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Abstract

In the presence of externalities, consumption behaviour depends
on the solution of a co-ordination problem. In our paper we suggest a
learning approach to the study of co-ordination in consumption con-
texts where agents adjust their choices on the basis of the reinforcement
(payo�) they receive during the game.

The results of simulations allowed us to distinguish the roles of
di�erent aspects of learning in enabling co-ordination within a popu-
lation of agents. Our main results highlight: 1. the role played by
the speed of learning in determining failures of the co-ordination pro-
cess; 2. the e�ect of forgetting past experiences on the speed of the
co-ordination process; 3. the role of experimentation in bringing the
process of co-ordination into an e�cient equilibrium.

1 Introduction

Imagine a decision-maker, in a group of consumers, who must choose
between two goods characterized by network externalities. In order to do
so, he must evaluate similar choices made by other people in the group. He
is then playing a co-ordination game and clearly his choice depends on the
way in which he forms his expectations about other people behaviour.
This problem has been examined assuming both perfect rationality and
some relaxed versions of rationality. Arthur's work on these matters is well
known. Arthur [1989] supposes that choices are made sequentially and that
each agent, randomly chosen from a population of agents with di�erent
preferences, selects the alternative that gives him the higher payo�, taking
into account adoption choices observed until that moment. The payo�
depends both on the agent's intrinsic preferences and on the market share
gained by each alternative. Thus, the dynamic of the adoption process is
driven by a random arrival mechanism which determines the evolution over
time of market shares. In this way Arthur has highlighted some interesting
features of sequential co-ordination processes, such as strong path
dependence, unpredictability and non-ergodicity.
The model proposed by Kandori et al. [1993] is based on the same idea of
myopic behaviour. But, in this case, each agent plays an iterative stag
hunt co-ordination game (where one equilibrium is Pareto-dominant and
the other is risk dominant) with a population of opponents: he chooses the
strategy that maximizes his payo�, computed with respect to decisions
observed in the previous period (best reply dynamic). In this case the
process is deterministic and agents co-ordinate a strategy that depends
uniquely on the initial strategies of the population. The same authors
consider the e�ect of some evolutionary force (players which, at each stage,
mutate from their best choice and play at random with a positive
probability). The stochastic component of the process is thus based on the
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small margin that evolution allows for chance. This small margin is enough
to move the process from the best reply deterministic path: Kandori et al.
�nd in fact that when evolutionary forces are at work, the system spends
most of its time in the risk dominant equilibrium. Ellison [1993] enlarges
the evolutionary framework of Kandori et al. to show that local
externalities accelerate the equilibrium selection process towards the risk
dominant equilibrium. Evolution, of course, is a source of innovation that
shu�es the cards and tends to weaken the force of history. �Ochssler [1997]
has also worked along these lines, modelling evolutionary forces as a small
probability, assigned to agents playing in a given group, of changing their
group. He shows that, in this case, the process tends to the Pareto-e�cient
equilibrium.
Finally, another line of research has been pursued by Kaniovski and Young
[1995], whose paper models a co-ordination process through �ctitious play.
Here the stochastic component of the process is introduced by sampling: at
each stage, two players are randomly selected and, on the basis of
information extracted from a sample of previous players, they choose their
best expected strategy. Kaniovski and Young show that players almost
invariably converge on a stable Nash equilibrium.
In short, the literature has highlighted three main ways to introduce a
stochastic component into a myopic co-ordination process among N
agents: random arrivals; random mutation; random information sampling.
This paper seeks to highlight a di�erent force, namely adaptive learning,
which has, in some sense, an e�ect complementary to mutation or
information sampling. Adaptive learning agents make use of their past
experience (in terms of good and bad outcomes) to redirect their future
behaviour. This e�ect is known as the law of e�ect.
In our model the stochastic component depends on the fact that, although
players behave randomly, they adjust the probability they assign to their
possible behaviour on the basis of experience. Hence, while the
game-theoretic framework of our model closely resembles Kandori's, agents
do not adopt best-response strategies; rather, they adjust their choices on
the basis of the reinforcement (payo�) received during the game.
The main goal of this paper is to study, with the help of simulations, some
general properties of learning in a co-ordination game. In other words, we
investigate whether there is a \good way" to learn from experience. It is
quite natural, in fact, to claim that a workable learning process in
co-ordination games must:

� drive agents towards compatible choices;

� permit selection of the most e�cient alternative, when there are
di�erent ways to achieve compatibility;
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� be e�ective within a reasonable time span: very long learning times
might not have a clear operational meaning.

