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Synthesis of sum and difference patterns for
monopulse antennas by an hybrid real/integer-
coded differential evolution method

Salvatore Caorsi, Member, IEEE, Andrea Massa, Member, IEEE, Matteo Pastorino, Senior Member,
IEEE, and Andrea Randazzo

Abstract -- The synthesis of sum and difference patterns of
monopulse antennas is considered in this paper. The synthesis
problem is recast as an optimization problem by defining a
suitable cost function based on the constraints on the side lobe
levels. A subarray configuration is considered and the
excitations of the difference pattern are approximately
determined. The optimization problem is efficiently solved by
a differential evolution algorithm, which is able to
contemporarily handle real and integer unknowns. Numerical
results are reported considering classic array configurations
previously assumed in the literature.

Index Terms -- Array antennas, Monopulse antennas,
Evolutionary algorithm, Sum and difference patterns.

1. INTRODUCTION

In designing monopulse antennas, the sum pattern and the
difference pattern have to be synthesized. Recently, a
number of methods have been proposed in which proper
feed networks avoid the need for the completely
independent implementation of the two arrays [1]-[3].
Among these methods, the one proposed by Lopez et al. [3]
is based on a subarray configuration and uses a standard
binary genetic algorithm to determinate the weights of the
subarrays.

Essentially, the synthesis problem concerns the calculation
of one of the excitation sets (for the sum or difference
pattern) assuming known (and optimum) the other
excitation set and using a subarray configuration to reduce
the feeding complexity. However, one of the two patterns
(in this paper, the difference pattern) is obtained with a
certain approximation and a good compromise between the
complexity of the configuration and the quality of the
pattern is the goal of the synthesis.

Following the approach proposed in [3], the synthesis
problem is recast as an optimization problem in which a
functional is constructed and minimized in order to define,
for each array element, the corresponding subarray, the
weights of all the subarrays and, consequently, the
excitation sets of one of the patterns (in this case, the
difference pattern). The functional to be minimized is
constructed on the bases of the constraints on the pattern to
be generated, e.g., on the bases of the required side lobe
level.

The key point is now the optimization of the constructed
functional, which in the present paper is obtained by an
efficient real-coded differential evolution algorithm.

The differential evolution algorithm belongs to the class of
genetic and evolutionary algorithms [4], which are
stochastic algorithms widely used in antenna synthesis and
in other areas of the applied electromagnetics.

The use or real-code implementations is generally
considered an advance over the binary coding. In particular,
the genetic operator acting on a binary-coded representation
of the solution (chromosome), do not assure that the
chromosomes of the new population are admissible
solutions. Moreover, if acceptable solutions have to belong
to some domains of the solution space (e.g., in order to
fulfill the synthesis requirements), monitoring this property
during the action of the genetic operators can be laborious
and time consuming (a decoding is required). The
convergence is usually slowed.

Moreover, the differential evolution algorithm exhibits
some interesting feature (discussed in Section III) making
the approach to be particularly worth using in synthesis
applications.

The approach has been introduced in [5]-[7] and a
discussion on capabilities and limitation can be found in
[6].

In the following, the used notation and the synthesis method
are described in Section II, whereas in Section III the
application of the differential evolution algorithm is
presented in details. Finally, in Section IV, several
numerical results are reported to assess the effectiveness of
the proposed synthesis approach.

II. MATHEMATICAL FORMULATION

A linear array of M=2N elements );, n = —N,...,—1,1,...,N,
is considered. For this kind of structures, the array factor
F(0) is defined by [8]

1
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where a,, n = -N,...,—1,1,....N, are the excitations of the
radiating elements, k is the wavenumber of the medium in
which the antenna is located, d is the distance between the
elements and O defines the angle at which F is calculated
with respect to a direction orthogonal to the array.

The required sum pattern is obtained by the excitations a,’,
n =-N,...,~1,1,....N, which are assumed to be symmetric



(i.e., a,=a,, n=1,...,N) and fixed. Under these hypothesis,
for the sum pattern, relation (1) reduces to

F, (H) = i a, cos[% (2n - l)kd cos H} )

n=1

where s indicates the sum pattern mode. The difference
pattern is achieved by means of a subarray structure, as
shown in Figure 1.
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Figure 1 — Array configuration.

A positive integer ¢, is associated to each element and
denotes the related subarray. In particular, 0 < ¢, < P, being
P the total number of subarrays. If ¢, = 0, the element is not
considered in the synthesis.

