-

brought to you by ., CORE

View metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

EFFICIENTLY INTEGRATING BOOLEAN REASONING
AND MATHEMATICAL SOLVING

Gilles Audemard, FRergiorgio Bertali, Alessandro Cimett
Artur Kornilowicz and Roberto Sebadtiani

January 2003

Technical Report # DIT-03-001


https://core.ac.uk/display/11829015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Article Submitted to Journal of Symbolic Computation

Efficiently Integrating Boolean Reasoning
and Mathematical Solving * T

GILLES AUDEMARD!?, PIERGIORGIO BERTOLI',
ALESSANDRO CIMATTI', ARTUR KORNILOWICZ!'® AND
ROBERTO SEBASTIANT'*

YITC-IRST, Povo, Trento, Italy

{audemard ,bertoli,cimatti,kornilow, rseba}@itc .it
2[.SIS, University of Provence, Marseille, France
3 Institute of Computer Science, University of Biatystok, Poland
4DIT, Universita di Trento, Povo, Trento, Italy

Abstract

Many real-world problems require the ability of reasoning efficiently on
formulae which are boolean combinations of boolean and unquantified
mathematical propositions. This task requires a fruitful combination of
efficient boolean reasoning and mathematical solving capabilities. SAT
tools and mathematical reasoners are respectively very effective on one
of these activities each, but not on both. In this paper we present a for-
mal framework, a generalized algorithm and architecture for integrating
boolean reasoners and mathematical solvers so that they can efficiently
solve boolean combinations of boolean and unquantified mathematical
propositions. We describe many techniques to optimize this integration,
and highlight the main requirements for SAT tools and mathematical
solvers to maximize the benefits of their integration.

1. Motivation and goals

Many real-world problems require the ability of reasoning efficiently on formu-
lae which are boolean combinations of boolean and unquantified mathematical
propositions, on integer or real variables. (Noteworthy examples come from the
domains of compilers design [Pugh, 1992], temporal reasoning [Armando et al.,
1999], resource planning [Wolfman and Weld, 1999], automated verification of

*This paper extends the work presented in [Audemard et al., 2002b].

tThis work is sponsored by the CALCULEMUS! IHP-RTN EC project, contract code
HPRN-CT-2000-00102, and has thus benefited of the financial contribution of the Commis-
sion through the THP programme.



systems with numerical data [Chan et al., 1997] or of timed and hybrid systems
[Moeller et al., 2001, Audemard et al., 2002c], software and protocol design and
verification [Fillidtre et al., 2001, Stump et al., 2002].) This ability requires an
efficient combination of boolean reasoning and mathematical solving capabilities.

From the viewpoint of boolean reasoning (SAT), in the last years we have
witnessed an impressive advance in the efficiency of SAT techniques, which has
allowed to solve previously intractable problems. Unfortunately, simple boolean
expressions are not expressive enough for representing most of the real-world
domains listed above. (Notice that encoding mathematical entities and oper-
ators into pure boolean expressions —e.g., by means of bitwise encodings for
bounded integers or of boolean labeling techniques for simple real expressions—
is typically very inefficient.)

From the viewpoint of mathematical solving, in the last years also mathe-
matical solvers like computer-algebra systems and constraint solvers have very
much improved both in expressivity and in efficiency, being able to solve classes of
problems which were previously unsolvable or intractable. Unfortunately, mathe-
matical solvers cannot handle efficiently problems involving heavy boolean search
—or do not handle them at all— so that most of the real-world domains above
are out of their reach too.

In this paper we present a formal framework, a generalized algorithm and
architecture for integrating boolean reasoners and mathematical solvers so that
they can efficiently solve boolean combinations of boolean and mathematical
propositions. We describe many techniques to optimize this integration, and
highlight the main requirements SAT tools and mathematical solvers must fulfill
in order to achieve the maximum benefits from their integration. The work is
inspired to the approach presented in Giunchiglia and Sebastiani [1996, 2000]
for building domain-specific decision procedures on top of SAT tools, which has
proved very effective in various problem domains like, e.g., modal and description
logics [Giunchiglia and Sebastiani, 1996, 2000], temporal reasoning [Armando
et al., 1999], resource planning [Wolfman and Weld, 1999].

The ultimate goal is to develop tools able to handle real-world problems in
complex domains like those described above. From the viewpoint of boolean
reasoning, SAT tools can be extended in such a way they can handle also math-
ematical concepts and operators. From the viewpoint of mathematical solving,
computer algebra systems and constraint solvers can be enriched by very efficient
boolean reasoning capabilities.

The paper is structured as follows. In Section 2 we describe formally the
problem we are addressing. In Section 3 we present the formal framework on
which the procedures are based. In Section 4 we present a generalized search
procedure which combines boolean and mathematical solvers. In Section 5 we
introduce some efficiency issues and we highlight the main requirements that
boolean and mathematical solvers must fulfill in order to achieve the maximum
benefits from their integration. In Section 6 we present our own implemented
procedure. In Section 7 we briefly describe some other implemented systems
which are captured by our framework. In Section 8 we present some related
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work. For lack of space, we omit the proofs of all the theoretical results presented,
which can be found in [Sebastiani, 2001].

2. The problem

We address the problem of checking the satisfiability of boolean combinations of
primitive unquantified mathematical propositions. Let D be the domain of either
integer numbers Z or real numbers R, with the respective set OPp of arithmetical
operators {+, —,-,/,mod} or {+,—,-,/} respectively. Let {L, T} denote the
false and true boolean values. Given the standard boolean connectives {—, A}
and math operators {=, #, >, <, >, <}, let A = {4y, Ay, ...} be a set of primitive
propositions, let C = {¢1,¢,...} and V = {v1,vs,...} respectively be a set of
numerical constants in D and variables over the D.

We call math-terms the unquantified mathematical expressions built up from
constants, variables and arithmetical operators over D: a constant ¢; € C is a
math-term; a variable v; € V is a math-term; if ¢; is a math-term, then —%; is a
math-term; if ¢;, to are math-terms, then (¢; ® t3) is a math-term, ® € OPp.

