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Analysis of the Stability and Robustness of the Iterative

Multi-Scaling Approach for Microwave Imaging Appli-

cations

Salvatore Caorsi*, Massimo Donelli**, and Andrea Massa**

Abstract

In a reconstruction procedure based on the iterative solution of inverse scatter-

ing integral equations, the quality of the �nal image depends on both the numerical

and experimental noise. Numerical noise is related to the accuracy of the numerical

representation of the microwave imaging apparatus and system geometry. Exper-

imental noise refers to the non-ideal electromagnetic conditions in which the data

acquisition is performed. This paper provides a systematic evaluation of the impact

of the most signi�cant sources of numerical and experimental noise on the recon-

struction quality when the Iterative Multi-Scaling Approach (IMSA) is used. The

assessment of the robustness and stability of the IMSA is carried out by considering

synthetic as well as real data. The achieved results provide detailed indications on

the range of applicability of the IMSA for qualitative and/or quantitative imaging

purposes.

Keywords:

Microwave Imaging, Inverse Scattering, Iterative Multi-scaling Method, Numerical Assess-

ment.

Index Terms:

6982 Radio Science: Tomography and imaging; 0629 Electromagnetics: Inverse scattering;

0669 Electromagnetics: Scattering and di�raction; Electromagnetics: Numerical methods.
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1 Introduction

Applications of imaging and detection by using scattered �eld data range from far-�eld

imaging [Franceschetti and Lanari , 1999] to near �eld-imaging by considering microwave

[Bolomey , 1991, 1995; Zoughi , 2000] as well as other electromagnetic frequencies [Kak

and Slaney , 1988; Baltes , 1980]. Many of these imaging applications can be dealt within

the same methodological framework. Then, it turns out to be very attractive and justi�ed

to study numerical approaches able to solve fundamental problems of inverse scattering

since any scienti�c advance in a particular application automatically (or in an indirect

way) provides a useful contribution for the progress in related �elds.

A brief review of the more recent literature shows that a large number of very e�ec-

tive iterative nonlinear procedures has been proposed. Starting from an initial guess, the

parameters of interest are iteratively updated by minimizing a suitably de�ned cost func-

tion involving the measured scattered �eld data. Generally speaking, two methodological

approaches can be highlighted depending on whether the �eld inside the investigation

domain is computed as a solution of the direct problem (in correspondence with the best

estimate of the dielectric distribution) at each iteration [Joachimowicz et al., 1991; Chew

and Wuang , 1990; Franchois and Pichot , 1997] or as another unknown to be determined

during the minimization procedure [Kleinman and Van den Berg , 1992; Van den Berg and

Abubakar , 2001]. The IMSA [Caorsi et al., 2003] belongs to the second class of iterative

procedures. It is devoted to fully exploit all the available information content of scattered

data. Due to the limited amount of information content in the input data, it would be

problematic to parameterize the investigation domain in terms of a large number of pixel

values (in order to achieve a satisfying resolution level in the reconstructed image). In

order to overcome this drawback, an iterative parameterization of the test domain, per-

forming a synthetic zoom on the region to whom the scatterer belongs, allows to achieve

the required reconstruction accuracy only in the �signi�cant� region under test.

Such a technique has yielded very promising results in processing preliminary syn-
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thetic test cases [Caorsi et al., 2003]. However, in order to develop a reliable reconstruc-

tion method robust to both modeling errors and uncertainties on data, it is mandatory

to evaluate its limitations through accurate investigations. Consequently, a better un-

derstanding of the operational capabilities of the IMSA requires an extended assessment

of the noise robustness as well as a systematic study of the impact of both experimental

and model errors. Towards this end, this paper is aimed at providing an assessment of

the e�ects of the major sources of experimental and model noise on the quality of the

reconstruction. Accordingly, synthetic as well as laboratory-controlled experiments are

taken into account in order to evaluate the e�ectiveness of the approach in dealing with

customized scenarios as well as reference benchmarks.

The paper is organized as follows. Firstly, an outline of the iterative multi-scaling

approach will be concisely described (Sec. 2). Sections 3 and 4 will present selected

representative results for illustrating the e�ects of the most critical experimental and

numerical parameters on the reconstruction accuracy. Final comments and conclusions

will be drawn in Section 5.

2 Mathematical Formulation

Let us take as a starting point the nonlinear multi-resolution inversion approach proposed

in [Caorsi et al., 2003], brie�y recalled in the following. At each �xed frequency f , the

two-dimensional inverse scattering problem can be mathematically described through the

data equation and the state equation [Jones , 1964]

Ev
scatt(x, y) = −j

k2
0

4

∫ ∫
DI

τ(x′, y′)Ev
tot(x

′, y′)H
(2)
0 (k0ρ) dx′dy′ (x, y) ∈ DM (1)

Ev
inc(x, y) = Ev

tot(x
′, y′) + j

k2
0

4

∫ ∫
DI

τ(x′, y′)Ev
tot(x

′, y′)H
(2)
0 (k0ρ) dx′dy′ (x, y) ∈ DI (2)

v = 1, ..., V being the index indicating di�erent multi-illumination/multi-view positions

and ρ =
√

(x− x′)2 − (y − y′)2. Moreover, Ev
inc( . ) and Ev

scatt( . ) are the problem data
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namely the incident electric �eld measured inside the investigation domain DI where the

unknown scattering object is supposed to be located, and the scattered electric �eld,

collected in the observation domain (DM) located outside DI . As far as the problem

unknowns are concerned, they are the contrast function τ(x, y), (x, y) ∈ DI describing the

dielectric properties of the scenario under test and the electric �eld inside the investigation

domain, Ev
tot(x, y), v = 1, ..., V , (x, y) ∈ DI .

