
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 
  

38050 Povo – Trento (Italy), Via Sommarive 14 
http://www.dit.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
NLP-BASED REQUIREMENTS MODELING: 
EXPERIMENTS ON THE QUALITY OF THE MODELS 
 
Nadzeya Kiyavitskaya, Nicola Zeni, 
Luisa Mich and John Mylopoulos 
 
 
 
January 2004 
 
Technical Report # DIT-04-005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
 



 1

NLP-Based Requirements Modeling: 
Experiments on the Quality of the models∗  

 
Nadzeya Kiyavitskaya1, Nicola Zeni1, Luisa Mich1, John Mylopoulos2 

1 Department of Information and Telecommunication Technologies, University of Trento 
{nadzeya.kiyavitskaya , nicola.zeni, luisa.mich}@unitn.it 

2 Department of Computer Science, University of Toronto 
jm@cs.toronto.edu 

 

 
 

Abstract 
 
Conceptual models are used in a variety of areas within Computer Science, including 

Software Engineering, Databases and AI. A major bottleneck in broadening their 
applicability is the time it takes to build a conceptual model for a new application. Not 
surprisingly, a variety of tools and techniques have been proposed for reusing conceptual 
models, e.g. ontologies, or for building them semi-automatically from natural language 
(NL) descriptions. What has been left largely unexplored is the impact of such tools on 
the quality of the models that are being created. 

This paper presents the results of three experiments designed to assess the extent to 
which a Natural-Language Processing (NLP) tool improves the quality of conceptual 
models, specifically object-oriented ones. Our main experimental hypothesis is that the 
quality of a domain class model is higher if its development is supported by a NLP 
system. The tool used for the experiment – named NL-OOPS – extracts classes and 
associations from a knowledge base realized by a deep semantic analysis of a sample text. 
Specifically, NL-OOPS produces class models at different levels of detail by exploiting 
class hierarchies in the knowledge base of a NLP system and marks ambiguities in the 
text. In our experiments, we had groups working with and without the tool, and then 
compared and evaluated the final class models they produced. The results of the 
experiments – the first on this topic – give insights on the state of the art of linguistics-
based Computer Aided Software Engineering (CASE) tools and allow identifying 
important guidelines to improve their performance. In particular it was possible to 
highlight which of the linguistic tasks are more critical to effectively support conceptual 
modelling. 

 
Keywords: conceptual model quality, modelling tool, natural language requirements 
 
 
1. Introduction 
 
According to the results of a market research whose aim was to analyse the potential 

demand for a CASE tool integrating linguistic instruments as support for requirements 
analysis, 79% of requirements documents are couched in unrestricted NL. Also the 
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majority of developers (64%) pointed out that the most useful thing to improve general 
efficiency in modelling user requirements would be a higher level of automation [Mich 
2003]. However, there is still no commercial NLP-enabled CASE tool.  

In this work we present the results of a set of experiments designed to investigate the 
extent to which a NLP tool that supports the semi-automatic construction of a conceptual 
model improves their quality. The tool used for the experiments – named NL-OOPS – 
extracts classes and associations from a knowledge base realized by a deep semantic 
analysis of a sample text [Garigliano 1997]. In particular, NL-OOPS produces class 
models at different levels of detail by exploiting class hierarchies in the knowledge base 
of the NLP system and marks ambiguities in the text [Mich 1996, Mich 2002a]. In our 
experiments, we had groups and individuals working with and without the tool, and then 
compared and evaluated the final class models they produced. The results of the 
experiments give some insight on the state of the art of linguistically-enabled CASE tools 
and identify some important parameters for improving their performances.  

Section 2 of the paper presents the main research projects related to the use of 
linguistic tools of different complexity to support conceptual modelling. Section 3 
describes the main features of the NL-OOPS tool and the knowledge base upon which the 
system of NLP is based. Section 4 outlines the stages of the experiments and contains an 
evaluation of the models produced, focusing on the effect that NL-OOPS had on their 
quality. The concluding section summarises the findings of the experiment and describes 
directions for future research. 

 
2. Theoretical background 
 
Recently an increasingly number of studies have proposed the use of linguistic tools 

to support conceptual modelling. A description of the early related works can be found in 
[Mich 1996] and an updated list of the different approaches is given on the web site of the 
NL-OOPS project.1 We will report here only some of the most important to illustrate the 
efforts toward the development of linguistic based CASE tools. 

