
Improving CtxMatch by means of

grammatical and ontological knowledge – in order

to handle attributes

S. Zanobini

April 6, 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Introduction 2

2 Our approach 4

3 CtxMatch 7
3.1 CtxMatch: the general algorithm . . . . . . . . . . . . . . . . . 7

3.1.1 Building the contextual meaning . . . . . . . . . . . . . . 9
3.1.2 Comparing the concepts . . . . . . . . . . . . . . . . . . . 10

3.2 Semantic coordination of HCs . . . . . . . . . . . . . . . . . . . . 11
3.2.1 HC–specific functions for build-ctx-meaning . . . . . . 11
3.2.2 HC–specific functions for semantic–comparison . . . . 14

4 Improving HC-CtxMatch 17
4.1 The general approach . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Using DL . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Grammatical knowledge . . . . . . . . . . . . . . . . . . . 20
4.1.3 Ontological knowledge . . . . . . . . . . . . . . . . . . . . 21

4.2 Building formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Individuating the functionality of a node . . . . . . . . . . 22
4.2.2 Individuating the semantic atoms . . . . . . . . . . . . . . 24
4.2.3 Building the formula . . . . . . . . . . . . . . . . . . . . . 25

4.3 Handling the ambiguity . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 No relation between two atoms . . . . . . . . . . . . . . . 29
4.3.2 Multiple relations between two atoms . . . . . . . . . . . 30
4.3.3 Bidirectional relations . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Multiple relations with ancestors or siblings . . . . . . . . 31

4.4 Catalogues – Cat-CtxMatch . . . . . . . . . . . . . . . . . . . . 32

A The algorithm 33

1



Chapter 1

Introduction

With the development of WWW, one of the more recent issue is the problem of
enabling machines to exchange meaningful information/knowledge across appli-
cations which (i) may use autonomously developed models of locally available
data (local models), and (ii) need to find a sort of agreement on what local
models are about to achieve their users’ goals. This problem can be viewed as
a problem of semantic coordination1, defined as follows: (i) all parties have an
interest in finding an agreement on how to map their models onto each others,
but (ii) there are many possible/plausible solutions (many alternative mappings
across local models) among which they need to select the right, or at least a
sufficiently good, one.

In environments with more or less well-defined boundaries, like a corpo-
rate Intranet, the semantic coordination problem can be addressed by defining
and using shared models (e.g., ontologies) throughout the entire organization2.
However, in open environments, like the Semantic Web, this “centralized” ap-
proach to semantic coordination is not viable for several reasons, such as the
difficulty of “negotiating” a shared model of data that suits the needs of all
parties involved, the practical impossibility of maintaining such a model in a
highly dynamic environment, the problem of finding a satisfactory mapping of
pre-existing local models onto such a global model. In such a scenario, the prob-
lem of exchanging meaningful information across locally defined models seems
particularly tough, as we cannot presuppose an a priori agreement, and there-
fore its solution requires a more dynamic and flexible form of “peer-to-peer”
semantic coordination.

In a recent paper ([5]), we address an important instance of the problem
of semantic coordination, namely the problem of coordinating hierarchical clas-
sifications (HCs). HCs are structures having the explicit purpose of organiz-
ing/classifying some kind of data (such as documents, records in a database,

1See the introduction of [2] for this notion, and its relation with the notion of meaning
negotiation.

2But see [1] for a discussion of the drawbacks of this approach from the standpoint of
Knowledge Management applications.
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goods, activities, services) and are widely used in many applications. Examples
are: web directories (see e.g. the GoogleTM Directory or the Yahoo!TMDirectory),
content management tools and portals (which often use hierarchical classifica-
tions to organize documents and web pages), service registry (web services are
typically classified in a hierarchical form, e.g. in UDDI), marketplaces (goods
are classified in hierarchical catalogs), PC’s file systems (where files are typically
classified in hierarchical folder structures).

In particular, we propose in [5] a logic–based algorithm, called CtxMatch,
for coordinating HCs. It takes in input two HCs H and H ′ and, for each pair
of concepts k ∈ H and k′ ∈ H ′, returns their semantic relation3.

With respect to other approaches to semantic coordination proposed in the
literature, our approach is innovative in three main aspects: (1) we introduce a
new method for making explicit the meaning of nodes in a HC (and in general,
in structured semantic models) by combining three different types of knowledge,
each of which has a specific role; (2) the result of applying this method is that
we are able to produce a new representation of a HC, in which all relevant
knowledge about the nodes (including their meaning in that specific HC) is
encoded as a set of logical formulae; (3) mappings across nodes of two HCs are
then deduced via logical reasoning, rather then derived through some more or
less complex heuristic procedure, and thus can be assigned a clearly defined
model-theoretic semantics.

In particular, the point (2) represents a new and relevant problem in NLP. In
fact, despite the presence of a large literature addressing the problem of encoding
natural language statements into logical formulas [6, 7, 8, 3], no approach has
been proposed addressing the issues raised by point (2). The problem is relevant,
because of the recent development of the WWW, where these kind of structures
are widely used for representing domains. The goal of this paper is to define an
improvement for the simple encoding process used in CtxMatch.

This paper proceeds as follow: in Chapter 2 we present the general approach
followed in CtxMatch. In chapter 3 we analyze in detail the algorithm. In
Chapter 4 we show a general problem afflicting CtxMatch and we propose a
solution.

3The relations we consider in this version of CtxMatch are: k is less general than k′, k
is more general than k′, k is equivalent to k′, k is compatible with k′, and k is incompatible
with (i.e., disjoint from) k′.
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Chapter 2

Our approach

The approach to semantic coordination we propose in [5] is based on the intuition
that there is an essential conceptual difference between coordinating generic ab-
stract structures (e.g., arbitrary labelled graphs) and coordinating structures
whose labels are taken from the language spoken by the community of their
users. Indeed, the second type of structures give us the chance of exploiting the
complex degree of semantic coordination implicit in the way a community uses
the language from which the labels are taken. Most importantly, the status of
this linguistic coordination at a given time is already “codified” in artifacts (e.g.,
dictionaries, but today also ontologies and other formalized models), which pro-
vide senses for words and more complex expressions, relations between senses,
and other important knowledge about them. Our aim is to exploit these ar-
tifacts as an essential source of constraints on possible/acceptable mappings
across HCs.

To clarify this intuition, let us consider the HCs in Figure 2.1, and suppose
they are used to classify images in two multi-media repositories. Imagine we
want to discover the semantic relation between the nodes labelled MOUNTAIN in
the two HCs on the left hand side, and between the two nodes FLORENCE on the
right hand side. Using knowledge about the meaning of labels and about the
world, we understand almost immediately that the relation between the first pair
of nodes is “less general than” (intuitively, the images that one would classify
as images of mountains in Tuscany is a subset of images that one would classify
under images of mountains in Italy), and that the relation between the second
pair of nodes is “equivalent to” (the images that one would classify as images of
Florence in Tuscany are the same as the images that one would classify under
images of Florence in Italy). Notice that the relation is different, even though
the two pairs of HCs are structurally equivalent. How do we design a technique
of semantic coordination which exploits the same kind of facts to achieve the
same results?

The approach we propose is based on three basic ideas.
1. Three levels of knowledge. First of all, exploiting the degree of

coordination implicit in the fact that labels are taken from language requires
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Figure 2.1: Coordinating HCs

to make explicit the meaning of labels associated to each node in a HC. We
claim that this can be done only of we properly take into account three distinct
levels of semantic knowledge:

Lexical knowledge: knowledge about the words used in the labels. For ex-
ample, the fact that the word ‘image’ can be used in the sense of a picture
or in the sense of personal facade, and the fact that different words may
have the same sense (e.g., ‘picture’ and ‘image’);

Domain knowledge: knowledge about the relation between the senses of la-
bels in the real world or in a specific domain. For example, the fact that
Tuscany is part of Italy, or that Florence is in Italy;

Structural knowledge: knowledge deriving from how labels are arranged in
a given HC. For example, the fact that the concept labelled MOUNTAIN

classifies images, and not books.

