

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

IMPLEMENTING DATABASE COORDINATION
IN P2P NETWORKS

Fausto Giunchiglia and Ilya Zaihrayeu

November 2003

Technical Report # DIT-03-035

Also: in the proceedings of the 2nd Workshop on Semantics in Peer-to-
Peer and Grid Computing (SemPGrid'04), 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Implementing Database Coordination in P2P

Networks

Fausto Giunchiglia and Ilya Zaihrayeu
Dept. of Information and Communication Technology

University of Trento
38050, Povo, Trento, Italy
{fausto, ilya}@dit.unitn.it

Abstract. We are interested in the interaction of databases in Peer-to-
Peer (P2P) networks. In this paper we propose a new solution for P2P
databases, that we call database coordination. We see coordination as
managing semantic interdependencies among databases at runtime. We
propose a data coordination model where the notions of Interest Groups
and Acquaintances play the most crucial role. Interest groups support
the formation of peers according to data models they have in common;
and acquaintances allow for peers inter-operation. Finally, we present
an architecture supporting database coordination and show how it is
implemented on top of JXTA.

1 Introduction

Peer-to-Peer is a networking model where all parties, called peers (or nodes),
have equivalent capabilities in providing other parties with data and/or ser-
vices. To cope with these tasks, peers cooperate in a decentralized, distributed
manner. P2P paradigms have been successfully implemented in a number of
different domains. For instance, ICQ1 allows its users to exchange messages
in a synchronous way; Kazaa2, the largest P2P file sharing application, allows
for uploads/downloads of music, video, program and other files among peers;
DataGrid3 is a European project aimed on developing a distributed computing
infrastructure, where peers can contribute their processing power and storage ca-
pacities to provide huge processing and storage resources to individuals. Groove4

allows for the exploitation of human presence at the edges of Internet, namely
the creation of a secure workspace where people can communicate with each
other, share, discuss and jointly edit files, conduct conferences, and so on.

Despite the fact that P2P networks have a wide range of applications, there
is still a niche for potentially successful application domains which have not
been yet (largely) explored. One of them, involving both P2P and database
technologies, is called P2P databases. The key idea is to support databases in
1 http://web.icq.com
2 http://www.kazaa.com
3 http://www.eu-datagrid.org
4 http://www.groove.net

their inter-operation with a modality coherent with the P2P nature. To fulfill
this task, each DB peer should be able to share (a part of) its database, send
queries to the network, answer and effectively route queries, coming from the
network.

Not much work has been done so far on P2P databases. The University of
Washington is working on a project called Piazza [1]. Piazza allows one to define
semantic mappings between pairs of database peers (or among small subsets
of peers) by means of mediated schemas, and proposes techniques for using
these mappings for query answering. The University of Toronto is developing
a project called Hyperion, which aims at the definition of a peer-to-peer data
management architecture and the study of viable data integration, exchange
and mapping mechanisms for the P2P environment [2]. A project called PeerDB
is being developed at the University of Singapore. PeerDB is a P2P system
for distributed data sharing. It is focused mostly on the development of the
architecture that would support P2P database management, as well as query
processing, mainly assisted by agents [3]. Some work on this topic, based on the
definition of a new theoretical framework called “Local Relational Model”, has
also been done at the University of Trento [4].

We propose a new solution to P2P databases, that we call database coordina-
tion. We see coordination as the ability of peers to effectively manage, at runtime,
semantic interdependencies among databases in a decentralized, distributed and
collaborative manner. In a dynamic, heterogeneous P2P environment, solutions,
relying on centralized query answering paradigms (as in data integration [5]), no
longer apply. Some relevant ideas about database coordination are discussed in
[6]. Our goal in this paper is to show how these ideas can be implemented inside
a concrete architecture, built on top of JXTA [7]. In this paper we concentrate
only on query answering. In order to know how updates can be supported in a
P2P database network see [8].

This paper is organized as follows. Section 2 introduces the four basic ar-
chitectural notions of our model. Section 3 explains how these notions can be
implemented in JXTA. Section 4 discusses the logical architecture that we pro-
pose. Finally, Section 5 gives the conclusions.

