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Abstract

The effect of measurement uncertainty on estimates and decisions performed under a regime

of quality control and improvement, is considered in this paper. Standard statistical quality tools

are analyzed such as control charts and instrument calibration procedures. Their performance is

characterized under the assumption of both normally and uniformly distributed measurement

uncertainty. Exact and approximate expressions are derived that allow the design of suitable

procedures including the contribution of measurement uncertainty.

Index Terms

Test uncertainty ratio, metrological confirmation, statistical quality control, calibration.

I. INTRODUCTION

The extensive application of management models aimed at the assurance and improvement

of company process quality levels has produced stimulating debates on the role of test and

measurement in the development of a documented quality system. A prominent position has been
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taken by the widely accepted models described in the ISO 9000:2000 series of standards, which

have been applied worldwide with steadily growing rates. Even in many other guidance norms

and in topic-specific standards [1] the importance of test and measurement activities has always

been highlighted. Moreover, the recognition by the international agencies, of the impelling need

to regulate such a complicated matter has led to the publication of an European Pre–standard [2],

known as the “Guide to the Expression of Uncertainty in Measurement,” and of an important norm

regarding the accreditation of laboratories [3], which now supersedes the former ISO/IEC Guide

25:1990.

According to the cited documents and to the best practices in managing instrumentation and

product quality in a mature industrial environment, several tasks are commonly carried out, that

require caution in dealing with uncertainty and related probabilistic risk assessment. This paper

addresses the issues arising in a quality–oriented organization, from the use of measuring

equipment involved in decision–making processes. At first, a brief description is made of

the industrial practices requiring strict–sense measurements. Then, potential consequences of

uncontrolled sources of uncertainty are analyzed both qualitatively and quantitatively. Finally,

a numerical example is presented to provide further explanations about the applicability of the

theoretical results described in this paper.

II. MEASUREMENTS AND QUALITY CONTROL

Running a program of statistical quality control and managing measurement equipment in

accordance to the requirements of metrological confirmation [1], affects the procedures regarding

process surveillance through

• control charts;

• conformance testing;

• calibration.
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Many of the above cited techniques require prior evaluation of the principal statistical

properties of the random variable x modeling the process outcome. Since uncertainty will affect

the measured data, the manufacturing process behavior can be determined only up to a disturbing

contribution related to the measurement procedure. If the random variable ε represents the

measurement uncertainty, then y
�
= x + ε is the random variable describing the measurement

process outcome. Consequently, if ε is zero–mean, under the common assumption of statistical

independence, µy = µx and σ2
y = σ2

x + σ2
ε , where µ and σ2 represent the mean value and variance

of the corresponding random variables, respectively. The sampling mean µ̂y
�
= 1/N

∑N−1
n=0 y[n],

is commonly employed to estimate µy, where N is the number of processed samples and y[·] is

the sequence of measurement process outcomes. Similarly, the standard deviation of y is usually

estimated using

σ̂y
�
=

√√√√ 1

N − 1

N−1∑
n=0

(y[n] − µ̂y)
2. (1)

While the sampling mean is an unbiased estimator of the process mean, it is known that, when y

is Gaussian, (σ̂y/σy)
√
N − 1 is distributed as the square–root of a χ2 random variable with N − 1

degrees of freedom. Thus, it can be proved that [4]:

E{σ̂y} = σyc4(N), c4(N)
�
=

√
2

N − 1

Γ(N/2)

Γ[(N − 1)/2]
, (2)

where E{·} is the expectation operator and Γ(·) is the so–called gamma function [5].

In the following subsections, it is shown how to include the effects of measurement uncertainty

in quality–oriented practices aimed at process surveillance.

A. Control Charts and Measurement Uncertainty

Control charts are usually employed to monitor the average behavior and the variability

of quality characteristics in a manufacturing or service process [4]. A widely applied pair

of control charts is the x–σ pair, which are used to control the behavior of sampled mean
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and sampled standard deviation of x. Both control chart limits, that is the boundaries that if

trespassed will trigger an out-of-control event, are frequently set by estimating the mean value

and standard deviation of the random variable x.

