

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

AN ACCESS CONTROL SYSTEM FOR BUSINESS PROCESSES
FOR WEB SERVICES

Hristo Koshutanski and Fabio Massacci

December 2002

Technical Report # DIT-02-102

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

An Access Control System for Business Processes for
Web Services

Hristo Koshutanski Fabio Massacci
Dip. di Informatica e Telecomunicazioni - Univ. di Trento

via Sommarive 14 - 38050 Povo di Trento (ITALY)
{hristo,massacci}@dit.unitn.it

ABSTRACT
Web Services and Business Processes for Web Services are
the new paradigms for the lightweight integration of business
from different enterprises.

Whereas the security and access control policies for ba-
sic web services and distributed systems are well studied
and almost standardized, there is not yet a comprehensive
proposal for an access control architecture for business pro-
cesses. The major difference is that business process de-
scribe complex services that cross organizational boundaries
and are provided by entities that sees each other as just part-
ners and nothing else.

This calls for a number of differences with traditional as-
pects of access control architectures such as

• credential vs classical user-based access control,

• interactive and partner-based vs one-server-gathers-all
requests of credentials from clients,

• controlled disclosure of information vs all-or-nothing
access control decisions,

• abducing missing credentials for fulfilling requests vs
deducing entailment of valid requests from credentials
in formal models,

• “source-code” authorization processes vs data describ-
ing policies for communicating policies or for orches-
trating the work of authorization servers.

Looking at the access control field we find good approxi-
mation of most components but not their synthesis into one
access control architecture for business processes for web
services, which is the contribution of this paper.

Keywords: web services, interactive access control, e-business,
security management, distributed systems security, con-
trolled disclosure

Submitted to ACM-CCS 2003

1. INTRODUCTION
Middleware has been the enterprise integration buzzword

at the end of the past millennium. Nowadays a new paradigm
is starting to take hold: Web services (WS for short). Set-
ting hype aside, the major difference between middleware
solutions (CORBA, COM+, EJB, etc.) and WS is the idea
of lightweight integration of business processes from differ-
ent enterprises.

Basic WS are well studied and standardized, for what
concerns access control and security. There are also many
approaches [32, 34, 4, 16, 13, 5] for controlling access to
services in distributed systems, and an advanced standard-
ization process (see for instance the OASIS XACML [12]
and SAML [24] proposals and the WS standards [6]) and
a decision is made by the server matching the policy with
the credentials. With the notable exception of provisional
access control [21] and trust negotiation [33], access control
models rest on the idea that the server picks the evidence
you sent on who you are (credentials), and what you want
(request), checks its evidence on what you deserve (poli-
cies) and makes a decision. Even in the data warehousing
scenario of federated database policies we have a mediator
that wraps the heterogeneous policies as one, because the
administrative boundary is one.

Moving up in the WS hierarchy from single services to or-
chestration and choreography of WS and business processes
the picture changes. Business processes describe complex
services that cross organizational boundaries and are pro-
vided by partners.

The paradigmatic example in the WS standards is a travel
agent WS that must orchestrate a combination of plane and
train tickets, car rental, hotel booking and insurance, each
service offered by different partner which may or may not be
involved according to the actual unrolling of the workflow.

For example consider the problem of going to a nice “Shake-
spearian Tour” in Italy: you might decide to go to the city
of Shylock, and from there rent a car and travel to Romeo
and Juliet’s last resort, to jump then on a train and visit the
Senate’s seat where Pompeous spoke after Caesar’s death.
However, you might as well decide to travel instead to Ger-
many first and then the train to Verona from there. In the
first case you might need to use a car rental company. The
second path may require to contact a German train company
for the schedule, which is not needed if you land directly in
Italy.

Let us now consider the problem of ”lightweight” creden-
tials such as the German train discount card or the car rental
gold member card. Should the user provide them anyway

1

at the beginning? Obviously not. Should the server orches-
trating the process require each partner to publish its policy
on discounts? Obviously not. Such problems are not simply
problems of practicality, but have major security implica-
tions:

1. Credential vs identity based access control – A WS is
something you publish on the Web for everybody to
use it, so the system has to be close to trust manage-
ment systems [5];

2. Orchestrating vs combining – partners have different
security policies and are just partners and not part of
the same enterprise. They may not wish to disclose
their policies to the server orchestrating the request.
So, we cannot simply combine the policies, we need to
orchestrate the request grant/deny/process of many
different policies/partners.

