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Abstract. Verifying whether an ω-regular property is satisfied by a finite-state
system is a core problem in model checking. Standard techniques build an au-
tomaton with the complementary language, compute its product with the system,
and then check for emptiness. Generalized symbolic trajectory evaluation (GSTE)
has been recently proposed as an alternative approach, extending the computa-
tionally efficient symbolic trajectory evaluation (STE) to general ω-regular prop-
erties. In this paper, we show that the GSTE algorithms are essentially a parti-
tioned version of standard symbolic model-checking (SMC) algorithms, where
the partitioning is driven by the property under verification. We export this tech-
nique of property-driven partitioning to SMC and show that it typically does
speed up SMC algorithms.

1 Introduction

Verifying whether an ω-regular property is satisfied by a finite-state system is a core
problem in Model Checking (MC) [Kur94,VW94]. Standard MC techniques build a
complementary Büchi automaton (BA), whose language contains all violations of the
desired property. They then compute the product of this automaton with the system,
and then check for emptiness [VW86,Kur94]. To check emptiness, one has to com-
pute the set of fair states, i.e., those states of the product automaton that are extensible
to a fair path. This computation can be performed in linear time by using a depth-
first search [CVWY92]. The main obstacle to this procedure is state-space explosion,
i.e., the product is usually too big to be handled. Symbolic model checking (SMC)
[BCM � 92] tackles this problem by representing the product automaton symbolically,
usually by means of BDDs. Most symbolic model checkers compute the fair states
by means of some variant of the doubly-nested-fixpoint Emerson-Lei algorithm (EL)
[EL86,RBS00,FFK � 01].

Another approach to formal verification is that of Symbolic Trajectory Evaluation
(STE) [SB95], in which one tries to show that the system satisfies the desired prop-
erty by using symbolic simulation and quaternary symbolic abstraction. This often en-
ables quick response time, but is restricted to very simple properties, constructed from
�
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Boolean implication assertions by means of conjunction and the temporal next-time op-
erator [Cho99]. In particular, STE is limited to bounded properties [KV01b]. Recently,
GSTE [YS00,YS03] has been proposed as an extension of STE that can handle all ω-
regular properties. In this framework, properties are specified by means of Assertion
Graphs (AG). The GSTE algorithm augments symbolic simulation with a fixpoint iter-
ation. Recent work on GSTE, [YS02,YG02] has described various case studies and has
focused mainly on abstraction in GSTE. The fundamental relation between GSTE and
SMC, however, has not been completely clarified. The basic relationship between AGs
and BAs is sketched in [HCY03], but the algorithmic relationship between GSTE and
SMC has not been studied.

In this work, we analyze the property-specification language and the checking al-
gorithm used by GSTE and compare them to those used in SMC. (We do not deal with
abstraction, which is an orthogonal issue.) We first fill in details not given in [HCY03] to
show that assertion graphs are essentially universal ω-automata [MP87], which require
all runs to be accepting. Universal automata enjoy the advantage of easy complementa-
tion; in fact, they can be viewed as nondeterministic automata for the complementary
property (this feature is attained in the COSPAN system by using deterministic au-
tomata [HHK96]). Formally, given a BA, one can easily construct an AG for the com-
plementary language, and vice versa. This permits us to do a direct comparison between
the algorithms underlying GSTE and SMC.

We then point out that the GSTE algorithms are essentially a partitioned version of
the standard SMC algorithms. SMC algorithms operate on subsets of the product state
space S � V , where S is the state space of the system and V is the state space of comple-
mentary automaton. We show that GSTE operates on partitioned subsets of the product
state space. The partitioning is driven by the automaton state space. The GSTE analog
of a subset Q

�
S � V is the partition � Qv : v � V � , where Qv � � s : � s � v �	� Q � . The

GSTE algorithms are in essence an adaptation of the standard SMC algorithms to the
partitioned state space. Thus, rather than operate on a BDD representing a subset P of
the product state space, GSTE operates on an array of BDDs, representing a partitioning
of P. We refer to such partitioning as property-driven partitioning.

Finally, we proceed to explore the benefits of property-driven partitioning in the
framework of SMC. We use NuSMV [CCGR99] as our experimental platform in the
context of LTL model checking. We added to NuSMV the capability of property-driven
partitioned SMC, both for safety LTL properties and for full LTL properties, and com-
pared the performance of SMC with partitioned SMC. We find that property-driven
partitioning is an effective technique for SMC, as partitioned SMC is typically faster
than SMC. The major factor seems to be the reduction in the number of BDD variables,
which results in smaller BDDs. The reduced BDD size more than compensates for the
additional algorithmic overhead for handling a partitioned state space.

Partitioning techniques have often been proposed in order to tackle the state space
explosion problem. (We refer here to disjunctive partitioning, rather than to the orthog-
onal technique of conjunctive partitioning, which is used to represent large transition
relations [BCL91].) Static partitioning techniques, which require an analysis of the
state space, have been discussed, in [NJFSV96,NIJ � 97]. Dynamic partitioning tech-
niques, which are driven by heuristics to reduce BDD size, have been discussed, in



[CCQ96,CCLQ97,FKZ � 00,ISS � 03]. Partitioning has been used in [HGGS02,GHS03]
to develop a distributed approach to SMC.