Consequentely, each subarray p has associated a subset of
the set of available elements I, in the following indicated
by (p). In particular, I'(p) is given by '(p)={ ¥: c,=p,
c,00%, n=1,...,N}.

The subsets are assumed to be non-overlapping, i.e.

S
r(p) n r(q) =0 if p#q . Furthermore, Ur(p) Or since
p=l

the partition is not requested to cover the whole set of
elements I.
The excitations used to generate the difference pattern are
obtained by:

al :a;z_lr(p)(yn)gp n=1,...N 3)

where 1r(,(-) denotes the characteristic function of the
subset [(p).

In order to obtain a difference pattern, the excitations must
be antisymmetric, i.e. a., = —a,, n=1,..., N. In this case,
equation (1) reduces to

F,(8)= Za Sm|:2(21’l 1)kdcos€} (4)

Since in both cases there is a symmetry between the
excitation values, only one half of the array is considered in
the following.

The weight of the p-th subarray, g, p=1,..,P, and the
associations of the elements to the subarrays must be
optimized in order to create a difference pattern that is as
much closer as possible to the desired one.

The problem of the array synthesis is recast as an
optimization problem by means of the definition of an
appropriate cost function that relates the array parameters to
the required features.

In many cases of practical interest, one of the constraints
that must be satisfied is the presence of a side lobe level
(SLL) with a prescribed value. To this end, according to [1],
in the present paper, the following cost function is defined

@) r(P)af..ay)=
[sL2(r()...r(P).af ...a)-sLL, 5)
H{sLe(r()...r(P)at .. ,aN) SLL,)

where SLL; is the desired side lobe level value and H(:)
represents the Heaviside step function.

Obviously, it is possible to introduce other type of
constraints in the synthesis of the array space factor by
simply adding the corresponding terms in the cost function.
The cost function (5) is minimized by means of an efficient
stochastic procedure, named differential evolution.

III. DIFFERENTIAL EVOLUTION ALGORITHM

The differential evolution (DE) algorithm [5]-[7] is a
method that belongs to the class of evolutionary global
optimization techniques. The principal difference between
the DE and the others population-based methods, such as
genetic algorithms, is represented by the scheme used for



the generation of the trial parameters vector. A schematic
flow chart of the algorithm is reported in Figure 2.
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Figure 2 — Schematic representation of the DE
algorithm.

In the initialization phase, a set of Np trial solutions, called
population, is randomly created.

Let uy(i), i=1,...,Np, be the i-th element of the set of trial
solutions at the k-th iteration of the algorithm. In the
reproduction phase, wuii) is called primary parent.
Furthermore, let w(i;), uy(i,) (called donor vectors) and
u,(i;) (called secondary parent) be three randomly chosen
elements of the population.

The i-th element of the population at the k+1 iteration is
generated according to the following rule

m, ()= (u, )= u, ()F +u, ()

ﬁkﬂ(l) mk()x“ (l)

i (/@) < f(w, (7)) then
u,,\ ( ) =y, (l)

else

uk+l() “k()

where X denotes the crossover operator, F' is a weighting
factor and the quantity my(7) is called mutant vector.

Rule (6) is executed for each element of the population at
the k-th iteration. The algorithm stops when the cost
function f of the best element of the population is below a
threshold value f;;, or when a maximum value of iterations
knax 18 reached.

In the problem analyzed in this paper, the array w(i),
i=1,...,Np, contains the unknown weights and the
configuration of the subarray ' (p), p=1,...,P.

Since the subarray configuration is defined by a set of
integer values cy,...,cy, each array wu(i) is an hybrid
real/integer chromosome of P+N elements, i.e.

i=1..,N, (©6)

uk(i)=(gl,...,gP,cl,...,cN)t @)

This particular structure of w,(i) leads to a problem that
belongs to the class of mixed integer programming [9],
which are proved to be particularly hard to solve with the
classic optimization methods.

One important feature of the DE algorithm is that it can
easily be used to solve mixed integer programming
problems by simply defining an appropriate crossover
operator.