In the early 1980's, Abbott [Abbott 1983] proposed an approach to Ada program 
design based on linguistic analysis of informal strategies written in English. Abbot 
suggested a non automatic methodology that produces static analysis and design products 
obtained by an informal technique requiring high participation of users for making 
decisions. This approach was further developed by Booch [Booch 1986], who proposed a 
syntactic analysis of the problem description (nouns suggest objects and classes of 
objects, and verbs suggest operations). However, both Abbott and Booch recognised the 
importance of semantic and real-world knowledge in the analysis process. 

Saeki, Horai, and Enomoto [Saeki 1989] were the first to use linguistic tools for a 
comprehensive analysis of the software process. They described a process of 
incrementally constructing software modules from object-oriented specifications obtained 
from informal NL requirements.  

Another relevant work was the expert system ALECSI-OICSI [Cauvet 1991] that 
allowed the user to express requirements both in NL and in graphic form. ALECSI uses a 
semantic network to represent domain knowledge [Rolland 1992]. 

                                                 
1 http://nl-oops.cs.unitn.it 
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Along similar lines, Cockburn [Cockburn 1992] investigated the application of 
linguistic metaphors to object-oriented design by associating relational nouns with 
objects and adverbs with polymorphisms. Cordes and Carver [Cordes 1992] proposed one 
of the first attempts to apply automated tools to requirements analysis and the automatic 
generation of object models from requirements documents. While the translation of the 
initial requirements into a suitable knowledge base requires human interaction to resolve 
ambiguities, the subsequent translation of the domain knowledge into object models is 
automated. The authors acknowledged that the translation of formalized knowledge into 
object models is sensitive to the quality of the initial requirements specification (as one 
would expect).  

Goldin and Berry [Goldin 1994] in their work introduce a new approach for finding 
abstractions in NL text using traditional signal processing methods. 

Burg and Van de Riet [Burg 1996] launched an interesting and ambitious project that 
attempts to minimize the participation of the user in the job of extracting classes and 
relationships from the text. Their system, COLOR-X, aims at including a large lexicon to 
aid in semantic model validation. 

Osborne and MacNish [Osborne 1996] present a method whose objective is to 
eliminate ambiguity in NL requirements. The problems associated with processing 
unrestricted NL are established and the impact of multiple word senses for terms used in 
a requirements document are reduced by using a Controlled Language (CL). 

Ambriola and Gervasi [Ambriola 1997] developed a prototype to produce 
interactively conceptual models of NL requirements using a domain dictionary and a set 
of fuzzy-logic rules to match a NL construction. 

Among the most recent projects, Overmyer, Lavoie and Rambow [Overmyer 2001] 
present an interactive method and a prototype, LIDA, to provide linguistic assistance in 
producing a subset of UML results. However, the text analysis remains in good part a 
manual process. It provides reliable tools for the user to analyse texts but it does not 
analyse text itself. 

Another research area highly connected both with the conceptual modelling and NLP 
is investigation of the quality of requirements’ language. In particular, some authors 
focused on the support of writing requirements [Aguilera 1990], [Wilson 1996], [Fabbrini 
2000], [Mich 2000]. 

In this context, NL-OOPS presents a higher degree of automation, because it is based 
on a large NL Processing System [Garigliano 1997], that made it possible to produce 
completely automatically a draft of a conceptual model starting from narrative text in 
unrestricted NL (English) [Mich 1996]. NL-OOPS is the tool used in the experiments and 
is described in the next section. 

 
3. The NL-OOPS Tool 
 
To develop a tool that is able to extract from textual descriptions the elements 

necessary to design and build conceptual models, it is possible to adopt two 
complementary approaches. The first limits the use of NL to a subset that can be analysed 
syntactically. Various dialects of "Structured English" do just that. The drawback of this 
approach is that it won't work for existing text. The second approach adopts NLP systems 
capable of understanding the content of documents by means of a semantic, or deep, 
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analysis. The obvious advantage of such systems is that they work for arbitrary NL text. 
Moreover, such systems can cope with ambiguities in syntax, semantics, pragmatics, or 
discourse. Clearly systems of this type are much more complex, require further research, 
and have a limited scope compared to those in the first category. 