2 A model for data coordination

We consider the notion of a peer as primitive, and take it to be any device on a
network. Each participating peer supplies a source database with its schema, or
provide just the schema. In the latter case a peer acts as a mediator in the tran-
sitive propagation of queries and query results. Peers are largely autonomous, in
particular, in which data they store, in how they describe the data in a schema,
and in which other peers they communicate with. We define data coordination
in terms of four basic notions. They are: Interest Groups, Acquaintances, Corre-
spondence Rules and Coordination Rules.

2.1 Interest Groups

In most cases, peers know very little about the topics other peers are able to
answer queries about. Intuitively, “Hotels in Italy”, “Art collections” are all
possible topics. A topic can be formalized as a set of keywords, a generic query
schema, or as an ontology. An Interest Group (or a Peer Group) is a group of
peers able to answer queries about a certain topic. Instead of sending a query
to single peers, a node sends it to one or more interest groups whose topics are
relevant to the query. We suppose that queries are also associated with a topic,
which can be defined by the user or by the system itself. Thus, a group topic
must be general enough to capture a wide range of related queries on one hand,
and specific enough to allow for more relevant query answers on the other.

Interest groups are used to compute, for any given input query, a Query
Scope (QS) – a set of nodes in a peer group whose schemas can be used to
answer a particular query. This allows us to reduce the number of messages in
the system and to collect meaningful answers. Each group has a Group Manager
(GM), a node that computes query scopes. For query scope computation we
partially adopt techniques used in data integration systems, namely Local-As-
View (LAV) and Global-As-View (GAV) [5]. Central role is given to the notion
of a Global Schema (GS) which is an integrated view of the set of local schemas.
Queries are posed against GS and, according to the mappings between the local
schemas and GS, are reformulated with respect to the local schemas. There
are two basic ways to define these mappings. If the local schemas are defined in
terms of GS then this is the LAV approach. If GS is defined in terms of the local
sources then it is GAV . In GAV , query reformulation tasks are rather simple,
but if a source changes, or a new one is added, then GS needs to be reconsidered.
In LAV , GS does not need to be changed when there is a change in local sources;
instead, only the mappings from GS to a particular local schema are affected.
A major drawback of LAV is that query reformulation is rather complex [9].

A group manager maintains both GS and the set of mappings from GS to
the local schemas of nodes in the group with the only purpose to compute nodes
to be included into QS. Mappings are expressed as conjunctive queries without
comparison predicates [5]. We omit comparison predicates because participating
databases may have different domains to represent similar concepts (e.g. prices
are in euros in one database and in dollars in another), and therefore a mapping
function is required to compare values from different domains. To cope with this
problem we use coordination rules and correspondence rules as described below
in this section.

The Query Scope computation works as follows. A user submits a query Qi,
which is formulated w.r.t. local schema lsi of some node. This node sends it to
GM with a request to compute QS. In its turn, GM reformulates Qi to QGS

which is now formulated w.r.t. GS. In order to do this, GM uses the mappings
for schema lsi. Note, that now we treat the mappings as being GAV (i.e. as if lsi

were a global schema and GS were a local one) and therefore query reformulation
is easy. Given QGS , GS and the set of mappings, GM computes QS for Qi. To
fulfil this task, we partially reuse the bucket algorithm [9], which was developed

as part of the Information Manifold System [10]. In particular, we do not proceed
to the most expensive part of the algorithm, where query containment check and
reformulation is done (and therefore we avoid the query reformulation complexity
in LAV); and restrict to the part where relevant mappings (and therefore nodes)
are defined.

2.2 Acquaintances

Knowing QS is still not enough for a resultful query answering. Acquaintances
are nodes a node knows about. Moreover, there is a further request that a node
must know how to translate an input query into a specific query, formulated
with respect to the database of an acquainted node. We will call this specific
query an acquaintance query. A node is able to propagate those queries to an
acquaintance, which are equal or contained in the acquaintance query of that
acquaintance. A node must also know how to translate backward query results
coming from an acquaintance with respect to its local schema. The notion of
the acquaintance is not symmetric. The fact that one node is an acquaintance
of another does not necessarily mean that the vice versa holds. We define the
syntax of acquaintance queries in the form of conjunctive queries. Conjunctive
queries can express select-project-join queries. Consider the following example.

