

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

COORDINATING MOBILE DATABASES

Fausto Giunchiglia and Ilya Zaihrayeu

August 2004

Technical Report # DIT-04-089

Also: Proc. of the 1st International Workshop on Peer- to-Peer Knowledge
Management (P2PKM'04), 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

1

Coordinating Mobile Databases
Fausto Giunchiglia and Ilya Zaihrayeu

Dept. of Information and Communication Technology
University of Trento

38050, Povo, Trento, Italy
{fausto, ilya}@dit.unitn.it

Abstract— We are interested in the development of a database
management layer which is completely portable and, therefore,
“pluggable” on top of multiple host platforms. This layer, so
called Peer Database Management System (PDBMS), must be able
to remotely connect with its database and to connect it with
other peer databases. We realize mobility by storing PDBMS on
a flash drive. We realize network independence by developing a
fully decentralized data coordination model. The two notions at
the core of our model are Interest groups and Acquaintances.
The first notion allows for a global aggregation of nodes carrying
similar information, while the second allows for a local logical
point-to-point data exchange between databases. The system has
been developed on top of the Peer-to-Peer platform JXTA.

I. INTRODUCTION

We are interested in the study of new paradigms allowing
conventional database technology to be effectively operational
in mobile settings. We think of database mobility as a database
network, where databases appear and disappear spontaneously
and their network access points may change, and are not
known a priori. There is a further request that databases must
know, independently of their network access points, how to
locate other databases, and how to interoperate with them on
servicing user requests (i.e., queries and updates).

Examples of the application domain for mobile databases
are medical care or the real estate domain. For instance, think
about a person, called John, who goes for skiing and suffers an
accident. He is taken to a local clinic for a treatment. Doctors
need to know whether John has any contra-indication against
some particular drugs. John does not know these details, but
luckily his database management layer, that he keeps on his
flash drive, has a link to the family doctor’s database, where the
history of his treatments is stored. Thus a simple query helps
to solve the problem. Another example is an application where
real estate agents coordinate their databases in exchanging real
estate information with the goal of pushing sales. Since they
travel to their customers (who may want to sell or, instead,
to buy), they always carry relevant data with them. When one
is on the site of a customer, who wants to sell a house, the
agent updates his database and makes this data available for
other agents. Or, when an agent talks with a potential buyer,
and nothing from the agent’s database satisfies the client, the
agent may want to query other agents’ databases to look for
additional sale options.

We implement these functionalities within a so called Peer
Database Management System (PDBMS) which is supposed
to run on top of a standard database management system. We

see three major requirements for a PDBMS. First, it must be
self-contained and relatively small in size. This allows it to
be totally independent from other databases and middleware.
It also allows it to fit on a small capacity storage device as
a flash drive, which can be easily handled around. Second,
it must be system, networking platform, and IP independent;
this in order to make it “pluggable” on top of multiple host
platforms. Third, PDBMS must know how to connect to its
database and how to connect it with other databases in order
to exchange queries and data.

PDBMS runs on top of JXTA [1]. JXTA provides an IP-
independent naming space to address nodes. It implements
a Peer-to-Peer (P2P) decentralized networking model where
each party (called a node or a peer) has equivalent abilities
in providing other parties with data and/or services. Peers are
largely autonomous from other peers, and they interoperate in
a local, point-to-point manner. All these notions are crucial
from the point of view of mobility – databases may come
and go, interact with different databases at different times or
for answering different queries, the size of the network can
dynamically shrink and expand depending on how many nodes
are online, and databases can benefit from collaboration with
one other by coordinating their data at runtime.

Existing database integration solutions are inapplicable for
our application domain. In conventional database integration
technology, interoperation is reached by means of introducing
the notion of a global virtual schema [2]. Queries are posed
against the global schema and then reformulated w.r.t. local
schemas which describe real data in the system. Should a new
schema be imported to the system, then the global schema
must be reconsidered as a design time activity. The dynamic
factor of mobility, i.e. the fact that parties are regularly
unavailable, and the open-ended autonomous nature of P2P
make these solutions impractical. Therefore, we propose a new
solution to P2P databases, that we call database coordination.
We see coordination as the ability of peers to effectively
manage, at runtime, semantic data dependency links among
databases in a decentralized, distributed and collaborative
manner.

The key notions of the database coordination model are
Interest Groups and Acquaintances. Interest groups support
the formation of peers according to data models they have in
common; and acquaintances allow for peers inter-operation.
The combination of database and P2P technologies has already
received a lot of attention, see for instance [4], [5], [6],
[7]. Among many other things (see [3], [14] for a detailed

2

discussion of the related work) our solution considers a new
dimension for P2P databases – mobility, where PDBMS,
database, or both, can be mobile ([3], in particular, provides
the vision of our approach).