Property-driven partitioning is orthogonal to previous partitioning techniques. Un-
like dynamic partitioning techniques, no expensive BDD-splitting heuristics are re-
quired. Unlike previous static partitioning techniques, property-driven partitioning is
fully automated and no analysis of the system state space is needed. The technique is
also of interest because it represents a novel approach to automata-theoretic verification.
So far, automata-theoretic verification means that either both system and property au-
tomaton state spaces are represent explicitly (e.g. in SPIN [Hol03]) or symbolically (in
NuSMV [CCGR99] or in Cadence SMV www-cad.eecs.berkeley.edu/˜kenmcmil/smv/).
Just like GSTE, property-driven partitioning enables a hybrid approach, in which the
property automaton, whose state space is often quite manageable, is represented ex-
plicitly, while the system, whose state space is typically exceedingly large is repre-
sented symbolically. Another hybrid approach [BCZ99,CRB01] applies a mixed depth-
first/breadth-first search to the powerset automaton. In [CRB01], only reachability is
taken into account and the experiments focuses on planning problems. In [BCZ99],the
search is applied to the product with a tableau corresponding to an LTL formula and
it works on-the fly. In this case, the authors manage to keep the size of product linear
with the size of the system (by splitting redundant sets of states), but no experimental
results are provided. Finally, [HKQ03] translates BAs into a variant of the equational
µ-calculus based on the post-image operator. Though it can be considered as an appli-
cation of property-driven partitioning, the attention is focused on the forward nature of
the approach.

The paper begins with an overview of the basic notions of SMC [CGP99] and GSTE
[YS00] in Section 2: first, BAs and AGs are defined in a new perspective that clarifies
the common underlying structure; we then describe SMC and GSTE model checking
procedures. In Section 3, first, we prove that AGs and BAs are equivalent; then, we
analyze the checking algorithms of GSTE and show that it is a partitioned version of
standard SMC algorithms. In Section 4, we export property-driven partitioning to SMC
and we report on the comparison of SMC with partitioned SMC in the framework of
NuSMV. We conclude in Section 5 with a discussion of future research directions.

2 Büchi Automata and Assertion Graphs

In this section, we introduce the specification languages and the checking algorithms
used by SMC [CGP99] and GSTE [YS00]. In SMC, we can specify properties by means
of BAs, while GSTE uses AGs. Both the languages have a finite and a fair semantics.
The finite semantics is checked with a fixpoint computation, while the fair one requires
a doubly-nested fixpoint computation.

We define a system M as a tuple � S � SI � T � , where S is the set of states, SI
�

S is
the set of initial states, T

�
S � S is the transition relation. We use capital letters such

as Y � Z ����� to denote subsets of S. We define functions post � pre : 2S ��� 2S such that
post � Y � � � s � � S 	 � s � s � � � T � s � Y � and pre � Y � � � s � � S 	 � s � � s � � T � s � Y � . A
finite (resp., infinite) trace in M is a finite (resp., infinite) sequence σ of states such that
σ 
 i � 1 � � post � σ 
 i � � for all 1  i ��	σ 	 (resp., i � 1). A trace σ is initial iff σ � 1 � � SI .



We define L f � M � as the set of all initial finite traces of M and L � M � as the set of all
initial infinite traces.

In the following, we propose a new representation for BAs and AGs: both can be
seen as an extension of Fair Graphs (FG). This is the structure which AGs and BAs
have in common. As we shall see, while an AG is an FG with two labeling functions,
a BA is an FG with just one labeling function. We use labels on vertices rather than on
edges (as in GSTE [YS00]). This does not affect the generality of our framework and
allows for an easier comparison between GSTE and SMC as well as an experimental
evaluation in the framework of NuSMV. Moreover, labels are defined as sets of systems
states. (In practice, labels are given as predicates on system states; a predicate describes
the sets of states that satisfy it.)

2.1 Fair Graphs, Büchi Automata and Assertion Graphs

Fair Graphs are essentially graphs with the addition of a fairness condition.

Definition 1. A Fair Graph G is a tuple � V � VI � E � F � where V is the set of vertices,
VI
�

V is the set of initial vertices, E
�

V � V is a total relation representing the set of
edges, and F � � F1 ����� � � Fn � , with Fj

�
V for 1  j  n, is the set of fair sets.

A finite (resp., infinite) path in G is a finite (resp., infinite) sequence ρ of vertices
such that � ρ 
 i � � ρ 
 i � 1 � � � E for all 1  i � 	 ρ 	 (resp., i � 1). ρ is initial iff ρ 
 1 � � VI . ρ is
fair iff it visits every set F � F infinitely often. We define L f � G � as the set of all finite
initial paths of G and L � G � as the set of all fair initial paths.

For every v � V we define the set of successor vertices E � v � � � v � � V 	 � v � v � � � E �
and the set of predecessor vertices E

� � v � � � v � � V 	 � v � � v � � E � . (The operators E
and E

�
are analogous to post and pre. They are used for clarity of notation.)