Let us see how these three levels can be used to explain the intuitive reason-
ing described above. Consider the mapping between the two nodes MOUNTAIN.
Linguistic meaning can be used to assume that the sense of the two labels is
the same. Domain knowledge tells us, among other things, that Tuscany is part
of Italy. Finally, structural knowledge tells us that the intended meaning of
the two nodes MOUNTAIN is images of Tuscan mountains (left HC) and images
of Italian mountains (right HC). All these facts together allow us to conclude
that one node is less general than the other one. We can use similar reasoning
for the two nodes FLORENCE, which are structurally equivalent. But exploiting
domain knowledge, we can add the fact that Florence is in Tuscany (such a
relation doesn’t hold between mountains and Italy in the first example). This
further piece of domain knowledge allows us to conclude that, beyond structural
similarity, the relation is different.

2. Encoding the concepts. This analysis of meaning has an important
consequence on our approach to semantic coordination. Indeed, unlike all other
approaches we know of, we do not use lexical knowledge (and, in our case,
domain knowledge) to improve the results of structural matching (e.g., by adding
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synonyms for labels, or expanding acronyms). Instead, we combine knowledge
from all three levels to build a new representation of the problem, where the
meaning of each node is encoded as a logical formula, and relevant domain
knowledge and structural relations between nodes are added to nodes as sets of
axioms that capture background knowledge about them.

3. Problem of satisfiability. This, in turn, introduces the third innovative
idea of our approach. Indeed, once the meaning of each node, together with
all relevant domain and structural knowledge, is encoded as a set of logical
formulae, the problem of discovering the semantic relation between two nodes
can be stated not as a matching problem, but as a relatively simple problem
of logical deduction. Intuitively, determining whether there is an equivalence
relation between the meaning of two nodes becomes a problem of testing whether
the first implies the second and vice versa (given a suitable collection of axioms,
which acts as a sort of background theory); and determining whether one is less
general than the other one amounts to testing if the first implies the second.
As we will say, in the current version of the algorithm we encode this reasoning
problem as a problem of logical satisfiability, and then compute mappings by
feeding the problem to a standard SAT solver.
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Chapter 3

CtxMatch

In this chapter, we propose (i) a general algorithm, called CtxMatch, for dis-
covering (semantic) relationships across distinct and autonomous generic struc-
tures (section 3.1) and (ii) a specific algorithm specializing the algorithm to the
discovering of mappings across hierarchical classifications (section 3.2).

3.1 CtxMatch: the general algorithm

The general framework described in Chapter 2 can be used for discovering rela-
tions between any structures labelled with natural language. In this section, we
introduce the structure and purpose independent part of the algorithm, namely
the steps that do not depend on the use nor on the type of structure. This
generic algorithm must be obviously enriched with specific structure and pur-
pose dependent functions, i.e. with different functions for each particular type
and use of the structures we want to match. In Section 3.2 we present the specific
functions we use to match Hierarchical Classifications, i.e., tree-like structures
used for classifying documents.

To make things clearer, imagine the following scenario: an agent A (the
seeker) has a set of documents organized into a tree–structure. To collect new
documents, he can send a query to a provider (an agent B). In our approach, the
agent can formulate the query using his own structure: for example, imagine that
seeker A uses the structure on the right-hand side of Figure 2.1.b to classify his
documents. Then, he can select node FLORENCE to formulate the query ‘Images
of Florence in Italy’. Furthermore, imagine that the provider employs the left-
hand structure in Figure 2.1.b. After receiving the query, he has the following
tasks: (i) to interpret the query he receives, (ii) to find semantic relations holding
between the query and his structures, and (iii) to return relevant documents (if
any). In particular, in this paper we focus on the tasks (i) and (ii).

The algorithm needs two inputs:
query Q: A seeker sends a query composed by a node fl in a structure FS. It
means simply that the seeker wants to find nodes semantically related to the
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node fl in FS;
context C: The context is composed by the three elements of the local knowl-
edge, namely a structure LS, a lexicon LL and an ontology LO. The context
is the target of the query1.

The main goal of the algorithm CtxMatch is to find the semantic relations
between node fl in the queryQ and all the nodes belonging to the local structure
LS in the context C. For the sake of simplicity, in this paper we focus on the
procedure for matching the node fl in the query with a single nodes ll in the
context C. Therefore, for this simplified version of CtxMatch, we add a third
element in the input: a label ll of the structure LS. The output of the algorithm
will simply be the semantic relation holding between the two nodes.

The algorithm also employs a data–type ‘concept’ 〈φ, α〉, constituted by a
pair of logical formulas, where φ approximating the individual concept repre-
sented by a node of a structure and α expressing the relations between the
current individual concept and other individual concepts in the structures (local
relevant axioms). E.g., the formulas associated with the node labeled FLORENCE

in rightmost structure in Figure 2.1.b will approximate the statements ‘images
of Florence in Italy’ (the individual concept) and ‘Florence is in Italy’ (the local
relevant axiom).

Algorithm 3.1 CtxMatch(Q, C, ll)
. query Q = 〈fl, FS〉 where fl is the foreign term

FS is the foreign structure

. context C = 〈LS,LL, LO〉 where LS is the local structure
LL is the local lexicon
LO is the local ontology

. label ll is the label of the local node to be matched

VarDeclarations

context QC;
concept 〈φ, α〉, 〈ψ, β〉;
. concepts are pairs of formulas

relation R;

1 QC←〈FS,LL,LO〉;
. QC represents the virtual query context

2 〈φ, α〉← build–cxt–meaning(fl, QC);
3 〈ψ, β〉← build–cxt–meaning(ll, C);

. compute the concepts expressed by label ll and fl

4 R← semantic–comparison(〈φ, α〉, 〈ψ, β〉, LO);
. R represents the semantic relation between the two concepts

5 Return R;

In line 1, CtxMatch first builds the ‘virtual’ query–contextQC. The reason
of it is that we want the query Q to be locally interpreted within the local lexicon
and ontology. An important consequence is that the relation returned by the

1We call context the ensemble of the three levels of knowledge because they express the
local representation that an agent has of a portion of the world.
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algorithm is directional: it expresses the relation holding between the two nodes
from the provider’s point of view. Indeed, the seeker could have different lexicon
and ontology and could calculate different relation for the same nodes.

Then, line 2 builds a concept, i.e. a pair of logical formulas, approximating
the meaning of the node fl in the virtual context QC. Line 3 similarly builds
the concept for the node ll in the local context C. Finally, line 4 computes
the semantic relation between the two concepts. The following two subsections
describes in more detail this two top-level operations, implemented by the func-
tions build–ctx–meaning and semantic–comparison.

3.1.1 Building the contextual meaning

This step has the task of building the concept expressed by a generic node t
in a generic context GC. Before analyzing the corpus of the algorithm, it’s
important to focus our attention on the array of senses SynS. A synset (set
of synonyms) is a set of senses, i.e. of concepts, expressed by an expression
of the natural language2. For example the word ‘Florence’ has, in WordNet,
two senses (i.e. it may express two different concepts): ‘city of Tuscany’ and
‘town of South Caroline’. The array SynS records these senses, so that, for
example, SynS[Florence] is the synset containing the two senses above, while
SynS[Florence][0] is the first of the two senses.