NL-OOPS is an NLP-based CASE prototype. It is a general purpose system that was 
not designed with any specific purpose or domain in mind. It was founded on LOLITA 
(Large-scale Object-based Language Interactor, Translator and Analyser) NLP system, 
which includes all the functions for analysis of NL: morphology, parsing with respect to a 
1500-rule grammar, semantic and pragmatic analysis, inference, and generation 
[Garigliano 1997]. The knowledge base of the system consists of a kind of conceptual 
graph, which contains about 150,000 nodes. Thus LOLITA is among the largest 
implemented NLP systems. 

LOLITA is capable of analysing automatically about 90% of encountered phrases. 
The degree of accuracy depends on the quality of the text for input and on the length of 
the sentences. Consequently, the output of the tool contains most of the information from 
the original text. NL-OOPS implements an algorithm for the extraction of classes and 
associations from the semantic network of LOLITA. Documents in English are analysed 
by LOLITA and their content is stored in its knowledge base, adding new nodes to its 
semantic network. All these nodes can then be used to produce a conceptual model. In 
particular, the algorithm for identifying classes and associations is based on two phases 
[Mich 1996]. 

Figure 1 shows the NL-OOPS’s interface, which consists of three frames. The top 
right frame contains the text being analysed for the SoftCom case used for the 
experiments. The left frame gives a partial representation of the SemNet structures used 
by LOLITA for the analysis of the document. Old nodes already stored in SemNet are in 
yellow to be distinguished from new nodes that are two-tone. After running the modelling 
module, the third frame, bottom right, contains a version of the class model. 

The tool can also show intermediate outputs, some corresponding to nodes marked by 
individual steps of the algorithm, while others are useful in identifying elements of the 
conceptual model (associations, attributes, methods, use cases, etc.). In addition, the tool 
can export intermediate results to a Word file or a Java source file; traceability function 
allows the user to check what nodes were created for a given sentence. The same 
information can be obtained using the nodes browser of NL-OOPS, which makes 
available further information related to a specific node, such as for instance, the 
hierarchies in which it is involved. 

4. The Experiments 
 
Our main experimental hypothesis was that if model development is supported by a 

NLP-based tool, then the quality of the domain class model is higher and the design 
productivity increases. So, the goal of the experiments was firstly to confirm or refute this 
assumption and then to identify the features and the linguistic tasks of a NLP-based 
CASE system that are more relevant to the design of an effective CASE tool. 
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Figure 1 - The NL-OOPS interface 

4.1 Realization of the experiments 
 
In each experiment, we assigned a problem, a software requirements document, to the 

participants and we asked them to develop in a given time a class domain model, 
identifying classes, associations, multiplicity, attributes and methods. Half of the 
participants were supported by the NL-OOPS tool. They were also given some training in 
the use of NL-OOPS. The training focused on the functionalities that support the 
identification of classes and in particular: how to change the threshold for the algorithm 
to produce models at different levels of detail; how to see the list of candidate classes, 
and how to use the nodes browser to navigate the knowledge base. The chosen class 
model could then be deployed in a java file, which was reverse engineered into 
PoseidonCE2 or Rational Rose3 class diagrams. Both these tools create the list of classes 
and the analyst has only to drag the classes in the diagram from the source list and then to 
check and complete the diagram. 

Before the experiment, we administered a short questionnaire to assess the experience 
of the participants. 

To compare the results of the experiments, we used the same requirements text in all 
the experiments. In particular, the text was adapted from a case named Softcom 
[Rumbaugh 1991]. It deals with a problem that requires some familiarity with judged 
sports, e.g., gymnastics or diving. The language is quite simple, but also realistic in that it 
contains all the typical features for requirements: use of the passive voice, etc. The first 
two experiments involved couples of analysts; the first preliminary experiment focused 
on the quality of the models obtained with and without NL-OOPS; in the second, we 
asked the participants to save the diagrams at fixed time intervals, to obtain data also 

