View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Unitn-eprints Research

UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

SIDEPATH RESULTS ON PACKING
$\WEC{P}_1$'SAND $\VEC{P} 2$'S

Richard C. Brewster,
Pavol Hell and Romeo Rizzi

February 2003

Technical Report # DIT-03-008


https://core.ac.uk/display/11829024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Sidepath results on packing Pr's and Pys

Richard C. Brewster*
Dept. of Math and Stats.
Capilano College
2055 Purcell Way
North Vancouver, B.C., Canada
V7J 3H5
rbrewste@capcollege.bc.ca

Pavol Hell
School of Computing Science
Simon Fraser University
Burnaby, B.C., Canada

V5A 156
pavol@cs.sfu.ca

Romeo Rizzi
Istituto per la Ricerca Scientifica e Tecnologica
38050 Trento (Italy)

romeo@science.unitn.it

February 18, 2003

Abstract
We provide proofs of some results from our companion paper.

Key words: {131, P, }-packing, directed path packing, circuit packing.

*The authors gratefully acknowledge the support of the Natural Science and Engineer-
ing Research Council of Canada.



1 Introduction

This report provides proofs and refinements of some results from our com-
panion paper [2]. We refer the reader to [2] for a more detailed introduction
to notation, background, and motivation.

Let G be a fixed set of digraphs. Given a digraph H, a G-packing in H
is a collection P of vertex disjoint subgraphs of H, not necessarily induced,
each isomorphic to a member of G. A G-packing P is mazimum if the number
of vertices belonging to members of P is maximum, over all G-packings. The
analogous problem for undirected graphs has been extensively studied in the
literature. In a companion paper we initiate the study of digraph packing
problems, focusing on the case when G is a family of directed paths. We
showed that unless G is (essentially) either {P,}, or {P,, P,}, the G-packing
problem is NP-complete. We use the notation B, for the directed path of
length k, i.e., the path ug,uq,...,u; in which all arcs are oriented from u;_;
towu; fori =1,2,...k.

When G = {ﬁl}, the G-packing problem is simply the matching problem.
In [2], we treat in detail the one remaining case, G = { P, P,}. We give in this
case a polynomial time algorithm based on augmenting configurations, and a
corresponding Berge-type and Tutte-type theorems. We also give a reduction
to bipartite matching. In this report, we give a direct combinatorial algorithm
based on augmentations, explore weighted variants of the problem, and give
a polyhedral analysis.

2 Min-max characterization

In this report, the term packing without further specification always refers
to a {ﬁl, ﬁg}—packing. Let H = (V, A) be a digraph and let P be a packing
in H. Then expy (P) denotes the number of vertices of H left exposed by P.
(In this report, subscripts are omitted when convenient).

Given a vertex v, the in-neighbourhood of v, denoted N*(v), respectively
out-neighbourhood of v, denoted N~ (v), is the set {u|(u,v) is an arc of H},
respectively {u|(v,u) is an arc of H}. Given a set of vertices S, N(S) is the
union of N*(v) taken over all vertices v in S. The set N~ (S) is analogously
defined using N~ (v). For any set S of vertices from H, the deficiency of S
in H is defined as

defu(S) :=[S| = [NT(S)| = [N"(S)].
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Clearly, exp(P) > def(S) for every set S and every packing P. The following
min-max characterization is the main result of our analysis.

Theorem 2.1 In every digraph H there exists a set of nodes S and a packing
P such that exp(P) = def(S).

In the next section, we provide an algorithmic proof of Theorem 2.1.

3 An algorithm

We only describe a procedure which, given a digraph H = (V, A) and a pack-
ing P, returns either an augmentation, that is a packing P’ with exp(P’) <
exp(P), or a set S with exp(P) = def(S). At every step, the procedure will
perform a move out of a finite set of possible moves. At every step, three
subsets S, Ry and R_ of V will be updated (only by adding nodes to them).
We denote by R the set R, U R_ and by 7" the set S U R. There are two
kinds of moves. A first kind of move leads to an augmentation, hence to the
termination of the procedure. The second kind of move increases both [S|
and |Ry|+ |R-|. This is more than enough to show that at most O(|V|)
labelings can occur between two consecutive augmentations in the main al-
gorithm. If at a certain step no move out of the finite set can be applied, then
the procedure halts and S is returned. This procedure leads to an O(mn)
algorithm for finding a maximum {P,, P,}-packing.
The correctness of the procedure rests on the following invariants.

