

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A JAVA IMPLE MENTATION OF COORDINATION
RULES AS ECA RULES

K M Senthil Kumar

June 2003

Technical Report # DIT-03-037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

A Java implementation of Coordination Rules as

ECA Rules

K M SENTHIL KUMAR

DIT – Department of Information and Communication Technology

University of Trento, 38050 Povo, Trento, Italy

 senthil@dit.unitn.it

Abstract: This paper gives an insight in to the design and implementation of the coordination rules as ECA

rules. The language specifications of the ECA rules were designed and the corresponding implementation

of the same using JAVA as been partially done. The paper also hints about the future work in this area

which deals with embedding this code in JXTA, thus enabling to form a P2P layer with JXTA as the back

bone.

1 Introduction

Peer-to-peer (P2P) computing consists of an open-ended network of distributed

computational peers, where each peer can exchange data and services with a set of other

peers called acquaintances. Peers are fully autonomous in choosing their acquaintances.

Moreover we assume that there is no global control in the form of global registry, global

services, or global resource management, nor a global schema or data repository. P2P

offers an evolving architecture where peers come and go, choose whom they deal with,

and enjoy some traditional distributed service with less start-up cost. Since the data

residing in different databases may have semantic inter – dependencies, we allow peers to

specify coordination formulas that explains how the data in one peer must relate to data

in acquaintances. Coordination formulas may also act as soft constraints or guide the

propagation of updates. In addition peers need an acquaintance initialization protocol

where two peers exchange views of their respective databases and agree on levels of

coordination between them. The level of coordination should be dynamic, in the sense

that acquaintances may start with little coordination, strengthen it over time with more

coordination formulas and eventually abandon it when tasks and interests change.

 In such a dynamic setting we cannot assume the existence of a global schema for all

databases in a P2P network, or even those of all acquainted databases. Moreover peers

should be able to establish and evolve acquaintances, preferably with little human

intervention. The Local Relational Model [1] (LRM) was introduced as a data model

specifically designed for P2P applications. LRM assumes that the set of all data in a peer

to peer network consists of local (relational) databases each with a set of acquaintances,

which define the P2P network topology. For each acquaintance link, domain relations

define translations rules between data items and coordination formulas define systematic

dependencies between the two databases. Coordination formulas can be implemented by

coordination rules.

 The main goal of this paper is to design the semantics of the coordination rules and to

implement them using JAVA .This work forms the part of the C2C project [2].This work

will be appended to the work done on Query proceesing in peer to peer network [3].This

paper had been constructed entirely from the thesis work done by Vasiliki Kantere [4].

 The structure of the paper is organized as follows. Section 2 gives a brief introduction

to active databases. Section 3 gives the fundamentals of ECA rules. Section 4 defines the

semantics of the ECA rule language. Section 5 defines the execution semantics of the

rules. Section 6 talks about the underlying architecture and the code structure. Section 7

reports about the conclusions and future work

2 Active Databases

Traditional database management are passive in the sense that commands are executed by

the database (e.g., query, update, delete) as and when requested by the user or application

program. However some situations cannot be effectively modelled by this pattern. As an

example, consider a railway database where data are stored about trains, timetables, seats,

fares and so on, which is accessed by different terminals. In some circumstances it may

be beneficial to add additional coaches to specific trains if the number of spare seats a

month in advance is below a threshold value. Two options are available to the

administrator of a passive database system who is seeking to support this requirement.

One is to add the additional monitoring functionality to all booking programs so that the

preceding situation is checked each time a seat is sold. However, this approach leads to

the semantics of the monitoring task being distributed, replicated, and hidden among

different application programs. The second approach relies on a polling mechanism that

periodically checks the number of seats available. Unlike the first approach, here the

semantics of the application is represented in a single place, but the difficulty stems from

ascertaining the most appropriate polling frequency. If too high there is a cost penalty. If

too low, the reaction may be too late (e.g. the coach is added, but only after several

customers have been turned away).

 Active databases support the preceding application by moving the reactive behaviour

from the application (or polling mechanism) into the DBMS. Active databases are thus

able to monitor and react to specific circumstances of relevance to an application. The

reactive mechanism is both centralized and handled in a timely manner.