We call math-formulae the mathematical formulae built on primitive propo-
sitions, math-terms, operators and boolean connectives: a primitive proposition
A; € A is a math-formula; if 1, ¢, are math-terms, then (¢; > t5) is a math-
formula, > € {=,#,>,<, >, <}; if ¢; is a math-formula, then = is a math-
formula; if ¢1, ¢o are math-formulae, then (p1 A ¢2) is a math-formula. For
instance, A; A ((v1 + 5.0) < (2.0 -v3)) and Ay A =(((2 - v1) mod vy) > 5) are
math-formulae. ¥

Notationally, we use the lower case letters ¢, ¢;,... to denote math-terms,
and the Greek letters «, 5, ,¥ to denote math-formulae. We use the stan-
dard abbreviations, that is: “p1 V " for “=(—p1 A —p9)”, “o1 — 9" for
“Slor A —2)”, “p1 " for “a(pr A mpg) A (w2 A pr)”, “T7 for any
valid formula, and “L” for “=T”. When this does not cause ambiguities, we use
the associativity and precedence rules of arithmetical operators to simplify the
appearance of math-terms; e.g, we write “(c;(vo — v1) — ¢1v3 + c3v4)” instead of
“(((er - (v2a —v1)) = (e1 - v3)) + (c3 - va))”.

We call interpretation a map Z which assigns D values and boolean values to
math-terms and math-formulae respectively and preserves constants and arith-
metical operators: Z(A;) € {T, L}, for every A; € A; Z(c;) = ¢;, for every ¢; € C;
Z(v;) € D, for every v; € V; Z(t1 @ t3) = (Z(t1) ® Ip(ts)), for all math-terms ¢1,
tyand ® € OPp. 8

The binary relation = between a interpretation Z and a math-formula ¢,

!The assumption that the domain is the whole Z or R is not restrictive, as we can restrict
the domain of any variable v; at will by adding to the formula some constraints like, e.g.,
(v1 # 0.0), (11 < 5.0), etc.

§Here we make a little abuse of notation with the constants and the operators in OPp. In
fact, e.g., we denote by the same symbol “4+” both the language symbol in Zp(t; + t2) and
the arithmetic operator in (Zp(t1) + Zp(t2)). The same discourse holds for the constants
¢; € C and also for the operators {=,#,>, <,>,<}.



written “Z |= ¢” (“Z satisfies ¢” or “T satisfies ¢”) is defined as follows:

A ): (tl > t2),|><| € {:, 7é, >, <, >, S} — I(tl) D(]I(tg),
IE ¢ = Ty
IE (o1 A ep2) = IFy¢iandT = .

We say that a math-formula ¢ is satisfiable if and only if there exists an interpre-
tation Z such that 7 |= ¢. E.g.,if D = R, then A; — ((v1+2v) < 4.5) is satisfied
by an interpretation Z such that Z(A;) = T, Z(v,) = 1.1, and Z(ve) = 0.6. For
every o1 and ¢o, we say that @1 = @9 if and only if Z = ¢, for every Z such
that Z = ¢;. We also say that = ¢ (¢ is valid) if and only if Z = ¢ for every .
It is easy to verify that ¢; = @9 if and only if = ¢1 — @9, and that = ¢ if and
only if - is unsatisfiable.

3. The formal framework
3.1. Basic definitions and results

Definition: We call atom any math-formula that cannot be decomposed propo-
sitionally, that is, any math-formula whose main connective is not a boolean
operator. A literal is either an atom (a positive literal) or its negation (a
negative literal).

Examples of literals are, A;, 7 Ay, (v + 3.0 < 4.0v3), =((3v1/v2) > 6). If [ is a
negative literal -1, then by “—[” we conventionally mean 1 rather than ——.
We denote by Atoms(y) the set of atoms in ¢.

Definition: We call a total truth assignment p for a math-formula ¢ a set

M= {O!l, .. .,O!N,ﬁﬁl, . _|BM,A1, .. .,AR, _|AR+1, ey _|A5}, (1)

such that every atom in Atorms(y) occurs as either a positive or a negative literal
in u. A partial truth assignment p for ¢ is a subset of a total truth assignment
for . If ps C pq, then we say that p; extends us and that ps subsumes ;.

A total truth assignment p like (1) is interpreted as a truth value assignment to
all the atoms of ¢: o; € pu means that «; is assigned to T, =3; € u means that (;
is assigned to L. Syntactically identical instances of the same atom are always
assigned identical truth values; syntactically different atoms, e.g., (t; > ) and
(to < t1), are treated differently and may thus be assigned different truth values.

Notationally, we use the Greek letters p,n to represent truth assignments.
We often write a truth assignment y as the conjunction of its elements. To this
extent, we say that yu is satisfiable if the conjunction of its elements is satisfiable.

Definition: We say that a total truth assignment yu for ¢ propositionally sat-
isfies ¢, written u =, ¢, if and only if it makes ¢ evaluate to T, that is, for all
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sub-formulae 1, @y of ¢:

1 Ep ¢1, p1 € Atoms(p) <= @1 €
1 Ep 1 = uEp o1
1 Ep 1A g2 = pEp o1 and p =y oo

We say that a partial truth assignment i propositionally satisfies ¢ if and only
if all the total truth assignments for ¢ which extend p propositionally satisfy .

(From now on, if not specified, when dealing with propositional satisfiability
we do not distinguish between total and partial assignments.) We say that ¢ is
propositionally satisfiable if and only if there exist an assignment p such that
i =p . Intuitively, if we consider a math-formula ¢ as a propositional formula
in its atoms, then =, is the standard satisfiability in propositional logic. Thus,
for every ¢; and ¢y, we say that ¢; =, ¢ if and only if u =, ¢, for every p
such that p =, ¢1. We also say that =, ¢ (¢ is propositionally valid) if and
only if 4 =, ¢ for every assignment p for . It is easy to verify that ¢ =, @2
if and only if =, 1 — @9, and that =, ¢ if and only if —¢ is propositionally
unsatisfiable.