e Let v be any node in S. Then in H \ v we can produce a packing P’
such that expp\,(P') < exp(P) by just altering P within H[T]\ v;

e let u and v be any two nodes in S. Let H' be the digraph obtained
from H by adding arc (u,v). Then in H' we can produce a packing P’
such that expy (P') < exp(P) by just altering P within H'[T;

e S and R are disjoint;

e the two endnodes of a 131 in P are either both in T or both outside 7.
In the first case, one of them is in S and the other is either in R, or in
R_;



e for Pys in P we have three possibilities: either all three nodes are
outside T, or the two endpoints are in S and the middle node is both
in Ry and in R_, or one endpoint is in S, the other is not in 7" and the
middle node is either in R, orin R_.

Initialization. Set R, := R_ := S := (). The invariants trivially hold.

3.1 Augmenting moves

By the invariants, we have an augmentation whenever one of the following
situations occur.

1 two nodes in S are adjacent;

2 anode s in S is adjacent to a node in V' \ 7" which is the endpoint of
a P1 in P,

3 anode s in S is adjacent to a node in V' \ 7" which is the endpoint of
a P2 in P,

4.1 there exists an arc (s, b) where s € S and b € R_ is the middle node of
a P, in P;

4.2 there exists an arc (b, s) where s € S and b € R, is the middle node of
a P2 in P.

The rationale behind 3 and 4 is the only which needs some word of expla-
nation, to be read after the whole picture of the algorithm has been gathered.
Actually, the rationale behind 3 and 4 is essentially the same, hence we choose
to expose it for 3. Let (a, b)(b, ¢) be the P, and assume « is the node outside
T and adjacent to s. If b and c are also outside 7', then no further explana-
tion should be needed. Assume therefore b in R and ¢ € S. Again, if among
the moves which led to put s in S no move based on ¢ € S was needed, then
we can actually pretend that the move which put b and ¢ in T" has never oc-
curred, and the argument above applies. Otherwise we have found a circuit
going through b and disjoint from what H|[T"] was at the step which put b
and ¢ in T because of an arc (b, s') with s’ € S. Even if the P,’s involved into
this circuit can partially fall outside of it (but always remain within V' \ T'),
since the circuit has been obtained through a sequence of labeling moves and



in view of the remark concerning labeling moves given in the next section, we
conclude that it is always possible to rearrange things within this circuit in
such a way to leave exposed only node b or only nodes a and b of the circuit,
leaving precisely the same status (exposed/not exposed) for nodes outside
this circuit. But then §', after this rearrangement outside H[T"], could have
been covered with the extra Py (b, s') or with the extra P, (a,b)(b, s').

3.2 Labeling moves and termination

Labeling moves come about when a node s in S is adjacent to a node x with
certain properties. These properties are the preconditions for the move. We
assume (s,z) to be the arc which triggered the move, since the arguments
remain the same if one reverses the direction of all arcs involved and swaps
between R, and R_. Essentially, there is only one possible labeling move.

Labeling Move.

Precondition: = ¢ R and (a,z) is a P, in P or = ¢ R_ and (a,z)(z,b) is
a ﬁQ in P.

Action: a is put into S and z is put into R_.

Comments: It is easy to check that the first invariant is maintained. The
second invariant for the two nodes s and a follows directly from the first
invariant on s. (In the case when (a,z) is a P, in P, consider that in every
orientation of Ky there is a Py.) The second invariant for a and another node
t € S follows from the second invariant itself for s and ¢, just exploiting (s, x)
and the arc added between a and ¢ but discarding (a, ) to emulate the effect
of an arc between s and ¢. All other invariants are trivially maintained.

Remark: in the case when z is put into R_, then arcs (s, z) and (a, x) are
both directed towards x. In the case when z is put into R, then arcs (z,s)
and (z,a) are both exiting z.