It is not obvious how learning should a�ect these characteristics of
co-ordination. On the one hand, when there is an opportunity to
experiment with alternative outcomes, we would expect the whole
population of agents to learn the best way to co-ordinate. On the other,
we would expect a very fast learning process to trap agents in the
strategies explored at the very beginning of the game, preventing them
from searching for alternative (and maybe better) solutions. We could
then expect some sort of trade o� to arise between the learning time
horizon and the e�ciency of the learning process.
As we shall see, our simulations con�rmed these expectations; although we
shall also see that single parameters used to model di�erent aspects of the
learning process play special roles.
The learning algorithm that we employed derives from the studies of Roth
and Erev [Roth and Erev, 1995, Erev and Roth, 1997]. The reasons for
choosing this special algorithm are discussed in section 2, where we present
some general features of adaptive models of behaviour and illustrate the
Roth-Erev algorithm for stochastic learning. In section 3 we present the
co-ordination model; section 4 is devoted to the presentation of the
simulation results. Section 5 sketches some conclusions and outlines the
progress of our research.

2 Stochastic learning algorithms

When adaptive behaviour takes place, individuals have capabilities which
they e�ectively employ to discriminate among environmental stimuli
(incentive structure, state variables, behaviour of other agents, and so on),
and they modify their behaviour as a consequence of their elaboration of
these environmental stimuli.
In the broad class of adaptive models of behaviour we can, nevertheless,
distinguish between two di�erent categories: reinforcement learning
algorithms and beliefs-based algorithms. 1

1IIt is surprising to �nd that the majority of studies on adaptive behaviour in games
have focused on only one or the other class of learning models, without attempting to
integrate the two approaches. Clearly, each class of adaptive model only takes account of
one side of the adaptive behaviour of real decision-makers: while reinforcement learning
neglects the role of beliefs in in
uencing behaviour, belief-based models do not consider
the e�ect of past earned payo�s on future behaviour. Only recently have some scholars
proposed an integration of the two models in order to overcome these shortcomings. For
instance, both Camerer and Ho [1996] and Erev and Roth [1997] suggest an integrated
approach to the modelling of adaptive learning, but they do not agree on how di�er-
ent learning algorithms perform in tracking experimental data. In particular, Roth and
Erev point out that reinforcement learning models outperform belief-based ones and that
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For the purpose of our research we decided to employ an adaptive model
related to pure reinforcement learning; this class of adaptive learning
processes, which also goes under various other labels, such as choice
reinforcement or stochastic learning, is characterized by the following
speci�c features:

� stochastic behaviour : strategies are selected by a stochastic
mechanism (which associates a measure of propensity with each
strategy);

� reinforcement : strategies are reinforced (inhibited) by previous
positive (negative) payo�s;

� payo� driven: the only relevant feedback in updating propensities is
the individual payo�;

� behavioural focus: no attention is paid to the decision-maker's beliefs
or other internal mental states.

In particular, we used an algorithm derived from the studies of Roth and
Erev [Roth and Erev, 1995, Erev and Roth, 1997]. Although the baseline
version of their model is extremely simple, it is clearly psychological
grounded in that it embeds the following fundamental properties of human
learning:

Law of E�ect: actions that have led to good outcomes (positive payo�s)
in the past are more likely to be repeated in the future.2

Power Law of Practise learning curves tend to be steep initially and
then to become increasingly 
atter over time. 3

While the reader is referred to the works of these authors for their general
models [Roth and Erev, 1995, Erev and Roth, 1997], in what follows we
shall focus on a particular instance of the adaptive model, which was
adjusted to the purposes of the game that we studied.
In each period t = 1; 2; : : :, player i chooses one of two possible actions,
di;t 2 fA;Bg, with probabilities, respectively, of pi;t and (1� pi;t) and at
the end of each stage the player receives a payment of ui(di;t; �).
During each period t each player i independently and simultaneously
chooses action A with probability pi;t and B with probability (1� pi;t).

the additional contribution of a mixed model to the explanation of experimental data
is probably not worth, given the increased complexity of the algorithm, while Camerer
and Ho show how their uni�ed model (EWA) performs better than both belief-based and
reinforcement based models.

