
ON A MODEL OF PHASE RELAXATION
FOR THE HYPERBOLIC STEFAN PROBLEM

VINCENZO RECUPERO

Abstract. In this paper we study a model of phase relaxation for the Stefan problem
with the Cattaneo-Maxwell heat flux law. We prove an existence and uniqueness result for
the resulting problem and we show that its solution converges to the solution of the Stefan
problem as the two relaxation parameters go to zero, provided a relation between these
parameters holds.

1. Introduction

In this paper we propose and study the nonlinear model for phase transition phenomena

given by

∂t(θ + χ) + div q = f in Q := Ω×]0, T [,(1.1)

α∂tq + q = −∇θ in Q,(1.2)

ε∂tχ + χ ∈ γ(θ) in Q.(1.3)

Here Ω is a bounded domain in Rn, T > 0 is a final time, and θ, χ : Q −→ R, q : Q −→ Rn

are the unknown functions of the problem. The symbols ∂t, div , and∇ represent respectively

the time derivative, the spatial divergence operator, and the gradient in space. α and ε are

two (small) positive constant, f : Q −→ R and γ : R −→ P(R) are two given data. Notice

that γ is multivalued, so giving rise to the inclusion (1.3). We will see that a natural example

of γ is given by the multivalued sign map, defined by

sign(r) := −1 if r < 0, sign(r) := [−1, 1] if r = 0, sign(r) := 1 if r > 0.

More generally we may consider γ as a maximal monotone graph in R2. For the theory of

maximal monotone operators we refer the reader, e.g., to [2], [1], and [17].

Equation (1.1) represents the energy balance of a physical substance attaining two phases

and contained in Ω: θ denotes the relative temperature, q the heat flux, and χ stands for the

phase function: for instance if we deal with a solid-liquid system, then (1− χ)/2 represents

the solid concentration, (1 + χ)/2 is the liquid concentration, and −1 ≤ χ ≤ 1 (cf., e.g., [21,

p. 99]). Thus, if f is the external heat supply and if we make the usual assumption that the

internal energy of the system is given by e := θ + χ, then we get equation (1.1). In order to

describe the evolution of the system, we have to couple the energy balance with a constituve

law for the heat flux and a further equation relating θ and χ: relations (1.2) and (1.3) play

these roles in our model. Let us now describe such relations.
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Equation (1.2) is the well-known Cattaneo-Maxwell heat flux law, proposed by C. Cattaneo

in [3] in order to replace the classical Fourier law

(1.4) q = −∇θ,

which instead leads to the parabolic equation

(1.5) ∂t(θ + χ)−∆θ = f in Q

(all the physical constants are normalized to 1, except of course α and ε). It is well known that

equation (1.5) has the particular feature of allowing the thermal disturbances to propagate at

infinite speed. Now, one can argue that heat is expected to propagate with a finite speed, so

that a change of the Fourier law seems mandatory. The thermal relaxation (1.2) proposed by

Cattaneo solves this problem, since in this case the energy balance (1.1) yields an equation

of hyperbolic type, predicting finite speed of propagation for the temperature field. Notice

that a formal integration of (1.2) gives

(1.6) q(t) = − 1

α

∫ t

0

exp

(
s− t

α

)
∇θ(s)ds,

so that (1.2) can be considered as the starting point of the theory of materials with memory

(cf. [9]). For updated reviews of Cattaneo theory we refer the reader to [13], [4], [14, Ch. 2],

and [12].

Let us consider now (1.3). If θ = 0 is the equilibrium temperature at which the two phases

can coexist, then in order to describe the evolution of the two-phase system, it is usual to

assume the classical Stefan equilibrium condition

(1.7) χ ∈ sign(θ) in Q.

This condition is fairly natural and the fact that the sign function is allowed to be setvalued

is consistent with the concept of mushy region, a subset of Ω where very fine solid-liquid

mixtures are allowed to appear at the macroscopic scale (see again [21, p. 99]). Problem

(1.5), (1.7) is usually called Stefan problem and it is the most common model in dealing with

phase transitions. See [7] and [21, Ch. II] for related existence and uniqueness results, in

particular [21] contains a wide list of references about phase change problems.

It should be noted, however, that the Stefan equilibrium condition does not take into

account dynamic supercooling or superheating effects, and these effects are important, since

it is reasonable to assume that the phase transition is driven by a nonequilibriun condition.

Accordingly, A. Visintin in [20] replaced (1.7) by the following relaxation dynamics for the

phase function

(1.8) ε∂tχ + sign−1(χ) 3 θ in Q,

ε being a small relaxation parameter (see also [21, Sect. V.1]). Notice that the Stefan

condition (1.7) can be equivalently written as

(1.9) sign−1(χ) 3 θ in Q.

In this paper, instead, we use the equally natural model (1.3), by adding the term ε∂tχ on

the left-hand side of (1.7) rather than in (1.9). Nevertheless the two models (1.8) and (1.3),
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are far from being equivalent. Let us also observe that, at least from a mathematical point

of view, it is not so clear why one should prefer the relaxation (1.8) rather than (1.3). Surely

one argument in favour of the model (1.8) is given by the fact that (1.8) can be seen as

an ODE governed by an accretive operator, so that arguing in terms of the new unknown

U := (θ + χ, χ), the system (1.5), (1.8) can be solved as an evolution equation governed by

a suitable monotone operator in a suitable product space. This idea is due to Visintin, see

the details in [20] and [8].

Now, we provide a further physical interpretation for the model (1.3), so that, at least from

a certain point of view, it can be considered more appropriate than (1.8). The argument we

are going to outline is based on a “probabilistic” interpretation of the phase transition that

was given in [22]. We follow essentially [22] and [15]: in the latter paper we study model

(1.3) when the Fourier heat flux law is assumed.

We postulate that our physical system is composed by several small subsystems which we

call particles. Moreover we suppose that any of these particles can assume either the solid

state or the liquid state. This is in agreement with the usual concept of mushy region. Let

us call π+ (respectively π−) the probability of melting a solid (respectively crystallizing a

liquid) particle in the unit time. Therefore we get that the melting rate per unit volume

is proportional to π+(1− χ)/2 and the crystallizing rate per unit volume is proportional to

π−(1 + χ)/2. Hence

(1.10) ∂tχ is proportional to π+(1− χ)/2− π−(1 + χ)/2.

The transition probabilities above defined depend on the temperature, i.e. there exists a

function p : R −→ [−1, 1] such that we have two relations such π+ = p(θ+) and π− =

−p(−θ−), where θ+ = max{θ, 0} and θ− = max{−θ, 0}. Hence, the relation (1.10) means

that there exists some constant ε > 0 such that

(1.11) ε∂tχ =
(
p(θ+) + p(θ−)

)− (
p(θ+)− p(θ−)

)
χ.