Termination.
At termination, if no augmentation has occurred, then the following prop-
erties do hold.

e S is an independent set of nodes (otherwise Augment Move 1);

e N*(S) and N~ (S) are both contained into R =T\ S (otherwise Aug-
menting Move 2 or 3 or 4 or Labeling Move).
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Consider to associate to every non-exposed node s in S that node which
was put in R, or in R_ at the same step when s was put into S. The min-
max characterization follows by observing that this function is onto R, is not
defined on the exposed nodes, and for every node v in R, N R_ there are two
distinct nodes into S which are mapped into v.

3.3 A reduction to bipartite matching

In this section, we propose a shorter solution through a reduction to the
bipartite matching problem. This also allows for a O(m+/n) algorithm and
for more convenient derivations of positive results for weighted versions of
our packing problem.

Let H be a digraph with vertex set V' and arc set A. We define the
bipartite graph G associated with H (sometimes denoted by G = G(H)), as
follows: Let V', V* and V™ be three distinct copies of V, with u™ € V't u* €
V* and u~ € V™ denoting the vertices corresponding to u € V' respectively.
Let BT = {u™v* :uv € A} and E~ = {u*v~ :uv € A}. The graph G has
the vertex set W = VT U V* UV~ and the edge set E = ET U E~. Note
that G is indeed a bipartite graph with bipartition V*,V* U V. We shall
describe a correspondence between sets of vertices in H that can be covered

by packings of H, and sets of vertices in V* that can be covered by matchings
of G.

Lemma 3.1 Let G be the bipartite graph associated with a digraph H. For
every packing P of H, there exists a matching M of G such that u € V is
covered by P if and only if u* is covered by M.

Proof: For each arc uv which forms a P, in P, we put in M the edges
uTv* and u*v~. For each pair of arcs wv, vw which form a P, in P, we put
in M the edges utv*, u*v™, and vtw*. |l

Lemma 3.2 Let G be the bipartite graph associated with a digraph H. For
every matching M of G, there exists a packing P of H such that uw € V is
covered by P whenever u* is covered by M.

Proof: Every nontrivial directed path or cycle admits a perfect {ﬁl, ﬁg}-
packing; thus, it suffices to find a packing of H by directed paths and cycles
covering the appropriate vertices. However, the subgraph of H which natu-
rally corresponds to M may contain vertices incident with three arcs (one arc
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for each of u™, u*, u™). Thus, we shall process M to form a new matching M’
covering the same vertices of V* as M, but which corresponds to a collection
of directed paths and cycles in H.

Consider the bipartite graph F' on the vertex set V™ UV, with the
edges utv~ for all arcs uv of H. Consider the matching M; := M N E*: by
replacing each asterisk with a plus (in the superscripts), we can view M; to
be a matching of F. Similarly, we can view M, := M N E~ as a matching
of F' by replacing all asterisks with a minus sign. Note that v* is covered
by M if and only if v~ is covered by M; or v* is covered by M,. By the
Dulmage-Mendelsohn theorem [9], we can find (in linear time) a matching
M' in F which covers all vertices of V' covered by M; and also all vertices
of V= covered by M,. To this matching M’ in F' there corresponds in H a
set, of disjoint directed paths and cycles, covering a vertex v whenever v* is
covered by M. |

Recall that the size of a packing of H is the number of covered vertices.
While the size of a matching of G is formally the number of edges in the
matching, we note that this equals the number of vertices in V* covered by
the matching.

Theorem 3.3 Let G be the bipartite graph associated with a digraph H.
Then the size of a maximum packing of H equals the size of a mazimum
matching of G. o

These results (together with the bipartite matching algorithm and a
linear-time algorithm inherent in the Dulmage-Mendelsohn theorem) yield
a polynomial time algorithm to find a maximum packing.

We remark the above theorem also gives an alternative derivation of our
min-max formula. Trivially, for S C V*, M will leave at least |S|—|NT(S)|—
|IN~(S)| vertices exposed in V*. Note that this fully corresponds to deficiency
in the digraph H. Moreover, by Hall’s theorem for bipartite graphs, we know
that when M is a maximum matching, there exists a set of vertices S with
exactly def(S) exposed vertices.