This paper is organized as follows. Section II introduces
the four basic architectural notions of our data coordination
model. Section III explains how these notions are implemented
in JXTA. Section IV discusses the logical architecture that we
propose. Finally, Section V gives the conclusions.

II. A MODEL FOR DATA COORDINATION

We consider the notion of a DB peer (or just peer) as
primitive, taking it as any device supporting one or more
networking protocols. There is a further request that each peer
provides a source database described by a (source) schema, or
supplies only the schema. In this latter case a node acts as a
kind of mediator in transitive propagation of data. Peers define
semantic data dependency links between their schemas and
use these links to coordinate data, i.e., answer input queries,
propagate query results and updates. An input query can come
from a user (user query) or from another node on the network
(network query). Both user queries and network queries are
formulated w.r.t. the source schema of a particular node. A
P2P database network (or just network) is a collection of
DB peers and semantic mappings relating schemas of pairs
of nodes. Peers are largely autonomous, in particular in what
data they store, in which nodes they establish semantic data
dependency links with and coordinate their data, etc. We define
data coordination in terms of four basic notions. They are:
Interest Groups, Acquaintances, Correspondence Rules and
Coordination Rules.

A. Interest Groups

Usually, nodes know very little about the topics other nodes
can answer queries about. Intuitively, “Ford cars”, “Trentino
libraries”, “Movies” are all possible topics. An Interest Group
(or a Peer Group) is a set of nodes able to answer queries about
a particular topic. Interest groups form a hierarchical parent-
child relationship, where each child has only one parent. Each
child peer group has a more specialized topic w.r.t. the topic of
its parent group. The interest groups hierarchy is a tree, where
the root stands for “All Topics” interest group (ATG). ATG
is used by nodes, whose schemas do not correspond to any
of the other groups in the hierarchy. The lower a group in the
hierarchy, the more specialized its topic is and more “specific”
queries its nodes are able to answer. We describe the topic of
an interest group by the path from ATG to that interest group
in the hierarchy and by a set of keywords which additionally
describe the content of the group. This information is useful
for peers looking for appropriate groups to join. Consider the
following example.

Example 1: Consider Figure 1, where an example of in-
terest group hierarchy is depicted. The “Arts” group include
nodes with databases storing rather general data about arts,
for instance, categories of arts (music, photography, etc),

Fig. 1. An interest group hierarchy

addresses of relevant museums and names of relevant peo-
ple, etc. Its child group, titled “Movies”, contains informa-
tion about particular movies, directors and actors, produc-
ers, and so on. The group topic for group “Movies” in
this case could be GT (“Movies′′) =< ATG − Arts −
Movies, “movies, cartoons, video, celebs′′ >

Each interest group has a Group Manager (GM) whose
task is to provide peers with information about the group.
In particular, GM is responsible for collecting statistical
information, such as how many nodes have joined the group,
how many of them are online in average, what is the average
number of queries per node in a unit of time, volume of data in
the nodes’ databases, average volume of a query answer, and
so on. GM keeps up-to-date all this information and makes
it available for nodes willing to join. GM stores the topic
information of its interest group as well information about its
child interest groups. A child interest group is formed by a
node of the given (parent) interest group. This node becomes
the group manager of this new group. Once a new group is
created, new nodes may join, and, eventually form new child
interest groups. Nodes self-organize into interest groups and
build the interest group hierarchy in a decentralized fashion.
As a thumb rule, any peer can participate in more than one
interest groups independently on their position in the hierarchy
(providing that this peer has relevant relations for the group),
and can join and leave groups spontaneously.

B. Acquaintances

Acquaintances are nodes a node knows about. There is a
further request that a node must know how to translate an
input query or its part w.r.t. the schema of an acquaintance
and how to translate query results or an update coming from
an acquaintance w.r.t. its source schema. The acquaintance is
not a symmetric notion, i.e. the fact that a node is acquainted
with another node does not necessarily mean that the vice
versa also holds. A node is an acquainted node for some other
node if the latter is an acquaintance of the former.

For each acquaintance, a node keeps one or more
acquaintance queries. An acquaintance query is a query
over the relations of the database of an acquaintance, whose
answer satisfies one of the relations of the schema of an
appropriate acquainted node. In data integration terminology
this kind of mappings is called Global-as-View, or GAV [8].
An acquaintance query is the minimal block for building
semantic data dependency links between peer databases. We
represent acquaintance queries as conjunctive queries, which