Observe that the bigger ∂tχ is, the smaller ε turns out to be. Equation (1.11) suggests

the analysis of a relaxation dynamics like ε∂tχ = ψ(θ, χ) for a suitable class of functions

ψ : R2 → R. This is in fact the subject of paper [22], where L1-tecniques are used and ψ

belongs to certain class of regular functions.

If instead we take p equal to the single-valued sign function and then we allow it to be

multivalued, we obtain exactly our relaxation (1.3). More generally we will take p equal

to a maximal monotone graph γ satisfying a growth condition at infinity and our analysis

requires L2-tecniques only.

In this paper the resulting problem (1.1)–(1.3) is coupled with suitable initial and boundary

conditions: for simplicity we consider homogeneous mixed Dirichlet-Neumann boundary

conditions. Precisely, letting {Γ0, Γ1} be a partition of the boundary of Ω into two measurable

sets, we take

θ = 0 on Γ0×]0, T [, q · n = 0 in Γ1×]0, T [,(1.12)

θ(·, 0) = θ0, q(·, 0) = q0 χ(·, 0) = χ0 in Ω,(1.13)
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where θ0, q0, and χ0 are given functions and n is the outward unit vector, normal to the

boundary of Ω. We prove that (1.1)–(1.3), (1.12)–(1.13) admits a unique solution in the

framework of Sobolev spaces.

It should be observed that from a macroscopic point of view it is reasonable to assume

that the Fourier law is a good approximation of real phenomena, so that the heat equation

is sufficient to describe the thermal evolution of the system (see however [5] for materials

for which the Fourier law is not satisfactory). Therefore in most of physical applications the

relaxation parameters α and ε can be supposed very small with respect to the used lenght

scale. Thus it is natural to consider the Stefan problem as approximation for the relaxed

system. In this paper we give a rigorous proof of this heuristic argument. More precisely we

show that the solution of problem (1.1)–(1.3), (1.12)–(1.13) converges, in a suitable sense, to

the solution of problem (1.5), (1.7) coupled with the following boundary-initial conditions

θ = 0 on Γ0×]0, T [, −∂nθ = 0 on Γ1×]0, T [,(1.14)

(θ + χ)(·, 0) = θ0 + χ0 in Ω,(1.15)

provided the heat relaxation parameter α is less or equal than the kinetic parameter ε. This

constraint for the relaxation parameters can be considered non restrictive, since it is realistic

to suppose that the time heat relaxation is smaller than that of the phase relaxation (cf.

[20, p. 229]).

Let us mention related problems. One could couple (1.1)–(1.2) with the phase relaxation

(1.8). The resulting model is studied in [6] and [16], but the uniqueness of solutions of

the corresponding initial-boundary value problem is an open problem, at variance with our

model (1.1)–(1.3). Moreover a possible choice is given by the model (1.1)–(1.2), (1.7). This is

the so-called hyperbolic Stefan problem. While the validity of such model could be disputed,

the point is that the existence of solutions remains an open problem, in fact it is not clear

how to deduce enough a priori estimates. See however [18] and [19] for partial results in this

direction.

2. Main results

In this section we give the variational formulation of the problems presented in the In-

troduction and we state our main results. Throughout the paper we make the following

assumptions.

(H1) Ω is a bounded domain in Rn (n ∈ N = {1, 2, . . .}) with Lipschitz boundary Γ := ∂Ω.

The outward normal unit vector is denoted by n. Q := Ω×]0, T [, where T is a positive

number.

(H2) Γ0 and Γ1 are open subsets of Γ such that Γ0 ∪Γ1 = Γ, Γ0 ∩Γ1 = ∅ and Γ0 ∩Γ1 = Γ

is of Lipschitz class.

(H3) γ : R → P(R) is a maximal monotone operator such that 0 ∈ γ(0) and that is

linearly bounded, i.e. there is a constant Cγ > 0 such that

(2.1) |s| ≤ Cγ(1 + |r|) ∀r ∈ D(γ), ∀s ∈ γ(r),
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where D(γ) = {r ∈ R : γ(r) 6= ∅}.
(H4) f ∈ W 1,1(0, T ; L2(Ω)) + L1(0, T ; (H1

Γ0
(Ω))), where H1

Γ0
(Ω) := {v ∈ H1(Ω) : v|Γ0 =

0}.
(H5) θ0 ∈ H1

Γ0
(Ω), q0 ∈ L2(Ω;Rn), χ0 ∈ L2(Ω).

Remark 2.1. For the theory of maximal monotone operators we refer the reader to [2, Ch.

II], [1, Ch. II], and [17, Ch. IV]. From condition (2.1) and from the maximal monotonicity

of γ, it can be easily deduced that D(γ) = R. Notice that the (n− 1)-dimensional Hausdorff

measure of ΓD is not required to be strictly positive.

Let us now fix some notation. We set H := L2(Ω) and V := H1
Γ0

(Ω), endow H and V with

the usual inner products, and identify H with its dual space. Then we have V ⊂ H ⊂ V ′

with dense and compact embeddings. We also define the operator A ∈ L (V, V ′) by

(2.2) V ′〈Av1, v2〉V :=

∫

Ω

∇v1 · ∇v2, v1, v2 ∈ V.

Next, we consider the spaces H := L2(Ω;Rn) and L2
div (Ω) := {v ∈ H : div v ∈ H},

the latter endowed with the usual inner product defined by (v1,v2)L2
div (Ω) := (v1,v2)H +

(div v1, div v2)H for v1,v2 ∈ L2
div (Ω). It is well-known that if v ∈ L2

div (Ω), then v · n ∈
H−1/2(Γ) and the restriction v · n|Γ1 makes sense in (H

1/2
00 (Γ1))

′ (see, e.g., [11]). In this

functional framework we introduce the closed subspace of L2
div (Ω)

(2.3) V :=
{
v ∈ L2

div (Ω) : v · n|Γ1 = 0
}

.

By identifying H with its dual space, we get V ⊂ H ⊂ V′ with dense and continuous

embeddings. Moreover, we will consider the operator B ∈ L (H, V ′) defined by

(2.4) V ′〈Bu, v〉V := −
∫

Ω

u · ∇v, u ∈ H, v ∈ V.

Now, we can present the precise formulation of problem (1.1)–(1.3), (1.12)–(1.13).