2The law was originally formulated by Thorndike [1898].
3Like the previous law, this empirical claim too dates back to the early psychological

literature on human and animal learning, and at least to Blackburn [1936].
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In order to compute the probabilities pi;t, the following measure of
propensity

qi;t(X); 8X 2 fA;Bg

is de�ned for each of the two available strategies. Initial propensities (at
period t = 1) are given and may assume any positive real number. The
probability pi;t (of selecting strategy A) is then de�ned as the ratio
between the propensity related to strategy A and the sum of the
propensities related to the (two) available actions, as follows:

pi;t =
qi;t(A)

qi;t(A) + qi;t(B)
(1)

The distinctive feature of the model is that reinforcement acts at the level
of propensities: in period t+ 1;8t > 0, each player i updates his propensity
qi;t+1(di;t) on the basis of the payo� earned in the previous period t as a
result of having chosen strategy di;t, as follows:

qi;t+1(di;t) = qi;t(di;t) + ui(di;t; �) (2)

Finally these updated propensities are used to compute the new
probability values pi;t+1 for the period t+ 1.
Roth and Erev have suggested a more general version of the algorithm,
allowing for two other well known robust features of human learning
pointed out by the psychological literature [Skinner, 1953, Watson, 1930]:

Local Experimentation: (also know as Generalization or Error) positive
past payo�s experienced with one strategy reinforce not only the
strategy selected but also similar choices;

Gradual Forgetting: (or Recency) past experience is gradually forgotten
and a more salient role is played by recent experience.

These two features can be easily incorporated into the baseline model,
assuming that when player i in period t chooses di;t, then he updates both
his propensities in the following way:

qi;t+1(di;t) = (1� ')qi;t(di;t) + (1� ")ui(di;t; �); (3)

qi;t+1(:di;t) = (1� ')qi;t(:di;t) + "ui(di;t; �); (4)

where :di;t is the strategy not chosen by player i in period t, " is the
generalization parameter, which prevents the propensity of the strategy
not chosen from going to zero and ' is the forgetting parameter which set
an upper bound on the value that a propensity can take. Obviously, when
' = " = 0 we have the baseline model outlined in eq. 2.
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3 The co-ordination model

Image a group of N players. Each player repeatedly plays a 2� 2
co-ordination game (with one mixed and two pure equilibria) with the
remaining (N � 1) players. One of the two pure strategy equilibria is
Pareto-dominant. Payo�s are normalized to one, so that each two-person
game has the strategic form shown in Figure 1.

A B
A 1; 1 0; 0
B 0; 0 0:5; 0:5

Figure 1: A baseline two-person co-ordination game.

In each period t = 1; 2; : : :, player i chooses one of the two possible actions,
di;t 2 fA;Bg, and at the end of each stage he receives as payment a
compounded sum of the payo�s earned in each of the (N � 1) two-person
game. This can be represented using the following payo� function:

ui(di;t; d�i;t) =
X

j 6=i

�i;jg(di;t; dj;t) (5)

where the payo�s g are those of the previously highlighted 2� 2
co-ordination game, and where �i;j is termed the matching rule and can be
interpreted as the probability that players i and j will be matched in a
given period of the iterated game. One can imagine (following Ellison
[1993]) many di�erent speci�cations of the matching rule: in what follows
we adopt the simplest one, i.e. the so-called uniform matching rule:

�i;j =
1

N � 1
8j 6= i: (6)

At the �rst stage, players play randomly, extracting their strategy from a
given distribution (from now on we adopt the extreme hypothesis that
players have no prior information, so that the strategy can be thought of
as extracted from a rectangular distribution). Each player then observes
the payo� of the stage game and correspondingly adjusts probabilities.
Since the basic game is a co-ordination game, the greater the number of
agents selecting the same strategy, the higher the reinforcement that
strategy will receive; moreover, since the co-ordination game has a
Pareto-dominant equilibrium, the Pareto equilibrium strategy (A) will
receive stronger reinforcement than the B strategy, assuming that they are
equally chosen by the population.
The state of the system at t is the sequence of choices each agent has taken
to that moment. For instance, at time 3, we should have a set of choices
like: ((A;B;A)1; (A;B;B)2; :::; (B;A;A)N ). The joint sequence of choices
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of each agent at time t uniquely determines his probability pi;t+1 to
undertake strategy A at time t+ 1.