In fact, in a chart designed to monitor the process average (x–chart), it is common to set the

control limits around a given process mean value, µ0 at a distance of ±3σx
1. This choice sets also

the probability of Type I errors. However, since σx is known only through (1), the contribution

of ε will affect the chart property with respect to probability of Type II errors and out-of-control

average run length (ARL1). The former quantity represents the probability of concluding that the

process average is in control while it is out-of-control, while ARL1 defines the average number of

tests to be carried out before an out-of-control status is detected. Clearly, both the probability of

Type II errors and ARL1 are required to be low, so to improve the effectiveness of the control chart.

In order to appreciate the magnitude of the deviation from nominal behavior resulting from

the effect of measurement uncertainty, assume the random variables to be Gaussian. Then, the

probability of Type II errors, βx(·), that is the operating-characteristic curve, is given by:

βx(R)
�
= Pr{Type II err.} = Pr{LCL < y ≤ UCL|µx 	= µ0}


 Φ


3− δ

σx

√
1 + 1

R2


−Φ


−3− δ

σx

√
1 + 1

R2


 (3)

where LCL and UCL are the chart lower and upper control limits and Φ(·) is the distribution

function of a zero–mean unity–variance Gaussian random variable. Moreover, in (3), δ
�
= µx −

µ0, that is the deviation from the mean value that justifies the out-of-control status, and R
�
= σx

σε

represents the test uncertainty ratio (TUR). Expression (3) holds approximately, since LCL and

UCL are usually estimated in a prior chart design phase using the sampling mean and (1) applied

to a large number of samples.
1 A single observation is assumed in this paragraph. In the case of N independent observations, results still hold provided σx is

replaced by σx/
√

N .
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With the aim of determining how measurement uncertainty affects the probability of Type

II errors, (3) has been plotted in Fig. 1 as a function of δ/σx assuming R ∈ {1, 1.5, 2, 5,∞},

along with the corresponding values of ARL1(R) = 1/[1−βx(R)] reported on the right axis. The

symbol ‘∞’ applies when σε = 0, that is when measurement uncertainty can be neglected. The

graph in Fig. 1 shows that for given δ and σx, by decreasing R, the effect of a given deviation is

increasingly obscured by the presence of measurement uncertainty. In order to highlight the role

of TUR in determining the behavior of (3) as a function of δ/σx < 0.5, βx(·) has been expanded

asymptotically assuming R→∞. Accordingly, the following results

βx(R) 
 βx(∞) +
δ

2σxR2

[
φ

(
3− δ

σx

)
−φ

(
−3− δ

σx

)]
, R→∞ (4)

in which φ(·) is the probability density function of a zero–mean unity–variance Gaussian random

variable and βx(∞)
�
= limR→∞βx(R), that is the probability of Type II errors when measurement

uncertainty can be neglected. Simulation results show that the absolute difference between (4) and

(3) is bounded by 6 · 10−3 as long as R > 3 and δ/σx < 0.5. Thus, under these assumptions, the

deviation βx(∞)−β(R) vanishes approximately as 1/R2. Moreover, numerical simulations show

that, for a given value of R > 1, (3) well approximates the probability of Type II errors also when

uniformly distributed uncertainty is assumed.

A σ control–chart is designed in order to monitor the equivalence of the measured process

standard deviation to a preset value σ0, representing the standard deviation of the process when

in statistical control, and usually determined in a prior phase of the chart design. Because of

measurement uncertainty, such prior evaluation provides σy0 = σ0

√
1 + 1/R2. Thus, since (1) is

employed to evaluate estimate to be positioned on the chart, the resulting control chart will exhibit

a central line equal to σy0c4(N). Moreover, by assuming LCL= 0, for a given value α of the

probability of Type I errors, UCL=σ̂yχN−1,1−α/
√
N − 1 results, where χN−1,1−α, is the (1−α)–

quantile of the square–root of a chi–square random variable with N − 1 degrees–of–freedom [4].
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Consequently, the probability of Type II errors is given by (App. A):

βσ(R)
�
= X2

N−1

(
1 + 1

R2

λ2 + 1
R2

χ2
N−1,1−α

)
(5)

where X2
N−1(·) and χ2

N−1,1−α represent the probability distribution function and the (1 − α)–

quantile of a chi–square random variable with N−1 degrees–of–freedom, respectively. Moreover,

in (5), λ
�
= σx/σ0 where σx 	= σ0, is the process standard deviation justifying the out–of–control

condition. Observe that, when R → ∞ and λ→ 1, (5) is equal to 1−α, as expected. In Fig. 2,

βσ(·) has been plotted assuming N = 5 and 25 for various values of the TUR. The curve labeled

with R = ∞ corresponds to the absence of measurement uncertainty.