To retrieve the unknown functions, the IMSA performs a synthetic zoom to fully

exploit the limited information content of inverse scattering data [Bucci and Franceschetti ,

1989] allowing an accurate resolution of the scatterer under test. More in detail, the

method starts (s = 1, s being the index related to the scaling step) from a coarse (R = 1,

R being the index of the resolution level) representation of the investigation domain DI

and iteratively de�nes a sub-gridding of the area where the scatterer is located. By using

the �knowledge� of the scenario under test achieved at the previous steps, the iterative

approach de�nes an estimate of the scatterer location and occupation. This enables an

e�cient re-allocation of the unknowns to the �focused� area according to a multi-resolution

strategy. Consequently, an higher resolution level (R = s) is adopted only for the reduced

investigation domain where the clustering procedure has estimated the presence of the

scatterer. Mathematically, the multiscaling process is implemented by considering the

following algorithmic procedure. At each step (s = 1, .., Sopt) of the iterative process, a

multi-scaling multi-resolution function is de�ned

Ψ(s)
{
τ

(
xn(r)

, yn(r)

)
, Ev

tot

(
xn(r)

, yn(r)

)
; r = 1, ..., R = s; n(r) = 1, ..., N(r); v = 1, ..., V

}
=∑V

v=1

∑M(v)
m(v)=1

∣∣∣Ev
scatt

(
xm(v)

,ym(v)

)
−=ext

{∑R

r=1

∑N(r)
n(r)=1 w

(
xn(r)

,yn(r)

)
τ

(
xn(r)

,yn(r)

)
Ev

tot

(
xn(r)

,yn(r)

)}∣∣∣2∑V

v=1

∑M(v)
m(v)=1

∣∣∣Ev
scatt

(
xm(v)

,ym(v)

)∣∣∣2 +

∑V

v=1

∑R

r=1

∑N(r)
n(r)=1

∣∣∣w(
xn(r)

,yn(r)

)
Ev

inc

(
xn(r)

,yn(r)

)
−=int

{∑N(r)
q(r)=1 w

(
xq(r)

,yq(r)

)
τ

(
xq(r)

,yq(r)

)
Ev

tot

(
xq(r)

,yq(r)

)}∣∣∣2∑V

v=1

∑R

r=1

∑N(r)
n(r)=1

∣∣∣w(
xn(r)

,yn(r)

)
Ev

inc

(
xn(r)

,yn(r)

)∣∣∣2
(3)
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where w is the weighting function

w
(
xn(r)

, yn(r)

)
=


0 if

(
xn(r)

, yn(r)

)
/∈ D(s−1)

1 if
(
xn(r)

, yn(r)

)
∈ D(s−1)

(4)

and where number of discretization domains belonging to the �focused� area (n(R) =

1, ..., N(R)) is chosen equal to the essential dimension of the scattered data [Bucci and

Franceschetti , 1989] according to the criterion de�ned in [Isernia et al., 2001].

After the minimization of (3), where a set of conjugate-gradient iterations (k being the

iteration index) is performed not modifying the discretization grid, a new focused inves-

tigation domain, D(s−1) is de�ned. Such a squared area is centered at

xc(s−1)
=

xre(s−1)
+xim(s−1)

2
, yc(s−1)

=
yre(s−1)

+yim(s−1)

2
(5)

x<(s−1) =

∑R

r=1

∑N(r)
n(r)=1

{
xn(r)

<
[
τ

(
xn(r)

,yn(r)

)]}
∑N(r)

n(r)=1

{
<
[
τ

(
xn(r)

,yn(r)

)]} , R = s− 1 (6)

y<(s−1) =

∑R
r=1

∑N(r)

n(r)=1

{
yn(r)

<
[
τ

(
xn(r)

, yn(r)

)]}
∑N(r)

n(r)=1

{
<

[
τ

(
xn(r)

, yn(r)

)]} (7)

and L(s−1) -sided

L(s−1) =
Lre(s−1)

+Lim(s−1)

2
(8)

L<(s−1) = 2

∑R
r=1

∑N(r)

n(r)=1

 ρn(r)c(s−1)
<
[
τ

(
xn(r)

,yn(r)

)]
maxn(r)=1,..,N(r)

{
<
[
τ

(
xn(r)

,yn(r)

)]}


∑R
r=1

∑N(r)

n(r)=1

 <
[
τ

(
xn(r)

,yn(r)

)]
maxn(r)=1,..,N(r)

{
<
[
τ

(
xn(r)

,yn(r)

)]}


(9)

where < stands for the real or the imaginary part and ρn(r)c(s−1)
=

√(
xn(r)

− xc(s−1)

)2
+

(
yn(r)

− yc(s−1)

)2
.

Then, a noise �ltering is performed in order to eliminate some artifacts in the reconstructed
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image. The new dielectric distribution turns out to be:

τ ′(xn(r)
, yn(r)

) =



τ0 if


τ(xn(r)

, yn(r)
) < τth(

xn(r)
, yn(r)

)
/∈ D(s−1)∑J

j=1
{τ(xj ,yj)}
J

if


τ(xn(r)

, yn(r)
) ≥ τth(

xn(r)
, yn(r)

)
/∈ D(s−1)

τ(xn(r)
, yn(r)

) elsewhere

(10)

where τth is a �xed threshold heuristically de�ned (τth = 0.2 maxn(r)=1,..,N(r)

{
τ

(
xn(r)

, yn(r)

)}
,(

xn(r)
, yn(r)

)
∈ D(s−1)) and τ0 is the value of the contrast function for the background

medium. Moreover, J is the dimension of the complete neighbourhood system of the

sub-domain located at (xn(r)
, yn(r)

) and (xj, yj) indicates a neighbouring position.