3

can express select-project-join queries [2]. All input queries
in a network are also represented in the conjunctive form. An
acquaintance query (or an input query) has the following form:

r(X) : −r1(X1), . . . , ri(Xi), ci+1(Xi+1), . . . , cn(Xn)

where r, r1, . . . , rn and ci+1, . . . , cn are predicate names.
r(X) is called the head of the query and refers to a particular
relation. r1(X1), . . . , ri(Xi) are the relation subgoals, and
ci+1(Xi+1), . . . , cn(Xn) are the comparison subgoals of the
body of the query. Comparison subgoals stand for arithmetic
comparisons, such as <,≤,=, �=. Tuples X, X1, . . . ,Xi

contain variables, whereas tuples Xi+1, . . . ,Xn contain
either constants or variables from the relation subgoals.
Variables from X1, . . . ,Xn are called body variables, and
variables from X are called head variables. We allow only
meaningful queries, i.e. we require that all head variables
must also be body variables, names of the relation subgoals
must be mutually different, etc. If a query respects these rules
then we say that that this query is valid.

In acquaintance queries the head is equal to some relation
of the source schema, and the relation subgoals and body
variables refer respectively to the relations and attributes of
the schema of an acquaintance. Comparison subgoals of an
acquaintance query represent restrictions over the domain of
the acquaintance database which are coherent with the domain
of the source database; they are used for update propagation.
For an input query, the head is equal to some answer relation,
and the relation subgoals refer to the relations of the source
schema.

Acquaintance queries are used for the translation of input
queries and their propagation to acquaintances as well as for
update propagation from acquaintances. Each acquaintance
query is stored in two copies – one at an acquainted node and
another at its acquaintance. We will say that an acquaintance
query is relevant for some relation, if either it is stored at an
acquainted node and the head of the query is equal to that
relation, or if it is stored at an acquaintance and that relation
appears in the body of the query. An acquainted node can
associate with each acquaintance query a set of acquaintance
constraints referencing some head variables according to the
domains of corresponding attributes in the acquaintance’s
database. The constraints are of the same form as comparison
subgoals. The rationale for this is to avoid meaningless propa-
gation of input queries which contain conditions in their com-
parison subgoals which can not be satisfied, given the domain
constraints of the acquaintance’s database. An acquaintance
uses acquaintance queries for updates propagation, as it is
described in the corresponding section below. Consider the
following example:

Example 2: Consider two nodes A and B, whose relations
store information about banks (as names, departments, cities,
countries) and bank employees (as names, departments they
are attached to, and salaries). The relations of the two nodes
are:

node A
Banks(bankName, city, country)
Departments(depName, bankName)
Staff(name, depName, salary)

node B
Banca(nome, stipendio, banca, cita′)

A particularity of database B is that it stores information
about employees working in Italian banks with salaries more
than 2000 Euros. Node B is acquainted with node A w.r.t.
the following acquaintance query:

Banca(n, s, b, c) : − Banks(b, c, ctr),
Departments(dn, b), Staff(n, dn, s),
ctr = “Italy′′, s > 2000

As it can be seen from the acquaintance query, two com-
parison subgoals apply restrictions on the salary and country
attributes of relations of A in accordance with the domain of
the database of B.

C. Correspondence Rules

In most cases, participating databases are semantically
heterogeneous, namely, they represent the same concepts
differently [9]. Correspondence rules define how constants
from the local domain are translated into constants in the
domain of an acquaintance (forward translation) and vice versa
(backward translation). Correspondence rules are defined on
the domains of all head variables in acquaintance queries
(since they appear in input queries) and of all those body
variables which appear in the comparison subgoals. Note, that
correspondences between relations and attributes are already
defined by the acquaintance queries. Namely, one relation in
the peer source schema may correspond to several relations
in the acquaintance’s one. Also an attribute in a relation (i.e.
a head variable) may correspond to several attributes in the
acquaintance’s relations (i.e. body variables).

We denote by FT (x) = y a function for forward translation
and by BT (x) = y a function for backward translation.
Forward translation is used for translating constants in queries,
whereas backward translation is used for translating constants
in query results and updates. Note, that these two translations
are not necessarily symmetric, i.e. it is not necessarily true
that the following holds FT (BT (x)) = x. An example of
this situation could be a translation between two currencies.
In the simplest case, when two nodes share the same domain,
constants are translated by correspondence rules into them-
selves, i.e. FT (x) = BT (x) = x. In this case we will say that
such correspondence rules are plain translations. Consider the
following example.

Example 3: Recall the nodes, relations and acquaintance
query from Example 2. The variables, which are associated
with correspondence rules, are n, s, b, c and ctr. Now imagine
that node A is in the United States, and therefore all salaries
are in US dollars. In order to allow queries with the salary
attribute in the body, the following correspondence rules
might be set up at B for this acquaintance query:

FT (s) = s ∗ 1.27; BT (s) = s ∗ 0.78;

4

Correspondence rules for variables n, b, c and ctr are plain
translations since we assume that both databases use the same
natural language (e.g. English) to refer to personnel, bank, city,
and country names.