Algorithm 3.2 build–ctx–meaning(GC, t)
. context GC = 〈T, L,O〉, where T is a structure

L is a lexicon
O is an ontology

. label t is a generic label

VarDeclarations

sense SynS[][] . array of senses

structure F
formula α, η

1 F← determine–focus(t, T );
. the focus F is a substructure of T

2 for each label e in F do

3 SynS[e]← extract–synset(e, L);
. extracts the senses associated to each label in the structure F

4 for each label e in F do

5 SynS[e]← filter–synset(F,O, SynS, e);
. unreasonable senses are discarded

6 δ← individual–concept(t, SynS, F,O);
7 η← extract–local-axioms(F, SynS,O);
8 Return 〈δ, η〉;

Let us now look at the algorithm. Line 1 determines the focus of a node t, i.e.
the subgraph of the structure T useful to extract the meaning of t. This step

2See for example [4] for the use of synsets in a Lexicon.
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is performed essentially for efficiency reasons, as it reduces as much as possible
the node space to take into account. Lines 2-3 associate to each node within
the focus the synsets found in the Lexicon. Consider the Figure 2.1.b: the two
synsets ‘city of Tuscany’ and ‘town of South Caroline’ are associated to the label
FLORENCE.

Lines 4-5 try to filter out unreasonable senses associated to t. In our example,
‘town of S.C.’ is discarded since it is incompatible with the other labels in the
focus of t (in fact, node FLORENCE refers clearly to the city in Tuscany – see
Algorithm 3.4).

Finally, lines 6 and 7 build the two component of the concept expressed by
node t, computing the individual concept and the local relevant axioms, as we
explained in describing Algorithm 1.

3.1.2 Comparing the concepts

The main task when comparing two concepts is to find the semantic relation
holding between them. The algorithm employs the data–type ‘deductional–
pair’: this is an array of pairs 〈relation, formula〉, where the formula expresses
the condition under which the semantic relation between the concepts holds.
E.g., the deductional–pair 〈≡, α → β〉 means that if α → β is valid, then the
relation holding between the two concepts is the equivalence (≡).

Algorithm 3.3 semantic–comparison(〈φ, α〉, 〈ψ, β〉, O)
. concept 〈φ, α〉

. concept 〈ψ, β〉

. ontology O

VarDeclarations

formula γ
deductional-pair k[] . array of pairs 〈relation, formula〉

1 γ ← extract–global–axioms(φ, ψ, O);
2 k ← build–deductional–formulas(〈φ, α〉, 〈ψ, β〈, γ);
3 for each deductional-pair i in k
4 if satisfies(¬k[i].formula) then

5 Return k[i].relation;
6 else Return Null;

Line 1 extracts global axioms, i.e. the relations holding between individual
concepts belonging to different structures. Consider, for example, the nodes
ITALY AND TUSCANY in Figure 2.1.b: the global axioms express the fact that, for
example, ‘Tuscany is a region of Italy’. Line 2 builds the array of deductional–
pair. It’s important to note that the relations, their number and the associated
conditions depend on the type of structure to match. In Section 3.2 we report
the pairs relation/condition relevant for matching HCs. Lines 3–6 look for the
“correct” relation holding between two concepts. This is done by checking the
formulas in each deductional–pair, until a valid one is found3. If a valid formula

3Note that a formula φ is valid exactly in the case its negation ¬φ is not satisfiable.

10



is found, the associated relation is returned.
It’s important to observe that the problem of finding the semantic relation

between two nodes t ∈ T and t′ ∈ T ′ is encoded into a satisfiability problem
involving both the formulas extracted in the previous phase, and some further
global relevant axioms. So, to prove whether the two nodes labeled FLORENCE in
Figure 2.1.b are equivalent, we check the logical equivalence between the formu-
las approximating the statements ‘Images of Florence in Tuscany’ and ‘Images
of Florence in Italy’ (individual concepts), given the formulas approximating
the statements ‘Florence is in Tuscany’ and ‘Florence is in Italy’ (local axioms)
and ‘Tuscany is a region of Italy’ (global axiom).

The three functions above constitute the top-level algorithm, i.e. the proce-
dure followed to match generic structures labelled with natural language. All
remaining functions (see below) are specific to the particular type of structures
we need to match.

3.2 Semantic coordination of Hierarchical Clas-
sifications (HC-CtxMatch)

Intuitively, a classification is a grouping of things into classes or categories.
When categories are arranged into a hierarchical structure, we have a hierar-
chical classification. Prototypical examples of HCs are the web directories of
many search engines, for example the GoogleTM Directory, the Yahoo!TM Di-
rectory, or the LooksmartTM web directory. In this section we show how to
apply the general approach described in the previous section to the problem of
coordinating HCs.

The main algorithm is CtxMatch, which is essentially the version of Ctx-
Match where the input context contains a HC. It returns a relationship between
the query node fl and the local node ll. Due to space limitation, we limited
the description to the most relevant functions (see [5, 9] for a more detailed
description). In the version of the algorithm presented here, we use WordNet
as a source of both lexical and domain knowledge. WordNet could be replaced
by another combination of a linguistic and domain knowledge resources4.

3.2.1 HC–specific functions for build-ctx-meaning

build-ctx-meaning first needs to compute the focus of the label t and the
synsets of each label in the structure. This is done by the functions determine–
focus and extract–synset, respectively. We only give an intuitive descrip-
tion of these two functions.

4It’s important to note that WordNet is not a merged and shared structure, namely a
kind of average of the structures to be matched (as in the GAV and LAV approaches). Indeed,
it represents the result of linguistic mediation in centuries of use by human speakers. Using
WordNet instead of merged and shared structures, shifts the problem of sharing ‘view of the
world’ to the more natural problem of ‘sharing natural language’.
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Given a node s belonging to a structure S, determine–focus has the task
to reduce S to the minimal one without loosing the capability of rebuilding the
meaning associated to the node s. For HC–CtxMatch we define the focus F
of a structure S given a node s ∈ S as the smallest structure containing s and
all its ancestors with their children.

extract–synset associates to each node all the possible linguistic interpre-
tations (synsets) provided by the Lexicon. In order to maximize the possibility
of finding an entry into the Lexicon, we use both a postagger and a lemmatizator
over the labels.

Algorithm 3.4 filter–synset(T,O, SynS, t)
. structure T

. ontology O

. sense SynS[][] . array of senses for the labels in T

. label t

VarDeclarations

relation R1, R2, Rel1, Rel2 . initialized to Null

sense senset1, senset2, sensey

1 for each pair senset1 6= senset2 in SynS[t] do

2 for each ancestor y of t in T do

3 for each sensey in SynS[y] do

4 R1 ← access–ontology(sensey, senset1, O);
5 if R1 = ‘hyperonymy’ then Rel1 ← ‘hyperonymy’;
6 R2 ← access–ontology(sensey, senset2, O);
7 if R2 = ‘hyperonymy’ then Rel2 ← ‘hyperonymy’;
8 if (Rel1 = Null & Rel2 6= Null) then

9 remove senset1 from SynS[t];
10 Rel1←Rel2←Null;

11 for each pair senset1 6= senset2 in SynS[t] do

12 for each descendant y of t in T do

13 for each sensey in sense[y] do

14 R1 ← access–ontology(sensey, senset2, O);
15 if R1 = ‘hyponymy’ then Rel1 ← ‘hyponymy’;
16 R2 ← access–ontology(sensey, senset1, O);
17 if R2 = ‘hyponymy’ then Rel2 ← ‘hyponymy’;
18 if (Rel1 = Null & Rel2 6= Null) then

19 remove senset1 from SynS[t];
20 Rel1 = Rel2 = Null;

21 for each senset1 in SynS[t] do

22 for each sibling y of t in T do

23 for each sensey in SynS[y] do

24 R1 ← access–ontology(senset1, sensey, O);
25 if R1 = ‘contradiction’ then Rel1← ‘contradiction’;
26 if (Rel1 6= Null) then remove senset1 from SynS[t];
27 Return SynS[t];

The next function filter–synset is applied to each node t of the focus. Its
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goal is to eliminate those senses associated to a node which seem to be incom-
patible with the meaning expressed by the node. To this end, it employs three
heuristic rules, which take into account domain information provided by the
ontology. This information concerns the relations between the senses associated
to the node t and the senses associated to the other nodes in the focus.