Notice that |=, is stronger than =, that is, if ¢ =, @9, then ¢ = @9, but not
vice versa. E.g., (v1 < wvg) A (v2 < w3) = (v1 < v3), but (v < ) A (v2 < v3)
(v1 < v3).

ExXAMPLE 3.1: Consider the following math-formula ¢:

Y= {_|(2’U2 — V3 > 2) \/Al} A
{_|A2 V (21)1 — 4’05 > 3)} N
{(Bvy — 20, < 3) VA A
{_|(2’l}3 =+ vy 2 5) V _|(3’l}1 — Vs S 6) V _|A1} A
{Al V (3’1)1 - 27)2 S 3)} N
{(’01 — Vs S 1) V (’1)5 =5— 3’1)4) \/_|A1} A
{41V (v3 =3v5 +4) V Ay}

The truth assignment given by the underlined literals above is:
n= {“(2’02—1)3 > 2), _|A2, (3?)1—2’02 < 3), (Ul—U5 < 1), _|(3U1—U3 < 6), (U3 = 3U5+4)}

Notice that the two occurrences of (3v; — 2vy < 3) in rows 3 and 5 of ¢ are
both assigned T. p is an assignment which propositionally satisfies ¢, as it sets
to true one literal of every disjunction in ¢. Notice that u is not satisfiable, as
both the following sub-assignments of p

{(31)1 — 22Uy < 3), _|(2U2 — V3 > 2), _|(31)1 —v3 < 6)} (2

)
{(’Ul — Ux S 1), (1)3 = 3’05 + 4),_|(3’Ul — U3 S 6)} (3)

do not have any satisfying interpretation. O
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Definition: We say that a collection M = {p1,...,u,} of (possibly partial)
assignments propositionally satisfying ¢ is complete if and only if

=y \/uj- (4)

J

where each assignment p; is written as a conjunction of its elements.

M is complete in the sense that, for every total assignment 7 such that n =, ¢,
there exists p; € M such that p; C 7. Therefore M is a compact representation
of the whole set of total assignments propositionally satisfying ¢. Notice however
that ||M]| is worst-case exponential in the size of ¢, though typically much
smaller than the set of all total assignments propositionally satisfying .

Definition: We say that a complete collection M = {1, ..., pu,} of assignments
propositionally satisfying ¢ is non-redundant if for every p; € M, M\ {y;} is
no more complete, it is redundant otherwise. M is strongly non-redundant
if, for every p;, u; € M, (i A p;) is propositionally unsatisfiable.

It is easy to verify that, if M is redundant, then p; C p; for some ¢, j, and that,
if M is strongly non-redundant, then it is non-redundant too, but the vice versa
does not hold.

EXAMPLE 3.2: Let ¢ :== (aV BV y)A(aV BV ), a, 5 and v being atoms.
Then

L. {{a’ /Ba 7}; {O[, /Ba _"Y}a {01, _'/Ba 7}5 {aa _|,6, _'fy}’ {_'OZ, 61 ’Y}a {_'O,/, IBa _"Y}} is the

set of all total assignments propositionally satisfying ¢;

2. {{a}’ {a’ ﬁ}’ {a’ —ry}, {a, ﬁ}a {ﬁ}, {ﬁ: ﬁ’)’}ﬂ {a, 7}’ {ﬁ: 7}} is complete but

redundant;
3. {{a},{5}} is complete, non redundant but not strongly non-redundant;
4. {{a},{—«, 8}} is complete and strongly non-redundant. O

THEOREM 3.1: Let ¢ be a math-formula and let M = {1, ..., u,} be a com-
plete collection of truth assignments propositionally satisfying . Then ¢ is sat-
isfiable if and only if p; is satisfiable for some p; € M.

3.2. Decidability and complexity

Having a math-formula ¢, it is always possible to find a complete collection of
satisfying assignments for ¢ (see later). Thus from Theorem 3.1 we have trivially
the following fact.

PROPOSITION 3.1: The satisfiability problem for a math-formula over atoms of
a given class is decidable if and only if the satisfiability of sets of literals of the
same class is decidable.



For instance, the satisfiability of a set of linear constraints on R or on Z, or a set of
non-linear constraints on R is decidable, whilst a set of non-linear (polynomial)
constraints on Z is not decidable (see, e.g., [Robinson and Voronkov, 2001]).
Consequently, the satisfiability of math-formulae over linear constraints on R or
on Z, or over non-linear constraints on R is decidable, whilst the satisfiability of
math-formulae over non-linear constraints over Z is undecidable.

For the decidable cases, as standard boolean formulae are a strict subcase
of math-formulae, it follows trivially that deciding the satisfiability of math-
formulae is “at least as hard” as boolean satisfiability.

PROPOSITION 3.2: The problem of deciding the satisfiability of a math-formula
@ 1s NP-hard.

Thus, deciding satisfiability is computationally very expensive. The complexity
upper bound may depend on the kind of mathematical problems we are dealing.
For instance, if we are dealing with arithmetical expressions over bounded inte-
gers, then for every Z we can verify Z = ¢ in a polynomial amount of time, and
thus the problem is also NP-complete.

4. A generalized search procedure

Theorem 3.1 allows us to split the notion of satisfiability of a math-formula ¢
into two orthogonal components:

e a purely boolean component, consisting of the existence of a propositional
model for ¢;

e a purely mathematical component, consisting of the existence of an inter-
pretation for a set of atomic mathematical propositions.

These two aspects are handled, respectively, by a truth assignment enumerator
and by a mathematical solver.

Definition: We call a truth assignment enumerator a total function ASSIGN-
ENUMERATOR which takes as input a math-formula ¢ and returns a complete
collection {1, ..., pu,} of assignments satisfying (.