3. Interactive vs one-off access control – if partners have
different policies they might as well require different
credentials to a client. Privacy considerations make
gathering all potentially needed credentials from clients
difficult. Furthermore, this may simply be impossible.
An airline may want to ask confidential information
directly to its frequent fliers (e.g., confirmation of re-
ligious preferences for the food) and not to the Web
travel agent orchestrator of the process. This calls for
an interactive process in which the client may be asked
on the fly for additional credentials and may grant or
deny such requests1.

4. Abducing vs deducing credentials – in most classical
formal models we deduce that a request is valid be-
cause it is entailed by the combination of the policy
and the set of available credentials. Here, a partner
must be able to infer the causes of some failed request
to ask the missing credentials to the client. The corre-
sponding logical process is no longer deduction but it
is abduction. So we must have co-existence of deduc-
tion (for deciding access and release of information)
and abduction (for explaining failed accesses).

5. Data vs source level communication – the choice of
format for messages is always rather complicated, as
it calls for the implementation of software that is able
to interpret its meaning. In a Business Process sce-
nario we no longer need messages, but just “mobile”
processes. A client will receive a business process so
that he can simply execute the source to obtain and
send the missing credential. An authorization server
can download a business process from a policy orches-
trator and obtain the desired authorization.

Looking at the access control field we find a good approxima-
tion of most components: we have proposals for combining
policies at the logical level [22, 31, 3] and at the architec-
tural level [24]. We have proposals for calculi for controlling

1Note that the workflow may even take completely differ-
ent paths based on the results of interaction. For example a
rent-a-car operator may require a signed credit card number
plus a physical address. The client may deny such require-
ment and thus another operator may be chosen that only
asks for a credit card number.

release of information [7], and procedures for trust negotia-
tions and communication of credentials [33], architecture for
distributed access control [12, 4, 32, 16].

What is missing is a way to synthesize all these aspects
into one access control architecture for business processes of
WS, which is the contribution of this paper.

In the next section we introduce some notion about WS
and Business Processes for WS. Then we present our archi-
tecture and discuss how the entire message passing scheme
can be implemented as “mobile” processes. Section 5 ex-
plains how we can use logical deduction and logical abduc-
tion to build a firm foundation for the interactive process of
inferring disclosable credentials from access control policies
and from release policies. Next we discuss how everything
can be implemented using Business Process themselves. A
brief discussion of related works concludes the paper.

2. A PRIMER ON WS AND BUSINESS PRO-
CESSES

A Web Service as defined by the standard [20] is “an in-
terface that describes a collection of operations that are
network-accessible through standardized XML messaging.
A Web service is described using a standard, formal XML
notion, called its service description. It covers all the details
necessary to interact with the service, including message for-
mats (that detail the operations), transport protocols and
location.”

The idea behind Web services is to encapsulate and make
available enterprise resources in a new heterogeneous and
distributed way.

Figure 1: Web Services Technology Stack & Access
Control Issues

The WS architecture, as defined by W3C [30], is divided
into five layers grouped into three main components - Wire,
Description, and Discovery (Fig. 1). The Wire component
comprises the messaging and transport layers with the SOAP
protocol and the XML message format. Discovery offers
users a unified and systematic way to find, discover, and
inspect service providers over the Internet. There are two
standards proposed at this level - Universal Description, Dis-
covery and Integration (UDDI) and Web Service Inspection
Language (WSIL).

Moving upward we found the Service Description layer
and the Business Process Orchestration layer. The service

2

<process>

<sequence>

<receive partner="Customer"

portType="purchaseOrderPT"

operation="SendPurchaseOrder"

container="PO">

</receive>

<invoke partner="CreditBureau"

portType="CheckCreditPT"

operation="CheckCredit">

</invoke>

<invoke partner="shippingProvider"

portType="shippingPT"

operation="RequestShipping"

inputContainer="shipingRequest"

outputContainer="shippingInfo">

<source linkName="ship-to-invoice">

</invoke>

<reply partner="Customer"

portType="purchaseOrderPT"

operation="SendPurchaseOrder"

container="Invoice"/>

</sequence>

</process>

Figure 2: Example of BPEL4WS Process

description layer is responsible for describing the basic for-
mat of offered services (protocols and encodings, where a
service resides, and how to invoke it). The standard for
describing the communication details at this layer is Web
Service Description Language (WSDL).