Apart from translation of constants, correspondence rules do
another operation, namely transformation of a relation subgoal
of an input query into a query w.r.t. the schema of a particular
acquaintance. Depending on the number of acquaintance query
definitions, bound to some relation subgoal, each subgoal may
have zero, one, or more transformations. The transformation
consists of two main phases: (1) unfolding of the relation
subgoal in accordance with the definition of a respective
acquaintance query; (2) “pushing” comparison subgoals to the
reformulated query. In the first phase we omit all comparison
subgoals from the acquaintance query, and, in the second
phase, we add only those from the input query, which refer
to the head variables from the relation being translated. There
are two reasons for doing this. First reason is to allow queries
which ask for data beyond local domain constraints. If com-
parison subgoals of acquaintance queries were added, resulting
query might already become unsatisfiable. The second reason
is that, by “pushing” input query comparison subgoals to a
query w.r.t. acquaintance database, we reduce the amount of
data, returned by the acquaintance. On the completion of the
second phase, correspondence rules translate constants, if any.
Consider the following example:

Example 4: Assume that the user of node B from Example
2 submits a query asking for names of employees in Rome
with salaries less then 1800 Euros. The corresponding
conjunctive query is:

QB(n, b) : −Banca(n, s, b, c), s < 1800, c = “Rome′′;

According to the definition of the acquaintance query from
Example 2, formulated for relation “Banca′′, QB is unfolded
to the following query:

Q′
B(n, b) : − Banks(b, c, ctr),Departments(dn, b),

Staff(n, dn, s), s < 1800, c = “Rome′′

Note, that comparison subgoals from the acquaintance
query are omitted, whereas the ones from the user query
are added. If the comparison subgoals of the acquaintance
query were left, then we would have two comparison
subgoals which are mutually inconsistent (i.e. s > 2000
and s < 1800). Finally, we apply correspondence rules for
translating constants 1800 and “Rome”, and we get the
following query, ready for being executed at node A:

QA(n, b) : − Banks(b, c, ctr),Departments(dn, b),
Staff(n, dn, s), s < 2286, c = “Rome′′

D. Coordination Rules

Each node has a set of coordination rules. Their primary
goal is managing data coordination with acquaintances and
acquainted nodes. They are run by special kind of events,
called data coordination events and, depending on the event,
perform a particular action. The data coordination events

are: (1) a database manipulation operation, such as select,
insert, delete or update formulated w.r.t. to the source schema
and submitted by the user; (2) a network query coming
from an acquainted node; (3) query results coming from an
acquaintance node; or (4) an update request coming from an
acquaintance. The action, performed by coordination rules, can
be transformation and propagation of an input query to an
acquaintance, reconciliation of results and their propagation
to an acquainted node, etc. Let us consider how coordination
rules process the four data coordination event types.

1) Database manipulation operations: SELECT is used
when a user submits queries. User queries are checked for
validity, and then they are evaluated against the source schema.
The evaluation involves a check of whether referenced rela-
tions exist, whether they are given certain number of variables,
etc. If a node is equipped with a source database and it
is accessible, then the variables in the conjunctive query
are assigned corresponding attributes, and then the query is
submitted to the database.

Then, for each relation subgoal in the query coordina-
tion rules check whether there are any relevant acquaintance
queries. For each found acquaintance query, correspondence
rules are applied to get a transformed query w.r.t. the schema
of the appropriate acquaintance. If a given acquaintance
query is associated with any constraints, then coordination
rules check, whether they are consistent with the comparison
subgoals of the reformulated query. Finally, all reformulated
queries for all subgoals, which passed the consistency check,
are propagated to appropriate acquaintances. Since different
acquaintance queries may refer to nodes from different interest
groups, a user query may be propagated within several interest
groups at the same time.

INSERT leads to an update of data at some source database.
When executed at some node, it may evoke update propagation
to some other, acquainted nodes. Nodes may agree on auto-
matic propagation of updates related to some acquaintance
queries. An update propagation works as follows: when an
insert operation is performed, coordination rules look for
acquaintance queries of acquainted nodes, which contain the
relation being modified amongst their relation subgoals. For
each acquaintance query found, the node computes the ac-
quaintance query keeping only the newly inserted tuples for
the corresponding relation. The reason for this is that in this
case the query computes only new tuples, w.r.t. to ones which
might have been already computed during the previous insert
operations or queries. Note, that now the comparison subgoals
of acquaintance queries are also used in the computation
(as apposed to query answering). Then, the node sends the
computed tuples to respective acquainted nodes, with the IDs
of corresponding acquaintance queries.