A labeling function is a function γ : V � � 2S. Given a set of vertices V � � V , we
define the restriction γ �

V � of γ to V � as follows: γ �
V � � v � � γ � v � if v � V � , and γ �

V � � v � � /0
otherwise. Typically, we use α � β � γ to denote labeling functions. Notice that a labeling
function γ can be considered and represented as a set of subsets of S: � γ � v � � v � V . With
abuse of notation, given two labeling functions α and γ, we will write α � γ (resp., α � γ,
α � γ) to mean, for all v � V , α � v � � γ � v � (resp., α � v ��� γ � v � , α � v ��� γ � v � ).
Definition 2. Given a trace σ in M, a path ρ in G of the same length l (resp., both
infinite) and a function γ : V � � 2S, we say that σ satisfies ρ under γ (denoted σ 	 � γ ρ)
iff σ 
 i � � γ � ρ 
 i � � for all 1  i  l (resp., i � 1).

A Büchi automaton (BA) is essentially an FG with the addition of a labeling func-
tion. A trace is accepted by a BA iff it satisfies the labeling function along at least one
path of the FG. In the following, BAs express complementary properties, that is, their
language contains all violations of the desired property.

Formally, a Büchi Automaton B is a tuple � G � L � where G � � V � VI � E � F � is a fair
graph, and L : V � � 2S is the labeling function. We define the set L f � B � (resp., L � B � )
as the set of finite (resp., infinite) traces of M accepted by B:

Definition 3.



   

Fig. 1. FG example

true p&!q !q

Fig. 2. BA example

true/false !q/falsep&!q/false

Fig. 3. AG example

– finite semantics: if F � � F � , L f � B � � � σ � L f � M � 	 there exists a finite path ρ �
L f � G � with 	σ 	 � 	 ρ 	 � l, ρ 
 l � � F and σ 	 � L ρ � ;

– fair semantics: L � B � � � σ � L � M � 	 there exists a fair path ρ � L � G � with σ 	 � L ρ � .
Since BAs have the complementary language of the specification, the model checking
problem consists in verifying whether L f � B � � /0, in the case of finite semantics, L � B � �
/0, in the case of fair semantics.

An assertion graph (AG) is essentially an FG with the addition of two labeling
functions: the antecedent and the consequent. An AG accepts a trace iff, along all paths,
either the trace does not satisfy the antecedent or if it satisfies the consequent.

Formally, an Assertion Graph A is a tuple � G � ant � cons � where G � � V � VI � E � F �
is a fair graph, ant : V � � 2S is the antecedent function, and cons : V ��� 2S is the
consequent function. Given a trace σ in M and a path ρ in G of the same length, we say
that σ satisfies ρ in A (denoted σ 	 � A ρ) iff σ 	 � ant ρ � σ 	 � cons ρ. We define the set
L f � A � (resp., L � A � ) as the set of finite (resp., infinite) traces of M accepted by A:

Definition 4.
– finite semantics:4 if F � � F � , L f � A � � � σ � L f � M � 	 for all finite path ρ � L f � G � ,

if 	σ 	 � 	 ρ 	 � l and ρ 
 l � � F, then σ 	 � A ρ � ;
– fair semantics: L � A � � � σ � L � M � 	 for all fair path ρ � L � G � � σ 	 � A ρ � .

The model checking problem for AGs consists in verifying whether L f � M � � L f � A � , in
the case of finite semantics, L � M � � L � A � , in the case of fair semantics.

Example 1. An example of FG is depicted in Fig. 1. The vertices are represented by
points, the edges by arrows. An arrow without starting vertex point to a vertex to indi-
cate that it is initial. For simplicity, in the example we have only one fair set. The circle
around the rightmost vertex means that it belongs to this fair set.

Examples of BA and AG are depicted resp. in Fig. 2 and 3. They have the same
underlying FG. In the AG, the labels are represented in the format ant

�
cons. p and q

are propositional properties. With the fair semantics, the AG corresponds to the LTL
property G � p � Fq � , while the BA has the complementary language. �

2.2 SMC algorithms

Given a system M � � S � SI � T � and a BA B � � � V � VI � E � F � � L � , SMC first computes
the product P between B and M. Then, in the case of finite semantics, it finds the set

4 In [HCY03] the finite semantics is called terminal. Moreover, the authors, as in [SB00], define
a third and a fourth semantics called strong and infinite, which we ignore in this paper.



Algorithm traversal(P)
1. R : � IP
2. N : � IP

3. repeat
4. Z : � EY[N]
5. N : � Z

�
R

6. R : � R � Z
7. until N � /0
8. return R

Fig. 4.

Algorithm fairstates(P)
1. Y : ���
2. repeat
3. Y � : � Y
4. for FP � FP
5. Z : � E[YU � Y � FP 	 ]
6. Y : � Y � EX[Z]
7. until Y �
� Y
8. return Y

Fig. 5.

of vertices reachable from the initial vertices and check if it intersects a certain set of
vertices FP in P; in the case of fair semantics it finds the set of fair vertices, i.e., those
which are extensible to fair paths, and it checks if it intersects the set of initial vertices.