Example 1. Think about three nodes A, B and C. Let us suppose that A has a
database that stores data about pieces of art; B stores information on paintings,
and C keeps data on sculpture works. All three databases have only one relation,
shown below:

A : Art(AiD, Name, Y ear, Author, Desc);
B : Paint(PiD, T itle, Century, Painter, Notes);
C : Sculpt(SiD, Name, Y ear, Description);

It is easy to see similarities between these schemas. Now, imagine that node
B is an acquaintance of node A with respect to an acquaintance query QA→B:

QA→B(N, Y, A, D) : −Art(AiD, N, Y, A, D),

were N, Y, A, D stand for attributes Name, Y ear, etc. Furthermore, A is ac-
quainted also with C with respect to query QA→C :

QA→C(N, Y, D) : −Art(AiD, N, Y, A, D)

Note, that in QA→C the Author attribute is absent. This is motivated by the
fact that in C : Sculpt an analogous concept is absent, and therefore A can not
ask queries to C about the author of a sculpture.

An acquaintance query is conceptually different from the topic associated
with an interest group. Interest group topics are supposed to be rather general

and capture an approximated domain of the data stored at all peers in the
group. An acquaintance query is very specific and dependent on the semantic
interdependencies between the local schemas of two nodes.

2.3 Correspondence Rules

In most cases, participating databases are semantically heterogeneous, namely,
they represent the same concepts differently [11, 12]. To address this problem
we introduce the notion of correspondence rules. A correspondence rule is a pair
where the first element is from one database, and the second is from another. We
need to create correspondences between relations, attributes and values. Each
acquaintance is associated with one or more correspondence rules. They explain
how to translate queries to be sent to and query results received from a particular
acquaintance. Consider the example below:

Example 2. Recall the relations of A, B, C. Correspondence rules associated
with acquaintance B of A might include the following correspondences:

CorrA→B
1 A:Art → B:Paint;

CorrA→B
2 Art:Year → Paint:Century;

CorrA→B
3 Value(Paint:Century) = Int(Value(Art:Year)/100) + 1;

CorrB→A
1 Paint:Century → Art:Year;

CorrB→A
2 Value(Art:Year) = Value(Paint:Century)*100 - 50;

Rules of the form CorrA→B
i are used for query propagation, namely for

translation of concepts in A into the corresponding concepts in B. Rules of the
form CorrB→A

j are used for backward translation of query results coming from B

to A. In particular, CorrA→B
1 defines the correspondence between relation names;

CorrA→B
2 shows how attribute names are related. CorrA→B

3 specifies how the
value of the year attribute is translated into the value of the corresponding
century. While CorrB→A

1 is a backward attribute names correspondence; and
CorrB→A

2 is an approximated translation of century into the year value (e.g. the
20th century gives year 1950).

2.4 Coordination Rules

Each acquaintance is associated with a set of coordination rules. Coordination
rules specify under which condition to propagate a query to a specific acquain-
tance. It is a complementary mechanism to query scopes, intended to prune
irrelevant nodes which might be contained in QS. Irrelevant nodes might be
added to a query scope due to the fact that we do not proceed to the second
phase of the bucket algorithm or just because the domains of some databases in
QS are out of the scope of the query.

We implement coordination rules similarly to how Event-Condition-Action
(ECA) rules are implemented in active database systems [13]. Some papers

discussing work on coordination rules are [6, 14, 15]. An Event can be a ba-
sic database manipulation operation as select, insert, update or delete. Since we
are focused on query answering, we consider only select events. One event can
trigger several coordination rules of several acquaintances. The Condition part
can reference a certain property of a query, such as which items are referenced
and what values they are given in the WHERE clause. By default, the condition
contains an item that verifies whether a given query is contained in or equal
to the acquaintance query of a particular acquaintance. The Action part usu-
ally consists of activating the correspondence rules of a given acquaintance for
translation, followed by propagation of a particular query to this acquaintance.
Correspondence rules may also be called from the Condition part to translate
data, where necessary. Consider the example below:

Example 3. Recall the databases A, B and C in Example 1. Let us enrich the
scenario by restricting the contents of databases B and C. Now, the particularity
of B is that it stores only data about ancient paintings, which come from the
middle of the 16th century or earlier. In its turn, C stores only recent sculpture
arts, which were produced after 1900 AC. A keeps data about both ancient and
modern art. Below are simple examples of coordination rules set up at A for
acquaintances B and C:

CRA→B
1 (Q)