Notice the difference between a truth assignment enumerator and a standard
boolean solver: a boolean solver has to find only one satisfying assignment —or
to decide there is none— while an enumerator has to find a complete collection
of satisfying assignments. (We will show later how some boolean solvers can be
modified to be used as enumerators.)

Definition: We say that ASSIGN-ENUMERATOR is strongly non-redundant if
ASSIGN-ENUMERATOR(p) is strongly non-redundant for every ¢, non-redundant
if ASSIGN-ENUMERATOR(¢) is non-redundant for every ¢, redundant other-
wise.

Definition: We call a mathematical solver a total function MATH-SOLVER
which takes as input a set of atomic math-formulae y and returns an interpre-
tation satisfying p, or Null if there is none.



boolean MATH-SAT (formula ¢, assignment & u,interpretation & )

do

u = Next(ASSIGN-ENUMERATOR(y))  /* next in {1, ..., un} */

if (u # Null)

Z :=MATH-SOLVER(u);

while ((Z = Null) and (u # Null))
if (Z # Null)
then return True; /* a satisfiable assignment found */
else return False; /* no satisfiable assignment found */

Figure 1: Schema of the general algorithm for MATH-SAT.

4.1. A generalized algorithm

The general schema of a search procedure for satisfiability is reported in Fig-
ure 1. MATH-SAT takes as input a formula ¢ and (by reference) an initially
empty assignment g and an initially null interpretation Z. For every assignment
p in the collection M := {1, .., u,} generated by ASSIGN-ENUMERATOR(yp),
MATH-SAT invokes MATH-SOLVER over u, which either returns a interpreta-
tion satisfying p, or Null if there is none. This is done until either one satisfiable
assignment is found, or no more assignments are available in {1, ..., ti, }. In the
former case ¢ is satisfiable, in the later case it is not.

MATH-SAT performs at most ||M|| loops. Thus, if every call to MATH-
SOLVER terminates, then MATH-SAT terminates. Moreover, it follows from The-
orem 3.1 that MATH-SAT is correct and complete if MATH-SOLVER is correct
and complete. Notice that, it is not necessary to check the whole set of total
truth assignments satisfying ¢, rather it is sufficient to check an arbitrary com-
plete collection M of partial assignments propositionally satisfying ¢, which is
typically much smaller.

It is very important to notice that the search procedure schema of Figure 1 is
completely independent on the kind of mathematical domain we are addressing,
as far as we have a mathematical solver for it. This means that the expressivity of
MATH-SAT, that is, the kind of math-formulae MATH-SAT can handle, depends
only on the kind of sets of mathematical atomic propositions MATH-SOLVER can
handle.

4.2. A generalized architecture

The general architectural schema for MATH-SAT is described in Figure 2. No-
tationally, ¢ is the input math-formula; ¥ is a boolean formula obtained by
preprocessing ¢ —possibly CNF-izing it if ASSIGN-ENUMERATOR accepts only
CNF formulae— and substituting in ¢ each atomic math-formula ¢; with a new
boolean variable A;; Z is an interpretation. p is a truth value assignment to



Sat/Unsat,
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MATH-SAT
g g SAMUSA |
¥ Y 7
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PREPROCESSOR
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Figure 2: Schema of the general architecture for MATH-SAT.

the boolean variables of ¥, and {c,...,c,} is the corresponding set of atomic
math-formulae.

The PREPROCESSOR (CNF-1ZER) receives in input a math-formula ¢ and
returns a (CNF) boolean formula ¥ obtained by preprocessing ¢ (CNF-izing
it) (see Giunchiglia and Sebastiani [1999]) and substituting in ¢ each atomic
math-formula ¢; with a new boolean variable A;.

As a side effects, it produces a “MATH<+BOOL” table, which keeps a bijec-
tive relation between the atomic math-formulae of ¢ and their labeling boolean
variables. Such table is used by ASSIGN-ENUMERATOR. to convert each assign-
ment p into the corresponding set of atomic mathematical propositions, which
is fed to MATH-SOLVER.

4.3. Suitable ASSIGN-ENUMERATORS

The following are the most significant boolean reasoning techniques that we can
adapt to be used as assignment enumerators.

4.3.1. DNF.

The simplest technique we can use as an enumerator is the Disjunctive Nor-
mal Form (DNF) conversion. A propositional formula ¢ can be converted into
a formula DNF(p) by (i) recursively applying DeMorgan’s rewriting rules to
¢ until the result is a disjunction of conjunction of literals, and (ii) removing
all duplicated and subsumed disjuncts. The resulting formula is normal, in the
sense that DN F'(¢) is propositionally equivalent to ¢, and that propositionally
equivalent formulae generate the same DNF modulo reordering.

INotice that {ci,...,c,} are non-negated atomic math-formulae: negations are inserted
within the atoms like, e.g., =(v; < ¢1) = (v1 > ¢1).
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OBDD Tableau Search Graph DPLL search graph

Figure 3: OBDD, Tableau and DPLL search graph for the formula (aVBV~Y)A(aV BV —y).

By Definition 3.4, we can see (the set of disjuncts of) DNF(y) as a com-
plete and non-redundant —but not strongly non-redundant— collection of as-
signments propositionally satisfying ¢. For instance, in Example 3.2, the set of
assignments at point 2. and 3. are respectively the results of step (i) and (ii)
above.

4.3.2. OBDD

A more effective normal form for representing a boolean formula if given by the
Ordered Binary Decision Diagrams (OBDDs) [Bryant, 1986], which are exten-
sively used in hardware verification and model checking. Given a total ordering
v1, ..., U, on the atoms of ¢, the OBDD representing ¢ (OBDD(y)) is a directed
acyclic graph such that (i) each node is either one of the two terminal nodes T, F,
or an internal node labeled by an atom v of ¢, with two outcoming edges T'(v)
(“v is true”) and F(v) (“v is false”), (ii) each arc v; — v; is such that v; < v;
in the total order. If a node n labeled with v is the root of OBDD(¢) and n,,
ny are the two son nodes of n through the edges T'(v) and F'(v) respectively,
then nq, ny are the roots of OBDD(¢[v = T]) and OBDD(¢[v = L]) respec-
tively. A path from the root of OBDD(y) to T [resp. F] is a propositional model
[resp. counter-model] of ¢, and the disjunction of such paths is propositionally
equivalent to ¢ [resp. —¢p].