The product between M and B is a BA defined as follows: P : � � � VP � IP � EP � FP � � LP �
where VP � � � s � v � 	 s � M � v � V � s � L � v � � , IP � � � s � v � � VP 	 s � SI � v � VI � , EP �
� � � s � v � � � s � � v � � � 	 � s � v � � VP � � s � � v � � � VP � � s � s � � � T � � v � v � � � E � , FP � � FP1 � � � � � FPn �
where FP j � � � s � v � � VP 	 v � Fj � , LP � s � v � � � s � .

In the case of finite semantics F � � F � , so that FP � � FP � , where FP � � � s � v � �
VP 	 v � F � . Then, it is easy to see that L f � P � � L f � B � . Moreover, every finite path of
P corresponds to a finite trace of M accepted by B. Thus, to verify that L f � P � � /0, we
can just compute the set of reachable vertices and check that it does not intersect FP.
Usually, this set is found with a traversal algorithm like the one described in Fig. 4.

Similarly, in the case of fair semantics, it is easy to see that L � P � � L � B � . Moreover,
every fair path of P corresponds to an infinite trace of M accepted by B. Thus, to verify
that L � P � � /0 we can just compute the set of fair vertices and check that it does not
intersect IP. The standard algorithm to compute the set of fair vertices is the Emerson-
Lei algorithm (EL) described in Fig. 5 [EL85,EL86]. SMC tools typically implement a
variant of this doubly-nested fixpoint computation , cf. [RBS00,FFK � 01].

2.3 GSTE algorithms

The algorithm used by GSTE to check the AG in the different semantics is described in
Fig. 6. The function GSTE f airstates of line 2 is called only in the case of fair seman-
tics and it is described in Fig. 7. GSTE f airstates restricts the antecedent function to
the states of the system that are extensible to fair paths. In the lines 3-9 of Fig. 6, α is
defined iteratively until a fixpoint is reached. First, α is initialized to be the restriction
of ant to the set of initial vertices and to the set of initial states. Then, at every iteration,
a state s is added to α � v � iff s � ant � v � and there exists a state s � � α � v � � such that s is
reachable from s � in one step and v is reachable from v � in one step. When the fixpoint
is reached, α � v � contains s iff there exists an initial path ρ of the assertion graph and an
initial trace σ of the system of the same length l such that ρ 
 l � � v, σ 
 l � � s and σ 	 � ant ρ.

With an analogous fixpoint computation (lines 6-10), GSTE f airstates finds a func-
tion α such that α � v � contains s iff there exist a path ρ of the assertion graph and a trace



Algorithm GSTE(M � A)
1. if fair semantics
2. then A : � GSTE f airstates � M � A 	
3. α : � ant �

VI

4. for v � V α � v 	 : � α � v 	�� SI

5. repeat
6. α � : � α
7. for v � V α � v 	 : �
8. α � � v 	 ��� v � � E �
	 v � post � α � � v � 	 	�� ant � v 	
9. until α �
� α
10. if fair semantics
11. then return α  cons
12. else return α �

F
 cons

Fig. 6.

Algorithm GSTE fairstates(M � A)
1. repeat
2. ant � : � ant
3. for F � F
4. for v � V α � v 	 : �
5. � v � � E 	 v ��� v � � F pre � ant � v � 	 	�� ant � v 	
6. repeat
7. α � : � α
8. for v � V α � v 	 : �
9. α � � v 	 ��� v � � E 	 v � pre � α � � v � 	 	�� ant � v 	
10. until α �
� α
11. ant : � α
12. until ant � � ant
13. return A

Fig. 7.

σ of the system of the same length l such that ρ 
 l � � F , ρ 
 1 � � v, σ 
 1 � � s and σ 	 � ant ρ.
This computation is applied for every F � F and it is nested in a second fixpoint com-
putation: at every iteration the antecedent function is updated with α until a fixpoint is
reached. At the end of the outer loop, ant � v � contains s iff there exist a fair path ρ of the
assertion graph and an infinite trace σ of the system such that σ 	 � ant ρ.

3 GSTE vs. SMC

In this section, we clarify the relationship between GSTE and SMC. First, we show that
AGs and BAs are equivalent. Then, we show GSTE algorithm is essentially a “parti-
tioned” version of the SMC algorithm.

We now show that, given a BA B, one can easily find an AG A with the complemen-
tary language and vice versa. This means that, given a specification ϕ, one can choose
either GSTE or SMC techniques to check ϕ, no matters whether ϕ is an AG or a BA.
Moreover, since BAs are nondeterministic (i.e., existential) automata, AGs are revealed
to be their dual, which are universal automata.

The following four theorems establish the relationship between AGs and BAs. : see
App. A for the proofs. First, the following two theorems show how to express AGs as
BAs.