DELETE removes tuples from a relation. Nodes may agree
also on the automatic propagation of delete updates. For each
relevant acquaintance query, we treat tuples, which are in
the difference of the query computation results before and
after the delete operation, as candidates for being deleted
from the corresponding relation at the respective acquainted
node. In order to compute them, before executing the delete
operation on some relation, we query that relation asking for

5

all attributes where the condition part is equal to the one of
the delete operation. Then we compute the acquaintance query
involving the result of the last query. Finally, the result of
the computation is sent to the acquainted node in an update
message with the ID of corresponding acquaintance query with
a mark for deletion.

UPDATE may cause three different actions to be performed
on the database of an acquainted node. Namely, an update may
produce new tuples for an acquainted peer due to the fact that
some comparison subgoals are now satisfied; it may lead to
a deletion of some tuples because some comparison subgoals
are no longer satisfied; or, it could lead just to changes in
some existing tuples. In order to handle the update operation,
we proceed as follows. First, we query for all attributes the
relation R being updated with the condition clause in the query
equal to the one of the corresponding update operation, and get
the result set A. Then, we compute each relevant acquaintance
query by substituting R with A, and get the result set B.
B contains tuples which might have been already computed
and propagated to a particular acquainted node. The update
operation is performed over R and A. Then, we re-compute
relevant acquaintances over updated A and get the result set
B′. Finally, for all tuples which are in B, but not in B′

the node sends a delete request message, and for all tuples
which are in B′ and not in B the node sends an insert request
message. Note, that at the moment tuples which just need to
be changed are updated by a delete-insert sequence.

2) Network query: Coordination rules process network
queries in the same way as user queries with only two
differences. First, the results of querying the database are sent
back to the acquainted node, which sent the query. Second,
queries are allowed to be propagated only to the nodes of the
same interest group. In order to do this, all network queries
are sent with the interest group ID which identifies the scope
of further propagation.

3) Query results handling: Query results coming from an
acquaintance can be seen as additional tuples for some relation
appearing in an input query. It is crucial to compute new tuples
for this input query (new tuples w.r.t. previously computed
results). In order to reach this goal we proceed in two steps.
Analogously to the updates case, we substitute existing tuples
of the given relation by the new results and re-compute the
input query. Then, from the newly computed tuples we delete
those, which are duplicates of previously produced results.
In order to do this we store input query computation results
until the query answering is complete. Finally, after the delete
operation, the remaining tuples are either reported to the user,
or propagated further back to the appropriate acquainted node.

4) Update requests handling: An update message is a
request for an insert or for a delete. When a node re-
ceives such a message, it translates it using correspondence
rules and updates the corresponding relation. With an insert,
the node updates its relation avoiding inserting duplicates.
Analogously to query answering, coordination rules look for
relevant acquaintance queries, and, depending on the kind of
the update (insert or delete), initialize corresponding update
propagation procedures. Update propagation is different from
query answering in that an intermediate node may decide not

to accept an update and thus stops further update propagation.

E. Data coordination

One question in data coordination is how nodes cooperate
globally (in the scope of an interest group) in the overall
processing of an initial data coordination event, such as a user
query or an update. A query or an update at a node may
lead to its propagation to some other nodes, they in turn may
propagate it further, and so on. At the network level, we see
data coordination as a transitive propagation of data via chains
of nodes as the result of local point-to-point interactions of
nodes with their acquaintances and acquainted nodes. Since
nodes are free to make acquaintances with any other nodes
they like, the “acquaintance” topology of the network may
have an arbitrary form. In such settings it becomes crucial
to process loops correctly in order to avoid indefinitely long
propagation of data, and to determine when query answering
(or update propagation) is complete.

We handle loops in query and update propagation differ-
ently. We avoid them in query propagation by propagating
with a query a path, consisting of acquaintance query IDs,
which have been used for propagation of the query. Once a
node receives a query, it does not propagate it further using
whose acquaintance queries which IDs are already in the path.
However, this allows for a query to pass over the same node
more than once. This is possible when a query comes to a
node via different paths of nodes, or, when there is a loop in
the path of nodes, and different acquaintance queries are used
at the same node but at different times for further propagation
of the query.

In order to understand when query answering is com-
plete, we introduce some additional notions. Namely, we call
acquaintance queries, incoming links, if these acquaintance
queries are used by some acquainted nodes for querying the
source databases of the given node. We call acquaintance
queries, outgoing links, if that node uses these acquaintance
queries to translate and propagate queries to its acquaintances.
We say that an incoming link depends on an outgoing link,
or that an outgoing link is relevant for some incoming link,
if amongst the relational subgoals of the incoming link there
is a relation appearing in the head of the outgoing link. This
means that importing data tuples from an outgoing link may
produce new tuples for all incoming links which depend on
that outgoing link.