Problem (Pαε). Let α, ε > 0. Find a triplet (θαε, χαε,qαε) satisfying the following conditions

θαε ∈ L∞(0, T ; V ), θ′αε ∈ L2(0, T ; H) + L1(0, T ; V ),(2.5)

χαε ∈ H1(0, T ; H),(2.6)

qαε ∈ L∞(0, T ;V) ∩W 1,∞(0, T ;H),(2.7)

(θαε + χαε)
′ + div qαε = f a.e. in Q,(2.8)

αq′αε + qαε = −∇θαε a.e. in Q,(2.9)

εχ′αε + χαε ∈ γ(θαε) a.e. in Q,(2.10)

θαε(0) = θ0, χαε(0) = χ0, qαε(0) = q0 a.e. in Ω.(2.11)

Here and in what follows the symbol “ ′ ” will denote the derivative with respect to time

of vector-valued functions. We will prove the following result.

Theorem 2.1. Problem (Pαε) has a unique solution.
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Now we give the weak formulation of the classical Stefan problem.

Problem (P). Find a pair (θ, χ) satisfying the following conditions

θ ∈ L∞(0, T ; H) ∩ L2(0, T ; V ),(2.12)

χ ∈ L2(Q),(2.13)

(θ + χ)′ ∈ L2(0, T ; V ′),(2.14)

(θ + χ)′ + Aθ = f in V ′, a.e. in ]0, T [,(2.15)

χ ∈ γ(θ) a.e. in Q,(2.16)

(θ + χ)(0) = θ0 + χ0 in V ′.(2.17)

Here is the main theorem of this paper.

Theorem 2.2. Assume that f ∈ W 1,1(0, T ; H). Then Problem (P) admits a unique solution

(θ, χ). Moreover, for any pair α, ε > 0 such that α ≤ ε, let (θαε,qαε, χαε) be the solution of

Problem (Pαε), we have

θαε ⇀ θ in L2(0, T ; H),(2.18)

χαε ⇀ χ in L2(0, T ; H),(2.19)

qαε ⇀ −∇θ in L2(0, T ;H),(2.20)

as α, ε ↘ 0.

Remark 2.2. Existence and uniqueness results for Problem (P) are well known, see e.g. [21]

and the references therein. However our proof of the existence/uniqueness part of Theorem

2.2 is independent and uses a rather different method, since we recover the solution of (P)

as the limit of the sequence (θαε,qαε, χαε). Of course our convergence result is completely

new.

Let us introduce a general notation which will hold throughout the sequel. For a map

φ ∈ L1(0, T ; X), where X is a Banach space, we define I0φ : [0, T ] −→ X by

(2.21) (I0φ)(t) :=

∫ t

0

φ(s)ds, t ∈ [0, T ].

Finally, we will use the symbol C to denote a positive constant which depends only on the

data and may vary from line to line.

3. Analysis of the relaxed problem

This section is devoted to the proof of Theorem 2.1. For simplicity, when writing a solution

of Problem (Pαε), we omit the subscript αε. The first result we prove concerns uniqueness.

Lemma 3.1. Problem (Pαε) has at most one solution.

Proof. Let (θi,qi, χi), i = 1, 2, be two solutions to Problem (Pαε). Then, for i = 1, 2, let

ξi ∈ γ(θi) a.e. in Q such that

(3.1) εχ′i + χ = ξi a.e. in Q, i = 1, 2.
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Set θ̃ := θ1 − θ2, q̃ := q1 − q2, χ̃ := χ1 − χ2, and ξ̃ := ξ1 − ξ2. Fix t ∈ [0, T ]. At first let us

subtract the respective equations (2.8) for (θi,qi, χi), i = 1, 2, from each other and test the

result by εθ̃. Integrating over Ω×]0, t[, thanks to the Green formula and to (2.11) we have

that

(3.2)
ε

2
‖θ̃(t)‖2

H + ε

∫ t

0

∫

Ω

χ̃′(s)θ̃(s)ds− ε

∫ t

0

∫

Ω

q̃(s) · ∇θ̃(s)ds = 0.

Now subtract the respective equations (2.8) for (θi, χi), i = 1, 2, from each other and integrate

the difference from 0 to s ∈]0, t[, t ∈ [0, T ]. Then we test the result by θ̃(s) and finally

integrate over ]0, t[. We get that

(3.3) ‖θ̃‖2
L2(0,t;H) +

∫ t

0

∫

Ω

χ̃(s)θ̃(s)ds−
∫ t

0

∫

Ω

(I0q̃)(s) · ∇θ̃(s)ds = 0.

Then let us multiply the difference of equations (2.10) by θ̃ and integrate over Ω×]0, t[.

Thanks to the monotonicity of γ we find

(3.4) 0 ≤ ε

∫ t

0

∫

Ω

χ̃′(s)θ̃(s)ds +

∫ t

0

∫

Ω

χ̃(s)θ̃(s)ds.

Now observe that using equation (2.9) written for the two solutions, it is readily seen that

− ε

∫ t

0

∫

Ω

q̃(s) · ∇θ̃(s)ds−
∫ t

0

∫

Ω

(I0q̃)(s) · ∇θ̃(s)ds(3.5)

=
αε

2
‖q̃(t)‖2

H + ε‖q̃‖2
L2(0,t;H) + α

∫ t

0

∫

Ω

(I0q̃)(s) · q̃′(s)ds +
1

2
‖(I0q̃)(t)‖2

H.

Let us rewrite the integral appearing at the right hand side of (3.5). For all δ > 0 we have

− α

∫ t

0

∫

Ω

(I0q̃)(s) · q̃′(s)ds(3.6)

= −α((I0q̃)(t), q̃(t))H + α

∫ t

0

‖q̃(s)‖2
Hds

≤ α‖q̃(t)‖H‖(I0q̃)(t)‖H + α

∫ t

0

‖q̃(s)‖2
Hds

≤ δα‖q̃(t)‖2
H +

α

4δ

∥∥∥∥
∫ t

0

q̃(s)ds

∥∥∥∥
2

H

+ α

∫ t

0

‖q̃(s)‖2
Hds

≤ δα‖q̃(t)‖2
H +

α

4δ

∥∥∥∥∥
(

t

∫ t

0

|q̃(s)|2ds

)1/2
∥∥∥∥∥

2

H

+ α

∫ t

0

‖q̃(s)‖2
Hds

= δα‖q̃(t)‖2
H +

α

4δ
t

∫ t

0

‖q̃(s)‖2
Hds + α

∫ t

0

‖q̃(s)‖2
Hds

Now, adding (3.2), (3.3), and (3.4), and taking into account (3.5) and (3.6) with δ = ε/4,

we finally get

(3.7) ‖θ̃(t)‖2
H + ‖θ̃‖2

L2(0,t;H) + ‖q̃(t)‖2
H + ‖q̃‖2

L2(0,t;H) + ‖(I0q̃)(t)‖2
H ≤ C

∫ t

0

‖q̃(s)‖2
Hds,
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where C is a positive constant depending only on α, ε, and T . At this point it suffices to

apply Gronwall lemma to deduce that θ̃ = 0 and q̃ = 0 a.e. in Q. Then by a comparison in