Theorem 1. Let A � � G � ant � cons � be an AG where G � � V � VI � E � F � and F � � F � . Let
B be the BA � G � � L � , where G � � � V � � V �I � E � � F ��� s.t. V � � V � � 0 � 1 � 2 � , V �I � VI � � 0 � 1 � ,
E � � � � � v1 � k1 � � � v2 � k2 � � 	 � v1 � v2 �	� E, k2 � � 0 � 1 � if k1 � 0, and k2 � 2 otherwise � ,
F � � � F � � 1 � 2 � � , L � � v � k � � � ant � v � if k � � 0 � 2 � , and L � � v � k � � � ant � v � � � S � cons � v � �
if k � 1. Then L f � B � � L f � M ��� L f � A �
Theorem 2. Let A � � G � ant � cons � be an AG where G � � V � VI � E � F � and F � � F1 � � ��� � Fn � .
Let B be the BA � G � � L � , where G � � � V � � V �I � E � � F ��� s.t. V � � V � � 0 � 1 � 2 � , V �I � VI �
� 0 � 1 � , E � � � � � v1 � k1 � � � v2 � k2 � � 	 � v1 � v2 � � E, k2 � � 0 � 1 � if k1 � 0, and k2 � 2 otherwise � ,



F � � � F1 � � 2 � ����� � � Fn � � 2 � � , L � � v � k � � � ant � v � if k � � 0 � 2 � , and L � � v � k � � � ant � v � �
� S � cons � v � � if k � 1. Then L � B � � L � M � � L � A �

The following two theorems show how to express BAs as AGs.

Theorem 3. Let B � � G � L � be a BA. Let A be the AG � G � ant � cons � , where ant � L ,
cons � v � � /0 for all v � V. Then L f � B � � L f � M ��� L f � A �
Theorem 4. Let B � � G � L � be a BA. Let A be the AG � G � ant � cons � , where ant � L ,
cons � v � � /0 for all v � V. Then L � B � � L � M � � L � A �

We now compare the algorithms used by GSTE and SMC. In particular, we show
that the former is essentially a “partitioned” version of the latter.

In Section 2, we saw how SMC solves the model checking problem for a BA B: it
builds the product automaton P between M and B and it verifies that the language of
P is empty. GSTE follows an analogous procedure for checking an AG A: it actually
computes the product between M and Bant , where Bant is a BA with the same underlying
graph G of A and the labeling function equal to ant. The only difference between SMC
and GSTE is that the latter operates on partitioned subsets of the product state space.
The partitioning is driven by the automaton state space and we refer to such partitioning
as property-driven partitioning. The GSTE analog of a subset Q

�
SP is the partition

� Qv : v � V � , where Qv � � s : � s � v � � SP � . Indeed, every labeling function γ can be seen
as a division of the model into sets of states, one for every vertex v of the graph, which
is exactly the set γ � v � . If γ � ant, then γ turns out to represent a set Sγ

�
SP of states in

the product defined as follows: Sγ � � � s � v � 	 s � γ � v � �
One can see that the lines 3-9 of the algorithm in Fig. 6 computes the reach-

able states of SP. In fact, we could rewrite lines 6-8 in terms of CTL formulas as
α � α � EY[α]. Thus, at the end of the loop, α � v � � � s 	 � s � v � is reachable in SP � . This
computation is actually a partitioned version of the one of Fig. 4 with the difference
that SMC applies the post-image only to the new states added in the previous iteration,
while GSTE applies the post-image to the whole set of reached states.

In the case of fair semantics the computation of reachable states is preceded by
a pruning of the product: GSTE f airstates finds all vertices of SP such that they are
extensible to fair paths. To compare this procedure with EL, we rewrite the operations
of GSTE f airstates in terms of CTL formulas. At the lines 4-5 of the algorithm in Fig.
7, GSTE f airstates actually computes the preimage of ant �

F
(seen as a set of states

in SP). So, we can rewrite these lines as α � EX[ � ant � F � ]. Furthermore, the lines 7-
9 are the same as α � α � � ant � EX[ � α � ] � so that one can see the loop of lines 6-
10 as α � E[ � ant � U � α � ]. This reachability computation is nested in a second fixpoint
computation, so that it becomes evident that GSTE f airstates is a variant of the EL
algorithm of Fig. 5.

4 SMC vs. property-driven partitioned SMC

In Section 3, we saw that GSTE is a partitioned version of SMC. We can also apply
property-driven partitioning to standard SMC algorithms. In particular, there are two



Algorithm partitioned traversal(M � B)
1. α : � parL � S 	 � F
2. β : � α
3. repeat
4. γ : � EX[β]
5. β � γ

�
α

6. α : � α � γ
7. until β � /0
8. return α

Fig. 8.

Algorithm partitioned fairstates(M � B)
1. α : � � ;
2. repeat
3. α � : � α;
4. β : � � ;
5. for F � F
6. β : � β � E[αU � α � parL � S 	 � F 	 ];
7. α : � α � β;
8. α : � α � EX[α];
9. until α � � α
10. return α

Fig. 9.

algorithms to be partitioned: traversal and f airstates (Fig. 4 and 5). We partitioned
both of them, by using NuSMV as platform. This choice is motivated by the fact that
NuSMV implements symbolic model checking for LTL, its source is open, and its code
is well-documented and easy to modify.