Intuitively, the situation is as follows. Consider the node FLORENCE in the
rightmost structure of Figure 2.1.b. The function extract–synset associates
to this node the two senses ‘town in South Caroline’ (‘florence#1’) and ‘a city
in central Italy’ (‘florence#2’). The structure also contains the node ITALY,
which is an ancestor of FLORENCE. This node has a sense italy#3 (namely, ’Italy
the European state’), for which the relation ‘italy#3 hyperonym florence#2’
holds, meaning that ’Florence is in Italy’. Therefore, the sense ‘florence#1’ can
be discarded by exploiting knowledge about the sense of an ancestor node. We
can then conclude that the term ‘Florence’ refers to the ’city in Italy’ and not
to the ‘town in South Caroline’. The function access–ontology allows us to
discover relations between senses by traversing the ontology O (the WordNet
relations are reported in the left-hand side of Table 3.1).

Lines 1–10 applies this heuristic to a sense sn associated to a node t. For-
mally, it discards sn if the following two conditions are satisfied: (i) no relation
is found between this sn and any sense associated to some ancestor, and (ii)
some relation is found between a sense sm 6= sn and some sense associated with
an ancestor of t. Lines 11–20 do the same for descendants. Finally, lines 21–26
discard a sense if it is in ’contradiction’ with some sense associated to a sibling
of t.

The function individual–concept builds a formula approximating the
meaning expressed by a node t.

Algorithm 3.5 individual–concept(t, SynS, T,O)
. label t

. sense SynS[][]

. structure T

. ontology O

VarDeclarations

formula η = Null

relation R = Null, Rel = Null

path P

1 for each SynS[t][i] in SynS[t][] do

2 for each sibling y of t in T do

3 for each SynS[y][k] in SynS[y][] do

4 R ← access–ontology(SynS[t][i], SynS[y][k], O);
5 if R = ‘hyperonymy’ then Rel ← ‘hyperonymy’;
6 if (rel 6= Null) then replace SynS[t][i] in SynS[t][] with ‘SynS[t][i] ∧

¬SynS[y][k]’;
7 P ← path from root to t in T ; . Path from root to node t.

8 η ←
V

e∈P

`
W

i SynS[e][i]
´

;
9 Return η;
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This is done by combining the linguistic interpretation (the synsets SynS asso-
ciated to the nodes of the focus) with structural information (T ) and domain
knowledge (O), in input to the function. A critical choice is the formal language
used to describe the meaning. Our implementation for HCs adopts propositional
logic, whose primitive terms are the synsets of WordNet associated to each
node.

Lines 1–6 look for some ontological relation between the senses of the sib-
lings and, if anyone is found, the interpretation of the node is refined. For
example, imagine we have a node IMAGES with two children EUROPE and ITALY,
and that the functions extract–synset and filter–synset associate to the
nodes EUROPE and ITALY respectively the senses europe#3 and italy#1. Since
there exists an ontological relation ‘europe#3 hyperonym italy#1’ (Italy is in
Europe) the meaning associated to node EUROPE is not longer europe#3, but it
becomes europe#3 ∧¬ italy#1. In fact we imagine that a user wants to classify
under node EUROPE images of Europe, and not images of Italy.

Lines 7-8 compute the formula approximating the structural meaning of
the concept t. This formula is the conjunction of the meanings associated to
all of its ancestors (i.e., the path P ). The meaning of a node is taken to be
disjunction of all the (remaining) senses associated to the node. For example, if
you consider the node FLORENCE in the rightmost structure of Figure 2.1.b, the
function returns the formula (images#1 ∨ images#2) ∧ italy#3 ∧ florence#2,
where (images#1 ∨ images#2) means that we are not able to discard anyone of
the senses.

Function extract–local–axioms extracts the local relevant axioms, i.e.
the axioms relating concepts within a single structure. The idea is to rephrase
the ontological relations between senses into logical relations. Consider again the
senses florence#2 and italy#3 associated to the nodes FLORENCE and ITALY

in Figure 2.1.b. The ontological knowledge tells us that ‘italy#3 hyperonym
florence#2’. This can be expressed by the axiom ‘florence#2→italy#3’. In
HC-CtxMatch, local axioms are built by translating WordNet relations into
formulas according to Table 3.1.

3.2.2 HC–specific functions for semantic–comparison

The top–level function semantic–comparison calculates the semantic rela-
tion between the formulas approximating the meaning of two nodes. In this
section we describe the structural dependent functions called by this function:
extract–global–axioms and build–deductional–formulas.

extract–global–axioms works exactly as extract–local–axioms. The
only difference is that the axioms extracted express relations between concepts
belonging to different structures. Consider for example that the two senses
tuscany#1 and italy#3 have been associated respectively to nodes TUSCANY

and ITALY in Figure 2.1.b. The ontological relation is ‘italy#3 hyperonym
tuscany#1’, which can be expressed as ‘tuscany#1 → italy#3’. The rules of
translation from WordNet senses to axioms are the same as for the function
extract–local–axioms.
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WordNet relation axiom

s#k synonym t#h s#k ≡ t#h

s#k hyponym t#h s#k → t#h

s#k hyperonym t#h t#h → s#k

s#k contradiction t#h ¬(t#k ∧ s#h)

Table 3.1: WordNet relations and their axioms.

In our approach, the problem of finding the relation between two nodes is
encoded into a satisfiability problem. build–deductional–formulas defines
the satisfiability problems needed by defining (i) the set R of possible relations
holding between concepts and, for each such relation r ∈ R, (ii) the formula
which expresses the truth conditions for this relation. Clearly, the set R of
possible relations depends on the intended use of the structures we want to
map. For HC-CtxMatch we choose the following set–theoretical relations: ≡,
⊆, ⊇, ⊥ (⊥ means that the two concepts are disjoint).

Relation Formula

⊥ (α ∧ β ∧ γ) → ¬(φ→ ψ)〉

≡ (α ∧ β ∧ γ) → (φ ≡ ψ)〉

⊆ (α ∧ β ∧ γ) → (φ→ ψ)〉

⊇ (α ∧ β ∧ γ) → (ψ → φ)〉

Table 3.2: The satisfiability problems for concepts 〈φ, α〉 and 〈ψ, β〉, with global
axioms γ.

Table 3.2 reports the pairs 〈relation,formula〉 representing the satisfiability
problems associated to each relation between concepts we consider, given two
concepts 〈φ, α〉, 〈ψ, β〉, and the formula γ representing the global axioms. The
result of this function is simply an array k[] containing these pairs.