The Business Process Orchestration layer is an extension
of the service model defined at the description layer. This
layer is responsible for describing the behavior of complex
business and workflow processes. Intuitively, business pro-
cesses are graphs where each node represents a business ac-
tivity and primitive nodes are in WSDL. The recently re-
leased standard at this layer is the Business Process Execu-
tion Language for WS (BPEL4WS) [10].

The BPEL4WS primitive activities are the following:

<invoke> invoking an operation on some Web service;
<receive> waiting for an operation to be invoked by some-

one externally;
<reply> generating the response of an input/output opera-

tion;
<assign> copying data from one place to another.

More complex activities can be constructed by composition:

<sequence> - allows the developer to define an ordered se-
quence of steps;

<switch> - allows the developer to have branching;
<while> - allows the developer to define a loop;
<flow> - allows the developer to define that a collection of

steps has to be executed in parallel.

An example of compositions of services is shown in Fig-
ure 2: a buyer service is ordering goods from a seller service,
i.e. the buyer service invokes the order method on the seller
service, whose interface is defined using WSDL. The seller
service invokes a credit validation service to ensure that the
buyer can pay for the goods and after that continue by ship-
ping the goods to the buyer. The credit validation service
can take place at a credit bureau site in a separate security
domain. Notice that a number of partners participate in the
process that therefore crosses administrative boundaries.

The XML code shown in Figure 2 is a very brief example of
the scenario described above in the notations of BPEL4WS
primitives. The structure of the processing section is defined
by the <sequence> element, which states that the elements
contained inside are executed in this order. The node con-
tents is self explanatory.

Figure 3: Cross-section view of the architecture

3. ARCHITECTURE
Combining the traditional proposals for distributed access

control and the essential components used for Web services
we propose here a security architecture for orchestrating au-
thorization of Web Services Processes.

Figure 3 shows a cross-section view of the architecture,
whereas Figure 4 shows a horizontal view of it. A brief
description of the servers shown in the figure is given below.

AttributeServer is responsible for providing group/role mem-
bership information as in [32, 34], for instance in the
form of membership and non-membership certificates.

RegistryServer is responsible for maintaining relations be-
tween services and service providers implementing a
particular service. When a Client requests the Registry-
Server for a specific service, the latter responds with
a list of ApplicationServers implementing the requested
service.

AuthorizationServer decouples the authorization logic from
the application logic. It is responsible for locating,
executing, and managing all needed PolicyEvaluators,
and returning an appropriate result to the Applica-
tionServer. Also it is responsible for managing all the
interactions with the Client.

PolicyEvaluator terminology borrowed from Beznosov et al
[4], is an entity responsible for achieving endpoint deci-
sions on access control (see Figure 3). All partners in-
volved in a business process are likely to be as different
entities, each of them represented by a PolicyEvaluator.

PolicyOrchestrator from the authorization point of view
is an entity responsible for the workflow level access
and release control. It decides which are the partners
that are involved in the requested service (Web service
workflow) and on the base of some orchestration secu-
rity policies to combine the corresponding PolicyEval-
uators in a form of a Web process (Policy Composition
Process) that is suitable for execution by the Autho-
rizationServer.

Business Processes are the highest level of the WS archi-
tecture describing the behavior of virtual (inter-organizational)
enterprises. To secure the entire architecture we must make
some assumptions on the security properties of the lower
levels. Obviously we assume authentication, confidentiality,
and message integrity at the transport and message levels.
So, we assume that we have already in place the proposed
standards.

3

Figure 4: Horizontal view of the architecture

At transport level we assume the adoption of the WS-
Security specification [6] that describes enhancements to
SOAP messaging to provide message integrity, confidential-
ity, and authentication. For the message level one can use
the W3C and IETF specification for XML-Signature [23]
and W3C XML-Encryption [14], or the recently release spec-
ifications by IBM and Microsoft for WS secure conversations
[18, 19].