 Active databases, as opposed to ‘passive’ ones, are able to recognize specific situations

in the database where they react automatically, without an explicit external request. In

passive databases two kinds of integrity constraints are supported: key constraints, which

restrict some data so that their values are unique and referential constraints, which

require that data references should reference existing data items. These constraints are

checked immediately after a database operation and, in case of violation, they roll back

the transaction where the operation occurs. However, often there is a necessity to support

other kinds of constraints. Such constraints maybe complicated and usually depend on the

type of data stored. Active databases offer a mechanism for the specification and

monitoring of such constraints. An active DBMS provides a mechanism for the

declaration of rules, often referred to as the knowledge model or the rule language, and a

mechanism for the execution of the rules, often referred to as the execution model or rule

execution semantics [6].

 A common approach for the knowledge model uses rules that have up to three

components: an event, a condition, and an action. Most active database systems support

rules with all three of the component described; such a rule is known as an event-

condition-action or ECA rule.

3 ECA Rules

Generally rules are comprised of three parts: and event, a condition and an action. The

event is the happening that causes the rule to fire. Events can be simple or composite.

Composite events are formed from simple ones with the help of an event language. The

latter comprises operators with which events (simple and composite) can be combined.

The condition of the rule checks the state of the databases at the time of when the rule

event happens. A condition is usually expressed as a predicate defined in terms of the

condition clause of the database query or part thereof. In this case, the result of the query

condition determines if the condition holds. Finally, a condition can be a user defined

Boolean function. The action of the rule is the task that is executed when the rule event

occurs and the rule condition holds. The action can involve database operations,

transactions, or user-defined functions.

4 Rule Language

 The basic database notations that are used in the rule language are

Db_Action = Any SQL code (create, delete, update, insert, abort or commit)

Relation_NameJ = Name of the relation in a database J

SOP = { P1, P2, P3…..PN} where P1, P2, P3…..PN are the name of attributes or the

 attribute values of the specific relation

 4.1 Rule

The rules are of two types: rules that consists of all three parts (the condition part is

optional), known as ECA rules(Event-Condition-Action) rules; the second type are rules

with only a condition and an action part, known rules(Condition- Action) or production

rules.[5]

ECA Rules Production Rules

Where Event (E1, E2, E3 ……EN) If Condition

If Condition (C1, C2 ….CK) Then Action

Then Action (A1, A2, A3……..AM)

 The major difference between the two types is that in the first a rule is triggered

because of the occurrence of a specific event, whereas in the second a rule is triggered

when the database reaches a specific state for which it is periodically checked. Thus, the

triggering of the rule in the second case depends solely on the state of the database, rather

than the occurrence of external events. Another difference is that several ECA rules with

different conditions can be declared to have the same event part, whereas for a CA rules a

specific condition can trigger only one rule.

 4.2 Event

An event is something that happens at a point in time. Specifying an event therefore

involves providing a description of the happening that is to be monitored. The nature of

the description and the way in which the event can be detected largely depends on the

source or generator of the event. Possible alternative for the sources are:

• Structural operations, in which case the event is raised by an operation on piece

of structure

• Behaviour invocation, in which case the event is raised by the execution of some

user- defined operation

• Transaction, in which case the event is raised by transaction commands

• Abstract or user-defined, in which case a programming mechanism is used that

allows an application program to signal the occurrence of an event explicitly

• Exception, in which case the event is raised as a result of some exception being

produced

• Clock, in which case the event is raised at some point in time

• External, in which case the event is raised by a happening outside the database.

 Generally, an event expression is either simple or composite. Composite event

expressions are formed by applying the operators of event algebra on simple or

composite events. So generally an event is of the form:

 Event = SE | CE (Simple event or Composite event)

• Simple, in which case the event is raised by a single low-level occurrence that

belongs to one of the categories described in source

• Composite, in which case the event is raised by some combination of simple or

composite events using a range of operators that constitute the event algebra

We define the following set of parameters:

 Definition:

 T = (Sec, Min, Hrs, Day, Weekday, Month, Year)

 where the allowable sets of values for each component of the T tuple are:

 Sec
���������	��
�������

 Min
���������	��
�������

 Hrs
���������	��
��
����

 Day
�����	��
�������

 Weekday
�������	���	�������	 !��"��	��#����	$&%('���)�*,+-��).���/�

 Month
�����	��
�010102�	
��

 Year
�43

 Generally, a simple event SE starts at a time point TS and ends at a time point TE.

Assume that the event happens instantaneously (i.e.) not much of time is consumed by

the occurrence of the event.