Consider the problem of checking whether FLORENCE in the right-hand struc-
ture in Figure 2.1.b is, say, equivalent to the node FLORENCE in the left-hand
structure. Following are the concepts and axioms extracted by the two struc-
tures:

concept 1: image#1 ∧ tuscany#1 ∧ florence#2 (3.1)

local axiom 1: florence#2 → tuscany#1 (3.2)

concept 2: image#1 ∧ italy#3 ∧ florence#2 (3.3)

local axiom 2: florence#2 → italy#3 (3.4)

global axiom: tuscany#1 → italy#3 (3.5)

Checking equivalence then amounts to checking the following logical con-
sequence 3.2 ∧ 3.4 ∧ 3.5 |= (3.1 ≡ 3.3). By the properties of propositional
consequence, we can rephrase it as follows: |= (3.2 ∧ 3.4 ∧ 3.5) → (3.1 ≡ 3.3).
It is easy to see that this latter formula is valid. So we can conclude that the
relation holding between the two nodes FLORENCE is “equivalence”, which is the
intuitive one.
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In particular, the function satisfies checks for the validity of a formula. In
our implementation a standard SAT–solver is used for this task.
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Chapter 4

Improving HC-CtxMatch

4.1 The general approach

The algorithm HC-CtxMatch, as defined in the Chapter 3, builds a boolean
formula approximating the meaning expressed by a node as a conjunction of dis-
junctions. Using this kind of encoding leads to a general problem. Consider the
very simple structures depicted in Figure 4.1. Imagine to run HC–CtxMatch
for finding the relation holding between the two nodes BLACK and RED on the
low: it returns the wrong result ‘≡’ (equivalence).

The reason of it is that the formulas approximating the concepts expressed
by the two nodes are:

pen#1 ∧ red#1 ∧ plug#1 ∧ black#1

and

pen#1 ∧ black#1 ∧ plug#1 ∧ red#1

for BLACK and RED nodes respectively. Because of the commutative property on
logical connectives, there is no significant difference between the two formulas.
But, how we can simply argue, the relation holding between the two nodes
BLACK and RED should have been ‘⊥’ (no relation). In fact the node BLACK of
the left structure means intuitively ‘the red pens with the black plugs’ while the
node RED of the right structure means intuitively ‘the black pens with the red
plugs’, so that the sets of objects described by the two node are distinct (their
intersection is the empty set).

In this paper we propose a new approach for improving the encoding process
of HC-CtxMatch. The general idea is the following:

1. to use a more expressive and powerful logics, able to handle the semantic
richness of structures labelled with natural language;

2. to obtain grammatical and ontological knowledge, helping us to better
approximate the meaning expressed by a node;

17



PEN

RED

PLUG

BLACK

PLUG

PEN

BLACK

RED

Figure 4.1: CtxMatch problem

3. to face the problem of building the formula to be associated to a node in
two steps: (i) individuating ‘semantic atoms’ present into the structures,
and (ii) to combine them to build ‘molecules’.

For a sake of simplicity and because of the fact we want to focus on the
process of building formulas, we imagine to use the structure depicted in Fig-
ure 4.2, where each node has been pre–processed by the algorithm until to each
node is associated exactly one concept (i.e. one sense). To extend the approach
to the more general case (when two or more senses are associated to a node) is
quite simple: the process we are going to present works indifferently on a set of
senses.

4.1.1 Using DL

As we said before, the first step is to individuate a more suitable logics than
propositional one. For this version of the algorithm we choose Description Log-
ics. Consider for example the structure depicted in Figure 4.2. What we want
to obtain is such an encoding which allow us to find that the relation holding
between the two low central nodes HIGH and LOW is ‘disjoint’.

From an intuitive point of view, we want to say that the node HIGH in the low
right means ‘Hotels with high price located in low mountains’, while the node
LOW in the low left means ‘Hotels with low price located in high mountains’. In
description logics we can approximate these formulas by:

hotel u ∀HasPrice.high u ∀IsLocated .(mountain u ∀HasHeight .low)

and

hotel u ∀HasPrice.low u ∀IsLocated .(mountain u ∀HasHigh.high)

Such an encoding allow us to say that the two nodes have no relation.
In fact, the concepts described by the formulas hotel u ∀HasPrice.high and
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Figure 4.2: A more complicated structure

hotelu∀HasPrice.low are mutually exclusive, so far as the concepts mountainu
∀HasHigh.high and mountain u ∀HasHigh.low.

Description Logics is then enough expressive to encode the semantic richness
of structures labelled with natural language (we want to manage). In particular,
using Description Logics allows us to encode three different types of function-
ality a node can assume into a structure: concept, role and value. Consider
again the node HIGH in the low right of the structure depicted in Figure 4.2 and
the following associated formula:

hotel u ∀HasPrice.high u ∀IsLocated .(mountain u ∀HasHeight .low)

We can recognize the following three kinds of functionality associated to
different nodes:

concept: for example the nodes HOTEL and MOUNTAIN. They represent the nodes
which have the property of attracting nodes with modifier functionalities.
In our case, the right low node HIGH refers clearly to the node HOTEL, while
the second level node LOW refers clearly to the role PRICE which refers to
the node HOTEL. In DL the nodes with this property are translated into
concepts: hotel and mountain

role: for example the nodes PRICE. This node represents a role for node HOTEL

whose fillers are expressed by nodes HIGH and LOW. In the formula this is
encoded into the role HasPrice.

value: for example the nodes MOUNTAIN, LOW, HIGH. Roles can be explicitly
expressed by the structure, as in the case of HasPrice (node PRICE), or
implicitly expressed, as in the case of IsLocated and HasHeight . The nodes
belonging to the functional category ‘value’ represents the filler for explicit
and implicit roles. In the formula the three nodes MOUNTAIN, LOW, HIGH
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Figure 4.3: A structure enriched with grammatical categories

are translated into the following couple role/filler isLocated .(mountain u
∀hasHeight .low), hasHeight .low and hasPrice.high. Note that MOUNTAIN
is both a concept and a filler.

To individuate which functional category a node belongs to, we need at least
of two kind of knowledge: grammatical and ontological.

4.1.2 Grammatical knowledge

In this paper we use only two grammatical categories: common nouns (CN)
and adjectives (ADJ). We believe we can extend conservatively (and easily)
the encoding process for handling some other syntactical categories, as proper
names, infinite and past participle verbs, while for other kinds of syntactical
categories the analysis could be extremely more complicated.

We imagine, for a sake of simplicity, to have a black box returning the
exact syntactical category of some input (an example of input could be a sense
associated to a node). Imagine, for example, that we want to determine the
syntactical categories of the nodes lying in the path from root to the low right
node HIGH. The result of accessing the grammar should be that one depicted in
Figure 4.3.

Syntactical information allow us to have a first approximate hypothesis on
the functionality to be associated to a node. For example, from the fact that the
adjective HIGH is a child of the common noun MOUNTAIN, we can deduce that,
most probably, the node HIGH can be interpreted as a filler (value) for some
generic role existing between the concepts expressed by the node MOUNTAIN and
by the node HIGH.
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Figure 4.4: A structure enriched with ontological knowledge

4.1.3 Ontological knowledge

The second kind of knowledge we need is the ontological knowledge. As for
grammatical knowledge, we think of ontology as a black box where, given some
inputs, it returns the wanted ontological knowledge (if it exists).

An example of ontological request is the following: imagine we want to know
if it exists a relation between the concepts associated to the nodes MOUNTAIN

and LOW of Figure 4.4. We inquire ontology–black box given in input the two
concepts: the expected result is that exists a role HasHeight tieing ‘mountain’
and ‘low’. Note that the relation is directional, i.e. the role holds between
mountain and low (‘mountains have an height that can be low’) but not vice-
versa.

More specifically, we need essentially three kinds of informations:

• the kind of (implicit) role existing between two nodes;

• the fact that a node can be a role itself;

• the fact that a node can be a filler for some role.

The expected result of accessing ontology for determining these three kinds
of relationships holding between the nodes lying on the path from root to the
lower right node HIGH of Figure 4.2 should be that one depicted in Figure 4.4.
Note that we sign the relations as arrows, because of the directionality of the
relationship. If no relation is found, no arrow is associated to the structure.