3.4 Polyhedral considerations

Note that the convex hull of those node subsets which are covered by a
{P1, P,}-packing is precisely the same polytope as the convex hull of those
node subsets which are covered by a packing of directed paths. The convex
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hull, and indeed the very family of coverable node subsets, would still be
the same even if we considered packings of directed paths and cycles. The
equivalence among the three polytopes still holds when we are interested in
maximum size node subsets which can be covered by a packing.

If we are interested in these two polytopes, then the reduction to bipartite
matching already provides a solution. It follows indeed from the reduction
to bipartite matching that the maximal sets of nodes which are covered by a
packing (we call such a packing mazimal covering) in the original digraph are
precisely the maximal subsets of V* which can be covered by a matching in
the bipartite graph considered by the reduction. Moreover, given a bipartite
graph on color classes U and V, the subsets of nodes in U which can be
matched to nodes in B are known to be the independent sets of a matroid.
Hence, we could at worst rely on the exponential but algorithmically well
behaved polyhedral description for the basis of a matroid given by Edmonds.
As a consequence, we can find maximum cost packings (whether {P;, P,}-
packings, or packings of directed paths, or packings of directed paths and
directed cycles). When the costs are non negative, then the maximum cost
packings obtained will also be mazimum covering in the sense that they will
cover maximum sets of nodes, since the basis of a matroid all have the same
cardinality. In practice, to find maximum cost packings we can exploit our
reduction to bipartite matching and just solve a maximum weight bipartite
matching where the weight of the edges is inherited from the costs on the
nodes. Namely, all edges incident with v* € V* receive the cost of v* as their
weight. By adding a suitably big constant to the cost of every node, we can
also find minimum cost maximum covering packings. That is, we have the
polyhedral description of the convex hull of maximum covering packings.

What however if we wanted to have costs on the arcs? Here the three
problems are not any longer the same problem and we must distinguish
between maximum {151, ﬁg}—packings, maximum packing of directed paths,
and maximum packings of directed paths and cycles.

In the following subsection, we show that finding a maximum covering
{P,, P,}-packing of maximum cost (cost on the arcs) is NP-hard. This makes
it unlikely to find a polyhedral description for the polytope of maximum
{P,, P,}-packing. This also indicates why post-processing (Mendelsohn-Dulmage)
was actually needed in our reductions. In Subsection 3.6, we will give some
positive polyhedral results for packings of directed paths and circuits.



3.5 Negative polyhedral results

In this subsection, we will show the NP-completeness of the following decision
problems.

Problem 3.4 Given a planar digraph D with 0/1 costs on the arcs and an
integer k, does there exists a mazimum packing P in D such that the sum of
the costs on the arcs in P is at least k?

Let B be a boolean formula in conjunctive normal form. Let X =
{z1,...,2,} be the set of variables and C' = {¢4, ..., ¢, } be the set of clauses
in B. Consider the bipartite graph G = (X, C; Eg), with color classes X
and C, and with edge set Fg = {xc : variable z occurs in clause c¢}. The
boolean formula B is called planar when Gg is planar. In [8], Lichtenstein
showed that Problem 1 is NP-complete.

Problem 1 (PLANAR 3SAT) Given a planar boolean formula B, is B
satisfiable?

Moreover, the obvious reduction shows that PLANAR 3SAT remains NP-
complete even when restricted to boolean formulas with precisely three liter-
als per clause (even though this is not really needed into our two reductions).
The reduction we propose will encode the given boolean formula B into a
digraph D(B) with 0,1 weights on the arcs. The digraph D(B) that we
will associate to B will always have a packing covering all nodes. The costs
placed on the arcs play therefore a crucial role. To construct D(B), take a
node c; for each clause c¢; of B. Moreover, to each variable x; associate a
truth setting component as displayed in Figure 1. The component consists of
a cycle on 53 = 15 nodes and is made of an alternating sequence of f’g’s
and Py’s. The arcs of the Py’s have weight 0 and are all oriented into a same
direction, say anti-clockwise, whereas the arcs of the ]33’5 have weight 1 and
are all oriented clockwise. For j = 1,...,m, the j-th ]32 is associated to the
j-th occurrence of z; into B, its tail node Z;/ is meant to offer a negated
literal, whereas its head node z;7 is meant to offer a positive literal.