 TS – Start of the Event

 TE – End time of the Event TS � TE

 4.2.1 Periodic and Non periodic Events

 The time factor of the events can be expressed in the following way:

 t = (T1, T2, Boolean)

If the value of Boolean is true then it is a periodic Event and if it is false, it is not.

 t = (T1, T2, True)

 The event occurs at T1 and at T1 + N* T2 where N
���

+

 t = (T1, - , False) It is not a periodic event

 The event occurs at T1

If the Boolean value is false and both T1 and T2 are mentioned then it defines a time

interval

 t = (T1, T2, False)

 Denotes a time interval starting at T1 and ending at T2: t
��� � �	�	�
��

Hence a simple event can be denoted as

Simple Event (SE) �

 SE = (T) (Event descriptor) where t = (T1, T2, Boolean)

 Event Descriptor = (Qid, Db_Action, Relation_ NameJ, SOP)

 Where Qid is the Query Id

Hence a composite event can be denoted as

Composite Event (CE) �

A composite event CE is a combination of simple events. This combination is derived by

applying the set of operators of event algebra on simple or other composite events.

The general form of a composite event is:

 CE = SE1 (op1) SE2 (op2)……….SEi(opi)

 Where op i represents the operators of the event algebra.

The operators can be either unary or binary.

Some of the operators defined are:

Table 1: Operators of the event algebra
Operator Type Function Syntax

� t

Binary Logical AND <Event1>� t<Event2>

Ut Binary Logical OR <Event1>Ut<Event2>

!t Unary Logical NOT !t <Event1>

* t Unary
Zero or more

occurrences
 * t <Event1>

+t Unary
One or more

Occurrences
 +t <Event1>

m#t Unary
Maximum number

of occurrences
 m#t <Event1>

m& t Unary
Minimum number

of occurrence
 m& t <Event1>

where t – Time interval

4.3 Condition

 The condition of an ECA rule is a Boolean expression using the operators of the Boolean

algebra i.e. AND, OR and NOT.

 Condition = (Cond)CONTEXT

 Where Cond is any normal Boolean expression .A simple condition is declared by

defining the two operands and the operator. If the operands are strings, only equality and

inequality operands are allowed. The operands of a simple condition are either constant

are variables.

 Where CONTEXT is an identifier
�

{ DBT, BINDE, DBE, DBC}

4.4 Action

The range of tasks that can be performed by an action is specified as its options. Actions

may update the structure of the database or rule set, perform some behaviour invocation

within the database or an external call, inform the user or the system administrator of

some situation, abort a transaction or take some alternative course of action

 Hence action can be best defined as:

Action = Db_Action | SE | CE

5 Execution Semantics

The execution model specifies how a set of rules is treated at runtime. Although the

execution model of a rule system is closely related to aspects of the underlying DBMS,

there are a number of phases in rule evaluation, illustrated in Figure 1 , that transcend

considerations that relate to specific software environments

Figure 1: Principle steps that take during the rule

execution

 SIGNALING TRIGGERING

 EVALUATION

 EXECUTION SCHEDULING

1. The signalling phase refers to the appearance of an event occurrence caused by an

event source

2. The triggering phase takes the events produced thus far, and triggers the

corresponding rules. The association of a rule with its events occurrence forms a

rule instantiation.

3. The evaluation phase evaluated the condition of the triggered rules. The rule

conflict set is formed from all rule instantiations whose conditions are stratified.

4. The scheduling phase indicates how the rule set is processed

5. The execution phase carries out the actions of the chosen rule instantiations

During action execution other events can in turn be signalled that may produce

cascaded rule firing

Event

Occurrences

Triggered

Rules

Evaluated

Rules

Selected

rules

Event

Source

The execution of the rule is in general defined as:

 Exec (Rule) = Seq { Exec [Event (E1, E2……..EN)]

 Exec [Condition (C1, C2….....CK)]

 Exec [Action (A1, A2………AM)]}

 Where C1, C3….CK are parameters instantiated by

 events E1 E2….EN

5.1 Rule

The execution model goes beyond the rule language and describes how the rules are

evaluated at runtime. There are several issues that concern rule execution, as well as

inter-relations among these issues.

 5.1.1 Rule Granularity

 Refers to the issue of determining how often the system runs the rule evaluation

procedure and can be defined at three levels.