4 Results

4.1 The simulation plan

We run extensive computer simulations for the model previously described
with a population of N = 300 agents.
In each simulation run, the stage game was iterated either for 10000
periods (which was considered su�cient time to observe convergence to the
steady state) or until the following stopping rule was satis�ed:

nX

i=1

jpi;t�1 � pi;tj < 10�5:

We chose to perform sensitivity analysis on two dimensions:

� learning rate, which depends on the initial strenght of propensities,
de�ned as Si;1 = qi;1(A) + qi;1(B). The higher Si;1 is set, the lower
the learning rate; following Erev and Roth [1997], we decided to set
Si;1 equal to 3 times the agent average payo� in the baseline version
(this will be noted as Si;1(3)). We then investigated two alternative
settings, one with a higher level of learning rate (Si;1(0:3) = 0:3� the
average payo�) and the other one with a lower level of learning
(Si;1(30) = 30� the average payo�);

� initial probabilities qi;1 (given at the beginning of the simulation
run). These values a�ect the probabilities that strategies A and B
will be played at the beginning. We decided to set qi;1 = :�3 in the
baseline version, since at this point, if the population is large enough,
around one third of the agents will choose strategy A, and this will
result in similar payo�s for the whole population. We then moved
from this baseline case to explore higher (qi;1 = :3�6; qi;1 = :4) or lower
initial probabilities (qi;1 = :2�6; qi;1 = :3).

As a result, the whole sensitivity plan consisted in a 3� 5 factorial design
as depicted in Figure 4.1, where each cell gives the corresponding values of
initial propensities (qi;1(A), qi;1(B)).
With respect to the Roth-Erev algorithm (equations 3-4), we took four
di�erent parameterisations:

plain model: where neither experimentation nor forgetting are
introduced (' = 0 and " = 0);

experimentation model: where ' = 0 and " = 0:05;

7
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pi;1 = :2�6 pi;1 = :3 pi;1 = :�3 pi;1 = :3�6 pi;1 = :4

Si;1(:3) :03; :0825 :03375; :07875 :0375; :075 :04125; :07125 :045; :0675

Si;1(3) :3; :825 :3375; :7875 :375; :75 :4125; :7125 :45; :675

Si;1(30) 3:; 8:25 3:375; 7:875 3:75; 7:5 4:125; 7:125 4:5; 6:75

Figure 2: Sets of initial propensities according to initial parameters

forgetting model: where ' = 0:01 and " = 0;

experimentation and forgetting model: where both forgetting and
experimentation are allowed (' = 0:01 and " = 0:05).

Thus, we run simulations over a total set of 60 di�erent parameterisations.
4 For each parameterisation we run 500 simulation trials, and at the end of
each trial we recorded the shares a10, a100, a1000, and ax; with at = NA;t=N
and where N is the size of the whole population, NA;t is the number of A
adopters at epoch t and x is the last epoch (10000 or less if the stopping
rule is satis�ed).

4.2 Learning co-ordination in the long run

Before analysing the results of our simulations, it may be helpful to recall
some results from deterministic best-reply dynamics as a benchmark. As
pointed out by recent studies in evolutionary game theory [Kandori et al.,
1993, Ellison, 1993], the properties of deterministic best-reply learning
algorithms in 2� 2 games with two symmetric strict Nash equilibria and
one mixed strategy equilibrium, as in the case of the co-ordination game
studied here, are already well understood. We may imagine a population
of agents playing a best reply strategy as follows: in period t agent i is
randomly selected, observes the behaviour of his N � 1 opponents in t� 1,
and then includes his own behaviour to maximise his expected payo�. This
best reply dynamic has two steady states that reached in �nite time (or
three if N=3 is an integer): di = A;8i = f1; : : : ; Ng,
di = B;8i = f1; : : : ; Ng (and, if N=3 is an integer, also N=3 agents playing
di = A and 2N=3 agents playing di = B). Clearly, the �nal outcome is
path dependent, since it crucially depends on the initial condition of the
system: if more than N=3 agents initially choose di = A then di = A will
be the steady state, otherwise di = B will be the �nal state. We may thus
interpret the dynamic process as having stable attractors a = 0 and a = 1,
whose basins of attraction have a boundary for a = 1=3. It is then easy to
show that this process converges with probability 1 to one of the two
attractors in �nite time.

4Three magnitudes of initial propensities Si;1, �ve initial probabilities pi;1, two forget-
ting (') conditions and two experimentation (") conditions.
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Figure 3: Shares for A Technology { Plain Model (' = 0; " = 0)