(2.8) it follows that χ̃ is zero almost everywhere and the lemma is proved. ¤

Now we address our attention to the existence of solutions for Problem (Pαε). In order to

prove that such solutions exist, we regularize the problem adding the term −µ∆θ to the left

hand side of (2.8) and by replacing the multivalued function γ by its Yosida approximation

γµ := (γ−1 + µIR)
−1, IR being the identity in R and µ being a positive parameter. Then we

establish suitable estimates on the solutions and pass to limits as µ ↘ 0. This procedure also

provides a larger class of test functions to get the a priori estimates needed for the asymptotic

analysis performed in sections 4 and 5. We recall that γµ : R −→ R is a Lipschitz continuous

function with Lipschitz constant 1/µ and that γµ also satisfies condition (2.1) with the same

constant Cγ (cf. [2, Ch. II]). For the sake of clarity we start by stating a regularity result

for the heat equation in its weak formulation. Its proof is standard and can be obtained,

e.g., by using Galerkin method with a basis made of eigenfunctions of A.

Lemma 3.2. Let µ ∈]0, 1[ and let F ∈ L2(0, T ; H) + L1(0, T ; V ) and u0 ∈ V . Then there

exists a unique function u such that

u ∈ L∞(0, T ; V ), u′ ∈ L2(0, T ; H) + L1(0, T ; V ),(3.8)

∇u ∈ L2(0, T ;V), Au = −∆u ∈ L2(0, T ; H),(3.9)

u′ − µ∆u = F a.e. in Q,(3.10)

u(0) = u0 a.e. in Ω.(3.11)

The regularized problem will be solved by means of the Banach shrinking theorem. We

need the following lemma.

Lemma 3.3. Let µ ∈]0, 1[, p ∈ L2(0, T ;V), and X ∈ H1(0, T ; H). Then there exists a

unique triplet (θµ,qµ, χµ) such that

θµ ∈ L∞(0, T ; V ), θ′µ ∈ L2(0, T ; H) + L1(0, T ; V ),(3.12)

∇θµ ∈ L2(0, T ;V), Aθµ = −∆θµ ∈ L2(0, T ; H),(3.13)

qµ ∈ H1(0, T ;V),(3.14)

χµ ∈ H1(0, T ; H1(Ω)),(3.15)

θ′µ − µ∆θµ = f −X ′ − div p a.e. in Q,(3.16)

αq′µ + qµ = −∇θµ a.e. in Q,(3.17)

εχ′µ + χµ = γµ(θµ) a.e. in Q,(3.18)

θµ(0) = θ0, qµ(0) = q0, χµ(0) = χ0 a.e. in Ω.(3.19)

Proof. For convenience we omit the subscript µ. Since X ∈ H1(0, T ; H) and p ∈ L2(0, T ;V),

we have that f − X ′ − div p ∈ L2(0, T ; H) + L1(0, T ; V ), therefore thanks to (H6) and to

Lemma 3.2 there exists a unique θµ satisfying (3.12)–(3.13), (3.16), and the first condition

in (3.19). Now, since (H6) holds and γµ is a Lipschitz function, we have that γµ(θµ) ∈
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L2(0, T ; H1(Ω)). Therefore thanks to (3.13) and (H6), we find qµ and χµ satisfying (3.14),

(3.15), the ODEs (3.17)–(3.18), and the initial conditions in (3.19). ¤

Now we can state and prove the result concerning the approximated problem.

Lemma 3.4. Let µ ∈]0, 1[. Then there exists a unique triplet (θµ,qµ, χµ) satisfying the

following conditions.

θµ ∈ L∞(0, T ; V ), θ′µ ∈ L2(0, T ; H) + L1(0, T ; V ),(3.20)

∇θµ ∈ L2(0, T ;V), ∆θµ = −Aθµ ∈ L2(0, T ; H),(3.21)

qµ ∈ H1(0, T ;V),(3.22)

χµ ∈ H1(0, T ; H1(Ω)),(3.23)

(θµ + χµ)′ − µ∆θµ + div qµ = f a.e. in Q,(3.24)

αq′µ + qµ = −∇θµ a.e. in Q,(3.25)

εχ′µ + χµ = γµ(θµ) a.e. in Q,(3.26)

θµ(0) = θ0, qµ(0) = q0, χµ(0) = χ0 a.e. in Ω.(3.27)

Proof. Thanks to Lemma 3.3 we can define a nonlinear mapping

S : L2(0, T ;V)×H1(0, T ; H) −→ L2(0, T ;V)×H1(0, T ; H)

that assignes to (p, X) the unique pair (qµ, χµ) satisfying (3.12)–(3.19). It is clear that a

triplet (θµ,qµ, χµ) is a solution to problem (3.20)–(3.27) if and only if (qµ, χµ) is a fixed point

of S and θµ satisfies (3.12)–(3.13) and (3.16)–(3.19). Here we endow L2(0, T ;V)×H1(0, T ; H)

with the norm defined by

‖(r, ζ)‖2
L2(0,T ;V)×H1(0,T ;H) := ‖r‖2

L2(0,T ;V) + ‖ζ‖2
H1(0,T ;H)

for (r, ζ) ∈ L2(0, T ;V) × H1(0, T ; H). We want to prove a contracting property of S. For

convenience we omit the subscript µ. Let (pi, Xi) ∈ L2(0, T ;V) × H1(0, T ; H), i = 1, 2,

and let (θi,qi, χi), i = 1, 2, satisfying (3.12)–(3.19) with p, X, θµ, qµ, and χµ replaced

respectively by pi, Xi, θi, qi, and χi, i = 1, 2. Set p̃ := p1−p2, X̃ := X1−X2, θ̃ := θ1− θ2,

χ̃ := χ1 − χ2, q̃ := q1 − q2. Let us multiply the difference of equations (3.17) by q̃, and

integrate over Ω×]0, s[, where s ∈ [0, T ]. We find, thanks to (3.19) and to an application of

Young inequality,

(3.28)
α

2
‖q̃(s)‖2

H +
1

2
‖q̃‖2

L2(0,s;H) ≤
1

2
‖∇θ̃‖2

L2(0,s;H).

