, Springer, pp. 537–540.

[24] LI, N., GROSOF, B. N., AND FEIGENBAUM, J. Delegation logic: A logic-based approach to distributed authorization.

ACM Transactions on Information and System Security (TISSEC) 6, 1 (2003), 128–171.

[25] LI, N., AND MITCHELL, J. C. RT: A role-based trust-management framework. In Proceedings of the 3rd DARPA

Information Survivability Conference and Exposition (DISCEX III) (Los Alamitos, California, April 2003), IEEE press,

pp. 201–212.

[26] LI, N., WINSBOROUGH, W. H., AND MITCHELL, J. C. Distributed credential chain discovery in trust management.

Journal of Computer Security 11, 1 (February 2003), 35–86.

[27] LYMBEROPOULOS, L., LUPU, E., AND SLOMAN, M. An adaptive policy based framework for network services

management. Plenum Press Journal of Network and Systems Management 11, 3 (September 2003), 277–303.

[28] MARSHALL, I., GHARIB, H., HARDWICKE, H., AND ROADKNIGH, C. A novel architecture for active service management.

In IEEE/IFIP International Symposium on Intergrated Network Management (May 2001), pp. 795–810.

[29] CISCO COPS QOS POLICY MANAGER PRODUCT DOCUMENTATION. http://www.cisco.com/univercd/cc/

td/doc/product/rtrmgmt/qos/qpm21/index.htm.

[30] CURBERA ET AL, F. Business Process Execution Language for Web Services (BPEL4WS). BEA, IBM, Microsoft, May

2003. http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

[31] MUGGLETON, S., AND DE RAEDT, L. Inductive logic programming: Theory and methods. JLP 19/20 (1994), 629–679.

[32] NIEMELÄ, I., SIMONS, P., AND SOININEN, T. Stable model semantics of weight constraint rules. In Proceedings of the

Fifth International Conference on Logic Programming and Nonmonotonic Reasoning (December 1999), Springer-Verlag.

32

[33] PARK, J., AND SANDHU, R. Towards usage control models: beyond traditional access control. In Seventh ACM Symposium

on Access Control Models and Technologies (2002), ACM Press, pp. 57–64.

[34] PARK, J. S., AND SANDHU, R. RBAC on the Web by smart certificates. In Proceedings of the fourth ACM workshop on

Role-based access control (1999), ACM Press, pp. 1–9.

[35] ROSCHEISEN, M., AND WINOGRAD, T. A communication agreement framework for access/action control. In Proceedings

of the Symposium on Security and Privacy (1996), IEEE Press, pp. 154–163.

[36] SHANAHAN, M. Prediction is deduction but explanation is abduction. In Proceedings of IJCAI ’89 (1989), Morgan

Kaufmann, pp. 1055–1060.

[37] SLOMAN, M., AND LUPU, E. Policy specification for programmable networks. In Proceedings of the First International

Working Conference on Active Networks (1999), Springer-Verlag, pp. 73–84.

[38] SMIRNOV, M. Rule-based systems security model. In Proceedings of the Second International Workshop on Mathematical

Methods, Models, and Architectures for Computer Network Security (MMM-ACNS) (2003), Springer, pp. 135–146.

[39] SNIR, Y., RAMBERG, Y., STRASSNER, J., AND COHEN, R. Policy framework QoS information model, April 2001. Internet

Draft, draft-ietf-policy-qos-info-model-03.txt.

[40] WAHL, M., HOWES, T., AND KILLE, S. Lightweight Directory Access Protocol (v3), December 1997. RFC 2251.

[41] WEEKS, S. Understanding trust management systems. In IEEE SS&P-2001 (2001), IEEE Press.

[42] WIJESEKERA, D., AND JAJODIA, S. Policy algebras for access control the predicate case. In Proceedings of the 9th ACM

conference on Computer and Communications Security (2002), ACM Press, pp. 171–180.

[43] WINSBOROUGH, W., SEAMONS, K., AND JONES, V. Automated trust negotiation. In Proceedings of DARPA Information

Survivability Conference and Exposition (DISCEX) (2000), vol. 1, IEEE Press, pp. 88–102.

[44] YU, T., WINSLETT, M., AND SEAMONS, K. E. Supporting structured credentials and sensitive policies through

interoperable strategies for automated trust negotiation. ACM Transactions on Information and System Security (TISSEC)

6, 1 (2003), 1–42.