Commenting on our main results requires introduction of Figures 3 to 6,
each presenting, for one of the four learning models (plain model,
experimentation m., forgetting m., and experimentation with forgetting
m.), the shares ax computed for all the 500 simulation runs. The rows
show the di�erent initial probability conditions (pi;1) and the columns
show the di�erent levels of learning rate (in term of Si;1(�), the sum of
initial propensities qi;1(A) + qi;1(B)).
Figure 3 sets out the results obtained with the plain learning model, where
both gradual forgetting and local experimentation were not allowed
(" = 0; ' = 0).
The central row presents the results obtained when the starting point was
a 1=3 probability of choosing technology A. Around this point, we would
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expect the process to have equal probabilities of being driven towards one
or other equilibrium, according to \small events" of the process. On the
other hand, we would expect, with initial probabilities lower than 1=3, the
process to be driven towards a null share of A, and with initial probability
to chose A higher than 1=3, the population to co-ordinate, in the long run,
on the use of technology A.
It is evident that our expectations concerning the convergence of the
learning process are ful�lled only when learning rates are not too high.
The second and third columns show, in fact, that starting from an initial
condition of 1=3, the process has equal probabilities of being driven
towards one or other technology; on the other hand, when initial
probabilities are higher than 1=3, the full population co-ordinates on
technology A; �nally, when initial probabilities are lower than 1=3, the full
population co-ordinates on technology B. We thus observe the usual path
dependent phenomena and the \small events" e�ect around the mixed
equilibrium point.
Matters are di�erent when learning rates are very high. When initial
probability values are around 1=3, in the long run the population splits in
two sub-populations which co-ordinate on di�erent technologies. The way
in which the population splits is very di�erent: the shares of choice A are
between 0:1 and 0:7. Also when the starting point is a probability of A
di�erent from 1=3, there is not convergence on a single technology: instead
the modal share of adopters moves towards 1 when initial probabilities are
higher than 1=3, or towards 0 when initial probabilities are lower than 1=3,
but full co-ordination is never reached. First moves reinforce initial
choices, impeding search in subsequent trials from being rewarded by a
good outcome. The tendency of the population to move toward a full
co-ordination strategy, when initial values are distant from 1=3, is thus
halted by a tendency for the system to \freeze in its path" as a consequence
of the fact that a large number of agents stick to previous choices.
The situation changes when experimentation is introduced (Figure 4). In
this case it is possible to observe that:

� the population more frequently co-ordinates on a single choice, even
when learning rates are high. Experimentation appears to impede
agents from being frozen early on in strategies played in the �rst
steps of the game;

� the Pareto-dominant strategy is selected even when initial
probabilities are near the mixed equilibrium. To illustrate how
experimentation modi�es the dynamic of co-ordination, imagine that
one third of the population chooses technology A and two third
chooses B: in this case players have equal payo�s and the two
strategies are equally reinforced, leaving things unchanged. But, with

10
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Figure 4: Shares for A Technology { ExperimentationModel (' = 0; " = :05)
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experimentation, the two thirds of players that have played strategy
B give a small reinforcement to strategy A. The reverse is also true,
but in this case only one third of players reinforce B. In general,
when there is a Pareto dominant strategy and experimentation, the
share of players that, near the indi�erence point, reinforce the Pareto
dominant strategy is necessarily higher than the share of players that
reinforce the alternative strategy;

� ordination is often not complete, due to the experimentation
mechanism by which a small probability of choosing the alternative
strategy is assigned even when the large majority co-ordinate on one
choice;

Forgetting does not change the situation (Figure 5) with respect to the
basic case, when learning rates are middle or low. Some new e�ects appear
when learning rates are high. In this case the distribution of shares tend to
be bi-modal. The role of forgetting is to reduce, after some time, the
weight of old preferences: so that the population tends to be attracted by
extreme solutions; nevertheless the high level of learning rate still traps the
population before it achieves full co-ordination.
Finally, Figure 6 presents the case in which both experimentation and
forgetting are at work. The results in this case are not particularly
di�erent from what was observed in Figure 4, when experimentation only
was allowed. Thus, with respect to the �nal outcome of the simulations,
the e�ect of experimentation seems to overcome the role of forgetting.

4.3 The timing issue: how long is the long run?

In the previous subsection we analysed the long run results of the
simulations. The stopping rule we devised when running the simulations
re
ected the focus of our analysis, which was to investigate whether or not
in the long run people co-ordinate on some equilibrium, and to what
extent this equilibrium is unique, or alternatively whether co-ordination
failure may occur.
The results presented in the previous subsection discriminate between
conditions which result in full co-ordination rather than in partial
co-ordination (co-ordination failure), and the conditions that result in
co-ordination on a speci�c equilibrium.
However, in order to conduct adequate comparison among the four
learning models, and to complete our analysis, we must also examine the
time spent by the population of agents in achieving the steady state.
To illustrate our �ndings we introduce Figures 7, 9, 10 and 11, each of
which presents, for one of the four learning parameterisations, the average
concentration index Ct = (