For the problem discussed in this work, the crossover
operator is defined by

m (1)<u, (1) = (st )
m, (’)], +0.5| with probability CR o1 p
u, (1)]/ +0.5] with probability 1-CR SN
{[m P (l)]j with probability CR

[uk(l)]j with probability I-CR JEP+L..P+N

®)

where the operator [-]; extract the j-th element of the vector
on which it is applied and the operator Lq gives the greatest

integer number below the argument. CR is a parameter that
controls the execution of the crossover and can be tuned by
the user. Operator Lq is used in order to ensure that all the
elements corresponding to the integer-valued part of the
chromosome belong to . In this case, |_|jl returns the

nearest integer value in the interval [0,P].
Furthermore, in order to assess the feasibility of the test

vector 1u,,, (1) obtained by the reproduction procedure (6)
with respect to the constraints (that in this case are only
bounds on the variables, ie. [ < [ﬁkﬂ (i)]j Su,,

j=1,...,PtN), a bound check, defined by the following
relation, is performed.

[ ( )] [ﬁkH (i)]j if lf’ S [ﬁ(k)J]rl (i)]j su,
u, ), = Lo i, <1
u; if [ﬁkﬂ (i)]j 2 v

IN

j=1..P+N

This version of the DE algorithm is also called
DE/rand/1/bin [5]; this name summarizes that the secondary
parent is chosen in a random way, the mutation vector is
generated by means of one difference and the crossover is
binary (single point crossover).

The parameters of the DE algorithm have been chosen in
accordance with the guidelines given in [6]. In fact, as
described in [6], the choice of the two parameters affects
the behavior of the method, leading, if not properly tuned,
to a premature convergence to a local minima or to a slow
convergence rate.

DE algorithms exhibit several advantages with respect to
other evolutionary methods such as genetic algorithms.
First of all, they do not require a selection operator, i.e., a
function, generally random, that chooses the elements that
must generate the next individuals, but uses all the trial
solution vectors as primary parents once and in a
deterministic way. Furthermore, the mutation vector is not
obtained by the summation of a random value, as in most
genetic algorithms, but is generated by using only randomly
chosen elements of the population. By this way, the
mutation operator is not a “destructive” function (meaning
that it changes the test vector in a blind way), but modify
the trial solutions by taking into account the population



diversity. This kind of mutation permits a speed up in the
convergence process, leading, however, to the possibility of
a premature convergence to a local minima. In order to
avoid this possibility, it is necessary to choose accurately
the parameters CR and F.

Furthermore, DE algorithms contains a kind of implicit
elitism. In fact, since the fitness of the trial vector u,,, (z) is
compared only with one of the primary parents wu,(7) from
which it is generated, the corresponding element in the next
generation has a fitness that can only be better or at least
equal to the one of u(i).

IV. NUMERICAL SIMULATIONS

In order to validate the proposed approach, some numerical
simulations have been performed.

As a first case, a linear array of M=100 elements with
spacing A/2 has been used. The sum pattern excitations a,’,
n=-N,...-1,1,..., N, correspond to a Taylor pattern [8] with
n =12 and SSL=-35 dB. The same synthesis problem has
been considered in [3][10]. Figure 3 reports the array space
factor corresponding to the considered configuration.

-10

-20

Fs(0) [dB]

-30

-40

-50
90 -75 60 -45 -30 -15 0 15 30 45 60 75 90

6

Figure 3 — Array space factor for a Taylor pattern with
n =12 and SSL=-35 dB.
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Figure 4 — Excitations of the elements of the array for
both sum (Figure 3) and difference patterns (Figure 5).

The parameters of the DE algorithm used for this
simulations are CR = 0.7, F = 0.5, f;, = 10* and k,,,. = 1000.
Furthermore, the subarray number is set equal to P=4.
Figure 4 shows the values of the excitations of the
difference pattern a,,d, n=1,..., N, obtained by means of the
proposed approach, together with the sum pattern
excitations for SLL, = —30 dB. Furthermore, Figure 4
contains the information about the distribution of the array
elements ); in each subarray. In particular, each symbol
corresponds to the specific subarray at which the antenna is
associated.

Figure 5 reports the array space factor that corresponds to
the values of excitations shown in Figure 4. As can be seen,
the resulting array factor has a side lobe level that is lower
than the desired value, confirming the ability of the
optimization process, which is mainly due to the use of a
real coding of the values g,

Finally, Figure 6 reports the behavior of the cost function
during the minimization process.
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Figure 5 — Difference pattern obtained by the DE
algorithm for a Taylor sum pattern. SLL, = -30 dB.
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Figure 6 — Behavior of the cost function (equation (5))
versus the iteration number £.