In particular, we should find four relations:

RELATION:HasHeight : It means that a relation ‘HasHeight’ holds between
the nodes MOUNTAIN and LOW, and means exactly that ‘mountains has a
low height’;
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RELATION:IsLocated : It means that a relation‘IsLocated’ holds between
the nodes HOTEL and MOUNTAIN, and means exactly that ‘hotels are located
in mountains’;

ROLE:HasPrice : This relation holds between the nodes HOTEL and PRICE,
and means exactly that ‘hotels has a price’. Note that the arrow is explic-
itly declared as ROLE: in fact, the concept ‘Price’ is not a filler for some
role, but it is the role itself.

FILLER:HasPrice : This relation holds between the nodes HIGH and the
role HasPrice, and means exactly that ‘high’ can be a filler for the role
‘HasPrice’.

4.2 Building formulas

In this section we describe informally the steps to follow for building a formula
approximating the meaning expressed by a node. Note that, as we said in
Section 4.1, we consider the grammatical and ontological knowledge as a black
box returning the informations we need. For make things simpler, we imagine
to have defined four functions:

• function accessing the grammar:

find-syncat(node n) : This function takes as input a node and returns
the associated grammatical category;

• functions accessing the ontology:

find-relation(node n, node m) : This function takes as input two
nodes and returns the (directional) relationship holding between the
nodes n and m if any, Null otherwise. Note that access-onto-
logy(n,m) may be different from access-ontology(m,n);

is-role(node n, node m) : This function takes as input two nodes and
returns a role R if n is one of the possible role of m, Null otherwise;

is-filler(node n, role r) : This function takes as input a node n an a
role r and returns TRUE if n can be a filler for r, FALSE otherwise.

4.2.1 Individuating the functionality of a node

This step assume a crucial role. The general idea is to combine grammatical and
(some) ontological knowledge1 for individuating the functionality of a node, i.e.
if a node should have considered a concept, a value or a role. At this level the
process can be considered syntactical : in fact we try simply to individuate the
main concepts present in the structure (i.e. nodes with ‘concept’ functionality)
and their (eventual) modifiers (i.e. nodes with ‘role’ or ‘value’ functionality).

1In particular we use the two functions is-role() and is-filler().
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Figure 4.5: A structure enriched with functional categories

For example, if we consider the Figure 4.2, we intuitively understand that the
node MOUNTAIN is a ‘concept’ and that the node LOW is a modifier of the concept
‘mountain’, i.e. is a filler for some (implicit) role. Furthermore we clearly
understand that HOTEL is a concept, and that HIGH is the filler of an (explicit)
role HasPrice, defined by the node PRICE.

More formally, given a node n, we associate the functional category FC by
means of the following recursive rules:

1. s = find-syncat(n)

2. if s = ‘ADJ’, then FC = ‘V’ (value);

3. if s = ‘CN’, then FC = ‘C’ (concept);

4. if s = ‘CN’ and if is-role(n, FATHER(n)) 6= Null, then FC = ‘R’ (role);

5. if s = ‘CN’ and FC(FATHER(n)) = ‘R’ and is-filler(n,is-role(FATH-
ER(n),FATHER(FATHER(n)))) = TRUE, then FC = ‘V’ (value).

The rule 1 simply determines the syntactical category of a node. The rule 2
says that an adjective is always considered as a filler for some role. The idea is
that an adjective must refer always to some noun, so it should be always a filler.
The rule 3 says that a common noun is considered as a concept. This is a default
condition, which can be modified by rules 4 and 5. The rule 4 says that if a node
is a common noun but it can be considered a role (with respect to its father
node), than the functional category is ‘role’. This is the case of node PRICE in
structure of Figure 4.4. It is a common noun, but it can be considered as a role
(HasPrice) for the node HOTEL. The rule 5 concludes the process. The idea is
that a node with ‘role’ functionality should be followed by a filler: so, (i) if the
following node is an adjective, it is intended by default to be the filler (for rule
2), while (ii) if the following node is a common noun, its functionality becomes
‘value’ only if we have the ontological information allowing us to do that. The
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Figure 4.6: The semantic atoms

result of applying rules 1–5 to the structure depicted in Figure 4.4 is depicted
in Figure 4.5, together with the ontological and grammatical knowledge useful
for this process.

4.2.2 Individuating the semantic atoms

The next step has the task of individuating the semantic atoms lying on a path.
A semantic atom can be intuitively defined as the minimal meaningful unit : the
idea is that a node with a concept functionality, followed by all the atoms which
modifies it, constitutes something we can handle as an unit. In fact, nodes with
‘role’ or ‘value’ functionality assumes meaning only when associated to the main
concepts they refer to. Consider for example Figure 4.6. In the path from root
to the low right node HIGH, we can individuate two atoms:

1. the atom constituted by nodes MOUNTAIN and LOW, where ‘mountain’ is the
main concept modified by ‘low’;

2. the atom constituted by nodes HOTEL, PRICE and HIGH, where ‘hotel’ is
the main concept modified by ‘price’ and ‘low’.

More formally, an atom can be defined as a set of nodes constituted exactly
by one node with ‘conceptual’ functionality and all the nodes with ‘role’ and
‘value’ functionality modifying the ‘conceptual’ node. A trivial consequence of
it is that, considering a path from root to a node n, there will be as many atoms
as nodes with ‘conceptual’ functionality lying in the path.

The procedure for exactly individuate the atoms is the following. Let A[]
be an empty array of sets of nodes (each set of nodes being an atom) and i an
index, set to the value -1. Let n the node whose path (from root) we want to
analyze:
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1. P = path from root to n

2. for each p ∈ P

(a) if FC(p) = ‘C’, then

• i = i+1

• p ∈ A[i]

(b) if FC(p) = ‘R’, then p ∈ A[i]

(c) if FC(p) = ‘V’, then p ∈ A[i]

The process is very simple, and the final result of applying the rules 1–2c
to the path from root to the lower right node HIGH is depicted in Figure 4.6,
together with the functional category useful for this task.

4.2.3 Building the formula

The final step is to build the formula expressing the meaning of a node n. To
do that, we simply handle the atoms present into the path (from root to the
node n). In particular, we perform two sub–steps: (i) for each atom, we build a
formula expressing its meaning and (ii) we combine this formulas into a unique
formula expressing the meaning of the node into the structure.

Imagine we want to build up the meaning associated to the low right node
HIGH: we need to build the two formulas approximating the meaning expressed
by the atoms depicted in Figure 4.6 and to combine them.

Building the atom formulas

The first step is really simple. In each atom there is only one node with ‘con-
ceptual’ functionality and a set of nodes with ‘role’ and ‘value’ functionalities.
The ‘conceptual’ node, i.e. the node with the functionality ‘C’, can be trans-
lated into Description Logics as a concept, the nodes with functionality ‘V’ as
a filler, while the nodes with functionality ‘R’ as roles. The sub-step is reached
by means of the following recursive rules:

for each atom A lying in the path:

1. φ = Null

2. let r the node with functionality ‘C’ (i.e. the main node)

3. associate to r the formula φ = r (i.e. the formula is equivalent to the
concept associated to the node);

4. for each following node n ∈ A:

(a) R = find-relation(n,r)

(b) if R = Null, then R = Rn/r
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(c) if FC(n) = ‘V’ and FC(FATHER(n)) 6= ‘R’, associate to n the
formula φ = φ+ u∀R.n

(d) if FC(n) = ‘V’ and FC(FATHER(n)) = ‘R’, associate to n the
formula φ = φ+ .n

(e) if FC(n) = ‘R’, then R = is-role(n,r). Associate to n the formula
φ = φ+ u∀R

The procedure starts by individuating the main concept and translating it
into a DL concept. Then, it finds the role holding between two nodes of the atom
and, for each combination of functional category, it builds the DL modifiers. In
particular note the steps 4(a–b): in this procedure we access ontology by means
of the function find-relation() for finding the relation holding between the
main node and some modifier. If no relation is founded, we define a generic
relation Rn/r. For example, if no relation holding between the nodes MOUNTAIN
and LOW was founded, the following formula would have been built:

mountain u ∀Rmountain/low .low

expressing the fact that ‘low’ is a filler of a generic role existing between
‘mountain’ and ‘low’. This rule allow us to built the formula in any case.