Granularity
� ��� �	��+ ' �����	��� � � % '����.� % ��" �	� * �
����,��+-� ��%('����� %���" �	� * �	�

Transaction}

• Continuous: The system checks extremely frequently for the triggering of the

rule. However this issue is relevant only for CA rules and ECA rules with a

periodic event. For other ECA rules there is no point in checking for rules when

no appropriate event has occurred

• Triggered By event: The system checks for the triggering of rule at the time of

database operations.

• Triggered by Transaction :The system checks fro the triggering of rule at the end

of each transaction

 Exec (Rule) = Cont.Exec (Rule, T, P) | TrigByEvent.Exed (Rule, E, P)|

 TrigByTrans.Exec (Rule, Tra, P) where P is the priority

 Where T is the time, P is the priority, and E is the Event, Tra is the transaction

 5.1.2 Rule Evaluation

 Rule evaluation is either instance or set oriented. Instance oriented allows a one-to-

one correspondence between the rules and events. In this a rule is triggered for each

instance of an event. Set oriented allows a many to one correspondence between events

and rule. In this a rule is triggered for a set of events. Not both of these techniques can be

applied in all cases. It is not possible to instantiate a rule for a set of instances when the

rule granularity is a simple database operation, this means that the system responds by

triggering a rule after each simple database operation that matches the event part of the

rule. For a set oriented execution, the net effect of the set of event occurrences is usually

considered in order to trigger a rule. For example, if a tuple in a relational database is

inserted and then deleted, the net effect is that there is no event occurrence at all. If a

tuple is inserted and then updated, the net effect is an insertion of the updated tuple.

 Table 1: Execution Semantics of an ECA Rule

where { E1, E2 …EN} --- Set of Events.

Granularity

�

Continuous Trig by Event Trig By Transaction

Instance Cont.Exec(Rule

,T, P)

TrigByEvent.Exed(Rule

, E, P)

TrigByTrans.Exec(Rule ,

Tra, P)

Set Cont.Exec(Rule

,T ,{ E1, E2

…EN} , P)

TrigByEvent.Exed(Rule

, { E1, E2 …EN} , P)

TrigByTrans.Exec(Rule ,

Tra , { E1, E2 …EN} , P)

 Usually when the system checks for rules that should be triggered more than one rule

is eligible for firing. This can happen because an event occurrence matches the event part

of the several rules .When a conflict arises as to which rule to fire, the simplest solution is

to choose a rule randomly. The second approach is to prioritize the set of rules that are

triggered by the same event. Rule priorities can be assigned during rule creation time or

at runtime.

5.2 Event

When detecting composite events, there may be several event occurrences (of the same

event type) that could be used to form a composite event. Suppose that we have to

evaluate the composite event CE = (E1<E2) (where ‘<’ stands for followed by) and the

event instances E11 < E12 < E21. The four possible consumption policies [5] used to

evaluate the CE:

• Recent: The policy considers only the most recent occurrences of events. Thus the

instance of CE produced is: CE1= (E12 < E21).

• Chronicle: The policy considers only the earliest occurrences. Thus the instance

of CE produced is: CE1= (E11 < E21).

• Cumulative: The policy accumulates all the instances of the simple events that

concern the event of the rule until the instance of the latter can be formed. Thus

two instances of CE would be produced: CE1= (E11 < E21). and CE2 = (E12< E21)

• Continuous: This policy starts the composition of a new composite event instance

whenever a simple event instance. In this case one instance of CE would occur

that would contain the parameters of both E11, E12 as well as of E21.

 The role of the event indicates whether event must always be given for active rules, or

whether the explicit naming of the event is unnecessary. If the role is optional, then when

no event is specified condition-action rules are supported, which have significantly

different functionality and implementations from event-condition-action (ECA) rules. If

the role is none then events cannot be specified, and all rules are condition-action rules. If

the role is mandatory then only ECA rules are supported.

5.3 Condition

The role of a condition indicates whether it must be given. In ECA-rules, the condition is

generally optional. When no condition is given for an ECA rule or where the role is none,

an event-action rule results. IN systems in which both the event and the condition are

optional, it is always the case that at least one is given.

 Role
������* ��"�* +��	%� ������+ '-�	��*��-�	3 �	��� �

 The context indicates the setting in which the condition is evaluated. The different

components of the rule are not evaluated in isolation from the database or from each

other, and further more they may not be evaluated in quick succession. As a result the

processing of the single rule can potentially be associated with at least four different

database states:

 Context
�����	�

T, BindE, DBE, DBC}

 DBT: database at the start of the current transaction

 DBE: database when the event took place

 DBC: database when the condition is evaluated

 BindE: Binding associated with the event.