By following the same reasoning leading to (4) we obtain:

βσ(R) 
 βσ(∞) +
λ2 − 1

R2λ4
χ2

N−1,1−αx
2
N−1

(
χ2

N−1,1−α

λ2

)
R→∞ (6)

where βσ(∞)
�
= limR→∞βσ(R), and x2

N−1(·) represents the probability density function of a chi–

square random variable with N − 1 degrees–of–freedom. Numerical investigations show that the

absolute error between (5) and (6) is bounded by 10−2 as long as R>3, 5·10−3<α<5 ·10−2 and

5≤n≤100. Moreover, as evidenced by (6), the deviation from βσ(∞) vanishes as 1/R2.

B. Conformance Testing and Measurement Uncertainty

Conformance testing is the procedure by which a quality characteristic is measured against

pre–set limits. These specifications may be a customer requirement or a legal obligation or part

of the production regime. A common situation occurs when the product fails the test if the

measured quantity is found to be external from a given interval. The contribution of

measurement uncertainty may alter the final decision. In fact, because of the measurement

procedure, an out–of–limit product may be wrongly accepted or a valid product may be wrongly
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rejected. Both situations can be characterized through corresponding probabilities of occurrence

which define the so-called consumer–risk (CR) and producer–risk (PR) respectively defined as,

CR
�
= Pr{x 	∈ A|y ∈ A} (7)

and

PR
�
= Pr{x ∈ A|y 	∈ A} (8)

with A �
= (µx − S,µx + S), where S is the test specification limit. Under the assumption of x

being normally distributed, CR and PR depend on whether the uncertainty is normal or uniformly

distributed. By assuming uniformly distributed uncertainty the following results:

CR =




erf
(

1
R

√
3
2
− S√

2

)(
SR
2
√

3
− 1

2

)
+ erf

(
1
R

√
3
2
+ S√

2

)(
SR
2
√

3
+ 1

2

)
−RS√

3
erf
(

S√
2

)
− 2 R√

6π
e−

1
2
( 3

R2 +S
2
) sinh

(
S
√

3
R

)
S ≤

√
3

2R

(
SR
2
√

3
+ 1

2

)[
erf
(

1
R

√
3
2
+ S√

2

)
− erf

(
S√
2

)]
+ R√

6π
e−

S
2

2

[
e−(S

√
3

R
+ 3

2R2 ) − 1
]

S >
√

3
2R

(9)

PR =




− 1√
3
erf
(

S√
2

)
(RS−√

3) S ≤
√

3
2R

[
erf
(

S√
2

)
+ erf

(
1
R

√
3
2
− S√

2

)](
1
2
− SR

2
√

3

)
+ R√

6π
e−

S
2

2

[
e(S

√
3

R
− 3

2R2 ) − 1
]

S >
√

3
2R

(10)

Conversely, by assuming normally distributed uncertainty, CR and PR are in the form of double

integrals, which can not be integrated analytically. Then, using numerical approximations, and

assuming 1 ≤ R≤ 4, and 1 ≤ S ≤ 10, with S
�
= S/σx, the following applies (App. B):

CR 
 5√
2K0

erf
(√

2 ·RS
)[

1− erf

(
100S + 385R

20
√
K0

)]

·e−
1
2
S

2
+ 1

2K0

(
77RS+50S

2
+30R2

)
(11)

where K0
�
= 38R2 − 3R+ 55, and erf(·) is the error function [5]. Moreover,

PR 
 5

√
5

2K1
e
−

R(756RS
2
+1100S

√
2−605R)

8K1
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·
{

erf

[
100S+ 151R2S + 55

√
2R

10
√
K1

]
−erf

[
11
√

2R− 20S

2
√
K1

]}
(12)

where K1
�
= 250 + 189R2. Simulation results show that (11) and (12) are accurate to within 4%

to the corresponding probabilities evaluated without using approximations. By integrating the

expressions arising from (7) and (8) or by using (9) – (12) directly, the conformance test parameter

can be set, by also taking into account the effect of measurement uncertainty.