Now let us take the divergence of equations (3.17), in order to obtain

αdiv q̃′ + div q̃ = −∆θ̃ a.e. in Q.

Multiplying this equation by div q̃, integrating in time and space, and applying the Young

inequality, we can infer that

(3.29)
α

2
‖div q̃(s)‖2

H +
1

2
‖div q̃‖2

L2(0,s;H) ≤
1

2
‖∆θ̃‖2

L2(0,s;H).
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Let us add inequalities (3.28) and (3.29) and integrate the resulting inequality over ]0, t[,

where t ∈ [0, T ]. We infer that there exists a constant C > 0, depending only on α, such

that

(3.30) ‖q̃‖2
L2(0,t;V) ≤ C

∫ t

0

(‖∇θ̃‖2
L2(0,s;H) + ‖∆θ̃‖2

L2(0,s;H))ds.

Now multiply the difference of equations (3.16) by −∆θ̃ to obtain, after an integration in

time and space,

(3.31)
1

2
‖∇θ̃(s)‖2

H +
µ

2
‖∆θ̃‖2

L2(0,s;H) ≤
1

µ
‖X̃ ′‖2

L2(0,s;H) +
1

µ
‖div p̃‖2

L2(0,s;H).

Therefore from (3.30) we get

(3.32) ‖q̃‖2
L2(0,t;V) ≤ C

∫ t

0

(‖X̃ ′‖2
L2(0,s;H) + ‖div p̃‖2

L2(0,s;H))ds,

for some positive constant C which depends only on α and µ. Let us multiply the difference

of equations (3.18) by χ̃′. Exploiting the Lipschitz continuity of γµ we deduce that

ε

2
‖χ̃′‖2

L2(0,t;H) +
1

2
‖χ̃(t)‖2

H ≤ 1

2ε

∫ t

0

∫

Ω

|γµ(θ1(s))− γµ(θ2(s))|2ds(3.33)

≤ 1

2ε

∫ t

0

∫

Ω

1

µ2
|θ1(s)− θ2(s)|2ds =

1

2εµ2

∫ t

0

‖θ̃(s)‖2
Hds.

Finally test the difference of equations (3.16) by the function θ̃. Integrating in time and

applying Hölder and Young inequalities yields

1

2
‖θ̃(s)‖2

H +
µ

2
‖∇θ̃‖2

L2(0,s;H)(3.34)

≤ 1

2
‖X̃ ′‖2

L2(0,s;H) +
1

2µ
‖p̃‖2

L2(0,s;H) +
1

2

∫ s

0

‖θ̃(τ)‖2
Hdτ,

therefore the Gronwall lemma yields

(3.35)
1

2
‖θ̃(s)‖2

H +
µ

2
‖∇θ̃‖2

L2(0,s;H) ≤ C(‖X̃ ′‖2
L2(0,t;H) + ‖p̃‖2

L2(0,t;H)),

C being positive and depending only on µ. Hence we deduce from (3.33) and (3.35) that

(3.36) ‖χ̃‖2
H1(0,t;H) ≤ C

∫ t

0

(‖X̃ ′‖2
L2(0,s;H) + ‖p̃‖2

L2(0,s;H))ds

for some constant C that depends only on ε and µ. Collecting (3.32) and (3.36) we get that

‖(q̃, χ̃)‖2
L2(0,t;V)×H1(0,t;H) ≤ C

∫ t

0

‖(p̃, X̃)‖2
L2(0,s;V)×H1(0,s;H)ds(3.37)

where the constant C dependes only on α, ε, and µ. From estimate (3.37), arguing in-

ductively, it is easy to infer that there exists a positive integer m such that Sm is a strict

contraction. Therefore by Banach fixed point theorem S has a unique fixed point and the

lemma is proved. ¤
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In the following lemmas we collect some inequalities that we will use to get the a priori

bounds needed to take the limit in problem (3.24)–(3.27) as µ ↘ 0. We state them in a form

that will also be useful for the subsequent section.

Lemma 3.5. Let (θµ,qµ, χµ) satisfy (3.20)–(3.27). Then for every t ∈ [0, T ] we have

1

2
‖θµ(t)‖2

H +
µ

2
‖∇θ‖2

L2(0,t;H) +
α

2
‖qµ(t)‖2

H + ‖qµ‖2
L2(0,t;H)(3.38)

≤ ε

2
‖θ0‖2

H +
ε

2
‖q0‖2

H +

∫ t

0

‖f(s)‖H‖θµ(s)‖Hds−
∫ t

0

∫

Ω

χ′µ(s)θµ(s)ds.

Proof. It suffices to multiply equation (3.24) by θ and to test equation (3.25) by q. Then

add the resulting equations and integrate over Ω×]0, t[, t ∈ [0, T ]. The lemma follows thanks

to Hölder inequality, to (H6), and to a cancellation. ¤

Lemma 3.6. Let (θµ,qµ, χµ) satisfy (3.20)–(3.27) and let fH ∈ W 1,1(0, T ; H) and fV ∈
L1(0, T ; V ) such that f = fH + fV . Then for all t ∈ [0, T ]

ε

2
‖∇θµ(t)‖2

H + µε‖∆θµ‖2
L2(0,t;H) − ε

∫ t

0

∫

Ω

div qµ(s)∆θµ(s)ds(3.39)

≤ ε

2
‖∇θ0‖2

H + ε‖fH(t)‖H‖∆(I0θµ(t))‖H + ε

∫ t

0

‖f ′H(s)‖H‖∆(I0θµ(s))‖Hds

+ ε

∫ t

0

‖∇fV (s)‖H‖∇θµ(s)‖Hds−
∫ t

0

∫

Ω

χµ(s)∆θµ(s)ds

Proof. For simplicity we omit the subscript µ. First we multiply equation (3.20) by −ε∆θ

and integrate by parts, respectively in time and space, the terms −ε
∫ t

0

∫
Ω

fH(s)∆θ(s)ds and

−ε
∫ t

0

∫
Ω

fV (s)∆θ(s)ds. Then let us multiply (3.26) by −∆θ. This yields

− ε

∫ t

0

∫

Ω

χ′(s)∆θ(s)ds−
∫ t

0

∫

Ω

χ(s)∆θ(s)ds(3.40)

= −
∫ t

0

∫

Ω

γλ(θ)∆θ =

∫ t

0

∫

Ω

γ′µ(θ(s))|∇θ(s)|2ds ≥ 0,

due to the monotonicity of γµ. Finally add the two relations obtained and observe that there

is a cancellation. Several applications of Hölder inequality and (H6) yield (3.39). ¤

Lemma 3.7. Let (θµ,qµ, χµ) satisfy (3.20)–(3.27). Then, if t ∈ [0, T ] we have

‖∇θµ‖2
L2(0,t;H) +

µ

2
‖∆(I0θµ)(t)‖2

H +
1

2
‖∆(I0θµ)(t)‖2

H(3.41)

≤ ‖θ0 + χ0 + (I0f)(t)‖H‖∆(I0θµ)(t)‖H +

∫ t

0

‖f(s)‖H‖∆(I0θµ)(s)‖Hds

+

∫ t

0

∫

Ω

χµ(s)∆θµ(s)ds− α

∫ t

0

∫

Ω

div qµ(s)∆θµ(s)ds.