Applying this procedure to the path from root to the low right node HIGH,
we obtain the two formulas:

mountain u ∀HasHeight .low

and

hotel u ∀hasPrice.high

respectively for the upper and the lower atoms depicted in Figure 4.6.

Combining atoms

After having built the formulas associated to the semantic atoms, we try to com-
bine these formulas (to build a molecule!), taking into account the relationships
holding between atoms, namely relationships holding between the main nodes
(the nodes of functional category ‘C’) of the atoms composing the molecule.
In our example, we find that there is an IsLocated role holding between HOTEL

and MOUNTAINS, in the sense that ‘hotels are located in mountains’. General
situation is depicted in Figure 4.7. The fact that exists a relation between the
two atoms allows us to say that one of the two atoms can be considered as a
modifier of the other one, and translated into a role in Description Logics. The
final result of applying these rules should be the following:

hotel u ∀hasPrice.high u ∀isLocated .(mountain u ∀hasHigh.low)
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Figure 4.7: Combining atoms

Abstracting from our example, the general rules for combining atoms are
the following. Let n be the node we want to build up the associated formula,
and let A be the set of atoms lying in the path from root to n. Furthermore,
let f(A) be the formula associated to the atom A by the previous step. Then:

1. R = the first atom in A

2. formula φ = f(R)

3. for each remaining atom A ∈ A, accessing top down:

(a) a = main node in A

(b) for each ancestor B of A

• b = main node in B

• R = find-relation(a,b)

• Ri = find-relation(b,a)

• choose R or Ri

(c) if R = IsA or R = PartOf , then φ = φ[b/(f(A))]

(d) if Ri = IsA or Ri = PartOf , then φ = φ[a/(f(B))]

(e) if R 6= Null, then φ = φ[f(B)/f(A) u ∀R.(f(B))]

(f) if Ri 6= Null, then φ = φ[f(B)/f(B) u ∀Ri.(f(A))]

The idea expressed by this algorithm is simple. If we find some relation
between an atom A and some ancestor B, A becomes a modifier for B, while if
we find a relation between B and A, B becomes a modifier for A. The result
of applying this final step to the atoms depicted in Figure 4.6 is the following
formula:

hotel u ∀hasPrice.high u ∀isLocated .(mountain u ∀hasHigh.low)

which is exactly that one we want.
Note that we use two special rules for IsA and PartOf relations: imagine a

situation as depicted in Figure 4.8.a, where we are in presence of a IsA relation.

27



BEATIFUL UGLY

DOG

DOCILEWILD

HIGH

UGLYBEATIFUL

a) b)

ANIMAL

CAT

MOUNTAIN

Figure 4.8: Two different structures

Imagine you want to build up the formula approximating the meaning associated
to node WILD.

The algorithm builds the right formula

DOGS u ∀HasBehaviour .WILD u ∀HasBeauty .BEATIFUL

In particular, the algorithm substitutes the concept ‘animal’ with the concept
‘dog’, because it is a redundant information. In fact, the function build-ctx-
meaning (see algorithm 3.2) extracts from the ontology the local axiom (see
chapter 3) DOG w ANIMAL.

Another situation well-handled by this algorithm is that one depicted in
Figure 4.8.b, where we have a chain of adjectives. The formula associated to
the node BEAUTIFUL is the followed

MOUNTAINS u ∀HasHeight .HIGH u ∀HasBeauty .BEATIFUL

which is the right one.

4.3 Handling the ambiguity

The step we describe in section 4.2.3 has a strong assumptions concerning the
process of discovering relationships between atoms: it hypothesizes to find ex-
actly one relation holding between two atoms.

The general idea is that we are in a perfectly not-ambiguous situation. Of
course this is not the more general and frequent case. The kinds of ambiguity
we can encounter are four:

1. no relation is founded between two atoms;

2. two or more relations are founded between two atoms;

3. a relation between A and B and a relation between B and A is founded
(reciprocal relationships);
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4. an atom has relations with more than one ancestor and/or siblings.

The ambiguous situation 1 is mutually exclusive with the situations 2-4,
while situations 2-4 can be present at the same time. In the next section we
propose a general approach to handle this kinds of ambiguity.

4.3.1 No relation between two atoms

A

B

C

IsLocated

Figure 4.9: No relation between two atoms

Consider the Figure 4.9. In this case, we are in presence of three atoms (A, B,
C), but we find a relation only between A and B. No relation has been founded
between C and some other atom. In this case we should build two different
formulas. In fact, if it’s simple to understand that if the relation between the
first two atoms has no ambiguity, and can be solved as

A u ∀IsLocated .B

the same cannot be done for the third atom (C). Essentially, there can be two
possible interpretations:

C u ∀R.(A u ∀IsLocated .B)

or

(A u ∀IsLocated .B) u ∀R.C

Handling the ambiguity in this way leads to a blow up in the number of
formulas: in the worst case, hand Lind n atoms means to have 2n possible
interpretations. To make things easier, we choose to handle the ambiguity in a
more simple way, i.e. to use the intersection builder (u) of Description Logics.
This means that for building the formula associated to the atom C, instead of
to have the two formulas described before, we have the unique formula:

(A u ∀IsLocated .B) u C
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which intuitively means the intersection between the concept A (as modified by
the role IsLocated) and the concept C. From a formal point of view, we need to
insert the following rule in the algorithm described in section 4.2.3:

if R = Null and Ri = Null, then φ = (φ) u f(A)

4.3.2 Multiple relations between two atoms

Concerning the ambiguity caused by the presence of more than one relation, we
need to distinguish between two cases:

sense#1 sense#2

sense#3

B

sense#4

A

IsLocated HasPart

Figure 4.10: Multiple relations between two atoms referring to different senses

• the ambiguity regards two or more different senses associated to the main
node of the atoms;

• the ambiguity regards an unique sense.

In the first case the ambiguity concerns the senses associated to the main
nodes of the atoms, so it can be treated as a disjunction. Consider the ex-
ample of Figure 4.10. The two relations founded, respectively IsLocated and
HasPart , refer to different senses, so that the following relations hold: sense#3
∀IsLocated .sense#1 and sense#4 ∀HasPart .sense#2.

The interpretation of the atom B is so:

(sense#3 u ∀IsLocated .sense#1) t (sense#4 u ∀HasPart .sense#2)

This means simply that for this atoms we have two possible interpretations:
because of the lack of ontological information we are not able to discard one of
these ones. The case where the multiple relations refers to the same sense is
more interesting, because of the presence of a real ambiguity on relations.

Consider the general case depicted in Figure 4.11, where the ambiguity re-
gards a single sense associated to a node into the atom. In this case we are
in presence of two ore more relations holding between an atom A and another
atom B.

This kind of ambiguity can be managed building a formula as follow:

B u (∀IsLocated .A t ∀HasPart .A)

The idea is to delimit the ambiguity to the modifiers level.
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B

A

IsLocated HasPart

Figure 4.11: Multiple relations between two atoms

4.3.3 Bidirectional relations

In presence of bidirectional relations between atoms, the ambiguity can not be
maintained at the modifiers level.

A

B

IsLocated HasPart

Figure 4.12: Bidirectional relations

There are two possible interpretations: B u ∀IsLocated .A or A u ∀HasPart .B.
Because of the fact that we are not able to solve this ambiguity, we need to
associate the following formula

(B u ∀IsLocated .A) t (A u ∀HasPart .B)

both to atom A and B.