Assuming security at lower level, the second key compo-
nent is the languages and format of communications. We
propose here a major innovation: the typical exchange of
messages in access control system is at “data” level (creden-
tials, policies, requests, objects, etc.) that are interpreted
by the recipients. This choice makes the actual implemen-
tation of proposed access control infrastructure difficult and
often not easily portable. Here we propose to exchange mes-
sages at “source code” level and in particular at the level of
business process description. It means that instead of send-
ing just messages that have to be interpreted by entities,
we truly have mobile processes passing from one entity to
another indicating themselves what the recipient has to do.

For example in OASIS XACML framework [12] the Policy
Decision Point (PDP) retrieves the applicable (to the Client’s
request) policies, evaluates them, and renders an authoriza-
tion decision. At first this requires that all partners must
disclose their policy to the server; second it leaves unan-
swered the problem of implementing the PDP. While in our
case the AuthorizationServer is given not simply messages
with policies to evaluate them, but a process description
such that following its execution one can take an authoriza-
tion decision.

The mobility of authorization processes has a number of
advantages. First of all a server simply needs an off-the-

shelf interpreter for business processes for a quick imple-
mentation. Second we have more flexibility for describing
the process leading to an access control decision. Some Pol-
icyEvaluators may decide to disclose it XACML policies and
therefore send a mobile processes, which just describe the
evaluation of the policies along some XACML rules. Other
PolicyEvaluators may instead decide to offer an external in-
terface, so that they just specify a container for requests and
an output container for its decision. All intermediate choices
are possible so that one can accommodate also provisional
access control or the interactive version that we advocate
here.

Leading this approach at an extreme the Authorization-
Server can simply receive a business process from the or-
chestrator and execute it. The process may still be com-
putationally intensive as an AuthorizationServer may have
to process thousands or millions of authorization workflows,
but it could be logically very simple thus reducing the TCB
to the simple execution of certified processes from certified
sources2.

The role of the PolicyEvaluator is to encapsulate the con-
nected with it partner’s specific access control model, au-
thorization policy, and requirements with their internal rep-
resentation, interpretation, and mechanisms for computing
an access decision and presenting it as a service using stan-
dardized Web service interface (e.g., WSDL).

Web Processes form the so called Web services workflow
(seen Figure 4). Web services workflow may contain many
tasks of different levels of abstraction where a task can be a
(recursive) reference to another Web services wokflow, or a
simple one performed by a human, by a computer program,

2Recall that we assume that authentication, integrity, and
confidentiality are assured at message and transport level.

4

a database transaction etc. Considering these levels of ab-
straction the natural way of capturing (representing) access
control requirements of different granularity in our system is
to construct another workflow – the authorization workflow
(see Figure 4).

The entity burdened with this task is the PolicyOrches-
trator, the main role of it is to move the workflow level
authorization logic from the AuthorizationServer to the Pol-
icyOrchestrator. In this way we free the AuthorizationServer
from bothering about all the details around connections be-
tween partners and PolicyEvaluators, as well as, PolicyEval-
uator’s description, location, orchestration, etc. The Policy-
Orchestrator functionality can be considered as having two
main tasks: first one, called Policy Composition Service, is
to select which are the partners involved in the requested
process and combine the corresponding PolicyEvaluators (as
mentioned before) in a policy composition process, and re-
turn it back to the AuthorizationServer. After the Authoriza-
tionServer having finished the execution of the policy com-
position process it asks3 the PolicyOrchestrator for applying
the workflow level access and release policies over the results
from the execution – the second main task. So, the Pol-
icyOrchestrator is responsible for maintaining all relations
between resources names (services) and link them to the
workflow level access and release policies. The process of
applying release control polices, called Release Policy Ser-
vice, captures how the final authorization decision should be
released to the Client.