Proof. Let us integrate equation (3.24) in time from 0 to s ∈ [0, t] and multiply the result by

−∆θ. Then integrate again in time over ]0, t[ the equality obtained and estimate the term
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− ∫ t

0

∫
Ω
(θ0 + χ0 + (I0f)(s))∆θ(s)ds by means of an integration by parts. Now let us take the

divergence of equation (3.25) we obtain (cf. (3.21))

(3.42) αdiv q′ + div q = −∆θ a.e. in Q.

Integrate in time (3.42) and multiply the resulting equality by −∆θ. The lemma follows if

we add the two relations we have obtained. ¤

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let (θµ,qµ, χµ) satisfy (3.20)–(3.27). Let us multiply the phase equa-

tion (3.26) by χ′. Using Hölder and Young inequalities and taking advantage of (2.1) (holding

also for γmu) we find

ε

2
‖χ′µ‖2

L2(0,t;H) +
1

2
‖χµ(t)‖2

H ≤ 1

2
‖χ0‖2

H +
1

2ε

∫ t

0

∫

Ω

|γλ(θµ(s))|2ds(3.43)

≤ 1

2
‖χ0‖2

H +
C2

γ

ε
t|Ω|+ C2

γ

ε

∫ t

0

‖θµ(s)‖2
Hds.

for every t ∈ [0, T ]. Now multiply (3.38) by ε and add the resulting inequality to (3.43).

Since

−
∫ t

0

∫

Ω

χ′µ(s)θµ(s)ds ≤ ε

4
‖χ′µ‖2

L2(0,t;H) +
1

ε

∫ t

0

‖θµ(s)‖2
Hds,

we find, thanks to an application of a generalized version of Gronwall lemma (cf. [2, Lemma

A.4, Lemma A.5, pp. 156-157]) a positive constant C > 0, depending only on ε, α, Cγ, T ,

|Ω|, θ0, q0, χ0, and f , such that

(3.44) ‖θµ‖2
L∞(0,t;H) + µ‖∇θµ‖2

L2(0,t;H) + ‖qµ‖2
L∞(0,t;H) + ‖χµ‖2

H1(0,t;H) ≤ C.

Now let us consider the three following inequalities:

‖fH(t)‖H‖∆(I0θµ)(t)‖H ≤ σ1‖∆(I0θµ)(t)‖2
H +

1

4σ1

‖fH(t)‖2
H ,(3.45)

∫ t

0

∫

Ω

χµ(s)∆θµ(s)ds =

∫

Ω

χµ(t)∆(I0θµ)(t)−
∫ t

0

∫

Ω

χ′µ(s)∆(I0θµ)(s)ds(3.46)

≤ σ2‖∆(I0θµ)(t)‖2
H +

1

4σ2

‖χµ(t)‖2
H + ‖χ′µ(s)‖2

L2(0,t;H) +

∫ t

0

‖∆(I0θµ)(s)‖2
Hds,

‖θ0 + χ0 + (I0f)(t)‖H‖∆(I0θµ)(t)‖H ≤ σ3‖∆(I0θµ)(t)‖2
H +

1

4σ3

‖θ0 + χ0 + (I0f)(t)‖2
H .

(3.47)

Let us multiply (3.41) by ε/α and add it to (3.39). Taking into account of (3.45)–(3.47) with

suitable values of σi, i = 1, 2, 3 (which will depend on ε and α, but not on µ), and utilizing

again the generalized Gronwall lemma, it is easy to infer that

(3.48) ‖∇θµ‖2
L∞(0,t;H) + µ‖∆θµ‖2

L2(0,t;H) + µ‖∆(I0θµ)‖2
L∞(0,t;H) + ‖∆(I0θµ)‖2

L∞(0,t;H) ≤ C,
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where C is a positive constant independent of µ, but depending only on α, ε, T , Ω, and f .

Finally if we integrate in time equation (3.42) and multiply it by −∆θµ we find

(3.49)
α

2
‖div qµ‖2

L2(0,t;H) +
1

2
‖div qµ(t)‖2

H ≤ 1

2α
‖∆(I0θµ)‖2

L2(0,t;H).

From estimate (3.44), (3.48), and (3.49), it follows that there exist θ, q, χ, and ξ such that,

letting fH ∈ W 1,1(0, T ; H) and fV ∈ L1(0, T ; V ) such that f = fH +fV , we have the following

convergences, at least for some subsequence.

θµ
∗
⇀ θ in L∞(0, T ; V ),(3.50)

µ∆θµ → 0 in L2(0, T ; H)(3.51)

∆(I0θαε)
∗
⇀ ∆(I0θ) in L∞(0, T ; H)(3.52)

χµ
∗
⇀ χ in H1(0, T ; H),(3.53)

qµ
∗
⇀ q in L∞(0, T ;V) ∩W 1,∞(0, T ;H),(3.54)

γµ(θµ)
∗
⇀ ξ in L2(0, T ; H),(3.55)

θ′µ − fV ⇀ θ′ − fV in L2(0, T ; H),(3.56)

as µ ↘ 0. Therefore, taking the limit in (2.8)–(2.11) as µ ↘ 0 we find that (2.8), (2.9), and

(2.11) hold, and that

(3.57) εχ′ + χ = ξ a.e. in Q.

It remain to prove (2.10), i.e. that ξ ∈ γ(θ) a.e. in Q. To verify this inclusion it suffices to

prove that (see e.g. [1, Prop. 1.1, Ch. II])

(3.58) lim sup
µ↘0

∫

Q

γµ(θµ)θµ ≤
∫

Q

ξθ.

By (3.50), (3.56), and by the Ascoli compactness theorem we have that

(3.59) θµ − I0fV → θ − I0fV in C([0, T ]; H).