                                                 
2 Gentleware: http://www.gentleware.com 
3 IBM – Rational Software: www.rational.com  
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about productivity. In the third experiment, to simplify the context of the experiment, 
each analyst worked alone; to this end, each was asked to develop two models for two 
different problem statements, one with the tool and one without it. The second case study 
named Library [Eriksson 1998] had a level of difficulty similar to that of the Softcom 
case. Both the texts are given in the Appendix. For the first two experiments participants 
were undergraduate students and their competence in object-oriented conceptual 
modelling was comparable to that of junior analysts. For the last experiment, participants 
were PhD students, with higher competence. Before analysing the results of the 
experiments, we present the classes suggested by the tool with different thresholds for 
both Softcom in Table 1 and Library in Table 2. These classes constitute the main input 
for the analysts working with NL-OOPS. To interpret the results we refer to the class 
models proposed with the problem sources [Rumbaugh 1991], [Eriksson 1998]. The 
names of the classes in the reference models are in bold. This choice was made to 
minimize the subjectivity in the evaluation of the models produced by the participants. 
We calculated recall, precision, and the F-measure to evaluate the performance for the 
class identification task 4 

 
Table 1 – Classes identified by NL-OOPS: SoftCom case 

NLOOPS-1 (12) NL-OOPS-2 (10) NL-OOPS-3 (5) Reference classes (11) 
Competition   Competition 
Competition    
Competitor Competitor Competitor Competitor 
Entity (worker)* Entity (worker)   
Entity (announcer) Entity (announcer)   

   Figure 
(styles, routines) 

Group Group Group  
High High   
Judge Judge Judge Judge 
   League 
Meeting Meeting  Meeting  
Number Number Number  
Score Score Score Score 
   Season 
   Station 
   Team 
   Trial 
Softcom Softcom   
R=45.5%; P=41.7%, 
F-measure =43.5% 

R=36.4%; P=40.0%, 
F-measure = 38.1% 

R=27.3%; P=60.0%, 
F-measure =37.5% 

Ravg=36.4%; Pavg=47.2%; 
F-measureavg=39.7% 

* Word in parenthesis corresponds to the actual meaning of concept shown implicitly in network 
 
The models proposed by NL-OOPS do not contain classes such as season, station, 

team, and trial; they are instead present in the list of candidate classes. In the first two 
cases two classes are indicated: entity (worker), entity (announcer), corresponding to 
ambiguity in the text. In the first case, entity was introduced by the NLP system for the 
sentence “Working from stations, the judges can score many competitions”: it cannot be 
                                                 
4 R (recall) counts the number of correct identified classes divided by total number of correct classes, P 
(precision) counts the number of correct identified classes divided by total number of classes, the F-
measure combines R and P [van Rijsbergen 1979] 
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automatically assumed that the subject of working is “judges”. The second class results 
from an analysis of the sentence “In a particular competition, competitors receive a 
number which is announced and used to split them into groups”, where the subject of 
announces is unknown. For all of these nodes, the use of the node browser of NL-OOPS 
makes it possible to go back to the original sentence to determine whether it gives the 
information necessary for the model. 

 

Table 2 Classes identified by NL-OOPS: Library case 

NLOOPS-1 (17) NL-OOPS-2 (10) NL-OOPS-3 (7) Reference classes (7) 
Book Book Book Book 
Borrower Borrower Borrower Borrower 
Person    
Copy   Item (Copy-> Book Copy; 

Magazine Copy)* 
Employee Employee   
Entity (delete, update, 
create) 

Entity (delete, update, 
create) 

Entity (delete, update, 
create)  

Entity (cancel)    
Entity (register)    
Software_System Software_System Software_System  
It (Library) It (Library) It (Library)  
Entity (Library)    
Library Library Library  
Loan   Loan 
Magazine Magazine Magazine Magazine 
Murderer (remove)    
Purchase    
Reservation Reservation  Reservation 
Thing (Superclass of Book 
and Magazine) 

Thing (Superclass of 
Book and Magazine) 

 
 

Pair (Superclass of Book 
and Magazine) 

  
 

Title   Title (->Book Title; 
Magazine Title)* 

R = 100%; P= 41.2%, 
F-measure = 58.4%. 

R=57.1-71.4%; P=40.0-
50.0%**, 
F-measure =47.0-58.8%. 

R=42.9%.; P=42.9%, 
F-measure =42.9% 

Ravg=66.7%-71.4%; 
Pavg=41.4%-44.7%; 
F-measureavg=49.4%-
53.4% 

* The hierarchies for “Copy” and “Title” represent two alternatives used to evaluate the model developed by the 
students. 
** The maximum values were calculated including the class “Thing”. 