 Active rule systems may support facilities within the condition of a rule that allow it to

access zero or more of the states DBT, DBE, and DBC and may also provide access to

bindings associated with the event. The availability of information to different

components of a rule is illustrated in Figure 2

Figure 2: The context within which a rule is

processed
 BindE BindC

 Event Condition Action

5.4 Action

The context of the action is similar to that of the condition, and indicates the information

that is available to the action as illustrated by Figure 2. It is sometimes possible for

information to be passed from the condition of a rule to its action as DBE or BindC

 Action
��� �	�

T, BindE, BindC, DBE, DBC, DBA}

 DBT: database at the start of the current transaction

 DBE: database when the event took place

 DBC: database when the condition is evaluated

 DBA: database when the action is evaluated

 BindE: Binding associated with the event

 BindC: Binding associated with the condition

DBE DBT DBC DBA

6 Architecture

The P2P Layer constructed using JXTA take care of all the communication overheads

required for establishing peers, and carrying out any future transmission of messages of

all kinds between the peers. JXTA designs a set of protocols designated mainly for

transporting and addressing space support on P2P networks. It also provides mechanism

for peers and other basic resources discovery, gives well developed tools for metadata

representation, communication links establishment, establishing acquaintances and so on.

New results are being published in relation to the design of algorithms related to

establishing and abolishing acquaintances in a Peer to Peer database network [7]. In other

words, JXTA gives an instrument suite for P2P applications development of arbitrary

nature.

Figure 3: Architecture

 Network

 Input Event Query propagation

Input Event Queue

Local DB

P2P JXTA LAYER

User

Coordination

Rules as ECA

rules

There is an input Event Queue in which any events that is pertaining to the database at

that node is added. These events can be either initiated by the user at that node or the

event could have come from the network. The P2P JXTA layer decides whether the query

coming from the network need to be evaluated at the particular database or not. So the

input event queue contains the events that have to occur on that database. When these

events are executed by the DBMS at the database, the rules that get triggered by the

execution of the events are evaluated. The actions that are to be executed are in turn sent

to the above P2P JXTA layer. The layer again finds where exactly these actions have to

be executed and propagates them to their respective destinations. If the actions are to be

performed on the same database then they are again placed in the input event queue.

6.1 Procedure for Rule Execution

The code structure follows the below mentioned algorithm for the execution of the ECA

rules. Initially all the events are queued up in the event queue and all the ECA rules are

also stored for the database. Then the first event from the queue is taken and the

corresponding ECA rule which will be triggered on its execution is found out. Once the

corresponding rule or rules are found, the execution of the rule takes place by evaluating

the condition first. Then if the condition evaluates to true then the corresponding actions

are sent to the P2P JXTA layer.

Exec(Rule, Granularity, Evaluation, Priority)

{

 exec= true

 match1=false

 while (exec)

 {

 if (notempty(input _eventqueue))

 {

 event1 = choose_event(input_event queue)

 while(not matched or end_of_ECA rules)

 match1= match(event1 , ECA rule)

 if(match1)

 {

 if(rule_conditon)

 do_rule_action()

 exec=false;

 }

 }

 }

}

1. Create rules and insert them into the rule queue

2. Create events and insert them into the event queue

3. Take the first event and go through all the rules and see whether rule.event =

event

4. Once the event is matched the entire rule is obtained from the Queue

5. Then the rule condition is evaluated

6. Once the condition evaluates to true the rule action is executed

7. Reduce the event queue size by one by removing the first even

8. Go to step three or exit

The codes are given in Appendix. The program has been written in JAVA as in future

this code can be easily embedded on a JXTA platform

7 Conclusions

The semantics of the rule language for ECA rules had been initially proposed in the thesis

report by Vasiliki Kantare. The language constitutes one of the first attempts to define

ECA rule languages where event arise in multiple databases, and conditions and actions

need to be evaluated with respect to several databases. The work was also one of the first

to focus on peer-to –peer computing, where coordination rules among databases are

defined dynamically at run time by end users, instead of them being defined at design

time by database engineers. The semantics of the language defined, needed further

refinement and alternative implementations of the rule language was necessary to

minimize communication overheads between the peers.

 The work that I have done is further refinement of the semantics of the language. The

redefining of the language of ECA rules is mostly suited for coding it in Java and later

embedding the code in JXTA. JXTA acts as the backbone for the development of the P2P

layer.