The “translated” algorithms are shown is Fig. 8 and Fig. 9. Both are based on back-
ward reachability and respect the structure of NuSMV’s implementation (e.g., the order
of fair sets is irrelevant). The difference with the non-partitioned versions is that while
traversal and f airstates operate on a single set of states in the product automaton,
partitioned traversal and partitioned f airstates operate on an array of sets of states
of the system (one set for every vertex of the BA). Thus, every variable in the algorithms
of Fig. 8 and 9 can be considered as a labeling function. For every set Y

�
S of states and

labeling L , we define the labeling function parL � Y � such that: parL � Y � � v � � Y � L � v �
for all v � V . The initial states of the product are given by parL � SI � �VI

. Given a fair set
F of the BA, the correspondent set in the product is given by parL � S � � F . The backward
image of a labeling function α is given by EX[ � α � ] � v � � �

v � � E � v � pre � α � v � � ��� L � v � .
We investigated if property-driven partitioning is effective for symbolic model check-

ing. In particular, we applied such technique to LTL model checking. In fact, it is well
known that, given a formula ϕ expressed by an LTL formula, we can find a BA with
the same language. The standard LTL symbolic model checkers translate the negation
of the specification into a BA, they add the latter to the model and check for empti-
ness. The goal of our experiments was to compare the performance of partitioned and
non-partitioned SMC algorithms. Thus, we did not try to optimize the algorithms im-
plemented in NuSMV, but to apply to them property-driven partitioning. The question
we wanted to answer is whether the reduction in BDD size more than compensates for
the algorithmic overhead involved in handling a partitioned state-space. This provides
also an indirect comparison between GSTE and standard SMC techniques.

To verify an LTL formula ϕ, NuSMV calls ltl2smv, which translates � ϕ into a
symbolically represented BA with fairness constraints F . Then, the function EF G[true]
checks if the language of the product is empty. Since NuSMV does not apply any par-
ticular technique when ϕ is a safety formula [KV01a], we enhanced the tool with the
option -safety: when ϕ contains only the temporal connectives X , G, and V , it con-



structs a predicate F on the automaton states (representing accepting states for the com-
plementary property) and calls the function E[trueUF]. In the following, we refer to
this procedure and to the standard NuSMV’s procedure as ‘‘NuSMV -safety’’ and
‘‘NuSMV’’ respectively. We implemented the partitioned versions of both and we refer
to latter ones as ‘‘NuSMV -safety -partitioned’’ and ‘‘NuSMV -partitioned’’
respectively. The BA is built automatically by ltl2smv in the case of non-partitioned
algorithms while it is constructed by hand (in these experiments) in the case of parti-
tioned algorithms.

We run our tests on three examples of SMV models (for the SMV code, we refer the
reader to www.science.unitn.it/˜stonetta/partitioning.html). For every ex-
ample, we chose two properties true in the model (one safety and one liveness property,
see Tab. 1) and two properties that failed (again one safety and one liveness property,
see Tab. 2). The first example is a dining-philosophers protocol [Dij72]. Concurrency
is modeled with the interleaving semantics. Typically, a philosopher iterates through a
sequence of four states: she thinks, tries to pick up the chopsticks, eats and, finally, she
puts down the chopsticks. When a deadlock condition happens, a philosopher puts the
chopsticks down. The safety property true in this example is the following: if a philoso-
pher is thinking and both her chopsticks are free and she is scheduled for 4 four steps
in a row, then she will start eating. From this property, we deduce an analogous one
which fails: with the same premises, after 4 steps the philosopher does not eat. The
satisfied liveness property states that if every philosopher is scheduled infinitely often,
then somebody eats infinitely often (at least one philosopher does not starve). In con-
trast, the following liveness property does not hold in the example: if a philosopher is
scheduled infinitely often, then she eats infinitely often.

The second example is a mutual-exclusion protocol: N processes non-deterministically
try to access the critical session. The access is controlled by the main module, which
guarantees that a process does not wait forever. The true safety property says that, if a
process is the only one that is waiting, then it accesses the critical session in one step.
If we change this property by writing that the process does not access the critical ses-
sion in one step, we obtain the safety property that fails. The satisfied liveness property
asserts that, if a process is trying, sooner or later it will access the critical session. We
chose the negation of this property as an example of liveness property that fails.

Finally, the third example is a variant of the game of life: at the beginning there is
only one creature; every creature has a maximum life set to 100, but it can die non-
deterministically in every moment; when the age is between 15 and 65, a creature can
bear a child, which is born in the next step; at most N creatures can be born; when all
the creatures are dead the game is reset. The true safety property states that, if a crea-
ture is bearing a child, then the number of born creatures increases; the failed property
states that the number decreases. The true liveness property asserts the following: if no
creature will be born anymore, then, after a certain point in the future (likely after a
reset), the number of alive creatures will be equal to one forever. The negation of this
property corresponds exactly to the liveness property which failed.