In order to illustrate the behavior of CR and PR, (9) through (12) have been graphed in Fig. 3 as

a function of the TUR, assuming various values for the normalized threshold levels. Notice that, for

a given value of TUR, the CR is larger when uniformly distributed uncertainty is considered. Thus,

from this point of view, instruments exhibiting Gaussian behavior are to be preferred. Accordingly,

refer to [7] and [8] for a description of experimental results reporting about commercially available

instruments characterized by normal and/or uniformly distributed uncertainty. Finally consider that

guardbanding–based techniques may be adopted for dealing with risks induced by measurement

uncertainty. For a discussion about these methods refer to [9] and [10].

C. Calibration and Equipment Uncertainty

The need of verifying if an instrument obeys the requirements of metrological

confirmation demands that the instrument be periodically tested and eventually calibrated.

Accordingly, a suitable source of known accuracy is employed as the stimulus signal,

so that the tested instrument uncertainty can be estimated. If such uncertainty remains

inside an interval assuring the instrument working status, no calibration is performed. On

the contrary, calibration may be required if, for some particular input values, the instrument

uncertainty is larger than acceptable. Again, the intrinsic uncertainty of the stimulus source, can be

at the origin of the two events leading to the consumer and producer risks. Moreover, by defining

the test uncertainty ratio as the ratio between variances characterizing the instrument uncertainty
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and the source intrinsic uncertainty, (9)–(12) still hold true.

Once the evaluation of such probabilities can be mastered, the verification of instrument

conformance can be achieved by following one of the many suggestions provided in the

literature on how to choose specification limits [9], [10]. In this case, particular caution

must be paid when dealing with both the consumer and producer risks. While passing an

out–of–conformance instrument may lead to even potentially harmful consequences, being

excessively conservative may put too many costs on the producer’s side. Indeed,

besides economic considerations, unnecessary calibrations might induce ‘peaking and

tweaking’ effects in analog instruments [11]. The suggested technique of widening/shortening the

recalibration interval according to the instrument previous conformance status, in accordance with

the simple response method described in [1], is certainly affected by unwise choices regarding the

consumer and producer risks.

III. A CASE STUDY IN MICROELECTRONIC MANUFACTURING

Wafer thickness is one of the most important quality parameters in the fabrication of Integrated

Circuits (ICs) [12]. Although many new technologies, such as IC for smart cards, and packaging

advances demand chips with a thickness down to 100 µm, 180 µm has been for a long time the

standard substrate thickness usually required by microelectronic component manufacturers [13].

Generally, wafers are processed in small groups called lots. In Table I, 150 thickness values

(expressed in µm) belonging to M =25 different lots are reported. For each lot N =6 distinct

wafers are subjected to a quality control. The two rightmost columns in the table show the

sampling mean and the sampling standard deviation, respectively, calculated using the values in the

corresponding rows. Finally, at the bottom of the table, µy = 180.4 µm and σy = 6.5 µm represent

the average of the sampling means and of the sampling standard deviations, respectively.

In the example described hereafter, it is assumed that the measurement data reported in Table
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I have been obtained using a non–contact instrument whose uncertainty is negligible compared

with the standard deviation of the process. This assumption is absolutely reasonable because the

standard uncertainty associated with the behavior of several instruments for measuring the wafer

thickness is usually lower than 0.5 µm. In Fig. 4(a) the µ̂–chart of the process is plotted. The chart

central line (CL) is set by the process specification whereas the Upper Control Limit (UCL) and

the Lower Control Limit (LCL) are chosen equal to [4]:

LCL = CL − 3√
N

σy

c4(N)
UCL = CL +

3√
N

σy

c4(N)
(13)

where CL=180 µm, N = 6 and

σ
�
=

1

M

M∑
m=1

σ̂y[m]=
1

M

M∑
m=1

√
σ̂2

x[m]+σ̂2
ε [m] (14)

so that σy/c4(N) is an unbiased estimate of the standard deviation of the manufacturing process.