In comparison with the OASIS framework [12]: the Ap-
plicationServer acts as PEP; the PolicyEvaluator acts a bit as
PAP in the case of making available policies to the Autho-
rizationServer and acts a bit as PDP in taking authorization
decisions and providing them to the AuthorizationServer; the
AuthorizationServer acts a bit as ”context handler” in receiv-
ing requests from the ApplicationServer and sending access
decisions back to it and in collecting attributes from an At-
tributeServer. It acts a bit as PDP in the case of taking an
authorization decision from policies returned by PolicyEval-
uators (acting as PAPs) and applying some rules on them;
the PolicyOrchestrator acts a bit as ”context handler” in re-
questing (giving a source to) the AuthorizationServer that
interprets the source and returns the result back to it. It
also acts a bit as PDP in taking authorization decisions on
the base of applying some policies available on the workflow
level – acting in this case as PAP.

For a detailed example of how actors in our framework
communicate each other see Appendix A.

4. INTERACTIVE COMMUNICATIONS AS
“MOBILE” PROCESSES

We have decided to use the term mobile process because
it well expresses the idea of using mobile code together with
the functionality of Web processes. The main advantages of
using mobile processes in our authorization framework are
flexibility and simplicity of entities. Flexibility because of
recipient of mobile process is not limited to the functions
and computational algorithms that the recipient’s logic pre-
defines. Migrations of actors in the system from one server
to another is easier with mobile processes and the system as

3This is the case if it is specified in the policy composition
process, i.e. depends on the security policies being applied
in constructing the policy composition process.

a whole is more flexible. Entities in the framework becomes
simpler, having little functionality pre-engineered into them,
as we will see in section 6.

Considering the interactions in the system, the entity bur-
dened with building the foundations of almost all mobile
processes is the PolicyOrchestrator. It has to code up in mo-
bile processes all the steps (interactions) that an authoriza-
tion sever or a Client has to do. We said almost all because
PolicyEvaluator is another entity that is concerned with re-
turning mobile processes. PolicyEvaluators are examined in
more details in Section 4. The next important step in ad-
vocating mobile processes is to specify a language that is
needed for coding them. We have identified it as a language
for communicating interactive requests back to a Client. This
is even in the case when a Client is an AuthorizationServer
waiting for a response either from a PolicyOrchestrator or
from a PolicyEvaluator. This language can be designed with
a black box view of the PolicyEvaluator or PolicyOrchestra-
tor respectively, but must be easily interpretable from the
Client side. Thus we propose to use BPEL4WS itself as
a language in which requests are coded. The PolicyEvalu-
ator/PolicyOrchestrator must represent its request as a WS
business process that can then be interpreted and executed
by the Client. If the PolicyEvaluator wants part of the re-
quest to be only visible to the Client it can use the available
XML-crypto features [23, 14] to protect the relevant part.

Loosely speaking we may say that the Client starts by
executing a simple <invoke>R</invoke> and obtain in re-
turn either its result or a more complicated process to ex-
ecute. For example a BPEL4WS interactive request may
specify a <input container> where to put a digitally signed
copy of the travel contract sealed with the public key of the
rent-a-car company (a process that can be specified as a
<sequence> of events).

The idea is intuitive and appealing but there is an essen-
tial detail that must be taken care of. Notably, the Autho-
rizationServer will receive a number of interactive requests
while controlling its workflow and the combination of these
requests and the service workflow specification is essential.
The simplest solution is to ignore such interaction: all inter-
active requests are compiled into a <flow> and the result is
sent back to the Client. Such solution is hardly satisfactory
from the point of view of the Client: we often want to know
”why” some additional information is needed. See the ex-
ample of Figure 2: at some stage somebody may ask for a
digitally signed declaration about our address. We may con-
sider this request fair enough from the shipping agent, but
not from the credit checking bureau. So, each BPEL4WS
interactive request must be supplemented with a special tag
[root/context]:

• root requests will be compiled with a <flow> construct
and returned together with the overall result of the
computation for contextual requests;

• contextual requests the PolicyOrchestrator will make a
copy of the WS process (not the authorization pro-
cess) and replace each step S for which an additional
request I has been called with the request and a con-
text indicating the WS (partner and all) that required
the additional credential. The PolicyOrchestrator will
then prune the WS process removing all nodes that
were not on a path from the root to the newly modi-
fied nodes and sends the result to the Client.

5

The last step is necessary to protect the overall workflow
from unnecessary disclosure.