Thus, we can see OBDD(p) as a complete collection of assignments proposi-
tionally satisfying . As every pair of paths differ for the truth value of at least
one variable, OBDD(y) is also strongly non-redundant. For instance, in Figure 3
(left) the OBDD of the formula in Example 3.2 is represented. The paths to T’
are those given by the set of assignments at point 4. of Example 3.2.

4.3.8. Semantic tableauz.

A standard boolean solving technique is that of semantic tableaux [Smullyan,
1968]. Given an input formula ¢, in each branch of the search tree the set {¢}
is decomposed into a set of literals p by the recursive application of the rules:

M'U{sm,---,son}(/\) # U {p} N'U{%}(
W UL{AL, ¢i} ' UL{Vis ¢i}

plus similar rules for (=), (++), (=A), (=V), (= =), (= <»). The main steps are:

v)7
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boolean MATH-DPLL (formula ¢, assignment & p,interpretation & T)
if (p==T){ /* base */
7 = MATH-SOLVER(u) ;
return (Z # Null) ; }

if (p==1) /* backtrack */
return False;

if {a literal [ occurs in @ as a unit clause} /* unit propagation */
return MATH-DPLL(assign(l, ¢), n U {l},1);

I = choose-literal(p); /* split */

return (MATH-DPLL(assign(l,¢),pU{l},Z) or
MATH-DPLL(assign(—l, @), u U {-l},Z) );

Figure 4: Schema of an implementation of MATH-SAT based on DPLL.

(closed branch) if y contains both ¢; and ¢; for some subformula ; of ¢,
then p is said to be closed and cannot be decomposed any further;

(solution branch) if y contains only literals, then it is an assignment such
that p =) ¢;

(A-rule) if p contains a conjunction, then the latter is unrolled into the set
of its conjuncts;

(V-rule) if 4 contains a disjunction, then the search branches on one of the
disjuncts.

The search tree resulting from the decomposition is such that all its solu-
tion branches are assignments in a collection T'ableau(y), whose disjunction is
propositionally equivalent to ¢. Thus Tableau(ip) is complete, but it may be re-
dundant. For instance, in Figure 3 (center) the search tree of a semantic tableau
applied on the formula in Example 3.2 is represented. The solutions branches
give rise to the redundant collection of assignments at point 2. of Example 3.2.

4.3.4. DPLL

Davis Putnam Longemann Loveland procedure (DPLL) [Davis et al., 1962] is
probably the most commonly used boolean solving procedure. Figure 4 shows
how it can be adapted to work as a boolean enumerator [Giunchiglia and Se-
bastiani, 1996, Sebastiani, 2001]. Given ¢ in input, MATH-DPLL tries to build
recursively mathematically consistent assignments p’s propositionally satisfying
@. This is done adding at each step a new literal | to p and simplifying ¢,
according to the following steps:

e (base) If ¢ = T, then u propositionally satisfies ¢. Thus, if p is satisfiable,
then ¢ is satisfiable. Therefore MATH-DPLL invokes MATH-SOLVER(u),
which returns an interpretation for p if it is satisfiable, Null otherwise.
MATH-DPLL returns True in the first case, False otherwise.

e (backtrack) If ¢ = 1, then u has lead to a propositional contradiction.
Therefore MATH-DPLL returns False.

e (unit) If a literal [ occurs in ¢ as a unit clause, then [ must be assigned T.

11



Thus, MATH-DPLL is recursively invoked upon assign(l, ¢ ) and the assign-
ment obtained by adding [ to u. assign(l, @) substitutes every occurrence
of [ in ¢ with T and propositionally simplifies the result.

e (split) If none of the above situations occurs, then choose-literal(p) returns
an unassigned literal [ according to some heuristic criterion. Then MATH-
DPLL is first invoked upon assign(l, ) and p U {{}. If the result is False,
then MATH-DPLL is invoked upon assign(—l, ¢) and pU {-l}.

The key difference between MATH-DPLL and DPLL is in the “base” step: as
DPLL needs finding only one satisfying assignment p, it simply returns True.

The resulting set of assignments DPLL(y) is complete and strongly non-
redundant [Sebastiani, 2001]. For instance, in Figure 3 (right) the search tree of
DPLL applied on the formula in Example 3.2 is represented. The non closed
branches give rise to the set of assignments at point 4. of Example 3.2.

Notice the difference between an OBDD and (the search tree of) DPLL: first,
the former is a direct acyclic graph whilst the second is a tree; second, in OBDDs
the order of branching variables if fixed a priori, whilst DPLL can choose each
time the best variable to split. Even more important, DPLL can apply unit
propagation if this is the case, OBDD cannot.

4.4. Non-suitable ASSIGN-ENUMERATORS

It is very important to notice that, in general, not every boolean solver can be
adapted to work as a boolean enumerator. For instance, some implementations
of DPLL include also the following step between unit propagation and split:

e (pure literal) if an atom 1) occurs only positively [resp. negatively] in ¢, then
DPLL is invoked recursively on assign (1, ¢ ) and pU{y} [resp. assign(—), )
and U {-0}];

(we call this variant DPLL+PL). DPLL+PL is complete as a boolean solver,
but does not generate a complete collection of assignments, so that it cannot be
used as an enumerator.

ExXAMPLE 4.1: If we used DPLL+PL as ASSIGN-ENUMERATOR in MATH-SAT
and gave in input the formula in Example 3.2, DPLL+PL might return the one-
element collection {{a}}, which is not complete. If o is (z? + 1 < 0) and S is
(y < z), z,y € R, then {a} is not satisfiable, so that MATH-SAT would return
unsatisfiable. On the other hand, the formula ¢ is satisfiable because, e.g., the
assignment {—«, 8} is satisfied by Z(z) = 1.0 and Z(y) = 0.0.