Consider the p-th occurrence of variable z; into B and assume this oc-
currence is in clause ¢;. Now, if the occurrence is positive, then we add an
arc with tail in z;7 and head in c;, otherwise, if the occurrence is negative,
then we add an arc with tail in ¢; and head in Z;7. These arcs weight 0.
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Figure 1: The truth setting component associated to variable z;.

Note that the truth-setting components are planar. Moreover, since the con-
nections among components and clause nodes are dictated by Gg, and by
suitably numbering the occurrences of the variables into the truth-setting
components, the resulting graph will also be planar. Finally, in- and out-
degrees are bounded by 3.

Lemma 3.5 The digraph D(B) admits a packing covering all its nodes.
Moreover, D(B) admits such a packing of cost 6m if and only if B is satis-
fiable.

Proof: To indicate why the first statement is true, we restate it in a stronger
form: the digraph D(B) admits a packing covering all its nodes and where
all arcs vlu?, v2u? and v3u! belong to the packing as Py’s, for all clauses i.

For the second statement, note that any packing can not collect more than
6 arcs of weight 1 from a given truth setting component, since no packing
can collect more than 2 arcs from a ]33. Furthermore, if a packing collects 6
arcs of weight 1 from a component, then these arcs have been collected by 3
f’g’s, otherwise one of the three nodes of the component which are incident
with two weight 0 arcs of the component would not be covered. For the same
reason, the 3 P,’s which collect 6 units of weight from the clause either cover
nodes z;, 7 and 3 or cover nodes Z;, T7 and T;. In the first case, variable
x; is true; in the second case, variable z; is false. Now the reader should be
in condition to ascertain that D(B) admits a packing covering all its nodes
and of cost 6m if and only if B is satisfiable. |
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3.6 Positive polyhedral results

The system here below describes the convex hull of characteristic vectors of
packings of directed paths and cycles. Hence we can find packings of directed
paths and cycles of maximum cost.

max cx
z(6T(v) < 1 YweV (1)
z(6~(v)< 1 YweV
z> 0

Theorem 3.6 The vertices of the above polytope are precisely the character-
istic vectors of packings of directed paths and cycles.

Proof: It suffices to show that the above polytope is integral.

This can be done by standard methods from polyhedral combinatorics,
and along the same lines of existing proofs for the bipartite matching poly-
tope. Namely, one has to assume the existence of a fractional vertex and
then get a contradiction deriving two feasible points having the given vertex
in their convex hull. In doing this, one concentrates on the digraph of only
those arcs associated to fractional components of the assumed fractional ver-
tex. The key observation is that in any finite non-empty digraph there exists
either an alternating circuit, i.e. a circuit where the directions of the arcs
along the circuit alternate, or a maximal alternating path. |

Also the dual, here below, has integral solutions.

min ly* + 1y~
{ y*t(u) +y (v) > cpp Y(wv) €A (2)
)

>
> 0

Theorem 3.7 The above polytope s integral.

Proof: Again it is a matter of adapting standard arguments which assume
a fractional vertex and then get a contradiction deriving two feasible points
having the given vertex in their convex hull. The fact that such a proof can
be derived along the lines of classical results for bipartite matching is better
explained by the reduction given here below. |

In any case, we can also propose a purely combinatorial algorithm not
based on Linear Programming to find packings of directed paths and cycles
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of maximum cost. Indeed, once again, the following reduction to bipartite
matching does the job.

Given an input digraph D = (V, A), construct a bipartite graph on color
classes VT = {vt : v e V}and V- = {v~ : v € V} and having an edge
utv™ if and only if (u,v) € A. Note that there is a natural correspondence
between the matchings of G and the packings of directed circuits and paths
in D.

Packing of directed circuits

System 1 here above, after the addition of the |V'| equations z(6*(v)) =
x(6~(v)), describes an integral polytope (and hence the convex hull of pack-
ings of directed circuits), as one can see by essentially the same reduction to
bipartite matching: take two disjoint copies V™ and V= of V and put one
edge utv~ whenever (u,v) € A. This time, also add the edges vTv~ for every
veV.

Note that there is a bijection between the perfect matchings of G and the
packings of directed circuits and paths in D.
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