The multi-resolution procedure is iterated until a �stationary condition� for the quanti-

tative imaging of the scatterer under test is achieved (s = Sopt). This condition holds

when

η(s)
u =


∣∣∣u(s+1) − u(s)

∣∣∣∣∣∣u(s+1)

∣∣∣ × 100

 < ηu u = xc, yc, L (11)

where ηu, u = xc, yc, L are �xed thresholds.

Such a procedure can be easily extended to multiple-scatterers geometries by consid-

ering a suitable clustering procedure (see [Jain, 1989] and the references cited therein)

aimed at de�ning the number of scatterers belonging to the investigation domain and the

regions where the synthetic zoom will be performed at each step of the iterative process.

3 Numerical Analysis

The complexity of the inverse scattering problem considerably increases if one considers a

real environment in which the data are collected within a certain degree of approximation
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due to unavoidable measurement errors, the uncertainty in the location of the interro-

gating source, and the mechanical positioning of the �eld receivers. In this framework,

di�erent situations can be identi�ed:

• the measures of the incident and of the scattered �elds (i.e., the inverse scattering

data) are a�ected by the experimental noise;

• the interrogating source is not completely known (or cannot be modeled accurately)

or of stochastic type;

• the experimental system (and in particular the electromagnetic sensors) is moved

by means of a mechanical apparatus with some tolerances in the positioning.

The analysis of these situations (equivalent to noisy scenarios - compared to the ideal situa-

tion - perturbed by various error sources) is carried out by considering a reference test case.

The scattering scenario is constituted by an o�-centered squared (Lref = 0.48 λ) scatterer

characterized by an object function τ ref (x, y) = 0.5 and located at (xref
c = −0.24 λ,

yref
c = 0.48 λ) (Fig. 1(a)). Nevertheless, in order to allow for more general interpreta-

tions, some variations of the reference geometry (in terms of larger/smaller dimensions and

inhomogeneous characteristics) will be taken into account as well. The actual scatterer

is enclosed in a square investigation domain LI = 2.4 λ-sided and illuminated by a set

of V = 4 TM-polarized plane waves impinging with di�erent incident angles θv = π(v−1)
V

,

v = 1, ..., V . The scattered �eld data are collected in M(v) = 21, v = 1, ..., V equally-

spaced measurement points lying on a circular observation domain ρDM = 1.7 λ in radius.

Note that, according to [Isernia et al., 2001], properties of scattered �elds make it possible

to acquire essentially all the information available from scattering experiments by simply

choosing for each view a number of measurements M(v) slightly larger than NM = 4πρDM

and that the number of independent data, arising from
∑V

v=1 M(v) measurements, will be

given by the minimum between
∑V

v=1
M(v)

2
and N2

M

2
. Consequently, the �focused area� has

been discretized in N(R) = 6 domains.
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As far as the inversion method is concerned, the parametric con�guration, de�ned in

[Caorsi et al, 2003] and heuristically selected, has been adopted (ηxC
= ηyC

= 1 % and

ηL = 5 %).

In order to quantify the impact of the equivalent-noise sources on the reconstruction

accuracy of the IMSA, some error �gures are de�ned. Namely, the center-location error

(12) and the occupation-area error (13) aimed at quantitatively evaluating the e�ective-

ness in the qualitative imaging

γ =

√[
xc(Sopt)

− xref
c

]2
+

[
yc(Sopt)

− yref
c

]2

λ
(12)

Φ =


∣∣∣L(Sopt) − Lref

∣∣∣
L(Sopt)

× 100 (13)

and the reconstruction errors (14) which give a measure of the quantitative imaging

ξ(i) =
∑R

r=1
1

N
(j)

(r)

∑N
(j)

(r)

n(r)=1


[
τ (Sopt)

(
xn(r)

,yn(r)

)]
−
[
τref (xn(r)

,yn(r)
)

]
[
τref (xn(r)

,yn(r)
)

]
× 100

R = Sopt

(14)

where N
(j)
(r) ranges over the whole investigation domain (i ⇒ tot), or over the area where

the actual object is located (i ⇒ int), or over the background belonging to the investiga-

tion domain (i ⇒ ext).

3.1 E�ects of the Experimental Noise

The impact of the experimental noise on the e�ectiveness of the IMSA has been evaluated

by considering synthetically-generated data to avoid the e�ects of other error sources. The

experimental noise has been simulated by adding to the problem data additive Gaussian
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noises, ηscatt and ηinc

Ẽv
scatt

(
xm(v)

, ym(v)

)
= Ev

scatt

(
xm(v)

, ym(v)

)
+ ηscatt

(
xm(v)

, ym(v)

)
(xm(v), ym(v)) ∈ DM (15)

Ẽv
inc (xn, yn) = Ev

inc (xn, yn) + ηinc (xn, yn) (xn, yn) ∈ DI (16)

with zero mean value and standard deviations given by

dev {ηscatt} =

∑V

v=1

∑M(v)
m(v)=1

∣∣∣Ev
scatt

(
xm(v)

,ym(v)

)∣∣∣2
2{∑V

ν=1
M(v)}(SNR)scatt

(17)

and

dev {ηinc} =

∑V

v=1

∑R

r=1

∑N(r)
n(r)=1

∣∣∣Ev
inc

(
xn(r)

,yn(r)

)∣∣∣2
2{∑R

r=1
N(r)}(SNR)inc

(18)

SNR being the signal-to-noise ratio.