Thanks to (3.26) we can write

(3.60)

∫

Q

γµ(θµ)θµ =

∫ t

0

(
γµ(θµ(s)), θµ(s)− (I0fV )(s)

)
H

ds+

∫ t

0

(
γµ(θµ(s)), (I0fV )(s)

)
H

ds

therefore, convergences (3.59), (3.55), and equality (3.57) yield

(3.61)

lim
µ↘0

∫

Q

γµ(θµ)θµ =

∫ t

0

(
ξ(s), θ(s)− (I0fV )(s)

)
H

ds +

∫ t

0

(
ξ(s), (I0fV )(s)

)
H

ds =

∫

Q

ξθ,

and (3.58) is proved. ¤
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4. Uniform estimates

Within this section, taking advantage of the preparatory lemmas proved in the previous

number, we establish the necessary a priori estimates which will allow us to perform the

asymptotic analysis of our problem when the relaxation parameters α and ε tend to zero.

For convenience we omit the subscript αε. We will assume that α is less or equal than ε.

We use again the approximation used to prove the existence result for the relaxed problem.

Of course it is not restrictive to assume α, ε < 1.

Lemma 4.1. Let (θµ,qµ, χµ) satisfy (3.20)–(3.27) with α ≤ ε. Then there exists a constant

C > 0, independent of µ, α, and ε, such that for all t ∈ [0, T ]

‖∇(I0θµ)‖2
L∞(0,t;H) + ‖θµ‖2

L2(0,t;H) + µ‖∇(I0θµ)‖2
L∞(0,t;H)(4.1)

+ ε‖θµ‖2
L∞(0,t;H) + εµ‖∇θµ‖2

L2(0,t;H) ≤ C.

Proof. We will take advantage of Lemma 3.5. Let t ∈ [0, T ]. In order to control the last

term in (3.38), we test (3.26) by θ and integrate over Ω×]0, t[. We get

(4.2) 0 ≤ ε

∫ t

0

∫

Ω

χ′µ(s)θµ(s)ds +

∫ t

0

∫

Ω

χµ(s)θµ(s)ds.

Now let us integrate in time (3.24) and multiply the result by θ. An integration over Ω×]0, t[

and some application of Hölder and Young inequalities yield

1

2
‖θµ‖2

L2(0,t;H) +
µ

2
‖∇(I0θµ)(t)‖2

H −
∫ t

0

∫

Ω

(I0qµ)(s) · ∇θµ(s)ds(4.3)

≤ C +

∫ t

0

∫

Ω

χµ(s)θµ(s)ds,

where C is a positive constant depending only on θ0, χ0, f , and T . At this point we

integrate in time equation (3.25) and multiply the resulting equation by ∇θ. We infer, after

an integration in time and space, the following identity:

(4.4) α

∫ t

0

∫

Ω

qµ(s) · ∇θµ(s)ds +

∫ t

0

∫

Ω

(I0qµ)(s) · ∇θµ(s)ds = −1

2
‖∇(I0θµ)(t)‖2

H.

Multiplying inequality (3.38) by ε and add it to (4.2), (4.3), and (4.4), we get, observing

that there are two cancellations,

1

2
‖∇(I0θµ)(t)‖2

H +
1

2
‖θµ‖2

L2(0,t;H) +
µ

2
‖∇(I0θµ)(t)‖2

H +
ε

2
‖θµ(t)‖2

H(4.5)

+
εµ

2
‖∇θµ‖2

L2(0,t;H) +
εα

2
‖qµ(t)‖2

H + ε‖qµ‖2
L2(0,t;H)

≤ C + ε

∫ t

0

‖f(s)‖H‖θµ(s)‖Hds− α

∫ t

0

∫

Ω

qµ(s) · ∇θµ(s)ds,
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with C depending only on θ0, q0, χ0, f , and T . Now, exploiting (3.25), we have that

−α

∫ t

0

∫

Ω

qµ(s) · ∇θµ(s)ds = α

∫ t

0

∫

Ω

qµ(s) · (αq′µ(s) + qµ(s)
)
ds(4.6)

=
α2

2
‖qµ(t)‖2

H −
α2

2
‖q0‖2

H + α‖qµ‖2
L2(0,t:H)

≤ εα

2
‖qµ(t)‖2

H −
α2

2
‖q0‖2

H + ε‖qµ‖2
L2(0,t:H),

therefore (4.5), (4.6), and an application of Gronwall lemma yield (4.1). ¤

Lemma 4.2. Let (θµ,qµ, χµ) satisfy (3.20)–(3.27) with α ≤ ε. Then there exists a constant

C > 0, independent of µ, α, and ε, such that if t ∈ [0, T ], then

ε‖∇θµ‖2
L∞(0,t;H) + µε‖∆θµ‖2

L2(0,t;H) + ‖∇θµ‖2
L2(0,t;H)(4.7)

+ µ‖∆(I0θµ)‖2
L∞(0,t;H) + ‖∆(I0θµ)‖2

L∞(0,t;H) ≤ C.

Proof. We will prove (4.7) by using Lemma 3.6 and Lemma 3.7. Let us start by observing

that, due to (3.25),

(ε− α)

∫ t

0

∫

Ω

div qµ(s)∆θµ(s)ds(4.8)

= (α− ε)

∫ t

0

∫

Ω

div qµ

(
αdiv q′µ(s) + div qµ(s)

)
ds

= (α− ε)
[α

2
‖div qµ(t)‖2

H −
α

2
‖div q0‖2

H + ‖div qµ‖2
L2(0,t:H)

]

≤ α(ε− α)

2
‖div q0‖2

H ≤ 1

8
‖div q0‖2

H,

as α ≤ ε. Therefore adding (3.39) and (3.41) and taking into account (4.8) we find (4.7). ¤

Lemma 4.3. Let (θ,q, χ) be a solution of Problem (Pαε), with α ≤ ε. Then there exists a

positive constant C, independent of µ, α, and ε, such that for all t ∈ [0, T ]

‖∇(I0θ)‖2
L∞(0,t;H) + ‖θ‖2

L2(0,t;H) + ε‖θ‖2
L∞(0,t;H)(4.9)

+ ε‖∇θ‖2
L∞(0,t;H) + ‖∇θ‖2

L2(0,t;H) + ‖∆(I0θ)‖2
L∞(0,t;H)

+ α‖q‖2
L∞(0,t;H) + ‖q‖2

L2(0,t;H) + ‖div (I0q)‖2
L2(0,t;H)

+ ‖χ‖2
L2(0,t;H) + ε‖χ‖2

L∞(0,t;H) ≤ C.