We run NuSMV on the Rice Terascale Cluster (RTC), a 1 TeraFLOP Linux cluster
based on Intel Itanium 2 Processors. A timeout has been fixed to 172800 sec. (2 days).
The results are shown in Fig. 10 and 11. The execution time has been plotted in log



Safety Liveness
Dining G � � p � r � X � r 	 � XX � r 	 � XXX � r 	 	�� XXXX � e 	 	 � � 1 � i � N GFri 	�� � GFs 	
Mutex G � � t1 � � 2 � i � N � ti 	�� Xc 	 G � � 1 � ı � N ti � Fci 	
Life G � b � Xc 	 G � � G!b 	�� FG � d 	 	

Table 1. Satisfied properties.

Safety Liveness
Dining G � � p � r � X � r 	 � XX � r 	 � XXX � r 	 	�� XXXX � � e 	 	 � GFr1 	�� � GFe1 	
Mutex G � � t1 � � 2 � i � N � ti 	�� X � c 	 F � t1 � G � c1 	
Life G � b � X � c 	 F � � G!b 	 � GF � !d 	 	

Table 2. Failed properties.
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Fig. 10. Satisfied properties of Tab. 1. X axis: number of processes. Y axis: time. First row: perfor-
mances of ‘‘NuSMV -safety -partitioned’’ and ‘‘NuSMV -safety’’ on safety properties.
Second row: performances of ‘‘NuSMV -partitioned’’ and ‘‘NuSMV’’ on liveness properties.
1st column: dining-philosophers. 2nd column: mutex. 3rd column: life.

scale against the number N of processes in the model. Every example takes a column
of plots. On the first row, we have the safety properties and on the second one the
liveness properties. Comparing the partitioned version with the non-partitioned one in
the case of satisfied properties (Fig. 10), we notice that, in the first two columns (dining
philosophers and mutual exclusion), the former outperforms the latter. Moreover, in the
case of the safety property for dining philosophers and the liveness property for mutual
exclusion, the gap is exponential, i.e. the difference between the two execution times
grows exponentially with the size of the model. In the third column (life), NuSMV
does not seem to get relevant benefit from the property-driven partitioning (even if
you should notice that, in the last point of the liveness case, NuSMV runs out of time).
Similarly, in the case of failed properties, the partitioned version outperforms always
the non-partitioned one (see Fig. 11). Moreover, in the case of liveness properties, the
improvement is exponential for all the three examples.
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Fig. 11. Same pattern as in Fig. 10 but with the failed properties of Tab. 2.

5 Conclusions

Our contributions in this work are two-fold. First, we elucidate the relationship be-
tween GSTE and SMC. We show that assertion graphs are simply universal automata,
or, viewed dually, are nondeterministic automata for the complementary properties. Fur-
thermore, GSTE algorithms are essentially a partitioned version of standard SMC algo-
rithms, where the partitioning is static and is driven by the property under verification.
Second, we exported the technique of property-driven partitioning to SMC and showed
its effectiveness in the framework of NuSMV.

This opens us several directions for future work. First, we need to combine the tool
with an automated generator of explicit BAs for LTL formulas and evaluate property-
driven partitioning for more complex LTL properties. Second, it requires revisiting the
issue of translating LTL formulas to BAs. Previous translations have focused on making
the BA smaller (cf. [GPVW95,DGV99,SB00,Fri03]) or more deterministic [ST03]. The
relative merit of the two approaches has to be investigated in the context of property-
partitioned SMC. Third, it requires revisiting the issue of symbolic fair-cycle detection.
Previous works have compared various variations of the EL algorithm, as well as non-
EL algorithms, cf. [BGS00,RBS00,FFK � 01]. This has to be re-evaluated for property-
partitioned SMC. Finally, a major topic of research in the last few years has been that
of property-driven abstraction in model checking, [CGJ � 00,GD00]. The combination
of this technique with property-driven partitioning is also worth of investigation, which
could benefit from the study of abstraction in GSTE [YS02,YG02].
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A Proofs

Theorem 1 Let A � � G � ant � cons � be an AG where G � � V � VI � E � F � and F � � F � . Let
B be the BA � G � � L � , where G � � � V � � V �I � E � � F ��� s.t.

– V � � V � � 0 � 1 � 2 � ,
– V �I � VI � � 0 � 1 � ,
– E � � � � � v1 � k1 � � � v2 � k2 � � 	 � v1 � v2 � � E, k2 � � 0 � 1 � if k1 � 0, and k2 � 2 otherwise � ,
– F � � � F � � 1 � 2 � � ,

L � � v � k � � � ant � v � if k � � 0 � 2 � , and L � � v � k � � � ant � v � � � S � cons � v � � if k � 1. Then
L f � B � � L f � M � � L f � A �
Proof:
Suppose σ � L f � M � � L f � A � . Then there exists ρ � L f � G � s.t. 	σ 	 � 	 ρ 	 � l, ρ 
 l � � F and
σ �	 � A ρ, i.e. σ 	 � ant ρ and σ �	 � cons ρ. In particular, σ 
 h � � ant � ρ 
 h � � for all 1  h  l and
there exists i, 1  i  l, s.t. σ 
 i ���� cons � ρ 
 i � � . Let ρ � � � ρ 
 1 � � 0 � ����� � � � ρ 
 l � 1 � � 0 � � � ρ 
 l � � 1 �
if i � l, ρ � � � ρ 
 1 � � 0 � ����� � � � ρ 
 i � 1 � � 0 � � � ρ 
 i � � 1 � � � ρ 
 i � 1 � � 2 � � � ��� � � ρ 
 l � � 2 � otherwise. Thus,
ρ � is a path of B, σ 	 � L ρ � and ρ � 
 l � � F , so that σ � L f � B � .