For determining the e�ects of the noise on the reconstruction, several simulations have

been performed with di�erent values of the signal-to-noise ratio ranging between 5 and

100 dB. Since the non-deterministic nature of the gaussian noise, ten independent realiza-

tions of the noise process with the same SNR have been performed. For a set of selected

SNR values, the tomographic images have been reconstructed and samples of the recon-

structions compared with the image of the noiseless case ((SNR)inc = (SNR)scatt = ∞ -

Fig. 1.(b), where the dashed lines indicate the region occupied by the actual structure).

As expected, the quality of the reconstructed image is a decreasing function of the SNR.

Such a behavior is also con�rmed by the values of the error �gures (Tab. I) and from the

color-level representation of the error �gures given in Fig. 2 where each sample point is

the average of the results of repeated realizations. However, the IMSA demonstrates its

e�ectiveness showing a good accuracy in the estimate of the location (γ ≤ 5.50 × 10−2

and Av {γ} = 1.13 × 10−2 with a wide region ((SNR)scatt ≥ 20 dB, (SNR)inc ≥ 20 dB)

in which γ ∼= 5.0 × 10−3 (Fig. 2(a))) as well as of the shape of the unknown scatterer

10



(Av {Φ} = 4.40 %). Acceptable errors in the quantitative imaging of the investigation

domain (Av {ξtot} = 0.72 % and Av {ξext} = 0.48 %) are obtained as well. On the other

hand, it should be pointed out that there are not signi�cant di�erences on the recon-

struction if the additive gaussian noise is added to the scattered data or to the incident

�eld.

In order to further assess the e�ectiveness of the IMSA in dealing with the experimental

noise of Gaussian type, going from the reference geometry to more general scenarios,

di�erent positions (Fig. 3), various dimensions of the square object (Fig. 4), and some

variations in the conductivity (Fig. 5) of the scatterer under test when (SNR)scatt =

(SNR)inc = 20 dB have been analyzed.

Concerning the dependence of the reconstruction on the scatterer position ( d
λ
being the

distance of the scatterer center from the reference-system origin), the achieved results

con�rm the e�ectiveness of the IMSA in terms of localization (Fig. 3(a)) as well as

accuracy in the reconstruction of the dielectric pro�le (Fig. 3(b)). As expected, the error

parameters slightly increase for the o�-centered targets, but their values (γ ≤ 1.60×10−2,

Φ ≤ 16.00 %, ξ(tot) ≤ 1.2 %) seem to be acceptable in the range 0 < d < 1.107 λ and allow

accurate reconstructions.

Similar conclusions can be carried out from the analysis of the sensibility of the method to

the object dimensions. More in detail, it should be observed that the accuracy improves

in correspondence with an increment of the area of the object (Fig. 4). However, non-so-

signi�cant di�erences turns out to be in the qualitative (11.0 ≤ Φ ≤ 13.40 % - Fig. 4(a))

as well as in the quantitative imaging of the scenario under test (ξ(tot)
∼= 1.0 % - Fig. 4(b)).

On the contrary, the performances of the approach reduces when the conductivity of the

scatterer increases (Fig. 5). In particular, the object area is overestimated (Φ|σ=1.0
∼=

13.40 %) and the value of the reconstruction error is greater than ξ(tot) ≥ 5 % when

σ ≥ 0.5 S/m.

Since the experimental error represents one of the main problem in dealing with real

inverse scattering problem, for completeness the e�ects of a systematic (but non-Gaussian)
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additive noise are analyzed as well. Towards this aim, a random white noise has been

added to the data samples according to the following procedure

Ẽv
scatt

(
xm(v)

, ym(v)

)
= Ev

scatt

(
xm(v)

, ym(v)

)
+ αscattE

v
scatt

(
xm(v)

, ym(v)

)
(xm(v), ym(v)) ∈ DM

(19)

Ẽv
inc (xn, yn) = Ev

inc (xn, yn) + αincE
v
inc (xn, yn) (xn, yn) ∈ DI (20)

where αscatt and αinc are two random numbers varying from −1 to 1.

The inversion results when the synthetic data are corrupted by increasing the amount of

random additive white noise are presented. As representative parameters, the localization

error and the total reconstruction error are shown in Figs. 6(a) and 6(b), respectively.

The IMSA is able to correctly localize the reference scatterer with an error γ ranging from

1.27× 10−2 to 7.50× 10−1. Moreover, the reconstruction error ξ(tot) turns out to be lower

than 10 % in a large set of values (0.0 ≤ αscatt ≤ 0.6, 0.0 ≤ αinc ≤ 0.7). It seems to assess

the good ability of the method in suppressing the data-noise.