Query answering for some query at a given node is com-
plete, if all outgoing links used for propagation of the query
from this node are in the state “closed”. When an outgoing link
is used for propagation of a query, its state initially is “open”,
which means that new tuples may be imported using this link.
An acquaintance “closes” an incoming link if: (a) there is no
further propagation of the query from this node, or (b) all its
outgoing links which are relevant for this incoming link are
in the state “closed”. When all outgoing links of a node are
in the state “closed”, the node becomes also “closed”. The
query answering for some query is complete when all nodes
participated in answering of this query are “closed”. Note, that
the node where a user query was originally submitted gets to

6

the “closed” state last. It worths saying that this algorithm
guarantees termination.

Handling of loops in update propagation is more complex
than in query answering. Since nodes update their databases,
re-computing acquaintance queries, after an update reached a
node following a loop of nodes, may produce new tuples to
be further propagated into the loop. Thus, an update sequence
may go through a loop of nodes several times until no more
new tuples are produced for any of the nodes in the loop. A
node stops update propagation if this update brings no new
tuples for this node, and this node is in the sequence of nodes
which propagated this update. For doing this, when each node
propagates an update, it adds itself to the nodes sequence
and sends it with the update. In the rest, the termination of
update propagation is determined analogously with the query
propagation case. For a thorough discussion on how updates
are handled in a P2P database system see [10].

The second important question in data coordination is how
acquaintances, correspondence rules and coordination rules
are actually formed at runtime. Nodes of an interest group
may search for other nodes of the group for the purpose of
making acquaintances with them. The process of making an
acquaintance, involving the creation of acquaintance queries,
correspondence rules and coordination rules, is called the
getting acquainted protocol. The protocol works as follows:
once a node (say, node A) locates a potential acquaintance
(node B), it retrieves the source schema of B and matches it
with its own source schema (see [11], [12] for a discussion
on schema matching techniques). The matching results show
how the elements (i.e. relations and attributes) of one schema
correspond to the elements of another. This information is
used by the system to build (likely with the help of the user)
acquaintance queries, correspondence rules and coordination
rules. In order to “activate” coordination rules for an acquain-
tance (or acquainted node) it is sufficient to input relevant
acquaintance queries and specify acquaintance constraints.

III. IMPLEMENTING DATA COORDINATION IN JXTA

JXTA provides an open set of protocols which allow to build
P2P applications. JXTA peers are devices which implement
one or more JXTA protocols. JXTA-powered applications,
amongst other things, can: create groups of peers, locate peers
on the network, create messages, where a message can carry
arbitrary type of data (e.g. images, code, query results, etc),
create communication links (called pipes) with other nodes
and send messages onto pipes. The pipe endpoints are referred
as the input pipe (the receiving end) and as the output pipe
(the sending end). Pipe endpoints correspond to available peer
network interfaces (e.g., TCP port and IP address). JXTA
allows for the definition of a set of services that a peer makes
available for other peers. Services fall into two categories: peer
services and peer group services. Peer services are provided
by single peers, and, should a peer fail, the service also
fails. Peer group services are provided by a collective set
of peers, and, should a peer fail, the service does not fail
assuming that there are other peers providing this service.
JXTA defines the core set of services necessary for a full-
functional operation of a peer. Some of them are: Discovery

Fig. 2. Classification of DB-related services

Service, Membership Service and Pipe Service. The Discovery
Service allows peers to locate and publish information on
the network. The Membership Service is used by current
members of a peer group to reject or accept a new group
membership application. The Pipe Service allows peers to
create pipes with nodes from the same group. Apart from this,
JXTA uses sophisticated algorithms to generate unique (for an
interest group) IDs to identify various resources. We use this
machinery to generate IDs for queries, acquaintance queries,
update propagations, and so on.

New peer groups may include (a subset of) the core services
as well as custom services. Custom services allow for the
creation of peer groups which will provide their peers with
desirable functionality. A JXTA peer group is a set of peers
which agree on the common set of services. All network
resources in JXTA (i.e. peers, peer groups, pipes, etc) are
described by advertisements, which are language neutral XML
documents. Peers can publish, discover and use advertisements
(e.g. create a pipe from an advertisement). JXTA provides an
IP-independent naming space to identify network resources,
and supports various network protocols, such as TCP/IP or
Bluetooth. Moreover, since JXTA is written in Java, it is
platform independent and can run both on Windows and on
Linux. As discussed in Section I, all this is very important
from the point of view of mobility. Namely, a peer can enter
the network from different places, use available platforms
and networking protocols and it will be easily located and
identified by other peers.