 Regarding the implementation of the ECA rules, the code that I have written now

stores the rules and events and finds the corresponding rules matching the events that

have occurred.

 This is a very preliminary work. This work can be further extrapolated for complex

events and can be improved by including the evaluation of the condition.

Acknowledgements

I would like to thank Prof Fausto Giunchiglia for introducing me to ECA rules and

guiding me through out the project. I would also thank Ilya Zaihrayeu for helping me

with the code.

References
[1] P A BERNSTEIN, F.GIUNCHIGLIA, A KEMENTSIETSIDIS, J. MYLOPOLOUS, L SERAFINI, I

ZAIHRAYEU. Data Management for Peer to Peer computing: A vision WebDB02 –Fifth International Workshop on

the Web and Databases, 2002.

[2] FAUSTO GIUNCHIGLIA. www.dit.unitn.it/~fausto – C2C Project

[3] I. ZAIHRAYEU, Query answering in Peer to Peer Database Networks, Technical Report

[4] VASILIKI KANTERE, A rule mechanism for Peer to Peer Data Management, Master Thesis report, 2002

[5] CHAKRAVARTHY, S., KRISHNAPRASAD, V., ANWAR, E., KIM, S.K. 1994 Composite events for Active

 Databases: Semantics, contexts and detection. In Proceeding of the Twentieth International Conference on Very

Large Databases, J. Bocca, M. Jarke, and C .Zanialo, Eds., Morgan-Kaufmann, San Mateo, Ca, 606-617

[6] N. PATON, O. DIAZ, Active Database Systems, ACM Computing Surveys, Vol 31, No.1 , March 1999

[7] VASILIKI KANTERE, ILUJU KIRINGA,J. MYLOPOLOUS, Cordinating Peer Databases Using ECA Rules,

 Department of Computer Science, University of Toronto, School of Information Technology and Engineering,

 University of Ottawa

[8] FAUSTO GIUNCHIGLIA. “Contextual reasoning” . Epistemologia, special issue on “ I Linguaggi e le macchine” .

Vol. XVI, pages 45-364, Tilgher-Genova, Italy, 1993.

[9] FAUSTO GIUNCHIGLIA, CHIARA GHIDINI “Local Models Semantics, or Contextual Reasoning = Locality +
Compatibility” . KR’98 –Sixth International Conference on Principles of Knowledge Representation and Reasoning.
Morgan-Kauffman, 1998. Long version: Ghidini, C., and Giunchiglia, F. “Local Models Semantics, or Contextual
Reasoning = Locality + Compatibility” . Artificial Intelligence. 127(3):221-259, 2001.

[10] ANNA PERINI, ANGELO SUSI, FAUSTO GIUNCHIGLIA. “Designing Coordination among Human and
Software Agents” . SEKE'02 –Fourteenth International Conference on Software Engineering and Knowledge
Engineering, 2002.

Appendix

Event.java

package project;

class Event {

 String Db_Action;

 String Rel_Name;

 String Time;

 void Set(String Dbname, String Rname, String t)

 {

 Db_Action = Dbname;

 Rel_Name = Rname;

 Time = t;

 }//End of the function Set

 }//End of the Class Event

Execution.java

package project;

import java.util.Vector;

import java.io.*;

public class Execution {

 public static void main (String args [])

 throws IOException

 {

 BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

 String str [] = new String[100];

 String choice,name,relname,aname,arelname;

 String time,atime;

while(true){

 /*for(int i=0;i<=60;i++)

 System.out.println();*/

 System.out.println("Enter a choice \n");

 System.out.println("1 Enter an Event \n");

 System.out.println("2 Enter a Rule \n");

 System.out.println("3 List the Events \n");

 System.out.println("4 List the Rules \n");

 System.out.println("5 Execute \n");

 System.out.println("6 Quit \n");

 System.out.println("ENTER UR CHOICE : \n");

 choice = br.readLine();

 if(choice.equals("1"))

 {

 System.out.println("\n Enter the name of the event :\n");

 name= br.readLine();

 System.out.println("\n Enter the name of the relation:\n");

 relname = br.readLine();

 System.out.println("\n Enter the time :\n");

 time = br.readLine();

 Event Newevent = new Event();

 Newevent.Set(name,relname,time);

 Queue.registerEvent(Newevent);

 }

 if(choice.equals("2"))