3.2 E�ects of the Numerical Noise

Receiver Positioning

During the inversion procedure, the knowledge of the inverse scattering data is required

as well as the coordinates where these measurements are collected. However, because of

the tolerance of the mechanical positioning apparatus, some di�erences occur between the

actual positions of the measurement points and those simulated in the numerical proce-

dure. Numerically, such a situation is equivalent to a numerical noise corrupting scattering

data. In order to avoid incorrect reconstructions, it should be taken into account. From a
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numerical point-of-view, it is convenient to simulate this scenario by considering, instead

of the original measurement points (xp, yp) ∈ DP , p = 1, ..., P , (where p can range over

the investigation domain (p ⇒ n, DP ⇒ DI) or over the observation domain (p ⇒ m(v),

DP ⇒ DM)), alternative (or noisy) observation points (x̃p, ỹp) whose positions are ran-

domly chosen so that the following condition be ful�lled

(x̃p, ỹp) ∈ C∆(xp, yp) (21)

where C∆(xp, yp) is a circle, ∆ = t · minp{ρp, p−1,ρp, p+1}
2

in radius (t ∈ (0, 1) being a random

number and ρi, j =
√

(xi − xj)2 + (yi − yj)2), centered at the p-th measurement point.

More in detail, ∆ approximates the maximum error of the measurement system. It is

related to the accuracy of the experimental positioning apparatus (which strongly depends

on the application, but generally it is lower than few millimeters [Franchois et al., 1998]).

Then, measured data collected at (x̃p, ỹp) are assumed as input data at (xp, yp).

Figure 7 shows the values of the averaged error �gures for di�erent values of the positioning

parameters (t)inc , (t)scatt ∈ [0, 1]. The pictures show that the reconstruction capabilities

strongly depends on the positioning of the scattered-�eld sensors. As far as the localization

error is concerned, it turns out to be that 8.03× 10−3 ≤ γ ≤ 6.78× 10−1 and on average

its value is equal to Av {γ} = 1.88 × 10−1 (greater of about one order in magnitude

as compared with the average value related to the experimental noise, 1.88 × 10−1 vs.

1.13 × 10−2) with a large variance (V ar {γ} = 2.36 × 10−2). Larger errors occur when

(t)scatt ≥ 0.65 and a wrong location of the scatterer in the region de�ned by ((t)scatt ≥ 0.85,

(t)inc ≥ 0.30). On the other hand, Φ (Fig. 7(b)), ξtot (Fig. 7(c)), and ξext (Fig. 7(e))

present a step-like behavior (with the amplitude of the errors almost independent of

(t)inc) con�rming the strong impact of (t)scatt on the retrieval process. More in detail, it

happens that 0.17 %≤ Φ ≤14 %, 0.27 % ≤ ξtot ≤3 %, and 1.34 × 10−3%≤ ξext ≤ 0.9 %

for (t)scatt ≤ 0.65 with a nonnegligible increase otherwise.

For completeness, Figure 8 shows some examples of the reconstructions for di�erent tol-
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erances of the mechanical positioning system. As previously indicated, the reconstruction

accuracy decreases in a more signi�cant way with the increase of (t)scatt (Figs. 8(a)-

(c)) if compared to the corresponding increase in (t)inc (Figs. 8(d)-(f )) as con�rmed

from the values of the error �gures reported in Tab. II. As an example, let us consider

the images related to ((t)scatt = 1.0, (t)inc = 0.0) (Fig. 8(c)) and to ((t)scatt = 0.0,

(t)inc = 1.0) (Fig. 8(f )). Fig. 8(f ) shows that even though the shape and the geometric

informations are not accurately estimated (Φ = 25.24 % and ξint = 12.97 %), a structure

can be identi�ed in roughly the correct location (γ = 1.58 × 10−2, ξtot = 2.09 % and

ξext = 1.42 %). On the contrary, a collection of small squares exist in a region close the

actual object and multiple artifacts are present in the background. This produces a poor

reconstruction (γ|(t)scatt=1.0,(t)inc=0.0
∼= 17 × γ|(t)scatt=0.0,(t)inc=1.0, ξtot|(t)scatt=1.0,(t)inc=0.0

∼=

4.5 × ξtot|(t)scatt=0.0,(t)inc=1.0 and ξext|(t)scatt=1.0,(t)inc=0.0
∼= 6 × ξext|(t)scatt=0.0,(t)inc=1.0) (Fig.

8(c)).

To give an idea of the connection between tolerances and positions of the receivers as well

as amplitudes of inverse scattering data, Figs. 9 and 10 show the plots of the locations

of the �eld sensors (a) and related measured data for di�erent values of (t)scatt and (t)inc,

respectively.

In order to generalize previous indications and according to the assessment strategy

used in Subsection 3.1, several numerical experiments have been carried out by assuming

a noisy scenario characterized by (t)scatt = 0.1 and (t)inc = 0.2. Figure 11 summarizes

the obtained results in terms of reconstruction errors. As can be observed, the total

reconstruction error ξtot is almost constant both for di�erent positions (0.5 % ≤ ξtot ≤0.6

%) and for di�erent dimensions (4.1 % ≤ ξtot ≤5 %) of the reference scatterer. On the

contrary, larger di�erences turn out to be by increasing the scatterer conductivity with

an increment of the error values of about one order in magnitude (1.0 % ≤ ξtot ≤12.5 %

and 0.9 % ≤ ξext ≤10.1 %).
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Interrogating Source Location

To evaluate the e�ects of a non-completely known or stochastic source on the incident

electric �eld and consequently on the reconstruction algorithm (which assumes the inci-

dent �eld radiated by a deterministic source), let assume that the plane wave radiated by

the electromagnetic source instead of propagating in the direction

−→
kν = k0 {cos (θν)−→x + sin (θν)−→y } (22)

propagates in another direction

−→̃
kν = k0

{
cos

(
θν + θ̃ν

)−→x + sin
(
θν + θ̃ν

)−→y }
(23)

where k0 = 2πf
√

ε0µ0 and θ̃ν is a random variable uniformly distributed in the range

ζ
(
− π

V
, π

V

)
(ζ being a random number in the range (0, 1))