We implement database coordination by implementing lo-
cally at each node the four basic notions of our data coordi-
nation model. In order to do this we use JXTA to implement
peers, interest groups and acquaintances. Coordination rules
and correspondence rules are implemented in the application
software. We implement peers as JXTA peers. We extend the
standard JXTA peer advertisement to encapsulate the source
schema information of a peer. Once an advertisement of a
peer is located by another node, B extracts the schema and
executes the getting acquainted protocol. Finally, if the user
likes the results and wants to make an acquaintance, then, the
two nodes exchange pipe advertisements, and create input and
output pipes. At this moment, one node is said to be acquainted
with another.

We implement interest groups as JXTA groups by encoding
database related functionalities into the custom set of services,
called DB-related services. We extend the standard JXTA peer
group advertisement to include the group topic information.
We classify DB-related services into two categories: node-

7

level services and group-level services (see Figure 2). There
are several node-level services. For instance, there is a node-
level service which creates pipes with acquainted nodes and
listens to their endpoints. And, as soon as a network query
arrives, the service processes it as it is described above in the
corresponding section. Another node-level service implements
handling of query results, coming from acquaintances. If the
source databases is absent, this service uses another node-
level service, that computes input queries over the results
received from acquaintances. Note, that this service need to
perform only the join and project operations. Since comparison
subgoals are “pushed” to acquaintances, and first data tuples
are computed in real databases, then all tuples coming from
acquaintances already satisfy the comparison subgoals of the
input query, and therefore the select operation is not needed.

One example of a group-level service is the Screening
Service, obtained by modifying the JXTA Membership Ser-
vice. The service helps supporting a proper constitution of an
interest group w.r.t. its topic. A peer willing to join an interest
group, first locates a current member, and then applies for
membership, providing its schema information as credentials.
This application is accepted or rejected by a collective set
of current members. In order to do this, each peer matches
the schema of the newcomer with its source schema (without
involvement of the user) and returns the number of discovered
mappings. If the aggregated result for all available nodes is
above a certain threshold then the membership application of a
new peer is accepted and rejected otherwise. Another example
of a group-level service is the GM service. This service is
responsible for sending to group manager all information
necessary for GM to run the group. As long as there are
running peers in the group, these two services are available.

We build the DB-related services on top of the core services
provided by JXTA. As a consequence, the implementation
of the basic P2P functionality (i.e., discovery, pipes, etc) is
already given. Each DB peer has a copy of both the core
JXTA services and DB-related services. This helps us to
implement the self-containment requirement as specified in the
introduction. Peer groups in JXTA form a hierarchical parent-
child relationship. This fact allows us to support the formation
of interest group hierarchies, as shown on Figure 1.

IV. THE LOGICAL ARCHITECTURE AND IMPLEMENTATION

We describe the logical architecture at two levels of detail:
the architecture of a node (first level); and the second level,
which shows how the four basic notions are implemented in
JXTA. The first level architecture is a variation of the high
level architecture first reported in [13].

Consider Figure 3. A node consists of PDBMS, a Source
Database (SS) and a Source Schema (DBS). DBS describes
a shared part of SS. PDBMS consists of User Interface
(UI), Database Manager (DBM), JXTA Layer and Wrapper.
DBM implements the four basic notions described in Section
II. JXTA Layer is responsible for all node’s activities on
the network, such as discovering of new nodes and interest
groups, joining and leaving groups, communication with group
managers, sending and receiving queries and query results, and

Fig. 3. First level architecture: a node

so on. Wrapper manages connections to SS, it is responsible
for extraction and maintenance of the source schema. Since
different databases may require different database drivers, this
module is adjustable depending on the underlying database.

Arrows between UI and DBM as well as arrows between
Wrapper, JXTA Layer and DBM have the same graphical
notation bacause they represent procedure calls between dif-
ferent modules. Bidirectional arrow from JXTA Layer to a P2P
database network has a different notation because it represents
JXTA-supported messaging, mostly represented in the form of
XML documents. The arrows between DBS, SS, and Wrapper
have yet another notation because the communication is SS
dependent.

In Figure 4 we “open” the DBM and JXTA Layer. Rect-
angles with rounded corners stand for data repositories which
store various information. Normal rectangles represent exec-
utive modules. The meaning of arrows between UI, DBM,
JXTA Layer and Wrapper is the same as in Figure 3, namely,
they represent procedure calls. Continuous thin arrowed lines
show information flows between modules and data reposi-
tories, as well as procedure calls between modules. Dashed
arrowed lines show the functional dependencies between com-
ponents. For example, they show that coordination rules, cor-
respondence rules, acquaintance queries, peer advertisements
and pipes all functionally depend on acquaintances.

Consider the JXTA Layer. The advertisements repository
stores all discovered and locally created JXTA advertisements.
Inside the rectangle, three advertisement types are represented,
although in practice there are also others. The peer group ad-
vertisement includes also the group topic information, and the
peer advertisement includes the source schema information.
The Services module implements the core JXTA services and
DB-related services. We encode the input pipe advertisement
of the group manager in the Services module. Nodes use this
information to contact their appropriate GM. The Discovery
module implements the Discovery Service, and the Pipes
module implements the Pipe Service.