A second simulation has been performed using a sum
pattern corresponding to a Dolph-Tschebyscheff array with
M = 20 elements, d=A/2 and SLL = —-35 dB, whose array
space factor is shown in Figure 7.
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Figure 7 — Space factor for a Dolph-Tschebyscheff array
with M =20 element and SLL = -35 dB.

The number of subarrays has been fixed equal to 4. As for
the previous example, the parameters of the DE algorithms
are CR=0.7, F=0.5, f, = 10* and k,,,, = 1000. The value
of the desired side lobe level is set to SLL; =-30 dB.

The optimization procedure reaches the convergence after
K,y = 12 iterations, and the difference array space factor
corresponding to that solution is shown in Figure 8.
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Figure 8 —Array space factor for the difference
configuration.

As can be seen from this picture, the constraints on the side
lobe level is satisfied. The excitation values related to the
array space factor are reported in Figure 9. It is worth
noting that, in this case, the synthesis procedure has led to a
configuration in which one of the subarrays (p = 2) is not
used, i.e., no elements are associated to it. The same
configuration has been treated in [10].
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Figure 9 — Excitations for the obtained difference
pattern and for the sum pattern of Figure 7.

The behavior of the cost function versus the number of
iteration is reported in Figure 10. As can be seen, only 12
iterations of the DE algorithm are sufficient to reach the
required accuracy.
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Figure 10 — Behavior of the cost function (equation (5))
versus the iteration number k.

In order to study the behavior of the synthesis procedure
versus the number of subarray, a more complete simulation
have been performed using the previous configuration. In
particular, the number of subarrays has been set equal to
P=2, P=4, P=6, P=8, and P=10, and the results have been
compared.

Figure 11 shows the synthesized arrays and Figure 12 the
corresponding excitations. As can be seen from this picture,
when using only two subarrays the proposed method is not
able to reach a solution that satisfy the constrain SLL < SLL,
= —30 dB. However, for all the other configurations, a
satisfactory pattern is obtained.



-10

11 00T

=

-20

Fq(6) [dB]

-30

40 b

-50 e IR
.90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

Figure 11 — Array factor for the difference pattern using
different number of subarrays.
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Figure 12 — Excitations for the array factor of Figure 11.

Finally, Figure 13 reports some information on the
convergence process showing how the cost function
decreases during the minimization procedure.
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Figure 13 — Behavior of the cost function (equation (5))
versus the iteration number k.

Finally, another comparative simulation using a Dolph-
Tschebyscheff array, with M=20 element and SLL = -20
dB, has been performed. The array space factor for such a
configuration is shown in Figure 14
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Figure 14 — Array space factor for a Dolph-
Tschebyscheff array with M =20 element and SLL = -20
dB.

The number of subarrays that has been considered is P=2,
P=4, P=6, P=8, and P=10, as in the previous case. The
desired value of side lobe level has been set to SLL;= —20
dB and the parameters of the DE algorithm have been kept
equal to the ones used in the previous simulations.

The array space factors obtained by the minimization
procedure are reported in Figure 15.
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Figure 15 — Array space factor for the difference pattern
for various values of P (number of subarrays).

As can be seen from this picture, in each case the method is
able to reach a solution that satisfy the constrain on the side
lobe level. However, when only two subarrays have been
used, the resulting space factor have an aperture of the
central lobes that is unacceptable in almost of the practical
situations in which this kind of antennas are used. When the
number of subarrays grows, this drawback is avoided, as



can be seen from Figure 15, in which all of the synthesized
array have the first null at about 15°.

Figure 16 reports the value of the excitation coefficients for
all of the array of Figure 15, compared to the ones of the
sum pattern.
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Figure 16 — Excitations for the array factor of Figure 15.

Finally, for completeness, Figure 17 reports the behavior of
the cost function for these simulations.
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Figure 17 — Behavior of the cost function (5) versus the
iteration number k.

V. CONCLUSIONS

In this paper, the synthesis of sum and difference patterns of
monopulse antennas has been considered. In particular,
following a subarray approach previously developed, the
synthesis problem has been recast as an optimization
problem solved by an efficient hybrid real/integer
differential evolution algorithm, which represents an
advance over the commonly used binary genetic algorithm.
The method has been checked versus several array
configurations. The results have shown that the
requirements concerning the side lobe level have been
fulfilled with good accuracy even by using a simplified
subarray configuration. The method has been applied, in

particular, to Taylor and Dolph-Tschebyscheff arrays
previously reported in the literature. Further development
will concern the construction of different cost functions
based on different constraints.
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