 
For the Library case, the measures of the class identification task are higher than for 

the SoftCom case. However, the quality of the models produced by NL-OOPS is reduced 
by the presence of classes due to unresolved anaphoric references (“It”, “Entity”, “Pair”), 
or to ambiguity in the sentences. For example, the subject in sentence “The reservation is 
cancelled when the borrower check out the book or magazine or through an explicit 
cancelling procedure” is omitted. Another spurious class is “Murder”, which was 
introduced by LOLITA as subject of an event related to the “remove”-action (due to the 
absence of domain knowledge). 
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4.2 Analysis of the results 
 
Evaluating the quality of the models is a subjective process. The experience gained 

from the experiments and the analysis of the literature about quality of conceptual 
model,5 helped us to define a schema to support their evaluation. The schema take into 
account the criteria related to both external and internal quality, evaluating: 

� The content of the model i.e. semantic quality: how much and how deep the 
model represents the problem.  
� The form of the model i.e. syntactic quality: the proper and extensive use of 

UML notation. 
� The quantity of identified items: class model, number of classes, attributes, 

operations, associations, and hierarchies. 

To evaluate the overall quality of the models we adopted a mixed approach, based on: 

� The application of the quality schema 
� The evaluation by some experts. 

For the class identification task we calculated recall, precision, and the F-measure. 
 
4.2.1 First Experiment 

 
In the first preliminary experiment the group of twelve students was split into six 

subgroups [Mich 2002]. Each group had access to a PC with Microsoft Office 2000 while 
carrying out the experiment. Three groups worked with NL-OOPS. The length of the 
experiment was 90 minutes. For the six diagrams produced, two groups used PowerPoint, 
one used Excel, and all groups working without a tool chose Word. The results of the 
identification task are given in Table 3 

Table 3 Class identification 

  1 tool 2 tool 3 tool 1 2 3 
Recall 72.7% 54.5% 81.8% 100.0% 100.0% 81.8% 
Precision 88.9% 66.7% 69.2% 78.6% 68.8% 90.0% 
F-measure 80.0% 60.0% 75.0% 88.0% 81.5% 85.7% 

 

To evaluate the overall quality of class diagrams, we asked two experts to mark and 
comment on the solutions proposed by the different groups (table 4). 

                                                 
5 There are only few papers about this topic; see for example, [Teeuw 1997], [Moody 1998]. 
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Table 4 Experts’ evaluation of overall model quality 
Groups Quality 
1 tool pretty good 
2 tool low 
3 tool good 

4 pretty good 
5 good 
6 low 

The experts judged the best model to be the one produced by group 5, in which two of 
the students had used UML for real projects. So, if on this basis, it was excluded, in order 
to have comparable level of groups, the best model would be one developed with the 
support of NL-OOPS. Considering these results with those in table 3, the tool seemed to 
have an inertial effect that on one hand led to the tacit acceptance of classes (e.g., group); 
on the other hand it resulted in the failure to introduce some indispensable classes (e.g., 
season, team). 

From the analysis of the feedbacks given by the participants some considerations 
emerged: 

� those who used NL-OOPS would have preferred more training; 

� each group that used NL-OOPS would prefer to have a tool to design the 
diagrams, while groups working without the tool did not voice this preference. 

All these considerations were used for the realisation of the subsequent experiments. 
 
4.2.2 Second Experiment 
We repeated the experiment a year later involving ten students. In this experiment we 

divided the participants into five groups: two of them used NL-OOPS. The participants 
had access to Poseidon CE. We asked them to produce the model of the domain classes 
for the problem assigned. The length of the experiment was set for 1 hour. As we wanted 
to obtain also information regarding the productivity of conceptual modelling supported 
by linguistic tools, we asked the students to save every fifteen minutes screen shot of 
their model. 

The performances related to the class identification task are summarised in the 
following table in which we report recall, precision and F-measure (table 5): 

Table 5 Class identification 

 

 
Marks and comments on the overall quality made by two experts are given in table 6. 