NA;t

N
)2 + (1�

NA;t

N
)2 computed over 500

simulation trials at periods t = 10; 100; 1000; �x (where NA;t is the number
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Figure 5: Shares for A Technology { Forgetting Model (' = :01; " = 0)
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Figure 6: Shares for A Technology { Experimentation and Forgetting Model
(' = :01; " = :05)
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Figure 7: Concentration Index { Plain Model (' = 0; " = 0)

of adopters of technology A at period t and �x is the average last period
according to the stopping rule). As in the previous �gures, here the rows
show di�erent initial probability conditions, and the columns show
di�erent levels of learning rate.
We begin with analysis of convergence times for the plain case. In this case
we would intuitively expect the average convergence time to be negatively
correlated with learning rate (the higher the learning rate, the lower the
average convergence time). This is coherent with the idea that higher
learning rates trap the system more quickly, while lower learning rates
result in a very slow process of probability updating. Moreover, it should
be easy to predict that a non-monotonical relationship will link
convergence times and initial probability values (the closer to the
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indi�erence point pi;1 = 1=3 at the beginning, the higher the convergence
time); which re
ects the intuitive insight that less time is needed to
achieve full co-ordination when the population of agents is distant from the
indi�erence value of the initial probabilities (pi;1 = 1=3), since the choice of
one strategy is better rewarded than the opposite one. However, only the
latter hypothesis was con�rmed by simulations (see Figure 7), while a
non-monotonic relationship between learning rates and convergence times
was found. Indeed, convergence times both in the high learning rate and
low learning rate treatments were longer than in the medium one. This
non-intuitive result (longer convergence times for high levels of learning
rate) may be explained as follows (for the sake of simplicity we shall
restrict our analysis to the case of pi;1 = 1=3). In the medium learning rate
treatment players gradually update their propensities and early small
events drive the whole population smoothly into a self reinforcing lock-in
process towards one of the two pure equilibria (the same dynamics can be
observed, although at a slower pace, in the low learning rate treatment).
Conversely, in the high learning treatment we can distinguish between
early and late adopters, viz. players converging rapidly versus players
converging relatively slowly to one single decision (technology A or B). In
fact, owing to the high level of learning rate, many players lock into their
behaviour in the very early periods of the simulation. Since probabilities in
early periods are updated strongly, if one agent repeatedly selected the
same decision at the beginning, he would so strongly reinforce his
behaviour that the probability of extracting the opposite option would
rapidly be driven close to zero. By contrast, a relatively small fraction of
players who do not get stuck at the beginning of the simulation starts
playing a co-ordination game where the large part of the population has
already locked its behaviour into technology A or in technology B. The
emergence of early and late adopters in the high learning rate treatment
can be observed in Figure 8, which collects the number of players that
change their decision over time, contrasting a typical high learning rate
with medium and low learning rate simulation runs. Thus we observe that
the closer the share of early adopters of technology A to 1=3, the higher
the convergence time, since a late adopter receives similar reinforcement if
he chooses A or B, and the magnitude of the reinforcement declines over
time. The relatively low pace of convergence of the simulation towards a
steady state in the high learning condition is thus the joint result of the
separation of the population of agents between early and late adopters and
the decline, over time, of learning rates for the late adopters.
Convergence times in the second treatment (experimentation) are slightly
di�erent in comparison with the baseline condition (Figure 9), since the
non-monotonical relationship between convergence times and initial
probability values is not found. This is essentially due to exploration,
which drives the population towards technology A, since the more distant
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Figure 8: Number of players shifting from A to B or viceversa over time in
three typical simulation runs (high- medium- and low-learning rate, plain
model, pi;1 = 1=3).
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Figure 9: Concentration Index { Experimentation Model (' = 0; " = :05)

are agents' initial probability values, the longer is the time needed by the
population to reach the steady state. Convergence times are also quite
shorter in the high learning condition compared to the baseline treatment,
since the previously described mechanism of a shift towards the
Pareto-dominant strategy A at the indi�erence point drives the population
of late adopters more rapidly towards technology A.
In the third treatment (Figure 10) the convergence times are strongly
compressed, as the result of the forgetting parameter, which imposes an
upper bound on the value of qi;t(A) and qi;t(B). Thus learning rates
decrease up to some point and then remain relatively stable, rather than
converging to zero.
Finally, in the last learning treatment (with both experimentation and
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Figure 10: Concentration Index { Forgetting Model (' = :01; " = 0)
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forgetting, Figure 11), all simulation trials ended at period 10000, since the
interaction between exploration and high levels of learning rate due to
forgetting resulted in a considerable update over time of the probability
values, so that the stopping rule was never matched.