The results of a large set of simulations (repeated ten times for each value of ζ in order

to give accurate statistical informations) are presented in Fig. 12 in terms of qualitative

(Fig. 12(a)) and quantitative error �gures (Fig. 12(b)). In general, the errors increase

proportionally to ζ, except for the total reconstruction error . In such a case, a knee is

present for a threshold value equal to ζth
∼= 0.4, which separates two saturation regions

(ξext
∼= 0.7 % for ζth < 0.4 and ξext

∼= 1.5 % otherwise). Nevertheless, the same level of

performances as was seen in the examples related to the experimental noise (sub-Sec. 3.1)

can be observed here (Tab. III). An accurate localization is achieved (γ = 5.81× 10−3 for

ζ = 0.25 and γ = 8.76× 10−2 for ζ = 1.0) as pictorially resumed in Fig. 13. On the other

hand, with the increment of ζ, noticeable errors in the object shaping as well as in the

dielectric reconstruction occur and the scatterer cannot be exactly shaped. However, the

IMSA is always (also for ζ = 1.0) able to retrieve a structure that occupies a large subset

of the true scatterer.

Finally, for completeness, selected results of a �generalization� study are presented in
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Fig. 14. The values of the total error are presented versus ζ and for di�erent scattering

scenarios. As expected (according to the conclusions drawn in previous subsections)

largest variations occur for dissipative objects (e.g., 6.0 % ≤ ξtot ≤12.7 % when ζ = 1.0 -

Fig. 14(c)). As far as other test cases are concerned, ξtot ranges between 0.5 % and 4.0

% (Fig. 14(a)) and from 0.5 % up to 1.5 % (Fig. 14(b)) whatever the scatterer position

and dimension, respectively.

4 Validation against Experimental Data

Through the numerical analysis carried out in Sec. 3, it has been shown that the IMSA

is e�ective in reconstructing the contrast of penetrable objects and an accurate qualita-

tive imaging of the scenario under test can be obtained. Moreover, the stability of the

method with respect to realistic sources of electromagnetic noise has been veri�ed. How-

ever, previous tests are concerned with synthetic (i.e. numerically simulated) scattering

experiments. To fully assess the imaging capabilities of the IMSA when a realistic scenario

is dealt with, some experiments with real-data have been also considered. More in detail,

the validation against experimental data is motivated by:

• the need of validating the proposed approach on a benchmark and to judge its

contribution in the framework of inverse scattering algorithms completing the vali-

dation performed with synthetic data (undoubtedly real-data does not allow one to

evaluate the performances of a method in an exhaustive set of possible scenario as

in the case of numerically generated data but state a common benchmark);

• the need of avoiding an inverse crime [Colton and Kres , 1992] consisting in testing

the inversion algorithm on a data-set generated by a forward solver closely related

to that used during the inversion process;

• the need of evaluating the accuracy of the approach in dealing with independent

laboratory-controlled experiments. It is evident that the transfer of an inversion
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procedure to industrial applications greatly depends on demonstrating them suc-

cessfully with experimental data. This not only guarantees that the scattering data

are fully independent to the inverse scattering algorithm, but also check the sensi-

tivity of the algorithm to realistic noise and modeling errors;

• the need of estimating the feasibility of synthetic scenarios with respect to experi-

mental ones in order to state the signi�cance of numerical testing.

In order to perform the experimental validation, the multiple-frequency angular-diversity

bistatic data provided by the Institut Fresnel, Marseille, France [Belkebir et al , 2000]

represent a signi�cant benchmark. The data are obtained in a controlled environment

where the target and the electromagnetic source are known and instrumental and exper-

imental errors jointly occur. In particular, the availability of data measured at di�erent

frequencies provides a good opportunity to evaluate various noisy conditions on the same

scattering geometry. Towards this end, all the reconstructions have been computed start-

ing from data of one single frequency, avoiding multi-frequency [Belkebir et al , 1997] or

frequency-hopping approaches [Ferraye et al., 2003] that certainly could greatly improve

the retrieval accuracy.

More in detail, the experimental setup consists of a 2D bistatic measurement system with

an emitter placed at a �xed position, while a receiver is rotating with an arm along the

vertical cylindrical scatterer under test. The antennas are double ridged horn antennas

linearly polarized with a frequency range from 1 GHz to 18 GHz. The distances between

emitter-center and receiver-center of the experimental setup are set to 720 mm ± 3 mm

and 720 mm ± 3 mm, respectively. The target rotates from 0 to 350 in steps of 10. The

rotation of the receiver is from 60 to 300 in steps of 5. Obviously, the aspect-limited nature

of the measurement setup leads to a reduction of the available information. Consequently,

all V = 36 available views and, for each of them, M(v) = 49, v = 1, ..., V , are used for the

reconstruction.
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The �rst test case is related to a single circular dielectric cylinder and the cor-

responding dataset �dielTM_dec8f.exp� is considered. The cylinder (characterized by

an estimated object function equal to τ ref (x, y) = 2.0 ± 0.3) of circular cross-section

(Lref = 30 mm in diameter), is located at (xref
c = 0.0, yref

c = −30 mm) by assuming the

coordinate reference system centered at the center of the experimental setup (a detailed

description of the underlying experimental setup as well as of the data sets is given in