  15' 30' 45' 60' 
Recall 45.5% 69.7% 75.7% 75.7%

 tool 50.0% 59.1% 63.6% 81.8%
Precision 33.4% 71.3% 74.2% 76.4%

 tool 52.6% 60.3% 72.9% 73.3%
F-measure 38.5% 66.2% 73.5% 74.7%

 tool 50.9% 59.2% 67.3% 75.8%
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Table 6 Expert evaluation of overall model quality 

Groups Quality 
1 low 
2 pretty good 
3 good 
4 tool pretty good 
5 tool  low 

 
The experts judged the best model to be the one produced by group 3 which 

participants (according to the questionnaire) used UML for real projects. The application 
of the quality scheme described in section 4.2 gives the following results (table 7): 

Table 7 Overall Quality 

 Content Form Items Total 
Time 15’ 30’ 45’ 60’ 15’ 30’ 45’ 60’ 15’ 30’ 45’ 60’ 15’ 30’ 45’ 60’ 

no tool 0.0 1.7 2.0 3.3 0.0 1.7 2.1 3.7 1.1 2.6 2.9 3.9 0.4 2.0 2.3 3.6
with tool 3.0 3.3 2.5 3.5 3.0 3.2 2.5 2.8 2.2 2.2 3.4 4.1 2.8 2.9 2.8 3.5

The table shows that the prototype gives an advantage to users in the first two 
intervals of the modelling process. 

4.3.3 Third Experiment 

In the third experiment we made some more changes. First of all, the participants 
worked individually. They had to deal with two different problem statements of 
comparable difficulty, with and without the NL-OOPS prototype. We set the length of the 
experiment to 20 minutes for each case. As in the second experiment we decide to collect 
progressive results, so we asked them to save the model in an intermediate file after the 
first 10 minutes. The results for the class identification task are presented in the table 8. * 
We should comment that even though the experts chose the requirement texts of 
comparable level, for the linguistic analysis there was the difference. For instance, 
Library case turned to be more difficult for the NLP system to understand because it 
contains many anaphors (table 1-2). 

Table 8 Class identification  

Parameter Case* 10’ 20’ 
softcom 51.5% 70.9%
library 47.6%

49.6%
53.6%

62.2%

softcom 47.6% 53.6%

Recall 
 

 tool 
  library 71.4%

59.5%
71.4%

62.5%

softcom 85.2% 72.5%
library 66.7%

75.9%
51.5%

62.0%

softcom 66.7% 51.5%

Precision 
 

tool  
  library 50.0%

58.3%
50.2%

50.8%

softcom 64.2% 71.7%
library 55.6%

59.9%
52.5%

62.1%

softcom 55.6% 52.5%

F-measure 
 

tool 
  library 58.8%

57.2%
59.0%

55.7%
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We can assume here existence of some inertial effect because the users tend to keep 
all the candidate classes provided by NL-OOPS without getting rid of the fake classes 
(“it”, “thing”, “entity”, etc.). 

 
Table 9 Overall Quality 

Parameter Case 10' 20' 
softcom 1.4 3.9
library 1.1

1.3 
3

3.5 

softcom 2.1 3.5

Content 
  

tool 
  

library 2
2.1 

4.2
3.9 

softcom 1.5 3.8
library 1.3

1.4 
3

3.4 

softcom 2.4 4.2

Form 
  

tool 
  

library 2.6
2.5 

4.9
4.5 

softcom 0.7 3
library 1.2

1 
3.2

3.1 

softcom 1.7 4.1

Items 
  

tool 
  

library 2.2
2 

4.7
4.4 

softcom 1.2 3.6
library 1.2

1.2 
3.1

3.3 

softcom 2.1 3.9

Total 
  

tool 
  library 2.3

2.2 
4.6

4.3 

 
Marks and comments on the overall quality made by two experts are given in table 10 

 
Table 10 Expert evaluation of overall model quality 

Person Evaluation 
Time 10’ 10’ tool 20’ 20’ tool 

1 low pretty good low good 
2 * - pretty good good 
3 low good low good 
4 low pretty good low good 
5 low pretty good pretty good good 
6 - - pretty good good 

7** - - - - 
8 - low pretty good low 
9 low good low good 
10 low - low low 

*Grey cells correspond to Softcom 
**Person 7 violated the rules of experiment, so the data can not be considered as correct 