Event: SELECT from Art
Condition: (Q ⊆ QA→B) ∧ (”painting” ⊆ Desc) ∧ (Year ≤ CorrB→A

2 (16))
Action: Apply CorrA→B and propagate to B

CRA→C
2 (Q)

Event: SELECT from Art
Condition: (Q ⊆ QA→C) ∧ (”sculpture” ⊆ Desc) ∧ (Year ≥ 1900)
Action: Apply CorrA→C and propagate to C

Coordination rule CRA→B
1 (Q) is triggered when there is a select event

in A:Art. First, the Condition part checks whether this query is contained
in the acquaintance query for B. If the word "painting" is found in the string
assigned for the Description attribute, and the year is less or equal than the one,
corresponding to the 16th century (here we use correspondence rule CorrB→A

2

for translation) – then the condition is true. And, if the condition is true,
then the query is translated, applying the correspondence rules of B for forward
translation, and propagated to B. CRA→C

2 (Q) works analogously. A query to
A:Art triggers both coordination rules. But, depending on the year and the kind
of the piece of art being searched for, the query is propagated either to B or to
C, or is not propagated at all.

Coordination rules are the main mechanism for the transitive propagation
of queries through a chain of nodes. At each node, an incoming query may
trigger one or more coordination rules that can lead to consequent propagation.

In practice, coordination rules can be implemented as triggers, if the database
management system supports them. Otherwise they can be implemented in the
P2P software, as it is described in section 4.

2.5 Database coordination

Let us see how the four basic notions discussed above allow us to implement
database coordination. Interest groups allow us to gather peers according to
some particular topic, thus increasing the relevance of query answers. Acquain-
tances are links between peers, parameterized by the acquaintance queries. For
any given user query and a node, they provide a set of propagation paths from
that node to other nodes in the interest group. Correspondence rules ensure
proper information flow along these paths, avoiding distortion and/or loss of
data. Coordination rules define query propagation policies along these paths.
Finally, group managers allow us to restrict query propagation to the most rel-
evant nodes (with respect to a query) by defining query scopes.

All these notions are used in a query propagation algorithm. Its main idea is
that, given a query and a query scope, a node tries to propagate the query to all
its acquaintances from the query scope in accordance with the coordination and
correspondence rules. The group manager of a given interest group determines
when a query propagation is actually complete. To do this, each node reports to
GM which acquaintances it propagated a query to. GM keeps this information
and starts counting these nodes as boundary in the query propagation. If a
boundary node propagates further, it is no longer considered as a boundary. If
no propagation took place from a boundary node, then it sends to GM a ‘‘no
propagation acknowledgement’’. A query propagation is said to be complete,
when ‘‘no propagation acknowledgements’’ are received from all boundary
nodes. When this happens, GM reports this fact to the node which asked to
compute a query scope.

3 Implementing data coordination in JXTA

We concentrate on the implementation of peers, interest groups and acquain-
tances. We do not consider coordination rules and correspondence rules, which
must be implemented in the application software.

Let us briefly describe the key JXTA notions. JXTA peers are devices which
implement one or more JXTA protocols. JXTA peers allow their users to pro-
vide services for other peers and consume services provided by other peers. Peer
Groups is the central concept to all aspects of the JXTA platform. A JXTA peer
group is a collection of peers which agree on providing a common set of services.
Peer groups form a hierarchical parent-child relationship, where each group has
a single parent. JXTA protocols describe how peers may publish, discover, join,
and monitor peer groups, but they do not dictate when or why peer groups
are created. Services are the main underlying mechanisms used to implement

peer groups. They define the functionalities, the peers of a given group pos-
sess. Services fall into two categories: peer services and peer group services. The
core services include: Discovery Service, Membership Service and Pipe Service.
The Discovery Service allows peers to locate and publish information about the
network resources. The Membership Service is used by current members of a
peer group to reject or accept a new group membership application. The Pipe
Service allows peers to create communication links (pipes) with nodes from the
same group. New peer groups may include (a subset of) the core services as well
as custom services. Custom services allow for the creation of peer groups which
will provide their peers with desirable functionality. Pipes are the main transport
mechanisms, available through the Pipe Service. Pipes are used by peers to send
messages from one to another. The pipe endpoints are referred as the input pipe
(the receiving end) and as the output pipe (the sending end). Pipe endpoints
correspond to available peer network interfaces (e.g., TCP port and IP address).
Using the same pipe advertisement two nodes can create input pipe at one end
and output pipe at another, thus making unidirectional pipe connection. Ad-
vertisements are the means by which peers learn about network resources, such
as peers, peer groups, pipes, and services. Advertisements are language-neutral
meta-data structures formed as XML documents. Peers publish advertisements
to announce the resources or services they provide.