 {

 System.out.println("\n Enter the name of the event :\n");

 name= br.readLine();

 System.out.println("\n Enter the name of the relation in the

event:\n");

 relname = br.readLine();

 /* System.out.println("\n Enter the time of the event:\n");

 time = br.readLine();*/

 System.out.println("\n Enter the name of the action :\n");

 aname= br.readLine();

 System.out.println("\n Enter the name of the relation in the

action:\n");

 arelname = br.readLine();

 System.out.println("\n Enter the time of the action:\n");

 atime = br.readLine();

 Rule Newevent = new Rule();

 Newevent.Set(name,relname,aname,arelname,atime);

 Queue.registerRule(Newevent);

 }

 if(choice.equals("3"))

 Queue.GetAllEvent();

 if(choice.equals("4"))

 Queue.GetAllRule();

 if(choice.equals("5"))

 {

 System.out.println("Executing..............\n");

 Queue.Execevent();

 }

 if(choice.equals("6"))

 {

 System.out.println("OKFYNE");

 break;

 }

 }

 }

 }

Queue.java

package project;

import java.util.Vector;

public class Queue {

 public static Vector EventQ = new Vector(10,10);

 public static Vector RuleQ = new Vector(10,10);

 static int countE=0, countR =0;

 public static int registerEvent(Event Newevent)

 {

 EventQ.addElement(Newevent);

 countE++;

 return EventQ.capacity();

 }

 public static int registerRule(Rule Newrule)

 {

 RuleQ.addElement(Newrule);

 countR++;

 return RuleQ.capacity();

 }

 public static void GetAllEvent()

 {

 Event getevent = new Event();

 for(int i=0; i<countE;i++)

 {

 getevent = (Event) EventQ.get(i);

 System.out.println("Event" + i +":");

 System.out.println(" " + getevent.Db_Action +"," +

getevent.Rel_Name + "," + getevent.Time);

 }

 }

 public static void GetAllRule()

 {

 Rule getrule = new Rule();

 for(int j=0; j<countR;j++)

 {

 getrule = (Rule) RuleQ.get(j);

 System.out.println("Rule" + j +":");

 System.out.println(" " + getrule.E_Db_Action +"," +

getrule.E_Rel_Name + "," + getrule.A_Db_Action + "," +

getrule.A_Rel_Name +"," + getrule.A_time);

 }

 }

 public static void Execevent()

 {

 Event Trigevent = new Event();

 Trigevent = (Event) EventQ.firstElement();

 for (int i =0; i <countR; i++)

 {

 Rule Checkrule = (Rule) RuleQ.get(i);

 if((Trigevent.Db_Action.equals(Checkrule.E_Db_Action))

 && (Trigevent.Rel_Name.equals(Checkrule.E_Rel_Name))

)

 {

 System.out.println("Rule found for the event \n");

 System.out.println("Rule" + i +":");

 System.out.println(" " + Checkrule.E_Db_Action +"," +

Checkrule.E_Rel_Name + "," + Checkrule.A_Db_Action + "," +

Checkrule.A_Rel_Name +"," + Checkrule.A_time);

 if((ExecCondition(Checkrule)))

 ExecAction(Checkrule);

 }//End of if loop

 }//End of for loop

 System.out.println("Removing the event from the EventQ

\n");

 EventQ.remove(0); //remove the event as it is done with

 System.out.println("Reducing the size of EventQ by 1\n");

 EventQ.trimToSize(); //reduce the size of the vector by

1

 countE--;

 }//End of the method as Execevent

 public static boolean ExecCondition(Rule Execrule)

 {

 //do the necessary condition check

 System.out.println("Checking for condition.....\n");

 return true;

 }

 public static void ExecAction(Rule Execrule)

 {

 //do the necessary action

 System.out.println("Doing the necessary action \n");

 return;

 }

 }//End of class Queue

Rule.java

package project;

class Rule {

 String E_Db_Action; /*Events are stored*/

 String E_Rel_Name;

 //The condition is also stored

 String A_Db_Action; /*Actions Are Stored*/

 String A_Rel_Name;

 String A_time;

 void Set(String Edbname, String Ername,String Adbname, String Arname,

 String Atime)

 {

 E_Db_Action = Edbname;

 E_Rel_Name = Ername;

 A_Db_Action = Adbname;

 A_Rel_Name = Arname;

 A_time = Atime;

 }//End of the function set

}//End of Class Rule