 
In this experiment both quality and productivity had been improved thanks to the 

support of the NL-OOPS tool, even though the participants were pessimistic about using 
such kind of linguistic instrument. 
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5. Conclusions 
 
The empirical results from the three experiments neither confirm nor refute the initial 

hypothesis of this paper that the quality of a domain class model is higher if its 
development is supported by a NLP system. There is some evidence, however, that model 
quality is better for NLP tool users early on during the modelling process. See the results 
of the third experiment at 10 minutes in Table 9. As to the impact of a NLP tool on 
productivity, the results of the experiments are uniformly inconclusive, but there is some 
evidence in Tables 7 and 9 that users work faster when supported by the tool. We 
interpret these results to mean that at initial steps the tool is helpful in speeding up the 
work, but by the end of the process, the advantage is lost because the users have to go 
into details of the text anyway to verify the correctness of list of classes and to derive 
other elements of the class diagrams.  

The prototype was in some ways misused, as users were not able to take advantage of 
all the functionality provided by the system. Apparently, the groups working with the tool 
used only the initial draft of the class model and only part of the list of the candidate 
classes produced by the tool. A user did not go deep into the details of the semantic 
network constructed by the system and focused his/her attention only on the final list of 
the most probable classes candidates. To avoid this effect, NL-OOPS should have better 
integration of the different types of information it generates with the diagram 
visualization tools. 

On the methodological level, the quality evaluation schema and the approach we 
adopted for the experiments described in this paper for the evaluation of NL-OOPS can 
be used to evaluate the output produced by any case tool designed to support the 
modelling process. 

Other lessons learned from the experiments regarding features for an effective NLP-
based CASE tool, include: 

� The knowledge base produced by the linguistic analysis must be presentable 
in a user-understandable form; 

� The most and least probable class and relationship candidates should be 
highlighted, to help the user modify the final model, either by extending it 
with other classes or by deleting irrelevant ones; 

� The tool should be interactive to allow the analyst to resolve ambiguities and 
reflect these changes in the semantic representation immediately. 

 
In general terms, the experiments confirm that, given the state of the art for NLP 

systems, heavyweight tools are not effective in supporting conceptual model 
construction. Instead, it makes sense to adopt lightweight linguistic tools that can be 
tailored to particular linguistic analysis tasks and scale up. Moreover, linguistic analysis 
may be more useful for large textual documents that need to be analysed quickly (but not 
necessarily very accurately), rather than short documents that need to be analysed 
carefully. We will be focusing our future research towards this direction. 
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Appendix 

Softcom Problem statement 
Softcom needs a computer system to support athletic meetings for judged sports, such as 
gymnastics, diving or figure skating. Meetings for these sports take place during the season. 
A season goes on several months. 
Competitors register to take part to a meeting. They belong to teams and teams belong to 
leagues. 
Each meeting consists of various competitions, such as routines, figures or styles. Figures 
correspond to different difficulties and therefore they have different point values. 
Competitor can enter many competitions. In a particular competition, competitors receive a 
number which is announced and used to split them into groups. 
There is a panel of judges who give a subjective score for the competitors' performance. 
Working from stations, the judges can score many competitions. 
A competition consists of some trials. Competitors receive a score for each trial of a 
competition.  
The scores for the trials are read at each station. The system eliminates both the highest and 
the lowest score. The other scores are then processed and the net score is determined. Final 
prizes are based on the net scores. 
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Library Problem statement 
A software system to support a library is to be developed.  
A library lends books and magazines to borrowers.  
These borrowers, books and magazines are registered in the system.  
A library handles the purchase of new titles for the library.  
Popular titles are bought in multiple copies.  
Old books and magazines are removed when they are too old or in poor conditions. 
The librarian in an employee of the library who interacts with the borrowers and whose work 
is supported by the system.  
A borrower can reserve a book or a magazine that is not currently available in the library.  
So that, when it is returned or purchased by the library, that person is notified.  
The reservation is cancelled when the borrower check out the book or magazine or through an 
explicit cancelling procedure. 
The library can easily manage the information about the books.  
It can create, update or delete the information.  
The information concerns the titles, the borrowers, the loans and the reservations. 
The system can run on all popular technical environments such as Windows, UNIX.  
It has a modern graphical user interface.  
The system is also easy to extend with new functionality. 