5. Efficiency issues

In the schema in Figure 1, the efficiency of MATH-SAT does not depend only
on the respective efficiency of its component procedures ASSIGN-ENUMERATOR
and MATH-SOLVER. Other issues affect dramatically the global efficiency, like the
number of assignments in the complete set generated by ASSIGN-ENUMERATOR,
and the way ASSIGN-ENUMERATOR and MATH-SOLVER interact.
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5.1. Efficiency of ASSIGN-ENUMERATOR

When we use a SAT solver like DPLL or OBDD as ASSIGN-ENUMERATOR, its
efficiency as a SAT solver is not enough for guaranteeing the overall efficiency of
MATH-SAT. We need some extra features, which we describe here.

5.1.1. Atoms’ normalization

One potential source of inefficiency for the procedure for MATH-SOLVER is the
fact that semantically equivalent but syntactically different atoms are not recog-
nized to be identical [resp. one the negation of the other] and thus they may be
assigned different [resp. identical] truth values. This causes the undesired gener-
ation of a potentially very big amount of intrinsically unsatisfiable assignments
(like, e.g., {(U1 < ’1}2), (Ul > UQ), })

To avoid these problems, it is wise to preprocess atoms so that to map seman-
tically equivalent but syntactically different atoms into syntactically identical
ones. Of course, this mapping depends on the problem addressed (integers/reals,
linear /nonlinear, equalities/inequalities, etc). Some common steps can be:

e exploit associativity (e.g., (vi+ (va+wv3)), ((v1+v2)+v3)) = (v1 +v2+1v3));
o sort (e.g., (v +vy <ws+1), (vo+v;, — 1< v3) = (v) +v2 —v3 < 1));

e remove dual operators (e.g., (v1 < va), (V1 > v9) = (v1 < v2), =(v1 < v3)).

5.1.2. Laziness of ASSIGN-ENUMERATOR.

We would rather MATH-SAT require polynomial space. As M can be exponen-
tially big with respect to the size of ¢, we would rather adopt a generate-check-
and-drop paradigm: at each step, generate the next assignment u; € M, check
its satisfiability, and then drop it —or drop the part of it which is not common to
the next assignment— before passing to the ¢+ 1-step. This means that ASSIGN-
ENUMERATOR must be able to generate the assignments in a “lazy” way, that
is, one at a time.

When the input formula is consistent, laziness is crucial also for saving com-
putation time. In fact, when a consistent assignment is found, a lazy ASSIGN-
ENUMERATOR stops without generating the (up to exponentially many) other
assignments in the complete set.

To this extent, both DNF and OBDD are not suitable, as they force generating
the whole assignment collection M one-shot. Instead, both semantic tableaux
and DPLL are a good choice, as their depth-first search strategy allows for
generating and checking one assignment at a time.

5.1.8. (Strong) non-redundancy of ASSIGN-ENUMERATOR.

We want to reduce as much as possible the number of assignments generated
and checked. To do this, a key issue is avoiding MATH-SOLVER being invoked
on an assignment which either is identical to an already-checked one or extends
one which has been already found unsatisfiable. This is obtained by using a non-
redundant enumerator. To this extent, semantic tableaux and DNF reduction
are not good choices.
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Non-redundant enumerators avoid generating partial assignments whose un-
satisfiability is a propositional consequence of those already generated. If M is
strongly non-redundant, however, each total assignment 7 propositionally satis-
fying ¢ is represented by one and only one u; € M, and every u; € M represents
univocally 2/4tms(@)l=Iuil total assignments. Thus strongly non-redundant enu-
merators also avoid generating partial assignments covering areas of the search
space which are covered by already-generated ones.

For enumerators that are not strongly non-redundant, there is a tradeoff be-
tween redundancy and polynomial memory. In fact, when adopting a generate-
check-and-drop paradigm, the algorithm has no way to remember if it has already
checked a given assignment or not, unless it explicitly keeps track of it, which
requires up to exponential memory. Strong non-redundancy instead provides a
logical warrant that an already checked assignment will never be checked again.

5.2. Synergy between ASSIGN-ENUMERATOR and MATH-SOLVER

The way ASSIGN-ENUMERATOR and MATH-SOLVER interact is crucial for the
overall efficiency of MATH-SAT, that is, an extremely efficient ASSIGN-ENUMERATOR
integrated with an extremely efficient MATH-SOLVER can turn out to be dramat-
ically inefficient unless the integration is done properly. For instance, ASSIGN-
ENUMERATOR may do a huge amount of useless calls to MATH-SOLVER —e.g.,
on obviously inconsistent assignments— if it has no clue about the mathematical
semantics of the truth assignments he generates; MATH-SOLVER can waste lots
of time redoing the same computation at different calls if it keeps no information
from one call to the other.

We describe here some techniques for maximizing the benefits of the interac-
tion between ASSIGN-ENUMERATOR and MATH-SOLVER.

5.2.1. Intermediate assignment checking

If an assignment p' is unsatisfiable, then all its extensions are unsatisfiable. Thus,
when the unsatisfiability of ' is detected during its recursive construction, this
prevents checking the satisfiability of all the up to 2/4tms@)=I#'l truth assign-
ments which extend p'. Thus, another key issue for efficiency is the possibility
of modifying ASSIGN-ENUMERATOR so that it can perform intermediate calls to
MATH-SOLVER and it can take advantage of the (un)satisfiability information
returned to prune the search space.

With semantic tableaux and DPLL, this can be easily obtained by introduc-
ing an intermediate test, immediately before the (V-rule) and the (split) step
respectively, in which MATH-SOLVER is invoked on an intermediate assignment
w': if p' is inconsistent, the whole branch is cut [Giunchiglia and Sebastiani,
1996, Audemard et al., 2002a]. With OBDDs, it is possible to reduce an exist-
ing OBDD by traversing it depth-first and redirecting to the F' node the paths
representing inconsistent assignments [Chan et al., 1997, Moeller et al., 2001].
However, this requires generating the non-reduced OBDD anyway.
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5.2.2. Mathematical Backjumping and Learning.