We implement peers as JXTA peers. We extend the standard JXTA peer
advertisement to encapsulate the schema information of a peer. Once a peer
advertisement is located, a node extracts the database schema of a particular
node, and matches it with its local database schema [16, 12]. The matching re-
sults show how the elements (e.g., relations, attributes) of one schema correspond
to the elements of another. Its purpose is to enable the system (probably with
the help of the user) to build up the acquaintance query, correspondence rules
and coordination rules. Then, the two nodes exchange pipe advertisements, and
create input and output pipes. At this moment, peers are said to be acquainted.

In order to implement interest groups we encode database related function-
alities into a set of custom services a JXTA group will provide. We call these
custom services as DB-related services. We need several DB-related services. We
classify them into two categories: node-level services and group-level services (see
Figure 1). One example of node-level service is the service which is responsible
for handling of queries and query results, coming from the network. When ac-
tivated, this service listens to the input pipe endpoints of known nodes. Once
received a query message, the service parses it and activates query elevation
procedure. If the service receives query results, then it calls a procedure for the
translation, and either propagates them further or reports them to the user.

One example of group-level service is the Screening service, obtained by mod-
ifying the JXTA Membership Service. The objective of this service is to support
a proper constitution of an interest group with respect to its topic. A peer willing
to join a peer group, first locates a current member, and then applies for the
membership, providing its schema information as credentials. The application to
join is accepted or rejected by a collective set of current members. In particular,

Fig. 1. Classification of DB-related services

GM checks up to what extend the local schema of the applicant can be expressed
by the global schema of the group. Another group-level service provides a peer
with the GM functionality. We encode information about the input pipe of GM
into the set of services of a given group. Nodes use this information to contact
directly GM for sending query scope requests, for instance. We also extend the
standard JXTA peer group advertisement to include the group topic informa-
tion. We build the DB-related services on top of the core services provided by
JXTA. As a consequence, the implementation of the basic P2P functionality
(e.g., discovery, pipes) is already given.

4 The logical architecture

We describe the logical architecture at two levels of detail: the structure of a
node in a P2P database network; and the second level, which shows how the
four basic notions are implemented in JXTA.

Consider Figure 2. A node consists of P2P Layer, a Local Database (LDB)
and a Database Schema (DBS). DBS describes a shared part of LDB. The P2P
Layer consists of User Interface (UI), Query Manager (QM), JXTA Layer and
Wrapper. QM processes both user queries and queries coming from other nodes.
It is also responsible for query results processing which come both from LDB
and the network, as well as for propagating them to the network. The JXTA
Layer is responsible for all node’s activities on the network, such as discovering
of new nodes and interest groups, joining and leaving groups, communication
with group managers, sending and receiving queries and query results, and so
on.

Arrows between UI and QM as well as arrows between Wrapper, JXTA
Layer and QM have the same graphical notation bacause they represent pro-
cedure calls between different modules. Bidirectional arrow from JXTA Layer
to a P2P database network has a different notation since it represents JXTA-
supported messages, mostly represented in the form of XML documents. The
arrows between DBS and LDB, and Wrapper have yet another notation since
the communication they denote is LDB dependent.

In Figure 3 we open the QM and JXTA Layer. Rectangles with rounded
corners stand for data repositories which store various information. Rectangles

Fig. 2. First level architecture: a node

represent executive modules. The meaning of arrows between UI, QM, JXTA
Layer and Wrapper is the same as in Figure 2, namely, they represent procedure
calls. Continuous thin arrowed lines show information flows between modules
and data repositories, as well as procedure calls between modules. Dashed ar-
rowed lines show the dependencies between components. For example, they show
that coordination rules, correspondence rules, acquaintance queries, peer adver-
tisement and pipes all depend on acquaintances.