5 Discussion

In this paper we have conducted preliminary analysis of the dynamic of
co-ordination processes in a population of consumers when behaviour is
myopic and people adjust their capabilities step by step in order to
discriminate among alternatives on the basis of an environmental stimulus.
Simulations are of course only a method to gather suggestions about the
possibly relevant dynamics. Our feeling is that the results of this �rst
attempt open the way to a possibly rich area of research.
Stochastic learning appears to be a powerful force in driving the
co-ordination dynamic. The forces at work in the case of learning are of
three kinds:

the rate of learning: when the rate of learning is higher, agents stick
more closely to the experience that rewarded them initially.
Learning, in some sense, reduces the curiosity of players and the
good solution is replicated without looking for better outcomes. In
this case the population splits into two clusters, each group being
attracted by the progressive reinforcement of initial choices;

the persistence of ambiguity: the role of learning may be balanced by
the space given to ambiguity, that is, the persistence of some
opportunity to make di�erent choices. In Roth and Erev's model this
is due to experimentation, which impedes learning from wiping out
initial ambiguity;

the initial conditions of the system: It is clear that if the initial
conditions are close to a particular stable attractor, the learning
forces must increase in strength in order to enable the system to
escape from it.

We expect the next stage of our work to move in the following directions:

� we have shown some e�ects of learning on a pure symmetric
co-ordination game with a Pareto-dominant equilibrium. It would be
interesting to investigate what happens when the co-ordination
problem has di�erent characteristics, as in cases of asymmetric
co-ordination games or when a Pareto dominant equilibrium is
contrasted by a risk dominant equilibrium, as in stag hunt game.
Initial simulations of this last case have shown that previously
described e�ects are stronger;
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Figure 11: Concentration Index { Experimentation and Forgetting Model
(' = :01; " = 0)

21



E. Zaninotto, A. Rossi and L. Gaio

� spatial localisation could be taken into account. A local matching
rule could be used to detect the e�ect of a di�erentiation of
connections among agents. Our �rst simulations in this respect have
shown that the non-uniform matching rule increases the e�ect of
learning in producing local clusters;

� repeated co-ordination games are only a benchmark to test the e�ect
of learning. In reality, it is implausible that the agents in a
population adapt themselves only on the basis of repeated choices. It
would be interesting to modify the model by introducing a di�erent
way of learning, taking into account, for instance, the experience of
others [Lane and Vescovini, 1996, Narduzzo and Warglien, 1996];

� simulation is a good instrument insofar as it provides an instrument
with which to detect the emerging properties of a complex system.
But it is probably worth trying to verify with the help of formal
analysis whether there are conditions under which stochastic learning
processes display good properties, as a way to solve the co-ordination
dilemma e�ciently.

22



E. Zaninotto, A. Rossi and L. Gaio

References

W.B. Arthur. Competing technologies, increasing returns, and lock-in by
historical events. Economic Journal, 99(394):116{31, 1989.

J.M. Blackburn. Acquisition of skill: An analysis of learning curves. Tech-
nical Report 73, IHRB, 1936.

C. Camerer and T. Ho. Experience-weighted attraction learning in games:
A unifying approach. mimeo, 1996.

G. Ellison. Learning, local interaction, and coordination. Econometrica, 61
(5):1047{71, 1993.

I. Erev and E.A. Roth. Modeling how people play games: Reinforcement
learning in experimental games with unique, mixed strategy equilibria.
mimeo, 1997.

M. Kandori, G.J. Mailath, and R. Rob. Learning, mutation, and long run
equilibria in games. Econometrica, 61(1):29{56, 1993.

Y.M. Kaniovski and H.P. Young. Learning dynamics in games with stochas-
tic perturbations. Games and Economic Behavior, 7:330{63, 1995.

D. Lane and R. Vescovini. Decision rules and market-share: Aggregation in
an information contagion model. Industrial and Corporate Change, 5(1):
127{46, 1996.

A. Narduzzo and M. Warglien. Learning from the experience of others: An
experiment on information contagion. Industrial and Corporate Change,
5(1):113{26, 1996.

J. �Ochssler. Decentralization and the coordination problem. Journal of

Economic Behavior and Organization, 32(1):119{35, 1997.

E.A. Roth and I. Erev. Learning in extensive-form games: Experimental
data and simple dynamic models in the intermediate term. Games and

Economic Behavior, 8(1):164{212, 1995.

B.F. Skinner. Science and Human Behavior. MacMillan, New York, 1953.

E.L. Thorndike. Animal intelligence: An experimental study of the associa-
tive processes in animals. Psychological Monographs, 2, 1898.

J.B. Watson. Behaviorism. University of Chicago Press, Chicago, 2nd edi-
tion, 1930.

23



E. Zaninotto, A. Rossi and L. Gaio

Rock
Coordination & Knowledge

Research on Organizations

The Rock Group

Rock Group (Research on Organizations, Coordination and Knowledge) is
strongly committed to develop theoretical and empirical analyses of
organizational key issues such as coordination among agents, decision
making processes, coalition formation, replication and di�usion of
knowledge, routines, and competencies within the organizational
environment.
Rock Group is rooted in the Department of Management and Computer
Science (DISA) of the University of Trento, which is characterized by a
strong cooperative culture among scholars from di�erent �elds, from
Management to Mathematics, from Statistics to Computer Science. Rock
Group's activities, both research and education bene�t by the whole range
of competencies of DISA.

Mario Borroi, Ph.D. in Organization and Management (University of
Udine). His main research interests are in the management and
organization of innovation, technology transfer and the contribution
of science to R&D activities. He has been visiting scholar at the
Marshall Business School, USC, and had previous experience in the
development of the O�ce for Technology Transfer at the University
of Trento and in management consulting.

Paolo Collini, associate professor in Accounting and Management.
Current interests involve cost management issues. He is member of
the Editorial Management Board of the European Accounting
Review.

Loris Gaio, assistant professor in Organization Economics and
Management. Current interests involve coordination problems among
economic agents, network economics and technology standards, with
a particular attention for ITC issues. He has particular skills in

24



E. Zaninotto, A. Rossi and L. Gaio

information technology, shaped by relevant experiences both as
analyst and researcher.

Alessandro Narduzzo, Ph.D. in Management, currently post-doc, has
been visiting scholar at the Cognitive Science Dept. of the University
of California, San Diego, and at CREW, the University of Michigan.
He studies organizational learning within a cognitive frame, creation
and replication of tacit knowledge and the impact of IT on
organizations.

Alessandro Rossi, Ph.D. candidate in Organization and Management,
has been visiting scholar at the Wharton School, University of
Pennsylvania. His interests are in behavioral game theory and
managerial decision making and he studies how bounded rationality
and experience a�ect decisions in organizations. He has also skills in
�eld studies of regional manufacturing systems.

Luca Solari, Ph.D. in Organization and Management, temporarily
appointed as professor in Human Resource Management at DISA.
His main research interests are in population ecology and no-pro�t
organizations. He has been visiting scholar at the Haas School of
Business at U. C. Berkeley.

Enrico Zaninotto, full professor in Organization Economics and
Management, and Dean of Faculty of Economics. His research
interests are in coordination problems, explored both by a
game-theoretical approach and �eld studies. Apart from the
academic curriculum, he had some relevant experiences of
management and consulting.

A�liations and other group's members

Rock Group has close and systematic relationships with other scholars
who are involved in Group's activity:

Vincenzo D'Andrea, assistant professor in Computer Science at Disa,
his interests are in cellular automata, parallel and image processing,
multimedia, tools for managing networked information.

Giovanna Devetag, is attending the Scuola Superiore of S. Anna
program in Economics of Innovation (Pisa). Her research interests
are in behavioral game theory, behavioral decision making, theory of
mental models. She has been visiting scholar at Princeton,
Department of Psychology.

25



E. Zaninotto, A. Rossi and L. Gaio

Fabrizio Ferraro, Ph.D. candidate in Organization and Management
(University of Udine), is involved in research activity at the
University of Naples. He is mainly interested in research on
organizational theory and in issues related to organizational impacts
of quality certi�cation practices (ISO 9000). He is currently graduate
student at the Engineering School, University of Stanford.

Elena Rocco, Ph.D. in Organization and Management (University of
Udine), visiting scholar at the Collaboratory for Research on
Electronic Work at the University of Michigan. Her current research
interests focus on bargaining and the organizational impact of
computer mediated communication.

Massimo Warglien, associate professor in Organization Economics and
Management at Ca' Foscari University of Venice. His interests are in
bounded rationality and decision making, cognitive science and
theory of the �rm. He is editor of the Journal of Management and
Governance.

Rock Group is a�liated to the Computable and Experimental Economics
Laboratory (CEEL) of the University of Trento.

How to contact

Mail Address: Rock

Dipartimento di Informatica e Studi Aziendali
Universit�a degli Studi di Trento
Via Inama, 5
I-38100 Trento (Italy)

+39-0461-88-2142 (Ph)
+39-0461-88-2124 (Fax)

E-mail: rock@cs.unitn.it

Web URL: http://www.cs.unitn.it/rock

26