Consider now DBM. The P2P Management module allows
users to control other modules and repositories from both the
DBM and JXTA Layer. For instance, it makes it possible
to create a new pipe, to make a new acquaintance or to
modify a coordination rule. The control lines are shown as
thick arrows from P2P Management to other components.
Query Planner processes all input queries. It uses acquaintance
queries, acquaintances and interest groups information in order
to detect groups and nodes for propagation. The Query Prop-

8

Fig. 4. Second level architecture: DBM and JXTA Layer

agation (QP) module takes this information as input and uses
correspondence rules for query rewriting. Finally, it uses pipes
to send translated queries to acquaintances. When necessary,
QP submits queries to the source database. Results Handler
receives results coming from acquaintances and translates
them using Correspondence Rules. If these results are for a
user query, then it reports them to UI. Otherwise, it sends
them backward to the node which sent respective network
query. Apart from this, Results Handler gets results coming
from Wrapper, and sends them either to UI or to the network.
Finally, Update Handler provides all functionality necessary
for updates processing.

The current version of the prototype implements a major
part of the ideas described in this paper. In particular, ac-
quaintances and coordination rules, as well query and update
propagation algorithms are fully implemented except some
minor details. Interest groups and correspondence rules are
not fully implemented at the moment. The prototype is im-
plemented in Java and is about 6 Mbytes in size including
the JXTA libraries and excluding all meta-data files (e.g.
source schemas, JXTA advertisements, etc). The Java Virtual
Machine environment (about 40 Mbytes) is required to run the
application. Thus a self-contained application package can fit
in space of about 46 Mbytes, which can be placed on a flash
drive. The results of the first experiments show reasonable
query answering and update propagation times in small size
networks (up to 20 nodes). For the experiments we created
various source databases with several thousand of tuples at
each node, with different degrees of the overlapping of data at
different nodes. The ongoing work includes the study of the
scalability property of our solution, and the fully decentralized
model we use allows us to expect promising results.

V. CONCLUSIONS

In this paper we have proposed a new solution for P2P
databases which is applicable in mobile settings. The solution
allows for on the fly coordination of data residing on inde-
pendent databases, where PDBMSs, databases or both can be
mobile. We have demonstrated how data coordination can be
implemented exploiting the four basic notions, namely Interest

Groups, Acquaintances, Correspondence Rules and Coordina-
tion Rules. Finally, we have shown how our solution can be
implemented in JXTA and proposed a logical architecture at
two levels of details.

REFERENCES

[1] JXTA project, see http://www.jxta.org.
[2] J. Ullman, “Information integration using logical views,” Theoretical

Computer Science, 1997.
[3] F. Giunchiglia and I. Zaihrayeu, “Making peer databases interact -

a vision for an architecture supporting data coordination,” 6th In-
ternational Workshop on Cooperative Information Agents (CIA-2002),
Madrid, Spain, September 18 -20, 2002.

[4] A. Kementsietsidis, M. Arenas, and R. Miller, “Data mapping in peer-
to-peer systems,” ICDE, 2003.

[5] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu, “What can
databases do for peer-to-peer?” WebDB, Workshop on Databases and
the Web, June 2001.

[6] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov, “Piazza: Data management
infrastructure for semantic web applications,” 2003. [Online]. Available:
citeseer.nj.nec.com/halevy03piazza.html

[7] W. Ng, B. Ooi, K. Tan, and A. Zhou, “Peerdb: A p2p-based system for
distributed data sharing,” ICDE, 2003.

[8] A. Halevy, “Answering queries using views: a survey,” VLDB Journal,
2001.

[9] R. Hull, “Managing semantic heterogeneity in databases: A theoretical
perspective,” Bell Laboratories, 1997.

[10] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu, “A distributed
algorithm for robust data sharing and updates in p2p database networks,”
Proceedings of the P2P&DB international workshop, Heraklion - Crete,
Greece, March 2004.

[11] F. Giunchiglia and P. Shvaiko, “Semantic matching,” ”Ontologies and
Distributed Systems” workshop, IJCAI, 2003.

[12] E. Rahm and P. A. Bernstein, “On matching schemas automatically,”
VLDB Journal 10, 4, Dec 2001.

[13] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Ser-
afini, and I. Zaihrayeu, “Data management for peer-to-peer computing:
A vision,” WebDB, 2002.

[14] F. Giunchiglia and I. Zaihrayeu, “Implementing database coordination
in p2p networks,” DIT technical report # DIT-03-035, the University of
Trento, Italy, November 2003.