Proof. Taking the limit as µ ↘ 0 in (4.1) and in (4.7), by (3.50)–(3.52) and by the lower

semicontinuity of the norm we get

‖∇(I0θ)‖2
L∞(0,t;H) + ‖θ‖2

L2(0,t;H) + ε‖θ‖2
L∞(0,t;H)(4.10)

+ ε‖∇θ‖2
L∞(0,t;H) + ‖∇θ‖2

L2(0,t;H) + ‖∆(I0θ)‖2
L∞(0,t;H) ≤ C.

Then multiply (2.9) by q we find

(4.11)
α

2
‖q(t)‖2

H +
1

2
‖q‖2

L2(0,t;H) ≤
α

2
‖q0‖2

H +
1

2
‖∇θ‖2

L2(0,t;H).
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Now multiply (2.10) by χ. We get, thanks to the sublinearity of γ,

(4.12)
ε

2
‖χ(t)‖2

H +
1

2
‖χ‖2

L2(0,t;H) ≤
ε

2
‖χ0‖2

H +
1

2
‖ξµ‖2

L2(0,t;H) ≤ C(1 + ‖θ‖2
L2(0,t;H)).

Finally multiply equation (2.9) by div (I0q) and get

(4.13)
α

2
‖div (I0q)(t)‖2

H +
1

2
‖div (I0q)‖2

L2(0,t;H) ≤
α

2
‖div (I0q0)‖2

H +
1

2
‖∆(I0θ)‖2

L2(0,t;H).

We can conclude collecting (4.10)–(4.13). ¤

5. Convergence to the Stefan problem

In this section we finally prove Theorem 2.2 about the asymptotic behaviour of the solution

of (Pαε) as α, ε ↘ 0. The uniqueness of the solution of Problem (P) follows a standard

argument based on the monotonicity of γ, we refer, e.g., to [21, Ch. II]. Consider now the

convergence result. Let ξαε ∈ L2(Q) such that ξαε ∈ γ(θαε) almost everywhere in Q and

(5.1) εχ′αε + χαε = ξαε a.e. in Q.

Thanks to Lemma 4.3 and to (2.1), we deduce that there exist four functions θ, q, χ, and ξ

such that, possibly for a subsequence, we have

θαε ⇀ θ in L2(0, T ; V ),(5.2)

∆(I0θαε)
∗
⇀ ∆(I0θ) in L∞(0, T ; H)(5.3)

qαε ⇀ q in L2(0, T ;H),(5.4)

I0qαε ⇀ I0q in L2(0, T ;V),(5.5)

αI0qαε
∗
⇀ 0 in L∞(0, T ;V),(5.6)

χαε ⇀ χ in L2(0, T ; H),(5.7)

ξαε ⇀ ξ in L2(0, T ; H),(5.8)

(θµ + χαε)
′ ∗
⇀ (θ + χ)′ in L2(0, T ; V ′).(5.9)

as α and ε goes to zero, with α ≤ ε. Let us note that thanks to (4.9), the sequence εχ′αε

is bounded in L2(Q). Therefore there is a function ζ ∈ L2(Q) such that, at least for a

subsequence, εχ′αε ⇀ ζ in L2(Q). On the other hand from (5.7) we infer that χαε → χ and

χ′αε → χ′ in D ′(Q). Thus εχ′αε → 0 in D ′(Q). Hence by the uniqueness of the limit we

deduce that ζ = 0. The same argument applies to the sequence αqαε, therefore we have that

εχ′αε ⇀ 0 in L2(Q),(5.10)

αq′αε ⇀ 0 in L2(0, T ;H).(5.11)

Taking the limit in (2.8)–(2.11) we get

(θ + χ)′ + Bθ = f in V ′, a.e. in ]0, T [,(5.12)

q = −∇θ a.e. in Q,(5.13)

χ = ξ a.e. in Q,(5.14)
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and we recover the initial condition (2.17). From (5.12) and (5.13) we then deduce (2.15).

It remains to show the Stefan condition (2.16). Let us note that, thanks to (5.1), we have

(5.15)

∫

Q

ξαεθαε =

∫

Q

εχ′αεθαε +

∫

Q

χαεθαε.

Now, using equation (2.8), we can write
∫

Q

εχ′αεθαε =

∫

Q

ε (f − θ′αε − div qαε) θαε(5.16)

=

∫

Q

εfθαε − ε
1

2
‖θαε(t)‖2

H + ε
1

2
‖θ0‖2

H −
∫ t

0
V′〈εBqαε(s), θαε(s)〉Vds

≤
∫

Q

εfθαε + ε
1

2
‖θ0‖2

H −
∫ t

0
V′〈εBqαε(s), θαε(s)〉Vds.

Now, since (5.4) holds, we have that Bqαε ⇀ Bq in L2(0, T ; V ′) and therefore εBqαε → 0

in L2(0, T ; V ′). Thus, thanks to (5.2),

(5.17) lim sup
α,ε↘0
α≤ε

∫

Q

εχ′αεθαε ≤ 0.

On the other hand, using equation (2.8) integrated in time, we have that
∫

Q

χαεθαε =

∫

Q

(θ0 + χ0 + I0f − θαε − div (I0qαε)) θαε(5.18)

=

∫

Q

(θ0 + χ0 + I0f) θαε − ‖θαε‖2
L2(0,T ;H) −

∫ t

0
V ′〈B(I0qαε)(s), θαε(s)〉V ds.

Now observe that from (5.5) and (5.4) it follows that B(I0qαε) ⇀ B(I0q) in L2(0, T ; H) and

that Bqαε ⇀ Bq in L2(0, T ; V ′), therefore by the Aubin-Lions compactness lemma (cf. [10,

p. 58]) we find that B(I0qαε) → B(I0q) in L2(0, T ; V ′). Hence, by (5.2) and (5.12), we find

lim
α,ε↘0
α≤ε

∫

Q

χαεθαε =

∫

Q

(θ0 + χ0 + I0f) θ − ‖θ‖2
L2(0,T ;H) −

∫ t

0
V ′〈B(I0q)(s), θ(s)〉V ds(5.19)

=

∫ t

0
V ′〈χ(s), θ(s)〉V ds =

∫

Q

χθ.

Now collecting (5.18), (5.19), and (5.14), we find

lim
α,ε↘0
α≤ε

∫

Q

ξαεθαε ≤
∫

Q

ξθ =

∫

Q

χθ,

that gives (2.16) (cf. [2, Prop. 2.5, Ch. 2]). By the uniqueness of the solution to Problem

(P), we infer that the entire sequences (θαε,qαε, χαε) converges, therefore Theorem 2.2 is

proved.
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