Given an unsatisfiable assignment yu, we call a conflict set any unsatisfiable sub-
assignment p' C p. (E.g., in Example 3.1 (2) and (3) are conflict sets for the
assignment p.) A key efficiency issue for MATH-SAT is the capability of MATH-
SOLVER to return the conflict set which has caused the inconsistency of an input
assignment, and the capability of ASSIGN-ENUMERATOR to use this information
to prune search.

For instance, both Belman-Ford algorithm and Simplex LP procedures can
produce conflict sets [Audemard et al., 2002a, Wolfman and Weld, 1999]. Se-
mantic tableaux and DPLL can be enhanced by a technique called mathematical
backjumping [Horrocks and Patel-Schneider, 1998, Wolfman and Weld, 1999, Au-
demard et al., 2002a]: when MATH-SOLVER(u) returns a conflict set 7, ASSIGN-
ENUMERATOR can jump back in its search to the deepest branching point in
which a literal | € n is assigned a truth value, pruning the search tree below.
DPLL can be enhanced also with learning [Wolfman and Weld, 1999, Audemard
et al., 2002a]: the negation of the conflict set - is added in conjunction to the
input formula, so that DPLL will never again generate an assignment containing
the conflict set 7.

5.2.3. Generating and handling deriwved assignments.

Another efficiency issue for MATH-SAT is the capability of MATH-SOLVER to
produce an extra assignment 7 derived deterministically from a satisfiable input
assignment p, and the capability of ASSIGN-ENUMERATOR to use this informa-
tion to narrow the search.

For instance, in the procedure presented in [Audemard et al., 2002a,c], MATH-
SOLVER computes equivalence classes of real variables and performs substitu-
tions which can produce further assignments. E.g., if (v; = vg), (ve = v3) € p,
(vy — vz > 2) ¢ p and p is satisfiable, then MATH-SOLVER(u) finds that v,
and v3 belong to the same equivalence class and returns an extra assignment 7
containing —(v; — vz > 2), which is unit-propagated away by DPLL.

5.2.4. Incrementality of MATH-SOLVER.

Another efficiency issue of MATH-SOLVER is that of being incremental, so that
to avoid restarting computation from scratch whenever it is given in input an
assignment g’ such that p' O p and p has already proved satisfiable. (This
happens, e.g., at the intermediate assignments checking steps.) Thus, MATH-
SOLVER should “remember” the status of the computation from one call to
the other, whilst ASSIGN-ENUMERATOR should be able to keep track of the
computation status of MATH-SOLVER.

For instance, it is possible to modify a Simplex LP procedure so that to make
it incremental, and to make DPLL call it incrementally after every unit propa-
gation [Wolfman and Weld, 1999].
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Figure 5: Comparison between TSAT and MATH-SAT [Audemard et al., 2002a].

k=2,n=2530,L=100,r:=m/nin [2,...,14]. 100 sample formulae per point.

Median CPU times (secs). Background: satisfiability rate.

MATH-SAT MATH-SAT,Sym DDD Uppal Kronos Red Red,Sym

N Time Size Time Size Time Size Time Size Time Size Time Size Time Size
2 [ 002 | 27 [ 002 27 | 000 | 106 | 001 | 15 [ 001 | 06 [ 005 | 1.0 | 004 | 1.9
3 | o005 | 29| oo04 29 | o011 | 106 | 001 | 17| o0t | 08| 023 | 20| 019 | 20
4 0.09 3.0 0.08 3.0 0.14 106 0.02 1.9 0.02 2.2 1.00 2.1 0.70 2.1
5 0.20 3.2 0.16 3.2 0.24 106 0.21 1.9 0.09 19 3.70 2.2 2.00 2.4
6 0.60 3.7 0.23 3.7 0.47 106 3.44 6.7 0.39 236 12.00 2.7 5.20 3.1
7 3.20 4.2 0.36 4.2 1.30 106 153 54 - 38 4.0 12 4.7
8 29 4.9 0.52 4.9 3.96 106 - 121 7.6 26 7.8
9 343 5.9 0.75 5.9 14 106 416 16.6 49 13.3
10 3331 6.5 1.01 6.5 62 106 1382 39 90 23
11 - 1.39 7.0 691 106 - 157 38
12 1.89 7.5 - 266 63
13 2.44 8.2 439 100
14 3.24 8.9 709 155
15 4.11 9.7 1118 225
16 510 | 107 1717 | 342
17 6.30 | 117 2582 | 492
18 8.00 | 12.9 -
19 9.50 14.2

Table 1: Verification of a reachability property for Fischer’s mutual-exclusion protocol (time
in seconds, size in MB) [Audemard et al., 2002c¢]. N is the number of concurrent pro-
cesses. MATH-SAT is compared against the model checkers DDD, Uppal, Kronos, Red. Two
different encodings into math-formulae, basic and symmetry-exploiting (Sym), are used.

6. A DPLL-based implementation of MATH-SAT

In [Audemard et al., 2002a,c] we presented MATH-SAT, a decision procedure for
math-formulae over boolean and linear mathematical propositions over the reals.
In [Audemard et al., 2002c| we presented a new approach for solving bounded
model checking problems for real-time systems by encoding them into math-
formulae and hence feeding them to MATH-SAT. (Intuitively, boolean variables
encode the discrete part of the system tested, whilst linear constraints on real
variables, representing absolute time and clock values, encode the timed part.)
MATH-SAT uses as ASSIGN-ENUMERATOR an implementation of DPLL based
on the SIM library [Giunchiglia et al., 2001], and as MATH-SOLVER a combi-
nation of symbolic and numeric mathematical procedures for linear mathemat-
ical propositions on real variables. The latter include a procedure for comput-
ing and exploiting equivalence classes from equality constraints like (z = y), a
Bellman-Ford algorithm with negative cycle detection for handling differences
like (z —y < 4), and a Simplex LP procedure for generic linear constraints.
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The different procedures are organized in layers of increasing expressive power,
each layer coming into play only when needed. MATH-SAT implements and
uses the tricks and optimizations, plus others, described in Section 5. Technical
details can be found in [Audemard et al., 2002a]. MATH-SAT is available at
http://www.dit.unitn.it/ “rseba/Mathsat.html.