In accordance to what stated in subsection 2.1, the probability of type II errors βx(·) depends

on the amount of standard uncertainty affecting the measurements. If the standard uncertainty

associated with the instrument is negligible (e.g. σε =0.5 µm), it results that σy/c4(N)=6.9 µm

so that UCL = 188.4 µm and LCL = 171.6 µm. Notice that the test uncertainty ratio is large

enough (e.g. R= σx/σε ≈ 14) not to displace significantly the ideal chart limits drawn with

continuous lines in Fig. 4(a) when R=∞. However, if another instrument characterized by a

standard uncertainty σε =3 µm was chosen, the control chart limits would be wider (σy/c4(N)=

7.5 µm, UCL=189.2 µm and LCL=170.8 µm) due to the remarkable influence of measurement

uncertainty (R = 2.3). This unavoidable enlargement of the control chart limits (dashed lines)

causes an increase in the probability of Type II errors whose effect can be calculated directly by

(3), simply replacing σx with σx/
√
N . For instance, if an out–of–control condition δ/σx = 2

occurs, the probability of type II errors will pass from 3% to about 7%. Moreover, the risk of

failing to detect an out–of–control condition becomes increasingly critical as the out–of–control
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deviation δ from the wished mean value (CL) grows. Similar considerations can be repeated about

the σ̂–chart shown in Fig. 4(b). In this case LCL=0 and UCL=σy
χN−1,1−α√

N−1
, whereN−1=5 and

α has been set equal to 1%. As stated above, the continuous UCL line refers to the ideal case,

whereas the dashed one is associated with the condition R= 2.3. By applying (5), it results

immediately that, for a given out–of–control standard deviation ratio λ, the probability of type

II errors when R= 2.3 is higher than the risk calculated when measurement uncertainty is

negligible (R = 14). For instance, if λ=2 the probability of type II errors βσ(·) will pass from

42% to about 49%.

The data record reported in Table I can also be used to assess the influence of

measurement uncertainty on both the consumer and the producer risks as explained in

subsection 2.2. In fact, under the hypotheses that the measurement uncertainty is normally

distributed and that the normalized test specification limit S = 3, both CR and PR can be

estimated by (11) and (12) respectively. Similarly to the control chart case, both CR and PR

become significantly higher when the TUR decreases. For instance, when R=14 the influence of

measurement uncertainty is almost negligible (CR=0.02% and PR =0.03%). Conversely, when

R=2.3 it results that CR =0.08% and PR =0.49%. Observe that the producer risk in the latter

case is in excess of 16 times compared with the former one.

IV. CONCLUSIONS

In this paper, the effects of measurement uncertainties on quality–oriented measurements

are analyzed. Directions are given on how to choose the accuracy of measurement instruments

in order to reduce their influence when dealing with control charts, with conformance testing

and with instrument calibrations carried out under programs of metrological confirmation in

quality management systems. In addition, producer and consumer risks are recalled and new

approximate expressions are presented under the hypothesis of normally and uniformly distributed
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uncertainties. The presented analysis proves that, in all cases, out–of–conformance or out–of–

control risks related to measurement uncertainty can be reduced by setting suitably the test uncer-

tainty ratio associated with the equipment employed.

V. APPENDIX A

DERIVATION OF EXPRESSION (5)

The probability of Type II errors, βσ(·) is given by:

βσ(R)
�
= Pr{σ̂y < UCL|σx 	= σ0}

= Pr

{
σ̂y < χN−1,1−α

σy0√
N − 1

|σx 	= σ0

}
. (A.1)

Thus,

βσ(R) = Pr

{
σ̂y

σy

√
N − 1 < χN−1,1−α

σy0

σy

|σx 	= σ0

}
. (A.2)

Since, in (A.2), the leftmost term in the brackets is distributed as the square–root of a chi–square

random variable with N − 1 degrees–of–freedom, we obtain (5), once observed that

σy0

σy

=

√√√√ 1 + 1
R2

λ2 + 1
R2

. (A.3)

VI. APPENDIX B

APPROXIMATIONS FOR CONSUMER AND PRODUCER RISKS

The consumer risk can be expressed as:

CR
�
=
∫ µx+S

µx−S

∫ µx−S

−∞
fxy(x,y)dxdy

+
∫ µx+S

µx−S

∫ ∞

µx+S
fxy(x,y)dxdy (B.1)

where fxy(·, ·) is the joint probability density function of x and y. By assuming independent

zero–mean Gaussian random variables, from (B.1) we obtain

CR =
1

2π

∫ ∞

S
e−

t2

2 γ(R, S, t)dt (B.2)
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where γ(R, S, t)
�
=
{

erf
(
R t+S√

2

)
− erf

(
R t−S√

2

)}
. Since the error function does not admit a

primitive, γ(·, ·, ·) has been approximated using the expression

γ(R, S, t) 
 erf
(√

2RS
)
e−P1(R)(t−S)e−P2(R)(t−S)2 , (B.3)

where P1(·) and P2(·) are two polynomials in R and the term erf(·) is justified by the need of

forcing the approximating expression to be equal to γ(R, S, t) for t = S and t → ∞. By a

least–squared-based numerical approach P1(·) and P2(·) have been identified as follows:

P1(R) = 0.77R, P2(R) = 0.38R2 − 0.03R + 0.05. (B.4)

Then, by inserting (B.4) in (B.3) and the resulting expression in (B.2) and by carrying out the

integration, (11) results. A similar approach has been followed to derive (12).
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VIII. FIGURE CAPTIONS

Figure 1. Probability of Type II errors and ARL1 associated with an x–control chart as a

function of the normalized deviation from the mean under the effects of measurement uncertainty.

Figure 2. Probability of Type II errors associated with a σ–control chart as a function of

the ratio between out–of–control and in–control process standard deviations under the effects of

measurement uncertainty.

Figure 3(a) and 3(b). Consumer (a) and producer (b) risks as a function of TUR and S,

assuming normal– (solid) and uniformly–distributed (dashed) uncertainties.

Figure 4. A µ̂–chart (a) and a σ̂–chart (b) related to a wafer fabrication process. Both control

charts are based on the data reported in Table I. Two sets of control lines are shown for σε =0.5 µm

(continuous lines) and σε =3 µm (dashed lines), respectively.
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IX. TABLES

Wafer Thickness (�m)

Wafer

lots
1 2 3 4 5 6

1 173.7 173.1 184.8 181.2 174.4 179.0 177.7 4.7

2 185.7 184.8 172.5 182.8 168.3 176.5 178.4 7.1

3 180.8 173.2 186.3 188.5 173.7 167.9 178.4 8.1

4 197.1 177.8 165.1 190.1 184.1 177.1 181.9 11.2

5 182.9 184.8 182.0 172.8 183.9 175.7 180.4 4.9

6 170.9 180.1 174.9 181.4 177.1 185.0 178.2 5.0

7 182.7 187.4 174.6 184.1 180.4 182.4 181.9 4.3

8 183.5 170.6 181.1 178.2 183.2 186.2 180.5 5.5

9 176.4 183.4 177.6 197.5 181.4 182.0 183.0 7.6

10 181.6 168.6 186.8 186.0 181.8 179.0 180.6 6.6

11 175.8 169.9 179.2 174.0 194.6 179.4 178.8 8.5

12 180.1 182.1 187.1 185.7 164.1 182.0 180.2 8.3

13 182.9 179.0 176.7 184.9 182.4 188.2 182.4 4.1

14 188.3 172.1 180.5 185.3 182.0 185.6 182.3 5.7

15 185.4 178.0 182.8 168.0 184.6 170.5 178.2 7.5

16 161.5 175.9 187.8 190.8 175.9 180.8 178.8 10.4

17 182.0 173.7 184.3 168.7 186.2 178.4 178.8 6.7

18 185.8 181.7 178.0 187.8 181.2 184.0 183.1 3.5

19 179.9 169.6 170.4 172.2 185.9 177.9 176.0 6.4

20 186.0 182.2 175.2 182.7 186.7 187.9 183.4 4.6

21 185.4 165.8 182.3 186.8 189.3 178.7 181.4 8.5

22 189.1 183.7 173.0 185.7 179.5 169.7 180.1 7.5

23 188.6 182.4 182.0 180.3 189.2 189.8 185.4 4.3

24 186.7 185.3 187.7 173.5 181.6 183.1 183.0 5.2

25 168.4 175.2 181.7 179.2 170.0 184.0 176.4 6.3

=180.4 =6.5

tv td

tetf

Table I. Wafer thickness expressed in µm: 150 values related to 25 distinct 6–piece lots are listed.