Consider the JXTA Layer. The advertisements repository stores all discov-
ered and locally created JXTA advertisements. Inside the rectangle, three main
advertisement types are represented, although in practice there are also others.
The peer group advertisement includes also the group topic information, and
the peer advertisement includes the database schema information. The Services
module implements the core JXTA services and DB-related services. We encode
the input pipe advertisement of the group manager in the Services module. The
Discovery module implements the Discovery Service. The Pipes module imple-
ments the Pipe Service.

Consider now the Query Manager. Query Planner (QP) processes queries
coming both from UI and from input pipes. For queries coming from UI, QP
detects the destination groups (see link from Peer Groups to QP), sends QS
requests to GM, and processes QSs afterwards. QP also evaluates queries w.r.t.
coordination rules, and, as the result, decides where a given query should be prop-
agated. Then, QP sends to the Query Propagation module information where
to propagate a query. The latter uses the Correspondence Rules repository for
query translation, and propagates queries on the network (see arrow from Query
Propagation to Pipes). The Query Propagation module is also responsible for
sending to Wrapper both user queries and queries coming from the network. The
Results Handler receives results coming from acquaintances and translates them
using Correspondence Rules. If these results are for a user query, then Results
Handler reports them to UI. Otherwise, it sends them backward to the node
which sent the query. Apart from this, the Results Handler gets results coming

Fig. 3. Second level architecture: QM and the JXTA Layer

from Wrapper, and sends them to UI or to the network. The P2P Management
module allows users to control the modules and repositories from both Query
Manager and JXTA Layer. For instance, it makes it possible to create a new
pipe, to make a new acquaintance or to tune up a coordination rule. The control
links are shown as thick arrows from P2P Management to other components.

5 Conclusions

In this paper we have proposed a new solution which allows databases to inter-
operate in a modality coherent with the P2P nature. We have defined the solution
in terms of four basic notions (Interest Groups, Acquaintances, Correspondence
Rules and Coordination Rules) and have shown how they allow for the imple-
mentation of database coordination. We have also shown how our solution can
be implemented in JXTA and proposed a logical architecture at two levels of
details.

Currently, a preliminary version of a prototype of a P2P database system is
running at the University of Trento. The prototype was developed in collabora-
tion with the Belarusian State University (www.bsu.by).

References

1. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in a peer data
management system. ICDE (2003)

2. Kementsietsidis, A., Arenas, M., Miller, R.: Data mapping in peer-to-peer systems.
ICDE (2003)

3. Ng, W., Ooi, B., Tan, K., Zhou, A.: Peerdb: A p2p-based system for distributed
data sharing. ICDE (2003)

4. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., andL. Serafini, J.M., Zaihrayeu,
I.: Data management for peer-to-peercomputing: A vision. WebDB (2002)

5. Ullman, J.: Information integration using logical views. Theoretical Computer
Science (1997)

6. Giunchiglia, F., Zaihrayeu, I.: Making peer databases interact - avision for an archi-
tecture supporting data coordination. 6th International Workshop on Cooperative
Information Agents(CIA-2002), Madrid, Spain, September18 -20 (2002)

7. (project, J.) see http://www.jxta.org.
8. Franconi, E., Kuper, G., Lopatenko, A., Zaihrayeu, I.: A distributed algorithm for

robust data sharing and updates in p2p database networks. Proceedings of the
P2P&DB international workshop, Heraklion - Crete, Greece (2004)

9. Halevy, A.: Answering queries using views: a survey. VLDB Journal (2001)
10. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The Information Manifold. In

Knoblock, C., Levy, A., eds.: Information Gathering from Heterogeneous, Dis-
tributed Environments, Stanford University, Stanford, California (1995)

11. Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspective.
Bell Laboratories (1997)

12. Giunchiglia, F., Shvaiko, P.: Semantic matching. ”Ontologies and Distributed
Systems” workshop, IJCAI (2003)

13. Dayal, U., Hanson, E., Widom, J.: Active database systems. Modern Database
Systems (1995) 434–456

14. Giunchiglia, F., Kumar, S.: A java implementation of coordination rules as ECA
rules. Technical report at DIT, the University of Trento, Italy (2003)

15. Kantere, V., Kiringa, I., Mylopoulos, J., Kementsietsidis, A., Arenas, M.: Coordi-
nating peer databases using ECA rules. DBISP2P (2003)

16. Rahm, E., Bernstein, P.A.: On matching schemas automatically. VLDB Journal
10, 4 (2001)