4.3.4 Multiple relations with ancestors or siblings

The only case of real ambiguity in presence of multiple relations with ancestors
or siblings is that one depicted in Figure 4.13, where a single atom is a modifier
of two different atoms.

There are two possible interpretations. If we consider the relation IsLocated
we obtain the formula:

(B u ∀IsLocated .A) u C

while if we consider the relation HasPart we obtain the formula:

(C u ∀HasPart .A) u B
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B

A

C

IsLocated

HasPart

Figure 4.13: Multiple relations with descendants

If we take a disjunction between this two formulas, we obtain the following
one:

((B u ∀IsLocated .A) u C) t ((C u ∀HasPart .A) u B)

4.4 Catalogues – Cat-CtxMatch

This approach has the further advantage to be easily generalized to catalogues.
In fact, the clustering into the three functional categories ‘C’ (concept), ‘R’
(role) ad ‘V’ (value) is explicitly present into a catalogue. Consider the catalogue
depicted in Figure 4.14, which represents the same structure of the Figure 4.2.

MOUNTAIN HasHeight=Low,High

HOTEL HasPrice=Low,HighPATH

Figure 4.14: A simple catalogue

As we can easily see, the problems of determining the functionality category
of each element of the structure and of building the semantics atoms is solved
a priori. The only problems remained are (i) to find eventual relations between
atoms and (ii) to provide to combine the atoms in order to obtain the formula
to be associated to each node. For this task, the procedure to be followed is the
same we described.
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Appendix A

The algorithm

In this appendix we briefly define the pseudo–code for the algorithm. In partic-
ular, this version of the pseudo–code is able to manage the ambiguity regarding
the absence of relations between atoms, but not the other kinds of ambiguities.
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In the algorithm A.1 is described the pseudo–code substituting the function
individual-concept (see algorithm 3.5).

Algorithm A.1 new-individual–concept(t, SynS, T,O)
. label t

. sense SynS[][]

. structure T

. ontology O

VarDeclarations

relation R = Null, Rel = Null

formula η = Null

path P
Conc[]
. Array of individual concepts expressed by a node

FunCat[]
. Array of functional categories associated to nodes

Atoms[]
. Array of sets of nodes (each set is an atom)

1 for each SynS[t][i] in SynS[t][] do

2 for each sibling y of t in T do

3 for each SynS[y][k] in SynS[y][] do

4 R ← access–ontology(SynS[t][i], SynS[y][k], O);
5 if R = ‘hyperonymy’ then Rel ← ‘hyperonymy’;
6 if (rel 6= Null) then replace SynS[t][i] in SynS[t][] with ‘SynS[t][i] ∧

¬SynS[y][k]’;
7 P ← path from root to t in T ;

. Path from root to node t

8 for each p ∈ P
9 Conc[p] ←

W

sense∈p SynS[p][i];
. To each node is associated a disjunction of senses

10 FunCat[] ← associate-fun-cat(P, Conc[]);
11 Atoms[] ← build-semantic-atoms(P,FunCat[]);
12 AtomFormulas[]← build-semantic-atom-formula(Atoms[],FunCat[],Conc[]);
13 η ← combining-semantics-units(Atoms[], AtomFormulas[], Conc[]);
14 Return η;
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In the following, we proceed to define in detail the new four functions called
by lines 10–13 of algorithm A.1. The first one, the associate-fun-cat function,
has the main goal to associate the functional category to each node.

Algorithm A.2 associate-fun-cat(P, Conc[])
. path P

. array of individual concept Conc[]

VarDeclarations

syntactical category s;
path P
FunCat[]
. Array of functional categories associated to nodes

1 for each node p ∈ P accessing top–down
2 c ← Conc[p]
3 s ← find-syncat(c);
4 if s = ‘ADJ’, then FunCat[p] ← ‘V’;
5 if s = ‘CN’, then FunCat[p] ← ‘C’;
6 if s = ‘CN’ and if is-role(c,FATHER(c)) 6= ‘Null’, then FunCat[p] ← ‘R’;
7 if s = ‘CN’ and FunCat[FATHER(p)] = ‘R’ and

is-filler(c,is-role(FATHER(c),FATHER(FATHER(c)))) = ‘TRUE’,
then FunCat[p] = ‘V’;
. These steps associates to each node one of the three possible functional categories:

‘V’ (value or filler), ‘C’ (concept) or ‘R’ (role)

8 Return FunCat[];

35



The second function, build-semantic-atoms, tries to determine the se-
mantic atoms present in some path.

Algorithm A.3 build-semantic-atoms(P, FunCat[])
. path P

. array of functional categories FunCat[]

VarDeclarations

array Atoms[];
. Array of sets of nodes. Each set is an atom

index i;

1 for each p ∈ P accessing top–down
2 if FunCat[p] = ‘C’, then

3 i ← i + 1;
4 p ∈ Atoms[i];
5 if FunCat[p] = ‘V’, then p ∈ Atoms[i];
6 if FunCat[p] = ‘R’, then p ∈ Atoms[i];
7 Return Atoms[];
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The third function, build-semantic-atom-formulas, has the aim of build-
ing the formulas associated to each atom. The task is quite simple, because we
handle only one concept and its modifiers.

Algorithm A.4 build-semantic-atom-formulas (Atoms[], FunCat[],
Conc[])

. array of atoms Atoms[]

. array of functional categories FunCat[]

. array of individual concepts Conc[]

VarDeclarations

formula φ;
array AtomFormulas[];

1 for each Atoms[i]
2 φ = Null;
3 r = node n ∈ Atoms[i] s.t. FunCat[n] = ‘C’

. The node is unique and it is the always the first one

4 φ ← Conc[p]
. the formula is equivalent to the concept associated to the node

5 for each following node p ∈ Atoms[i]
6 R = find-relation(r,p)
7 if R = Null, then R ← Rn/r;
8 if FC(p) = ‘V’ and FC(FATHER(p)) 6= ‘R’, φ ← φ+ u∀R.Conc[p]
9 if FC(p) = ‘V’ and FC(FATHER(n)) = ‘R’, φ ← φ+ .Conc[p]
10 if FC(p) = ‘R’, then R = is-role(p,r) and φ ← φ+ u∀R
11 AtomFormulas[i] ← φ

12 Return AtomFormulas[];
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The last function combining-semantic-atoms has the main task of com-
bining atoms to form molecules.

Algorithm A.5 combining-semantic-atoms(Atoms[], AtomFormu-
las[], Conc[])

. array of atoms Atoms[]

. array of formulas AtomFormulas[]

VarDeclarations

formula φ

1 R ← Atom[0]
. R is the first atom accessing top–down

2 φ = AtomFormulas[R];
3 for each atom Atoms[i¿0] accessing top down
4 a = node n ∈ Atoms[i] s.t. FunCat[n] = ‘C’;
5 for each ancestor Atoms[j] of Atoms[i]
6 b = node n ∈ Atoms[j] s.t. FunCat[n] = ‘C’
7 R ← find-relation(a,b);
8 Ri ← find-relation(b,a);
9 choose R or Ri;
10 if R = Null and Ri = Null then φ ← φ + u (AtomFormulas[A])
11 if R = IsA or R = PartOf then φ ← φ(Conc[b] / (AtomFormulas[A]))

. The formula is the same as the father formula except that the concept expressed

by node b is substituted by the formula associated to atom A

12 if Ri = IsA or Ri = PartOf , then φ ← φ(Conc[a]/(AtomFormulas[B]))
13 ifR 6= Null, then φ← φ(AtomFormulas[B]/AtomFormulas[B] u∀ R. (Atom-

Formulas[A]))
14 if Ri 6= Null, then φ ← φ(AtomFormulas[A]/AtomFormulas[A] u∀ R.

(AtomFormulas[B]))
15 Return η;
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