Suppose now σ � L f � B � . Then there exists ρ � � L f � G � � s.t. 	σ 	 � 	 ρ � 	 � l, ρ � � l � � F
and σ 	 � B ρ � (i.e. σ 	 � L ρ). Since ρ � 
 1 � � V � � 0 � 1 � and ρ � 
 l � � F � � 1 � 2 � , there must
exist i, 1  i  l, s.t. ρ � 
 i � � V � � 1 � . If ρ is the projection of ρ � on the first component,
we have σ 
 h � � ant � ρ 
 h � � for all 1  h  l and σ 
 i ���� cons � ρ 
 l � � . Thus, we have that
σ 	 � ant ρ and σ �	 � cons ρ, so that σ �	 � A ρ. �

Theorem 2 Let A � � G � ant � cons � be an AG where G � � V � VI � E � F � and F � � F � . Let
B be the BA � G � � L � , where G � � � V � � V �I � E � � F ��� s.t.

– V � � V � � 0 � 1 � 2 � ,
– V �I � VI � � 0 � 1 � ,
– E � � � � � v1 � k1 � � � v2 � k2 � � 	 � v1 � v2 � � E, k2 � � 0 � 1 � if k1 � 0, and k2 � 2 otherwise � ,
– F � � � F1 � � 2 � � � ��� � Fn � � 2 � � ,

L � � v � k � � � ant � v � if k � � 0 � 2 � , and L � � v � k � � � ant � v � � � S � cons � v � � if k � 1. Then
L � B � � L � M ��� L � A �
Proof:
Suppose σ � L � M ��� L � A � . Then there exists a fair path ρ � L � G � s.t. σ �	 � A ρ, i.e. σ 	 � ant

ρ and σ �	 � cons ρ. In particular, σ 
 h � � ant � ρ 
 h � � for all h � 0 and there exists i s.t.
σ 
 i ���� cons � ρ 
 i � � . If ρ � � � ρ 
 1 � � 0 � � � ��� � � ρ 
 i � 1 � � 0 � � � ρ 
 i � � 1 � � � ρ 
 i � 1 � � 2 � � � ρ 
 i � 2 � � 2 � � � � � ,
then ρ � is a path of B, σ 	 � L ρ � and ρ � visits infinitely often every Fj � � 2 �	� F � , so that
σ � LF � � B � .

Suppose now σ � L � B � . Then there exists a fair path ρ � � L � G � � s.t. σ 	 � B ρ � (i.e.
σ 	 � L ρ). Since ρ � starts from V � � 0 � 1 � and visits V � � 2 � , there exists i s.t. ρ � � i � �
V � � 1 � . If ρ is the projection of ρ � on the first component, we have σ 
 h � � ant � ρ 
 h � �
for all h � 0 and σ 
 i ���� cons � ρ 
 i � � . Thus, we have that σ 	 � ant ρ and σ �	 � cons ρ so that
σ �	 � A ρ. �

The following two theorems show how to express BAs as AGs.



Theorem 3 Let B � � G � L � be a BA where G � � V � VI � E � F � and F � � F � . Let A
be the AG � G � ant � cons � , where ant � L , cons � v � � /0 for all v � V. Then L f � B � �
L f � M � � L f � A �
Proof:
Suppose σ � L f � M � � L f � A � . Then there exists ρ � L f � G � s.t. 	σ 	 � 	 ρ 	 � l, ρ 
 l � � F and
σ �	 � A ρ, i.e. σ 	 � ant ρ and σ �	 � cons ρ. In particular, σ 	 � L ρ. Thus, σ � L f � B � .

Suppose now σ � L f � B � . Then there exists ρ � L f � G � s.t. 	 σ 	 � 	 ρ 	 � l, ρ 
 l � � F and
σ 	 � L ρ. Since σ 
 1 � �� cons � ρ 
 1 � � , σ �	 � cons ρ. Thus, we have that σ 	 � ant ρ and σ �	 � cons ρ
so that σ �	 � A ρ. �

Theorem 4 Let B � � G � L � be a BA where G � � V � VI � E � F � . Let A be the AG � G � ant � cons � ,
where ant � L , cons � v � � /0 for all v � V. Then L � B � � L � M � � L � A �
Proof:
Suppose σ � L � M � � L � A � . Then there exists an initial fair path ρ � L � G � s.t. σ �	 � A ρ, i.e.
σ 	 � ant ρ and σ �	 � cons ρ. In particular, σ 	 � L ρ. Thus, σ � L � B � .

Suppose now σ � L � B � . Then there exists an initial fair path ρ � L � G � s.t. σ 	 � L ρ.
Since σ 
 1 � �� cons � ρ 
 1 � � , σ �	 � cons ρ. Thus, we have that σ 	 � ant ρ and σ �	 � cons ρ so that
σ �	 � A ρ. �


