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Abstract

Very high order methods, such as ENO/WENO methods [21, 30, 19],
Runge-Kutta Discontinuous Galerkin Finite Element Methods [12] and
ADER methods [54, 46], often use high order (e.g. fifth order) polynomial
reconstruction of the solution and a lower (first) order monotone flux as
the building block. In this paper we propose to use second order TVD
fluxes in the framework of such methods and apply the principle to the
finite-volume ENO, WENO and MPWENO schemes. We call the new
improved schemes the ENO-TVD, WENO-TVD and MPWENO-TVD
schemes respectively. They include both upwind and centred schemes
with non-staggered meshes. Numerical results suggest that our schemes
are superior to original schemes with first order fluxes. This is especially
so for long time evolution problems containing both smooth and non-
smooth features.
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1. INTRODUCTION

We are concerned with improved very high order methods for solving hyperbolic conser-
vation laws. These methods often use high order (e.g. fifth order) polynomial reconstruction
of the solution and a lower (first) order monotone flux as the building block. In this paper
we propose to use second order TVD fluxes in the framework of such methods and apply
the principle to the finite-volume ENO, WENO and MPWENQO schemes [40, 19, 1]. We
call the new improved schemes the ENO-TVD, WENO-TVD and MPWENO-TVD schemes
respectively. They include both upwind and centred schemes with non-staggered meshes.
Numerical results of the new schemes as applied to linear scalar advection equation and one-
dimensional compressible Fuler equations show marked improvements over original schemes
in terms, especially for long time evolution problems.

The hyperbolic conservation laws arise in areas as diversed as compressible gasdynamics,
shallow water modelling, turbomachinery, turbulence modelling, weather prediction, plasma
modelling, rarefied gas dynamics and many others. Analytical solutions are available only
in very few special cases and numerical methods must be used in practical applications.
Developing such methods is a formidable task since solutions can contain complex smooth
structures interspersed with discontinuities. A successful numerical method should resolve
discontinuities with correct positions and sharp non-oscillatory profiles and retain high order
of accuracy in smooth regions. According to the classical theorem of Godunov [15] linear high
order methods cannot achieve this dual task. Over the last twenty five years or so remarkable
progress has been made in designing nonlinear methods which can circumvent Godunov’s
theorem by being solution-adaptive. A prominent class of such methods is the class of Total
Variation Diminishing (TVD) methods [20, 42]. Pioneering examples include the Godunov-
Kolgan scheme [24, 25, 44], SHASTA Flux Corrected Transport (FCT) algorithm [5, 6, 7]
and MUSCL-type methods [61, 62, 66, 4, 13]. For a review of the TVD methods see [28, 51].

TVD methods avoid oscillations by locally reverting to first order of accuracy near dis-
continuities and extrema and therefore are unsuitable for applications involving long time
evolution of complex structures, such as computational acoustic and compressible turbu-
lence modelling. In these applications extrema are clipped as time evolves and numeri-
cal diffusion may become dominant. Uniformly very high order methods, both in time
and space, are needed for such applications. State-of-the art very high order methods
include the class of essentially non-oscillatory (ENO) [21, 40], weighted essentially non-
oscillatory (WENO) [30, 19, 41, 29, 1, 33], monotonicity preserving (MP) [41] and monotonic-
ity preserving weighted essentially non-oscillatory (MPWENO) schemes [1], Spectral Meth-
ods [8], Compact Difference Methods [47], Runge-Kutta Discontinuous Galerkin (RKDG)
Finite Element Methods [10, 11, 12] and Advection-Diffusion-Reaction (ADER) Approach
(54, 45, 57, 37, 46, 60, 43]. All of these methods are capable of achieving at least third order
of accuracy both in time and space. ENO,WENO, MP, MPWENO and ADER schemes enjoy
an additional advantage over other methods: these schemes are essentially non-oscillatory.
That is, to the eye, the solution is free from spurious oscillations. The key idea in the rtP
order ENO reconstruction procedure used [21, 40] is to consider r possible stencils covering
the given cell (in one space dimension) and to select only one, the smoothest, stencil. The
reconstruction polynomial is then built using this selected stencil. The WENO reconstruc-
tion [30, 19, 1] takes a convex combination of all r stencils with non-linear solution-adaptive
weights. The design of the weights involves local estimates of the smoothness of the solution
in each possible stencil so that the reconstruction achieves (2r —1)™ order of spatial accuracy
in smooth regions and emulates the r'" order ENO reconstruction near discontinuities. The
MPWENO reconstruction [1] is a combination of increasingly high order (e.g. 9™ order)



WENO reconstruction and a monotonicity preserving (MP) constraint [41]. The MPWENO
schemes are, in general, more expensive and require smaller Courant numbers as compared
to ENO and WENO schemes. However, the improvements in accuracy usually more than
compensate for the higher computational cost.

In the above-mentioned finite-volume methods the reconstruction polynomials P;(z) are
different from cell to cell. As a result, at each cell interface 2,42 between cells 7 and 141 (in
one dimension) the reconstruction produces two different values of the conservative variable

Q, namely the left extrapolated value Qf+1/2 = P;(2;41/2) and the right extrapolated value
ﬁu/z
and Qﬁlﬂ. Godunov [15] suggested that the self-similar solution of the local Riemann

= Pi+1(:cz-+1/2) and poses a Riemann problem with initial data composed of Q£+1/2

problem with initial condition consisting of the constant states Qf_l_l/2 and Qﬁ_l/2 be used to
compute the numerical flux, setting in this way the basis for upwind methods. The original
first-order upwind Godunov scheme uses the exact solution of this problem. Later, many
researches, including Godunov himself [15], proposed to use the approximate solutions in
the construction of upwind fluxes. Examples of such fluxes include the Rusanov flux [36],
Osher-Solomon flux [14, 32], Roe flux [35], HLL flux of Harten et al. [22] and HLLC flux
of Toro et al. [48, 55, 56]. A distinguishing feature of upwind fluxes is that they explicitly
utilise information on wave propagation. Centred fluxes, on the other hand, do not explicitly
use wave propagation information. This makes them very simple, efficient and applicable
to problems where the Riemann problem solution is not known or too costly to be used.
The Lax-Friedrichs flux [27] is probably the most well-known first-order monotone centred
flux. Other examples are the Godunov first-order centred flux [51] (not monotone) and the
FORCE flux of Toro [49, 51]. However, there is a price to be paid for the simplicity of centred
fluxes: in general, the more sophisticated upwind fluxes give results that are far superior to
those of centred fluxes, especially for linear waves and large output times.

Usually, only lower order (first order) monotone fluxes are used as the building block
for higher order schemes. In this paper we propose to use second order TVD fluxes as
the building block in high order methods and apply the principle to the finite-volume ENO,
WENO and MPWENO schemes. We call the new improved schemes the ENO-TVD, WENO-
TVD and MPWENO-TVD schemes respectively. There appear to be two candidate fluxes
that can be readily used as the building block for very high order schemes. These are the
fluxes of the Flux Limiter Centred scheme (FLIC) of Toro and Billett [50] and that of
the Weighted Average Flux (WAF) scheme of Toro [52, 53, 51]. Both fluxes achieve second
order of accuracy in space and time without performing data reconstruction, and this appears
to be the key issue. The WAF flux is an upwind flux and can be used with any exact or
approximate Riemann solver available. We recommend using complete Riemann solvers that
include all waves in the Riemann problem solution. The FLIC flux is centred and requires
no (explicit) wave propagation information.

A desirable feature of the proposed schemes is that they use the same non-staggered
reconstruction and the same TVD Runge-Kutta time descritisation, the only difference being
the numerical flux. This should be compared to the original centred and upwind WENO
methods, which use different reconstructions (staggered versus non-staggered) and different
Runge-Kutta methods (NCE Runge-Kutta methods versus TVD Runge-Kutta methods).
As a result, our schemes will be much easier to use for different hyperbolic systems.

Numerical results suggest that the new methods proposed here improve upon original
ENO, WENO and MPWENO methods in terms of better convergence, higher overall ac-
curacy and better resolution of discontinuities in linearly degenerate fields, such as contact
discontinuities. This is especially evident for long time evolution problems and coarse mesh-



es.

The idea of using a second order TVD flux as the building block can in principle be
applied to other very high order methods, such as RKDG and ADER methods. See [58] for
application to the ADER approach in one space dimension.

The paper is organised as follows. In Section 2 we briefly review the framework for
constructing finite-volume ENO, WENO and MPWENO schemes. In Section 3 we review
the fluxes to be used as the building block in the methods. Numerical results are presented
in Section 4 and conclusions are drawn in Section 5.

2. THE NUMERICAL SCHEME

In this section we review the construction of high order finite-volume schemes for hyper-
bolic systems in conservation form

atQ + aa;F(Q) =0, (1)

along with initial and boundary conditions. Here Q(z,t) is the vector of unknown conser-
vative variables and F(Q) is the physical flux vector.

There are essentially two ways to discretise (1). The first way is to develop fully discrete
(one-step) schemes. Consider a control volume in z — ¢ space [152'—1/2,%4-1/2] X [t", 1" T1], of
dimensions Az = xiy1/2 — Ti—1/2, Al = 1"+t — ¢, Integrating (1) with respect to x and ¢
over the volume we obtain
1

/J::-:;p {Q(-f,tn+1> — Q(:U,t”)} dx + [F(Q(CUH-I/Q,t) — F(Q(CUi_l/g,t)} dt = 0. (2)

tn
This results in the following numerical scheme

At
n+1l __ n __ =" ) o )
Q' = Q7 — 1 [Fisae — Fioypal 3)
where Q7 is the space average of the solution in the cell [:I;Z'_I/Q’:I;Z'_l_l/Q] at time ™ and the
numerical flux F; ./, is the time average of the physical flux at the cell interface z;4/,:

t"+1

1 ZTiy1/2 1
Q; = E/xi_uz Q(;c,t”) dz, F77+1/2 = E/t” F(Q($i+1/2at> dt. (4)
Examples of very high order fully discrete schemes include ENO schemes [21] and ADER
schemes [54, 45, 57, 46, 37, 58, 43].
Another way to discretise (1) is to keep the time variable ¢ continuous and consider semi-
discrete schemes. Integrating (1) with respect to = only we obtain the following system of
ordinary differential equations (ODE):

d 1
EQz(t) = N <F7:+1/2 — Fi—]/Q) = Li(Q); (5)

where Q;(t) is the space average of the solution in the cell [z;_ /3, %iy1/2] at time ¢ and
Fiii = F(Q($i+]/2,t)> is the numerical flux:

Q)= [ Q) dr, Fissgs = FQrinn ) (6)

Ax i—1/2

Note that the numerical flux of the semi-discrete scheme (6) is different from that of the
fully discrete scheme (3). In current ENO and WENO schemes the numerical solution of (5)
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is advanced in time by means of a TVD Runge-Kutta method [39]. Usually the following
third order TVD Runge-Kutta method is used [40, 19, 1] (here we dropped the index 1)

QU = Q"+ ALL(Q"),

3 . 1 . 1 .

QUn+2/3)  — ZQ +ZQ( +1/3)+ZAtL(Q( +1/3))7 0
1 2 2

Qn+1 _ an‘|‘gQ(n+2/3)+§AtL(Q(n+2/3))

Semi-discrete finite-volume ENO and WENO schemes are developed in [9, 30, 23, 38]. We
note that one can also consider semi-discrere finite-difference schemes [40, 19, 41, 1], which
work with point-wise values rather than cell averages. Here we consider the finite-volume
schemes only. We remark that the use of only the first (Euler) step of the Runge-Kutta
method (7) and piece-wise constant reconstruction results in a fully discrete first or second
order scheme.

The numerical flux at the cell boundary x;1,/5 is defined as a monotone function of left
and right extrapolated values Q£+1/2a Qﬁl/Q:

Fi+1/2 = F(Qi+1/2(t)) = F(Qf—l—l/% ﬁ-l/Q)- (8)

These extrapolated values are obtained from cell averages by means of a high order poly-
nomial reconstruction such as ENO [21, 40], WENO [30, 19], MP [41] or MPWENO recon-
structions [1]. For example, for a scalar function ¢(z) the fifth order WENO reconstruction
defines the left extrapolated value q,LL+1 /2 as

qﬁrl/Q = wovo + wiv1 + wavz, (9)

where vy is the extrapolated value obtained from cell averages in the k™ stencil S, = (1 —

ki—k+1,i—k+2)

1

vy = 6(—(]i+2 + 5qi+1 + 2q;),
1

vy = 6(—%—1 + 5¢; + 2¢i11), (10)
1

vy = 6(2%—2 —7qi—1 + 11%)a

and wy are nonlinear WENO weights given by
Qo aq (&)
wo="—""", "> wi=s—"F_, W=—""""
Qg+ oy + as Qg + a1 + Qg Qg + a1 + g
3 3 1

Q) a Qa3

T 10(1076 + TPSy)?’ T 10(1076 + TPS,)?

The smoothness indicators I PSSy are [19]

5(10=6 + TPS)?’

13 1
IPSy = ﬁ(% = 2git1 + Giy2)’ + 1(3% — 4Gip1 + Giy2)’,
13 1
IPS, = E(%‘—l —2q; + %'-}-1)2 + Z(qi_1 — qz'+1)2,
13 , 1 ,
IPS, = E(Qi—z —2qi-1 +qi)° + Z(%_Q —4qi_1 + qi)”.



The right value qﬁ_l/2 is obtained by symmetry. It can be shown that if ¢(z) is smooth in the

k™ stencil than the corresponding weight wy is O(1) and approaches the optimal, so-called
linear, weight. Otherwise wy = O(Az?) so that the (oscillatory) values from stencils contain-
ing discontinuities are assigned nearly zero weights [30, 19]. For systems the reconstruction
is carried out in characteristic variables rather than convervative variables and (9) is applied
to each characteristic field [21, 30, 19]. It can shown that the use of conservative variables
in the reconstruction results in oscillations even for simple test problems [21, 33].

The description of the scheme is complete when a proper non-oscillatory flux (8) is chosen.
In the next section we review possible centred and upwind fluxes which can be used.

3. FLUXES

In this section we review different non-oscillatory fluxes as applied to the one-dimensional
compressible Euler equations for a gamma-law gas
0Q+d.F(Q)=0
Q= (p,m, B)"
F(Q) = Qu+(0,p,pu)"
p= (3= )(E - tpu?)
where p, u, p and E are density, velocity, pressure and total energy, respectively; m = pu
is momentum and v is the ratio of specific heats. We first briefly review some conventional
monotone first order centred and upwind fluxes which are commonly used in the framework

of the finite-volume WENO schemes. Secondly, we introduce the idea of using a second

order, centred or upwind, TVD flux as the building block for the high order schemes.

(11)

3.1. Centred fluxes

Centred (or symmetric) fluxes contain no explicit wave propagation information (no up-
winding). This makes them simple, efficient and applicable to very complex equations but
also very diffusive as compared to upwind fluxes. In particular, waves associated with linearly
degenerate fields, such as contact waves, shear waves and vortices, are poorly resolved.

It should be noted that although centred fluxes formally do not require any explicit
information about wave propagation this information is still needed for enforcing a stability
condition for explicit methods. For explicit ENO, WENO and MPWENO schemes the linear

stability condition reads

CFL<I. (12)
Here CFL denotes the maximum Courant number over all cells at a given time step:
At
CFL =maxSI'—, (13)
: Az

where S? is the maximum propagation speed in the cell [xz-_l/g, :vH_l/Q] at time level n. We
take it to be a bound of the eigenvalues of the Jacobian matrix A(Q})

f n
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Probably the most well-known centred monotone flux is the Lax-Friedrichs flux [27] given
by
1 1 Az
F2+1/2 = 2(F2+1/2 + Fz+1/2) D) E(Qﬁu/z - QiL-l-l/Z)v

Fz-|-1/2 = F(Qi-l-l/Q)’ Fz-|-1/2 = F(Qﬁ-l/Q)'

The Lax-Friedrichs flux is commonly used in the design of some (but not all) high order
centred methods [31, 29]. In the limiting case of piece-wise constant data Q£+1/2 = Qr,
ﬁ1/2 = Q7 this flux leads to a monotone first-order accurate fully discrete scheme.
A flux, associated with a second order scheme is the two-step Lax-Wendroff flux or Richt-
myer flux:

(14)

1 1 At
Fz+1/z = F( 2-|-1/2> ﬁ11/2 = §<Qz+1/2 + Qz-}-l/Z) N (Fz+1/2 F2+1/2> (15>

In the limiting case of the piece-wise constant data the intermediate state Qﬁllﬂ is obtained
by integrating (1) over the control volume [z;, z;41] X [t",1" + At/2] and using the integral
form of the conservation law. The result is

. 1AL, "
F2+1/2 - F( z+1/2) fI-II/Z (Q + Qz+1) 2 Az (FZ-I-I FZ ) (16)

Expression (15) is a generalisation of (16) to higher order reconstructions. When used in
the fully discrete scheme given by (3) flux (16) leads to a linear (oscillatory) second-order
accurate method in space and time.

The Godunov first-order centred flux is obtained in a similar manner by replacing t"+At/2
in the control volume of integration by ¢"*'. The flux is then

(GC) GC 1 L Al

FoS i+1/2) i+1/2 = 5( i+1/2 + Q7+1/2> Az (F7+1/2 F7+1/2>

i+1/2 =
In the limiting case of the piece-wise constant data this flux leads to a first-order centred
scheme which is oscillatory and has a reduced stability range, see [51] for details. We shall
have no use for this flux here.

The flux of the First-Order Centred Scheme (FORCE) [49, 51] is derived as the determin-
istic version of the staggered-grid Random Choice Method and turns out to be an arithmetic
mean of the Lax-Friedrichs and Richtmyer fluxes:

1
FZ-OIJ/QZCE - 2(F2+1/2 + Fz+1/2)

where ]_:‘Z-[fl/2 and Fﬁ-llp are given by (14) and (15). When used in the fully discrete scheme
given by (3) in the limiting case of the piece-wise constant data this flux leads to a monotone
first-order accurate method. It can be shown [49, 51] that the numerical viscosity of the
FORCE flux is smaller than that of the Lax-Friedrichs flux.

Now the idea is to substitute the use of the first order centred flux by some high order but
non-oscillatory flux such as the flux of a Total Variation Diminishing (TVD) method. Most of
the modern TVD fluxes achieve non-oscillatory behaviour by applying a certain monotonicity
constraint on the boundary extrapolated values obtained from the reconstruction procedure.
Thus, they cannot be used with the WENO schemes because the application of such a
constraint to boundary extrapolated values Q2L+1/2’ Qﬁ_l/2 would conflict with the sought
high order accuracy of the scheme. To our knowledge the only second order non-oscillatory
centred flux which does not need any constrains on Q£+1/27 Qﬁ_l/2 is the flux of the Flux
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Limiter Centred (FLIC) scheme [50, 51]. This flux achieves second order of accuracy in
space and time without performing data reconstruction. Thus, it can be used directly with
boundary extrapolated values. In the limiting case of the piece-wise constant data the FLIC
flux leads to a second-order centred fully discrete scheme.

The FLIC flux is given as a weighted combination of the FORCE and Richtmyer fluxes:
Fij12 = FZ-OIJ/%QOE + SOé+1/2(FﬁI1/2 - Ffﬁ]/%QOE) (17)

where p;11/; is a flux limiter. There are several possible choices of the flux limiter p;11/, (50,
51]. Here we use the limiter which is analogous, but not equivalent to the compressive

SUPERBEE limiter of Roe [34] and is given by [50, 51]:

0, r <0
2r, 0<r< %
p(r) = 1 Lopr< (18)
> 7 =~ X
min (2, ¢, + (1 — @ )r), r>1
where r = 1,15 is the flow parameter and ¢, is given by
v, =(1-CFL)/(1+CFL). (19)

Here C'F'L is the Courant number used to choose the time step, see (13). For the Euler
equations we recommend the following procedure to choose the flow parameter. First we
compute

T'L — AEz’—1/2 TR — AEz'-|-3/2
i+1/2 AEH_]/Q’ i+1/2 AE%+1/2

where F is total energy and

(20)

/ _ R L
AEi+1/2 = E¢+1/2 - Ei+1/2’

Recall that Ef;’_l/2 and EZ-T_’l_l/2 are obtained from the reconstruction step. Then we compute
the single flux limiter

©it1/2 = Min (@(Tf+1/2>a ‘P(Tilm))
and apply it to all components of the flux in (17).

3.2. Upwind fluxes

Upwind fluxes utilise information on the local wave propagation explicitly. Godunov [15]
first introduced the idea of using the self-similar solution Q.(z/t) of the local Riemann
problem with inital conditions (Q£+1/27 Qﬁ-l/?) to compute the upwind numerical flux. The
use of the Riemann problem incorporates the physics of wave propagation into the numerical
method and leads to more accurate results as compared to centred fluxes. The original
Godunov scheme uses the exact Riemann solver and the flux is given as

Fi) = F(Q.(0).

When used in scheme (3) this flux leads to a first order monotone upwind scheme. Although
exact Riemann solvers for gamma-law gases are quite fast now [51], they become costly
and complicated for general equations of state as the calculation of the exact solution will
involve a double iterative procedure. Later many researches, including Godunov himself [15],



proposed to use approximate solutions in the construction of upwind fluxes [36, 14, 32, 35,
22, 48, 55, 56]. When used in (3) these fluxes give the first order upwind Godunov scheme
with an approzimate Riemann solver.

An upwind flux which is particularly popular due to its simplicity is the Rusanov first
order upwind flux [36]. It has been widely used recently in high order upwind WENO
methods [30, 65, 23, 38], RKDG methods [10, 11, 12, 65] and even centred staggered WENO
methods [33] (under the name of the local Lax-Friedrichs flux). Assuming that the estimate
ST for the maximum signal speeds for waves emerging from the Riemann problem solution
with data Qz'L+1/2 and Qﬁlﬂ is known, the Rusanov flux is defined as

;1 1
Fiﬁ?z = 2(F2+1/z + Fz+1/z) QS£1/2(Q£?|-1/2 - Qf+1/2)- (21)
We note that explicit schemes with the stability condition (12) require that
Ax
.I_
Sz'+1/2 < E

In the limiting case S+1/2 = Az /At the upwind Rusanov flux (21) reduces to the centred

Lax-Friedrichs flux (14).

Another well-known and popular upwind flux, the HLL flux [22], assumes a two-wave
structure of the Riemann problem solution and disregards all other waves, such as waves
associated with linearly degenerate fields. For the Euler equations these are the contact and
shear waves. As a result, the resolution of contact discontinuies is very poor and similar to
that of centred fluxes. The same applies to the Rusanov flux. Therefore, it is recommended
to use the upwind fluxes with all waves in the Riemann problem solution included. Here
we use the HLLC flux [48, 55, 56] which is an improved variant of the HLL flux [22] in
that it contains the middle (contact) wave in the Riemann problem solution. We remark
that the HLLC flux does not use linearisation of the equations and works well for low-density
problems, performs well at sonic points, no entropy fix is needed. See [63, 64] for applications
to Space-Time Discontinuous Galerkin Finite Element Methods, [18] for the MHD equations
and [3] for implicit methods for compressible viscous and turbulent flows.

An updated version of HLLC for the 3D Euler equations is found in [51]. Assuming a
three-wave structure with speed estimates given by S?+1/2’ Sz-|-1/2 and Sz+1/2 the HLLC flux
is given by

2+1/2’
[ F*L1/2 = Fz-l—]/? + Sq+1/2(Q?£1/2 - f+1/2)7 if Sy+1/2 <0< Sz-l—]/??
172 Fz+1/2 F2+1/2 + Sz+1/2(Qif1/2 - ﬁ1/2)7 if z+1/2 <0< Sz+1/27 (22)
FH—I/Q? it 02> Sz+1/2
where
_ 1 -
; +1/2
K " Siy1/e — {X 1/2 K
Qi-{-l/? e p{+1/2 (S‘l' / *+ / qull:l/?
i+1/2 7 Pig1/2 Wit/
Ef\+1/2( B UK )[S + pin-l/2 ]
L ’01+1/2 +1/2 i+1/2 +1/2 p‘-‘y1/2(si{‘p—1/2_“ﬁ-1/2) J



for K =L and K = R.
The wave speeds Sﬁ}-l/w S:+1/2 and Sﬁ-lﬂ must be estimated. We use the pressure-velocity
estimates of Sect. 10.5.2 of [51]. For the Rusanov flux one can then take

St = max(|S£H/2|, |Sf|.1/2|)'

Another way of estimating wave speeds can be found in [2].

Finally, we propose to use a second order upwind TVD flux as the building block in
the high order scheme. It appears as if the only upwind flux which does not need any
constrains on the boundary extrapolated values is the flux of the Weighted Average Flux
(WAF) method, a second order TVD method.

The WAF method [52, 53, 51] defines an intercell flux as

1 1 ta o2
F/Al — [ R (w0 dadr. 2
SV R I A (Q*(z,1))dz (23)
A special case and the one we use here is the formula
1 Az/2 "
Rl = — /_ oy F(Qu ol 7 4 A1/2) i, (24)

Assuming further that Q;41/, is the solution of the conventional piece-wise constant Riemann
problem with initial data Q£+1/2 and Qﬁlﬂ we may write

1 1 X X
Fiiij = §(F¢L+1/2 +Fip) - 52 G AF, . (25)
k=1
where ¢, = SZﬁt is the Courant number associated with wave k of speed S, in the solution of

the Riemann problem. Flux (25) gives a linear (oscillatory) second order accurate scheme.
A non-oscillatory, TVD, version is given by
N

1, 1 . k
Fﬁ-f/g = §(Fi[+1/2 + Fﬁ-l/Z) ) Z Slgn(ck>AkAFz('+)1/2v (26)
k=1

where Ay is a WAF flux limiter related to a conventional flux limiter By [42] via

Here we use the WAF limiter that is equivalent to the compressive SUPERBEE limiter of
Roe [34] and is given by (we omit index k) [51]

1, r <0,
1—2(1—|e))r, 0<r <L,
o(r)=1{ e, ;3 <r<i, (28)
1=2(1—=|c))r, 1<r<2,
2| — 1, r>2

The flux limiter depends on a flow parameter r*) which refers to wave k in the solution of
the Riemann problem and is the ratio

Aq(k)

i—1/2

%
Aq2(+)1/2

, if Ck>0,

k
Aq2(+)3/2

—
qu(+)1/2

if ¢ <0,
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where ¢*) is a suitable variable depending on the problem being solved. This variable must

(k)

1+1/2
the jump in g across wave k in the self-similar solution Q1,/2({/7) in the Riemann problem

change across each wave family in the solution of the Riemann problem. Agqg denotes
with data (Ql[:l-l/Q’ Q;j—l/?) at cell interface x;41/5. For the Euler equations the choice ¢ = p
(density) usually gives very satisfactory results.

The WAF method can be used with any Riemann solver available. It is recommended to
use complete Riemann solvers, that is those including all waves in their structure. In this
paper we utilise the HLLC Riemann solver (22).

When the solution contains strong shocks it may be beneficial to use characteristic pro-
jections in the evaluation of the WAF flux when the compressive SUPERBEE limiter 1s
used; see [58] for implementation details. However, we find that for the WENO schemes this
procedure is unnessesary.

Remark 1. Tt is known that the use of compressive limiters in TVD schemes affects in an
adverse manner smooth parts of the solution, the effect known as ’squaring’. However, in
the framework of higher order WENO schemes the squaring effect is smoothed out, retaining
the extra benefits of a compressive limiter in resolving discontinuities, particularly contact
discontinuities.

Remark 2. It is important to realise that in the case of no reconstruction (piece-wise
constant representation of the solution inside a cell) the original WENO schemes with first
order fluxes as the building block reduce to a first order monotone scheme whereas the
WENO-TVD schemes presented here reduce to a second order TVD scheme.

Remark 3. The computation of the ratio r in (20) and (29) requires special attention when
the denominator D is small, |D| < e, say, where ¢ is a small positive number. For TVD
methods, experience shows that the robustness of the methods does not depend too crucially
on the way this step is handled, while accuracy does. For the computations reported in this
paper, the following procedure was applied:

- {esignm,m, if |X]<e,

r = X:

5 (30)

X, otherwise,

where we take ¢ = 107%. From (30) it can be easily seen that for nearly uniform flow r &~ 1,
leading to second order accuracy, the correct behaviour of a TVD scheme. Tt seems to us as
if the implementation of TVD criteria in the context of the construction of very high-order
methods may require some further investigations.

4. NUMERICAL RESULTS

In this section we compare the numerical results of the new schemes proposed here with
those of the corresponding original schemes. The new schemes differ from the original
schemes of [40, 19, 1] in that they use second order TVD fluxes whereas the original schemes
employ only first order monotone fluxes. Here we choose Lax-Friedrichs (14) and HLLC
fluxes (22) as the representatives of first-order monotone centred and upwind fluxes and the
FLIC (17) and WAF (26) fluxes as the representatives of second-order centred and upwind
TVD fluxes respectively. We consider third order ENO, fifth order WENO and ninth order
MPWENO schemes with these fluxes and third order TVD Runge-Kutta method (7). To
save space we pay more attention to the fifth order WENO schemes with the reconstruction
given by (9); these are original WENO-LF and WENO-HLLC schemes and new WENO-
FLIC and WENO-WAF schemes. We also include the results of basic second order TVD
schemes, namely the WAF and FLIC schemes.
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There is a number of limiters which can be used with second order non-oscillatory TVD
fluxes. In this paper for the WENO-TVD schemes (WENO-FLIC and WENO-WAF) we
use the compressive limiters given by (18) and (28). For the basic TVD schemes (FLIC
and WAF) we use smooth limiters, namely the van Leer limiter [62] for the WAF scheme
and the analagous (not equivalent) limiter for the FLIC scheme [50, 51]. We do so because
in our numerical experiments the compressive limiters give more accurate results than the
smooth limiters when used in the WENO-TVD schemes but show undesirable ’squaring’ of
the smooth parts of the solution when used with second order TVD schemes. This behaviour
of TVD schemes associated with overcompressive limiters is well known.

An important issue is the choice of the Courant number, which defines the time step. The
WENO schemes are linearly stable for Courant numbers up to unity [19]. However, for solu-
tions with discontinuities smaller Courant numbers are usually used, typically in the range
of 0.2-0.6. For larger Courant numbers, e.g. 0.9, the WENO schemes become oscillatory in
some of our numerical experiments. The same observation applies to other schemes with
Runge-Kutta time discretisation, e.g. finite-difference ENO [40] and MPWENO [1] schemes.
It is argued [1] that this behavior of the WENO schemes is due to the combination of the
lower order time discretisation and higher order spatial reconstruction. In this paper we use
CFL=0.4 for the WENO schemes throughout, where CFL denotes the maximum Courant
number for each time step, see (13). For the MPWENO schemes we use CFL=0.3, which is
consistent with the requirement of the monotonicity constraint [41] used in this scheme. For
all calculations made with the WAF and FLIC schemes we use CFL=0.95 throughout.

In the numerical experiments we use very large output times, corresponding to hundreds
of thousand of time steps. We remark that there is no point in using expensive and com-
plex very high order methods for short-time propagation problems since for such problems
conventional TVD schemes often give acceptable results while being much faster and sim-
pler. The sophistication of very high order methods can be justified only for very long time
propagation.

We also pay special attention to the accuracy of the methods on coarse meshes and
for solutions containing delicate features such as contact discontinuities. Of course, all
convergent methods will give the same results in the limit of zero cell size. The point is that
a very high order method should outperform a conventional TVD method on all meshes,
particularly on very coarse meshes.

4.1 Scalar linear advection

First we solve a test problem with a very smooth solution in order to see how the TVD
fluxes with compressive limiters influence the convergence properties of the WENO-TVD
schemes.

Example 1. We solve
Oug + O = 0, (31)
with the initial condition

q(x,0) = sin*(rz), (32)

defined on [-1,1] and periodic boundary conditions. We use output times ¢ = 1 and ¢ = 1000.
Tables 1 and 2 show convergence rates and errors in different norms for cell averages of the

solution for the TVD, WENO and WENO-TVD schemes.
We observe that for the output time ¢ = 1 original WENO schemes and new WENO-TVD

schemes converge with approximately forth order of accuracy. The use of the compressive

SUPERBEE-type limiters in the WENO-TVD schemes degrades neither the convergence
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Table 1: Convergence study for various schemes as applied to the model equation (31) with initial condition
(32) at output time ¢ = 1. Schemes: second order WAF and FLIC used with CFL=0.95 and fifth order
WENO and WENO-TVD used with CFL=0.4.

Method N Lo error Lo order L1 error L1 order

FLIC 20 1.17x 107! 7.33 x 10~
40  3.81x 1072 1.62 2.27 x 10~ 1.69
80 1.59x 1072 1.26 6.04 x 1073 1.91
160 6.44 x 1073 1.31 1.54 x 1073 1.97
320 259 x 1073 1.32 3.87x 1074 1.99
640 1.03 x 1073 1.33 9.49 x 1075 2.03

2
2

WAF 20 4.74x 1072 3.46 x 10~2
40 1.84x 1072 1.36 6.73 x 1073 2.36
80 7.67x 1073 1.26 1.92 x 10-3 1.81
160 3.10 x 1073 1.31 4.84 x 10* 1.99
320 1.22x 1073 1.34 1.15 x 10=4 2.07
640 4.75 x 1074 1.37 2.92 x 1075 1.98

WENO-LF 20 1.64x 1071 1.49 x 107!
40  1.61 x 1072 3.35 1.64 x 102 3.19
80 2.11x 1073 2.93 1.79 x 1073 3.20
160  1.09 x 10~* 4.27 7.32x 1075 4.61
320 3.66 x 1076 4.90 3.47 x 1076 4.40
640 3.51 x 10~7 3.39 3.31x 1077 3.48

WENO-HLLC 20 1.22x 107! 1.05 x 107!
40 8.84x 1073 3.78 8.00 x 10~3 3.72
80 1.49x 1073 2.57 9.81 x 1074 3.03
160 5.64 x 1075 4.72 4.18 x 1075 4.55
320 3.00x 1076 4.23 2.80 x 10~ 3.90
640 3.29 x 10~7 3.19 3.29 x 10~7 3.09

WENO-FLIC 20 1.21x 107! 1.07 x 101
40 8.98 x 1073 3.75 7.12 % 1073 3.91
80 1.48 x 1073 2.60 7.81 x 10~ 3.19
160 3.29 x 10~° 5.49 2.84 x 1075 4.78
320 2.74 x 1076 3.59 2.62 x 10-6 3.44
640 3.22x 10~7 3.09 3.28 x 10~7 3.00

WENO-WAF 20 6.98 x 1072 6.52 x 10~2
40  6.18 x 1073 3.50 6.27 x 1073 3.38
80 1.10x 1073 2.49 6.44 x 10~4 3.28
160 3.41 x 1075 5.01 3.02 x 1075 4.42
320 2.77x 10~ 3.62 2.61 x 10=6 3.53
640 3.22x 10-7 3.09 3.28 x 10~7 3.00
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Table 2: Convergence study for various schemes as applied to the model equation (31) with initial condition
(32) at output time ¢ = 1000. Schemes: second order WAF and FLIC used with CFL=0.95 and fifth order
WENO and WENO-TVD used with CFL=0.4.

Method N Lo error Lo order L1 error L1 order

FLIC 20 5.62x 107! 6.52 x 1071
40 6.09 x 107! -0.11 6.52 x 1071 0.00
80 6.17x 1071 -0.02 6.47 x 1071 0.01
160 4.07 x 1071 0.60 4.05 x 1071 0.67
320 1.94 x 107" 1.07 1.65 x 107! 1.30
640 8.34 x 1072 1.22 6.07 x 10~2 1.44

WAF 20 5.77x 107" 6.66 x 107!
40 6.05x 107" -0.07  6.47x 107" 0.04
80 3.89x 107" 0.64 3.58x 107" 0.85
160 1.68 x 1071 1.21 1.22x 1071 1.55
320 7.04x 1072 1.25 5.06x 1072 1.28
640 2.56 x 1072 1.46 153 x 1072 1.72

WENO-LF 20 5.62x 1071 6.52 x 101
40 6.05x 1071 -0.11 6.47 x 1071 0.01
80 3.29x 10! 0.88 3.05 x 1071 1.09
160 4.17x 107! -0.34 4.10 x 1071 -0.43
320 3.54x%x 1073 6.88 2.86 x 1073 7.16
640 3.48 x 1074 3.35 3.31x 1074 3.30

WENO-HLLC 20 5.62x 107" 6.52 x 10~"
40  5.68 x 107" -0.01 6.00 x 10~! 0.12
80 2.10x 10~ 1.44 1.74 x 107! 1.79
160 8.49 x 102 1.30 5.66 x 1072 1.62
320 2.93x 1073 4.86 2.59 x 1073 4.45
640 3.29 x 10~ 3.15 3.29 x 10~¢ 2.98

WENO-FLIC 20 5.62 x 10! 6.52 x 101
40 498 x 10~1 0.17 5.13 x 107! 0.35
80 1.57x 107! 1.67 1.34 x 10! 1.94
160 2.38 x 10~?2 2.72 1.82 x 10~2 2.88
320 2.68 x 1073 3.15 2.60 x 10~3 2.81
640 3.22x 10~ 3.06 3.28 x 10~ 2.98

WENO-WAF 20 5.62x 10! 6.52 x 10~1
40 4.68x 107! 0.27 478 x 1071 0.45
80 1.51x 107! 1.63 1.34 x 10! 1.83
160 2.37 x 102 2.67 1.86 x 102 2.85
320 2.69x 1073 3.14 2.54 x 1073 2.87
640 3.22x 1074 3.06 3.28 x 104 2.98
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rate nor the size of the error. This result i1s very satisfactory as it shows that second order
TVD fluxes with compressive limiters can be used in the higher order methods (higher than
second order) without affecting the convergence properties. In fact, on coarse meshes we
observe some gains in accuracy.

The situation is different for the second, much larger, output time ¢ = 1000. The WAF,
WENO-HLLC and WENO-TVD schemes are seen to converge much better than the centred
FLIC and WENO-LF schemes. For the latter schemes the mesh refinements from 20 to 160
cells have virtually no effect on the size of the error. In fact, for these meshes the second
order (only first order in Lo norm) upwind TVD scheme WAF is more accurate than the
third order (fifth order in space) WENO-LF scheme. This is surprising because for smooth
solutions the higher order schemes, such as WENO schemes, are believed to produce much
better results than conventional second order TVD schemes, no matter which flux is used
as the building block in the scheme. Clearly, the use of the Lax-Friedrichs flux significantly
affects the convergence of the WENO-LF scheme. Comparing the results of the WENO-TVD
and original WENO schemes we observe that the use of TVD fluxes improves the accuracy
and convergence properties of the schemes.

Fxample 2. Now we solve equation (31) for the following initial condition [19, 41, 1]

exp (In2 (z 4+ 0.7)2/0.0009), —0.8 <z < —0.6,
1, —04 <2< =02,
q(z,0) = 1 — |10z — 1, 0.0<2<0.2, (33)
(1 —100(x — 0.5)%)/2, 0.4 <z <0.6,
0, otherwise,

and periodic boundary conditions. This time the solution is a combination of a discontinuous
square pulse and several continuous but narrow profiles. This is the type of problems for
which WENO schemes have to be used with smaller CFL. numbers than allowed by the
linear stability analysis; e.g. CFL=0.2-0.4 are used in [19, 41, 1]. We compute the solution
at the output times ¢ = 20 (short time evolution) and ¢ = 2000 (long time evolution). For
the second output time the initial profile is propagated 1000 times over the spatial domain;
when CFL number of unity is used, it corresponds to 2 x 10° time steps.

Table 3 shows convergence studies for cell averages of the solution in the L, norm; in
this norm all schemes should converge with first order of accuracy. We observe that for
the small output time ¢t = 20 (10 periods) all schemes converge with first order of accuracy
except the WENO-LF scheme, which suffers a loss of convergence rate as the mesh is refined.
The situation is again very different when we consider the second, much larger output time
t = 2000 (1000 periods). The WENO-LF scheme converges very poorly; the mesh refinement
from 200 to 1600 cells has virtually no effect on the size of the error. All other schemes achieve
approximately first order of accuracy as the mesh is refined. We note that the WAF scheme
outperfotms the centred FLIC and WENO-LF schemes and original upwind WENO-HLLC
scheme. As expected, the WENO-TVD schemes are superior schemes to the original WENO
schemes. In particular, the WENO-FLIC scheme outperforms other centred schemes (FLIC
and WENO-LF). Namely, on the finest mesh of 1600 cells WENO-FLIC is more than 10
times more accurate than WENO-LF and around 5 times more accurate than the FLIC
scheme. The WENO-WAF scheme produces the most accurate results of all methods; its
error 1s more than 3 times smaller that that of the WENO-HLLC scheme and 2 times smaller
than that of the WAF scheme. We also remark that overall, for the second output time,
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Table 3: Convergence study for various schemes as applied to the model equation (31) with initial condition
(33) at output times ¢ = 20 and ¢ = 2000. Schemes: second order TVD FLIC and WAF used with CFL=0.95
and fifth order WENO and WENO-TVD used with CFL=0.4.

Scheme N t =20 t = 2000

200 1.92 x 10~! 6.19 x 10~

400 1.03 x 10='  0.90 5.78 x 10" 0.10
800 5.50 x 10=2  0.90 413 % 107" 0.48
1600 2.90 x 10-2  0.92 2.36 x 10-'  0.81

FLIC

200 1.00 x 1071 5.52 x 101
WAF 400 527x 102 093  347x10-' 0.67
800 2.68 x 10=2  0.98 1.86 x 10~ 0.90
1600 1.43 x 102 0.90 9.81 x 10~2  0.93
200 1.42 x 10~! 6.41 x 107!
WENO-LF 400 6.86 x 10°2  1.05 6.21 x 10~ 0.05
800 4.12x 1072 0.76 5.82x 1071 0.09
1600 3.06 x 10=2  0.43 5.18 x 10~ 0.17
WENO-HLLC 200 1.13 x 107! 4.16 x 10~1
400 4.95%x 1072 1.19 4.00 x 10='  0.06
800 2.34x10"2 1.08 3.28 x 107" 0.29
1600 1.26 x 1072 0.89 1.66 x 10~ 0.98
WENO-FLIC 200 9.53 x 10~2 3.26 x 101
400 416 x 1072 1.20 1.74 x 10~ 0.91
800 1.97 x 1072 1.08 9.10 x 10=2  0.93
1600 1.02 x 1072 0.95 5.03x 1072 0.86
WENO-WAF 200 8.76 x 10~ 3.12 x 101

2
400 3.95%x 1072 1.15 155 x 107" 1.01
800 1.90 x 1072 1.06 8.52x 107% 0.86
1600 9.90 x 107%  0.94 4.55 % 1077 0.90

upwind methods perform much better than centred methods.

Figs. 1-6 depict graphical results of various methods for the output time ¢t = 2000 on
the mesh of 200 cells. In all figures the continuous line corresponds to the exact solution
and symbols correspond to the numerical solution. We observe that the centred FLIC and
WENO-LF schemes produce unacceptable results of virtually the same accuracy; namely
the numerical solution does not contain any of the features present in the exact solution.
The WAF scheme performs better but still the accuracy is very inaccurate. A surprising
observation is that the accuracy of second order TVD scheme WAF is overall higher than
that of the fifth order WENO-LF scheme. Other WENO schemes, namely the WENO-
HLLC, WENO-FLIC and WENO-WAF schemes produce much more accurate results. In
particular, the new centred WENO-FLIC scheme is significantly more accurate than the
original WENO-LF scheme. Overall, for the given mesh the WENO-WAF is the most
accurate scheme.

Figs. 7-12 depict graphical results of various methods for the output time ¢t = 2000 on
the finest mesh of 1600 cells. We see that on this mesh the WAF scheme outperforms the
FLIC scheme and original WENO-LF and WENO-HLLC schemes, compare Figs. 10 and
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Figure 1: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at

output ¢ = 2000. Method used: second order TVD FLIC, CFL=0.95 and N=200.
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Figure 2: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at
output ¢ = 2000. Method used: fifth order WENO-LF, CFL=0.4 and N=200.
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Figure 3: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at
output ¢ = 2000. Method used: fifth order WENO-FLIC, CFL.=0.4 and N=200.
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Figure 4: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at
output t = 2000. Method used: second order TVD WAF, CFL=0.95 and N=200.
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Figure 5: Computed (symbols) and exact (line) solutions for the linear advection equation (31) with initial
condition (33) at output ¢ = 2000. Method used: fifth order WENO-HLLC, CFL=0.4 and N=200.
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Figure 6: Computed (symbols) and exact (line) solutions for the linear advection equation (31) with initial

condition (33) at output ¢ = 2000. Method used: fifth order WENO-WAF, CFL=0.4 and N=200.
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Figure 7: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at
output ¢ = 2000. Method used: second order TVD FLIC, CFL=0.95 and N=1600.
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Figure 8: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at
output ¢ = 2000. Method used: fifth order WENO-LF, CFL=0.4 and N=1600.
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Figure 9: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at
output ¢ = 2000. Method used: fifth order WENO-FLIC, CFL.=0.4 and N=1600.
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Figure 10: Computed (symbols) and exact (line) solutions for equation (31) with initial condition (33) at
output t = 2000. Method used: second order TVD WAF, CFL=0.95 and N=1600.
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Figure 11: Computed (symbols) and exact (line) solutions for the linear advection equation (31) with initial

condition (33) at output ¢ = 2000. Method used: fifth order WENO-HLLC, CFL=0.4 and N=1600.
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Figure 12: Computed (symbols) and exact (line) solutions for the linear advection equation (31) with initial

condition (33) at output £ = 2000. Method used: fifth order WENO-WAF, CFL=0.4 and N=1600.
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Figs. 7, 8 and 11. In particular, WAF provides better resolution of the discontinous square
pulse. As before, the WENO-LF scheme is the least accurate scheme. As expected, the
WENO-TVD schemes produce most accurate results for all parts of the solution, including
the square pulse. These observations are in good agreement with the convergence study of
Table 3. We remark that there are some oscillations in the result of the WENO-FLIC scheme
on the finest mesh; these may be related to the way the flow parameter r, given by (20), is
computed. A similar effect was observed for the forth order ADER-WAF scheme in [58].

The presented numerical results for the linear advection equation with constant coefficient
lead us to believe that the TVD schemes, especially upwind schemes such as WAF, are not
to be ruled out when compared with the very high order centred schemes, particularly with
those using the Lax-Friedrichs flux as the building block. This is especially so for the long
time evolution problems. The simplicity and efficience of the TVD schemes, as compared
with the higher order WENO schemes, should also be taken into account. We believe that
this statement applies not only to the WENO-LF scheme but also to other modern centred
schemes with the Lax-Friedrichs flux such as those presented in [31, 26]. However, we expect
the centred WENO (CWENO) scheme of Qiu and Shu [33] to produce results similar to those
of the WENO-HLLC scheme when applied to the linear advection equation with constant
coefficient. This is because this CWENO scheme actually uses the upwind Rusanov flux
which coincides with the upwind Godunov flux in the linear scalar case.

The new ENO-TVD and MPWENO-TVD schemes show similar improvements over orig-
inal ENO and MPWENO schemes. For the MPWENOQO schemes these improvements in
general are smaller than for ENO and WENO schemes, as one would expect. We omit the
results here.

4.2 Euler equations of gas dynamics

We now assess the performance of different schemes for the one-dimensional Euler equa-
tions for a y-law gas (11), with v = 1.4 in all the results shown here.

Fzample 1. Stationary contact discontinuity. Consider the following initial condition [51]

defined on [0, 1]:
(1.4,0.0,1.0), =< %,
y Uy = 34
(p,u.p) { (1.0,0.0,1.0), > 1, (34)

which corresponds to an isolated stationary contact discontinuity. A mesh of 50 cells is
used. On this mesh at ¢ = 0 the discontinuity is positioned at the cell interface. We run the
schemes until the steady state solution is reached.

Table 4 shows the errors of different schemes in the L; norm, the number of time steps
needed to achieve the steady state solution and the number of cells across the contact
discontinuity. Figs. 13 - 15 depict graphical results for the WENO-LF, MPWENO-LF
and WENO-FLIC methods. We observe that the methods with complete upwind fluxes
resolve the isolated contact discontinuity exactly. This is expected since the HLL.C Riemann
solver used in these schemes recognises the middle (contact) wave in the Riemann problem
solution. A surprising observation is that the schemes with the centred FLIC flux resolve
the contact discontinuity exactly. This is due to our choice of total energy as the quantity
for the flow parameter r in (20). Recall that total energy is continuous across the contact
discontinuity. Therefore r = 1 and the FLIC flux reduces to the Richmyer flux. From the
Rankine-Hugoniot conditions for the stationary discontinuity it follows that the physical
flux is continuous across the stationary disconinuity. It is obvious that in this situation
the Richmyer flux does not introduce any perturbations to the discontinuity. As a result,
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the contact discontinuity is not smeared by the FLIC flux. The schemes which use the
Lax-Friedrichs flux as the building block (ENO-LF, WENO-LF and MPWENO-LF) smear
the discontinuity as time evolves. The reason for this is that the vector of conservative
variables is not continuous across the stationary contact discontinuity and at each time step
the Lax-Friedrichs flux introduces a perturbation to the exact profile. This perturbation is
proportional to the density jump across the discontinuity. However, the smearing becomes
smaller as the spatial order of the scheme increases.

We remark that our results confirm observations made by other researches [2, 26, 59].
In particular, Toro and Titarev [59] show that schemes of as high as ninth order of spatial
accuracy with first order centred (Lax-Friedrichs and FORCE) fluxes and incomplete upwind
fluxes (Rusanov and HLL) smear the stationary contact discontinuity.

Scheme N. of time steps L error N. of cells across the discontinuity
FLIC 1 0 0
WAF 1 0 0
ENO-LF 2134 3.69 x 1073 35
ENO-HLLC 1 0 0
ENO-FLIC 1 0 0
ENO-WAF 1 0 0
WENO-LF 1482 3.48 x 1077 20
WENO-HLLC 1 0 0
WENO-FLIC 1 0 0
WENO-WAF 1 0 0
MPWENO-LF 1109 3.06 x 1077 8
MPWENO-HLLC 1 0 0
MPWENO-FLIC 1 0 0
MPWENO-WAF 1 0 0

Table 4: Convergence study for various schemes as applied to the Euler equations (11) with initial condition
(34). Schemes: FLIC and WAF used with CFL=0.95, ENO and WENO used with CFL.=0.4 an MPWENO
used with CFL.=0.3.

Ezxample 2. Shock/turbulence interaction problem.

We compare performance of different schemes on a problem with a rich smooth structure
and a shock wave. We use the following test problem [58], which is a variation of the
shock/turbulence problem proposed in [19, 1]. The initial condition defined on [—5, 5] is

(1.515695,0.523346, 1.80500), = < —4.5,
(p,u,p) = (35)

(1 +0.1sin207z,0.0,1.), x> —4.5,

which consists of a right facing shock wave of Mach number 1.1 running into a high-frequency
density perturbation. The flow contains physical oscillations which have to be resolved by
the numerical method. We compute the solution at the output time ¢ = 5 which is more
than ten times larger than that of the standard shock/turbulence problem of [1]. Figs. 16-21
show results of the TVD, original WENO and new WENO-TVD schemes on a mesh of 2000

cells. In all figures the continuous line corresponds to the reference solution and symbols
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Figure 13: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-

tion (34). Method used: fifth order WENO-LF, CFL=0.4 and N=50 cells.

Figure 14: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-

tion (34). Method used: ninth order MPWENO-LF, CFL=0.3 and N=50 cells.

Figure 15: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-

tion (34). Method used: fifth order ENO-FLIC, CFL=0.4 and N=50 cells.
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correspond to the numerical solution. The reference solution is obtained by applying the
fifth order ADER5-WAF scheme [58] on a fine mesh of 5000 cells and is shown by the solid
line on all figures.

Figs. 16-18 depict graphical results for the centred FLIC, WENO-LF and WENO-FLIC
schemes. We see that the FLIC and WENO-LF schemes produce very inaccurate results. In
particular, the undisturbed region ahead of the shock wave is poorly resolved. The WENO-
FLIC scheme offers much better accuracy. The improvement over the WENO-LF is most
remarkable since these centred schemes differ only in the flux used, namely the Lax-Friedrichs
flux versus the FLIC flux.

Figs. 19-21 depict graphical results for the upwind WAF, WENO-HLLC and WENO-
WAF schemes. We observe the clear improvements in accuracy as we move from the TVD
WAF scheme to the WENO-HLLC scheme and to the WENO-WAF scheme. Note that the
undisturbed region ahead of the shock wave is well resolved by all these upwind schemes.
The WENO-WAF scheme produces the most accurate solution, which is very close to the
reference solution.

Comparing the numerical results of the centred (Figs. 16-18) and upwind (Figs. 19-21)
schemes we observe that the upwind schemes are clearly superior. On the given mesh the
second order (only first order in the L., norm) WAF scheme outperforms not only the FLIC
scheme but also the fifth order WENO-LF scheme. We also note that the WAF scheme
with the SUPERBEE limiter is even more accurate for this problem; the result is omitted
here. The most accurate centred scheme, the WENO-FLIC scheme, only approaches the
accuracy of the upwind WENO-HLLC scheme and is much less accurate that the most
accurate upwind scheme, the WENO-WAF scheme.

It should be noted that when the mesh is sufficiently refined the WENO-LF scheme
outperforms, to the eye, the TVD WAF scheme with the van Leer limiter. When the more
compressive SUPERBEE limiter is used, the WAF scheme still compares well with the
WENO-LF scheme.

Figs. 22-25 depict graphical results of the ENO and ENO-TVD schemes on the mesh of
2000 cells and Figs. 26-29 depict graphical results of the MPWENO and MPWENO-TVD
schemes on the mesh of 1000 cells. We again observe that the schemes with the Lax-Friedrichs
flux are the most diffusive whereas the schemes with the WAF flux are the most accurate.
Overall, the new schemes are superior to the original schemes. It is remarkable that for this
test problem the influence of the choice of the flux is equally large for schemes with least
accurate (3™ order ENO) and most accurate (9® order MPWENO) reconstructions.

We note that the shock wave here is rather weak and cannot be used to test the robustness
of the new schemes. However, we have run the new schemes for the suit of test problems
proposed by Toro [51] and obtained good results; these are omitted here.

4.3 Computing times and efficiency of the schemes

Table 5 shows computing times for all schemes on the mesh of 2000 cells and given CFL
numbers when ran on a personal computer. The timings for ENO schemes are similar to those
of WENO schemes and thus omitted. We note that the efficiency of the schemes depends on
the hardware, compilers, coding and other factors. Therefore, our results may be different
from those of other researchers. As expected, the TVD schemes are the fastest schemes.
The fastest WENO scheme, WENO-LF, is around ten times slower than the TVD schemes.
We note that our timings agree well with those presented in [19] where Jiang and Shu show
that a single step of the Runge-Kutta time method of the WENO scheme is 3-4 times more
expensive than that of a 'typical’ TVD scheme with MUSCL reconstruction in characteristic
variables and a two-step Runge-Kutta method. This tranlates into 4.5-6 times difference
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Figure 16: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: second order TVD FLIC, CFL=0.95 and N=2000 cells.
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Figure 17: Computed and reference (line) solutions for the Euler equations (11) with initial condition (35)
at output time t = 5. Method used: fifth order WENO-LF, CFL=0.4 and N=2000 cells.
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Figure 18: Computed and reference (line) solutions for the Euler equations (11) with initial condition (35)

at output time £ = 5. Method used: fifth order WENO-FLIC, CFL=0.4 and N=2000 cells.
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Figure 19: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: second order TVD WAF, CFL=0.95 and N=2000 cells.

Figure 20: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-

tion (35) at output time ¢ = 5. Method used: fifth order WENO-HLLC, CFL=0.4 and N=2000 cells.
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Figure 21: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: fifth order WENO-WAF, CFL=0.4 and N=2000 cells.
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Figure 22: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: third order ENO-LF, CFL=0.4 and N=2000 cells.
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Figure 23: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: third order ENO-FLIC, CFL=0.4 and N=2000 cells.
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Figure 24: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: third order ENO-HLLC, CFL=0.4 and N=2000 cells.
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Figure 25: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: third order ENO-WAF, CFL=0.4 and N=2000 cells.
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Figure 26: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial condi-
tion (35) at output time ¢ = 5. Method used: ninth order MPWENO-LF, CFL=0.3 and N=1000 cells.
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Figure 27: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial con-
dition (35) at output time ¢ = 5. Method used: ninth order MPWENO-FLIC, CFL=0.3 and N=1000

cells.
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Figure 28: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial con-
dition (35) at output time ¢ = 5. Method used: ninth order MPWENO-HLLC, CFL=0.3 and N=1000

cells.

|| "‘ \i
;;; h,ll!m; i
““““““““““““ mmmmm
\l’ 1\.‘ \M ﬂ} iy \I‘I‘ ‘

W JW

. [
i»ﬁum:,‘.wﬁ,m

“| l W ““ ||II

‘i‘
lq}lll{,lﬂ““l]" h ||\

AN
iy i

B 3 I
] "‘.‘

u\‘”
i

\J'
.!Ili"’iiiwlﬁl:! 'WH )

|||

i

ll i : [!
|7'}

9 BRI
5 4 3 2 A 0 1 2 3 4 5

Figure 29: Computed (symbol) and reference (line) solutions for the Euler equations (11) with initial con-

dition (35) at output time ¢ = 5. Method used: ninth order MPWENO-WAF, CFL=0.3 and N=1000
cells.

in speed when the same CFL number is used because the WENO schemes use a three-step
TVD Runge-Kutta method (7) as compared to a two-step Runge-Kutta method used by a
TVD scheme. Also, the WENO schemes need smaller CFL numbers, here we use CFL=0.4
for the WENO schemes and CFL=0.95 for the TVD WAF scheme. Furthermore, the FLIC
and WAF methods should be faster than a ’typical’ TVD scheme used for comparison in [19]
because 1) they are one-step methods, thus only one flux evaluation is needed per time step
per cell interface, as compared to two flux evaluations in the scheme with the Runge-Kutta
time stepping; ii) they do not need any characteristic projections/reconstruction. All these
factors result in the difference in speed tabulated in Table 5.

The WENO-FLIC scheme is only around 10% slower than the WENO-LF scheme. Con-
sidering the improvements in accuracy over the WENO-LF scheme, this additional compu-
tational cost is not significant.

The WENO-WAF scheme is around 30% slower that the WENO-HLLC scheme. This
is due to the use of the more expensive WAF flux instead of the first order HLLC flux in
each step of the Runge-Kutta method. However, again this difference in speed is more than
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Scheme CFL number Computing time

FLIC 0.95 95

WAF 0.95 s

WENO-LF 0.4 52s
WENO-HLLC 0.4 60s
WENO-FLIC 0.4 58s
WENO-WAF 0.4 80s
MPWENO-LF 0.3 172s
MPWENO-FLIC 0.3 180s
MPWENO-HLLC 0.3 182s
MPWENO-WAF 0.3 212s

Table 5: Computing times of various schemes as applied to the Euler equations (11) with initial condition

(35) on the mesh of 2000 cells.

compensated by the improvement in accuracy.

For the given CFL numbers the MPWENO scheme is around 2.5 times slower than the
corresponding WENO scheme when the same flux is used. This is due to the much more
costly reconstruction procedure used. We note that the MPWENO-WAF scheme is only
10% slower than the MPWENO-HLLC scheme; therefore it is worth using the WAF flux
with this scheme. Balsara and Shu [1] point out that the 9™ order WENO reconstruction
alone is around three times more expensive than the fifth order WENO reconstruction. On
top of that one has to add the computational cost of applying the monotonicity-preserving
bounds developed in [41] and a smaller CFL number as compared to the WENO scheme.
On the other hand, for the Euler equations , there are other steps in the method, such as
flux evaluation and characteristic projections; therefore the difference in speed between the
WENO and MPWENO schemes for the CFL numbers used is only around 2.5 times. For the
numerical results presented this difference is more than compensated by the improvements
in accuracy associated with the higher order reconstruction.

5. CONCLUSIONS

In this paper we have proposed to use a second order TVD flux, rather than a first order
monotone flux, as the building block in the construction of very-high order methods. Also,
we have applied the idea to the finite-volume ENO, WENO and MPWENO schemes. We
call the resulting schemes the ENO-TVD, WENO-TVD and MPWENO-TVD schemes. As
the building block we consider the centred FLIC flux and the upwind WAF flux together
with compressive SUPERBEE-type limiters. Both the upwind and centred schemes use the
same reconstruction and time discretisation as the original upwind finite-volume schemes.

The centred ENO-FLIC, WENO-FLIC and MPENO-FLIC schemes proposed in the paper
do not use staggered meshes, which are common in other centred methods such as those of
[31, 33]. Also, our centred scheme does not suffer from large numerical diffusion typical
of the conventional centred schemes based on the Lax-Friedrichs flux. In particular, the
new schemes with the centred FLIC flux resolve stationary isolated contact discontinuities
exactly.

The numerical results of the proposed schemes for the linear advection equation with
constant coefficient and for the Fuler equations show remarkable improvements over the
original schemes with first order monotone centred and upwind fluxes, especially for long
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time evolution problems containing both smooth and non-smooth features. In addition, the
presented numerical results lead us to believe that the basic second-order TVD schemes,
both the centred FLIC and the upwind WAF, are not to be ruled out when compared with
the very high order centred schemes using the Lax-Friedrichs flux as the building block. We
show that the schemes with the Lax-Friedrichs flux are not suitable for long time evolution
problems due to excessive numerical diffusion. The above-mentioned differences in accuracy
between upwind and centred fluxes and between first order and second order fluxes exist for
schemes of all spatial orders considered.

Future work will include extensions of the present results to multidimensional WENO
schemes as well as other high order methods, such as Runge-Kutta Discontinuous Galerkin
methods.
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