[Belkebir and Saillard , 2001] and [Belkebir et al., 2000]). Moreover, it is assumed to be-

long to a square investigation domain of 30× 30 cm2. The results of the reconstructions,

starting from the free-space con�guration, are shown in Fig. 15. As can be observed,

the reconstruction accuracy is very low in correspondence with the smallest frequency

(f = 1 GHz) and for the higher frequencies (f = 7 − 8 GHz) where the reconstructed

objects are di�used over a large part of the investigation domain (causing an overestimate

of the occupation area, L(Sopt)

∣∣∣
f=7 GHz

= 97.06 mm and L(Sopt)

∣∣∣
f=8 GHz

= 76.46 mm). On

the contrary, the location and the size of the object are satisfactorily retrieved at the in-

termediate frequencies (implicitly, the similarity on the geometric and dielectric estimates

(Tab. IV) seems to indicate stable noisy conditions of the experimental setup in such a

frequency range) with a notable improvement in the resolution accuracy as con�rmed in

Tab. IV. The maximum value of the estimated object function slightly exceeds the ex-

pected one to compensate the unavoidable smoothing in the reconstruction and it turns

out to be within the given tolerance of the reference pro�le. These results further con�rms

the e�ectiveness of the IMSA also in considering aspect-limited data (as for the case of

�Marseille� experiments).

In order to validate the multi-scaling inversion procedure on metallic-type targets,

two sets at a �xed frequency (f = 4 GHz) from the database are then considered. These

examples are concerned with a centered (Fig. 16(a)) - �rectTM_cent.exp�) and an o�-

centered (Fig. 16(b) - �rectTM_dece.exp�) rectangular cylinders whose dimensions are

25.4 × 12.7 mm2. Under the assumption that the scatterers are highly conducting, the

real part of the contrast has been ignored. Moreover, following the indications reported in
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[Van den Berg et al , 1995], if at some point in the iterative minimization the reconstructed

Im {τ} is larger than Γmax the contrast is replaced by Γmax. In these examples, Γmax =

10.5. The reconstructed pro�les are shown in Figure 16 where the exact locations of the

boundaries of the actual objects are indicated by the dashed lines. These results seem to

indicate that the shape of metal objects can be recovered with high quality by using the

iterative multi-scaling approach. However, future works will be needed to fully evaluate

(by exploiting all the features of the IMSA as well) the e�ectiveness of such a technique

in dealing with metallic objects in a large frequency range.

For completeness, the last experiment deals with the reconstruction of a multiple-

dielectric-scatterers con�guration. The data related to the frequency f = 4 GHz of the

�twodielTM_8f.exp� collection are used. In such a case, the actual con�guration is com-

posed of two dielectric cylinders, with the same dielectric properties described in the �rst

experimental example, located 90 mm one far from the other and placed 30 mm from the

center of the experimental setup. The reconstructed image (Fig. 17) gives a clear location

of the two cylinders without any artifacts or ghost targets. Such a result further assess

the e�ectiveness of the IMSA in dealing with dielectric target. Moreover, it con�rms the

possibility to use the approach in complex scenarios and for single as well as multiple

scatterers con�gurations.

5 Conclusions

In this paper, a systematic evaluation of the impact of the most signi�cant sources of

numerical and experimental noise on the reconstruction capabilities of the Iterative Multi-

Scaling Approach has been carried out. The performances of the approach, in terms of

image quality and quantitative error parameters, have been shown for di�erent conditions,

both simulated and real. Starting from these experiments it may be stated that globally

the IMSA demonstrated an acceptable stability and robustness to noisy conditions (in

particular, the method turns out to be more sensitive to the accurate positioning of
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the receivers than to the other noise sources and to the conductivity of the scatterer

under test) allowing, also in presence of large errors in the scattering data, an accurate

localization of the scatterers under test. As far as the quantitative imaging is concerned,

acceptable results have been achieved thanks to the synthetic zoom allowed by the iterative

multi-scaling procedure. Certainly, further re�nements could be achieved by adding some

penalty functions to the multi-scaling multi-resolution cost function in order to fully

exploit all the available a-priori knowledge of the solution or by considering state-of-

the-art edge-preserving regularizations leading to signi�cant enhancements in the image

reconstruction.
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Figure Captions

• Figure 1. Impact of the experimental noise on the reconstruction accuracy - Esti-

mated permittivity distributions of a square homogeneous dielectric cylinder (τ =

0.5). (a) Reference pro�le. Retrieved pro�le at S = Sopt for (b) Noiseless Conditions

((SNR)scatt = (SNR)inc = ∞), (c) (SNR)scatt = ∞ and (SNR)inc = 20 dB, (d)

(SNR)scatt = ∞ and (SNR)inc = 5 dB, (e) (SNR)scatt = (SNR)inc = 20 dB, and

(f ) (SNR)scatt = (SNR)inc = 5 dB.

• Figure 2. Impact of the experimental noise on the reconstruction accuracy - Color-

level representation of the (a)(b) qualitative and (c)-(e) quantitative error �gures

for di�erent values of the signal-to-noise ratio.

• Figure 3. Impact of the experimental noise on the reconstruction accuracy - Values

of the error �gures for di�erent positions in the investigation domain of the reference

scatterer ((SNR)scatt = (SNR)inc = 20 dB).

• Figure 4. Impact of the experimental noise on the reconstruction accuracy - Behav-

ior of the error �gures versus the dimensions of the scatterer under test ((SNR)scatt =

(SNR)inc = 20 dB).