In [Audemard et al., 2002a,c|] experimental evaluations were carried out on
tests arising from temporal reasoning [Armando et al., 1999] and formal verifica-
tion of real-time systems. In the first class of problems, we compared our results
with the results of the specialized procedure TSAT, on the random problems
presented in [Armando et al., 1999]. (They are random math-formulae in the
form AI*, V§:1(Ulij — vy, < ¢i5), Vk;; and c;; being respectively real variables
picked uniformly among {vy,...,v,} and integer constants picked uniformly in
[-L,...,L].) Although MATH-SAT is able to tackle a wider class of problems, it
runs faster that the TSAT solver, which is specialized to the problem class. The
plots are reported in Figure 5. (See [Audemard et al., 2002a] for details.)

In the second class, we encoded bounded model checking problems for real-
time systems into the satisfiability of math-formulae, run MATH-SAT on them,
and compared the results with those of well-established model checkers for timed
systems. An example is reported in Table 1. It turned out that our approach is
comparable in time efficiency with the well-established model checkers for timed
systems and, unlike all other approaches, requires only polynomial memory. (See
[Audemard et al., 2002c| for details.)

7. Implemented systems

Our framework captures a significant amount of existing procedure used in vari-
ous application domains. These procedures either are purely symbolic or combine
symbolic and numeric techniques. We briefly recall some of them.

Omega [Pugh, 1992] is a symbolic+numeric procedure used for dependence
analysis of software. It is an integer programming algorithm based on
Fourier-Motzkin variable elimination method. It handles boolean combina-
tions of linear constraints by pre-computing the DNF of the input formula.

PtautEq [Armando and Giunchiglia, 1993] is a purely symbolic procedure which
handles boolean combinations of boolean variables and equalities between
first-order variables, which was embedded in the GETFOL system. It com-
bines a variant of DPLL with an ad-hoc solver for sets of equalities.

SMV+QUAD-CLP [Chan et al., 1997] is an incomplete symbolic+numeric
procedure integrating OBDDs with a quadratic constraint solver to verify
transition systems with integer data values. It performs a form of interme-
diate assignment checking.

TSAT [Armando et al., 1999] is an optimized symbolic+numeric procedure for
temporal reasoning able to handle sets of disjunctive temporal constraints.
It integrates DPLL with a simplex LP tool, adding some form of forward
checking and (static) learning.
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LPSAT [Wolfman and Weld, 1999] is an optimized symbolic+numeric proce-
dure for math-formulae over linear real constraints, used to solve problems
in the domain of resource planning. It accept only formulae with positive
mathematical constraints. LPSAT integrates DPLL with an incremental
simplex LP tool, and performs backjumping and learning.

DDD’s [Moeller et al., 2001] are OBDD-like data structures handling boolean
combinations of temporal constraints in the form (z — z < 3), which are
used to verify timed systems. They combine OBDDs with an incremental
version of Belman-Ford algorithm.

ICS [Filliatre et al., 2001] is a mostly symbolic decision procedure for com-
bined theories, including theory of arrays, bitvectors, lists and inductive
datatypes, linear arithmetic over the integers. Very recently (2002) it has
been integrated with the DPLL solver CHAFF [Moskewicz et al., 2001].

CVC [Stump et al., 2002] is a symbolic+numeric decision procedure for com-
bined theories, including theory of arrays, inductive datatypes, linear arith-
metic over the reals. It combines, among others, the DPLL solver CHAFF
with a Fourier-Motzkin procedure.

Notice that Omega, SMV+QUAD-CLP and DDD inherit from DNF and OBDDs
the drawback of requiring exponential space in worst case.

8. Related work

Since the seminal work by Nelson and Oppen [1979] and Shostak [1979], many
papers have been presented on the integration decision procedures for different
theories, including linear arithmetic. However, in these approaches very little
effort has been made to handle efficiently the boolean component of reasoning.
Only very recently (2002) the integration of procedures like ICS and CVC with
SAT solvers has been investigated.

From the strict viewpoint of SAT systems, a related but different approach
which is not listed in Section 7 is that proposed by Strichman [2002]. He presents
a reduction from linear math-formulae on the reals into pure boolean formulae,
which are then fed to a SAT solver. The reduction works by substituting each
inequality with a distinct boolean atom, and by adding new boolean variables
and constraints which mimic the application of the Fourier-Motzkin elimination
technique. Unfortunately, the resulting formulas blow up in size in worst-case.

From the viewpoint of computer algebra, a related but different approach is
that of the REDLOG system [Dolzmann and Sturm, 1997, Sturm, 2002|. REDLOG
is an extension of the computer algebra system REDUCE, featuring many sym-
bolic reasoning algorithms on specific first-order mathematical theories. REDLOG
is based on efficient quantifier elimination procedures, enhanced with tools for
manipulating formulae (including algebraic simplification, normal form compu-
tation, linear optimization). Although REDLOG is not a satisfiability procedure
in the strict sense, its degree-restricted real quantifier elimination procedure can
solve the consistency problem for many math-formulae, including linear formu-
lae on the reals, by eliminating the existential closure of the input formulae.
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REDLOG’s approach is very general (e.g., Weispfenning [1999] showed that the
mixed linear theory of the reals and the integers can be decided by quantifier
elimination; moreover, REDLOG’s simplification techniques and heuristics allow
for eliminating many non-linear formulae). Nevertheless, even for simple linear
math-formulae on the reals, there is no guarantee that REDLOG will find a solu-
tion within polynomial memory [Dolzmann, 2002].
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