• Figure 5. Impact of the experimental noise on the reconstruction accuracy - De-

pendence of the error �gures on the conductivity σ of the scatterer under test

((SNR)scatt = (SNR)inc = 20 dB).

• Figure 6. Impact of the experimental noise (non-gaussian model) on the reconstruc-

tion accuracy - Color-level representation of the (a) center-location error γ and of

the (b) total reconstruction error ξtot.

• Figure 7. Impact of the numerical noise on the reconstruction accuracy (Receiver

Positioning) - Color-level representation of the (a)(b) qualitative and (c)-(e) quan-

titative error �gures for di�erent values of the positioning tolerance (t).
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• Figure 8. Impact of the numerical noise on the reconstruction accuracy (Receiver

Positioning) - Estimated permittivity distributions of a square homogeneous dielec-

tric cylinder (τ = 0.5). Retrieved pro�le at S = Sopt when (a) ((t)scatt = 0.2,

(t)inc = 0.0), (b) ((t)scatt = 0.5, (t)inc = 0.0), (c) ((t)scatt = 1.0, (t)inc = 0.0), (d)

((t)scatt = 0.0, (t)inc = 0.2), (e) ((t)scatt = 0.0, (t)inc = 0.5), (f ) ((t)scatt = 0.0,

(t)inc = 1.0), (g) ((t)scatt = (t)inc = 0.2), and (h) ((t)scatt = (t)inc = 0.5).

• Figure 9. Impact of the numerical noise on the reconstruction accuracy (Receiver

Positioning) - Receivers positions (a) and scattered electric �eld data (b)-(c) ((b)

Re
{
Ev

scatt

(
xm(v)

, ym(v)

)}
, (c) Im

{
Ev

scatt

(
xm(v)

, ym(v)

)}
, v = 1) for various values of

(t)scatt.

• Figure 10. Impact of the numerical noise on the reconstruction accuracy (Receiver

Positioning) - Receivers positions inside the investigation domain (a) and incident

electric �eld data (b)-(c) ((b) Re {Ev
inc (xn, yn)}, (c) Im {Ev

inc (xn, yn)}, v = 1) for

various values of (t)inc.

• Figure 11. Impact of the numerical noise on the reconstruction accuracy (Receiver

Positioning) - Values of the reconstruction errors ξ(i), j = tot, int, ext (a) for dif-

ferent positions, (b) for di�erent dimensions, and (c) for di�erent values of the

conductivity of the reference scatterer ((t)scatt = 0.1, (t)inc = 0.2).

• Figure 12. Impact of the numerical noise on the reconstruction accuracy (Interro-

gating Source Location) - (a) Qualitative and (b) Quantitative Error Figures for

di�erent values of ζ.

• Figure 13. Impact of the numerical noise on the reconstruction accuracy (Interro-

gating Source Location) - Estimated permittivity distributions of a square homoge-

neous dielectric cylinder (τ = 0.5). Retrieved pro�le at S = Sopt when (a) ζ = 0.25,

(b) ζ = 0.50, (c) ζ = 0.75, and (d) ζ = 1.0.
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• Figure 14. Impact of the numerical noise on the reconstruction accuracy (Interro-

gating Source Location) - Behavior of the total reconstruction error ξ(tot) versus ζ

(a) for di�erent positions, (b) for di�erent dimensions, and (c) for di�erent values

of the conductivity of the reference scatterer.

• Figure 15. Experimental Validation - Reconstruction of an o�-centered homo-

geneous circular cylinder (Real dataset �Marseille� [Belkebir and Saillard , 2001]

- �dielTM_dec8f.exp�): (a) f = 1 GHz, (b) f = 2 GHz, (c) f = 3 GHz, (d)

f = 4 GHz, (e) f = 5 GHz, (f ) f = 6 GHz, (g) f = 7 GHz, and (h) f = 8 GHz.

• Figure 16. Experimental Validation (Real dataset �Marseille� [Belkebir and Saillard ,

2001]) - Reconstruction of metallic cylinders at the frequency f = 4 GHz: (a) Data

set �rectTM_cent.exp� and (b) Data set �rectTM_dece.exp�.

• Figure 17. Experimental Validation - Reconstruction of multiple dielectric cylinders

at the frequency f = 4 GHz (Real dataset �Marseille� [Belkebir and Saillard , 2001]

- �twodielTM_8f.exp�).
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Table Captions

• Table I. Impact of the experimental noise on the reconstruction accuracy - Error

Figures.

• Table II. Impact of the numerical noise on the reconstruction accuracy (Receiver

Positioning) - Error Figures.

• Table III. Impact of the numerical noise on the reconstruction accuracy (Interro-

gating Source Location) - Error �gures Statistics.

• Table IV. Experimental Validation - Estimated geometric and dielectric parameters

(f [GHz]; xc(Sopt)
, yc(Sopt)

, L(Sopt) [mm]).
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Fig. 1 (I ) - S. Caorsi et al., �Analysis of the stability ...�
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Fig. 1 (II ) - S. Caorsi et al., �Analysis of the stability ...�
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Min Max Av V ar
γ 1.62× 10−4 8.76× 10−2 3.25× 10−2 6.20× 10−4

Φ 1.95 12.13 6.96 9.07
ξtot 0.78 1.52 1.22 0.09
ξint 8.07 19.84 13.45 10.37
ξext 0.34 1.02 0.68 0.05
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