This combination is sufficiently adequate for most uses,
but still it offers the PolicyOrchestrator just the choice of
compiling individual requests rather than combining them.
Here we have identified an important point in the Policy-
Orchestrator where we need to introduce a new language - a
language for combination of policies and interactive requests
at workflow level. So far we have not found a proposal that
is entirely satisfactory, part because there are not enough
case studies of WS Business Processes to guide the selection
of policies at workflow level.

The proposal by Bertino et al. [2], is fairly expressive
but only focuses on implementing snapshot constraints on a
workflow level (i.e. safety properties). So it is not possible
to express properties such as “if Y is repeatedly true then
eventually X should happen”.

The usage of algebraic constructs based on dynamic logic
proposed by Wijesekera and Jajodia [31] seems more promis-
ing. Indeed <invoke> operation would be mapped into sin-
gle action, <sequence> into sequential compounder, <switch>
into non deterministic choice (each case represented by a
test) and <flow> by intersection. This does not mean that
we would use dynamic logic for actual implementation4, but
rather that the logical language may offer a formal founda-
tion to policy written in BPEL4WS.

5. THE ABDUCTION OF MISSING CRE-
DENTIALS

For the deployment of the architecture, the PolicyEvalua-
tor must be able to determine the set of additional creden-
tial that are necessary to obtain a service in case of failure.
This problem may of course be shifted on the implementors
of PolicyEvaluators, as the architecture only needs that the
outcome of this derivation is mapped into some BPEL4WS
process that is then sent to the client.

However, there is no algorithm in either the formal or the
practical models of access control and trust negotiations to
derive such credentials from the access control policy. The
works on trust negotiations [27, 33] focus on communication
and infrastructure and assume that requests and counter
requests can be somehow calculated from the access policy.
The formal models on credential-based access control and
policy combination [2, 22, 15, 31] don’t treat the problem
of inferring missing credentials from failed requests, as they
are within the frame of mind of inferring successful requests
from present credentials. Also standardization efforts like
the XACML proposals [12] gives rules for deriving what is
right (evaluating policies) and not rule for understanding
what is wrong.

Also a recent proposal by Bonatti and Samarati [7] that
has the explicit focus on access and release control is too
preliminary and unsatisfactory. In a nutshell, the request
is received, the policy rules are filtered for relevance, the
relevant rules are partially evaluated and sent to the client.
The client will have to figure out which are the credentials
(this is not discussed in the paper), and then will evaluate
these credentials according its release policy.

4This is less critical than prejudice may suggest. The ML
implementation of Peter Patel-Schneider at Bell-Labs can
actually crack significant dynamic logic theorems in millisec-
onds.

The first problem is that demanding clients to analyse se-
curity policies is not acceptable here. We only assume an
interpreter of Business Processes on the client side (possi-
bly with some crytpo capabilities if some digital signatures
are needed), and thus all analysis of logical policies should
be performed elsewhere. The second problem is that after
a suitable number of queries the entire policy of the server
would be disclosed to the client or to the server orchestrating
the process. This is hardly acceptable from the perspective
of a WS business partner. Furthermore, the relevancy filter-
ing approach only works for flat policies, in which for every
request we list all its credentials. The relevancy selection
procedure in [7] is not correct already for the simple exam-
ple that we show in Fig. 5.

The other key proposal on trust negotiation by Yu et
al. [33], offers a dual view w.r.t Bonatti and Samarati [7].
Loosely speaking, each credential is associated to a policy
(a boolean expression) denoting the credentials that a client
must have already provided for its safe disclosure, by a step
wise process the parties can exchange credentials or policy
rules (as in Bonatti and Samarati [7]) until the desired re-
source is released. The papers provide for safe sequences
of disclosure in a rather ad-hoc fashion building upon trees
rather than logical formalization. As a consequence they can
only treat monotone policies and it is not possible to define
notions of consistency of policies and disclosure of policies
in presence of constraints (such as we have for separation of
duty or workflow access control). The major limitation of
the paper is that it interlock the access and the release policy
into one. So, as the authors acknowledge [33, page. 21], it is
impossible to access resources if some of the needed creden-
tials cannot be disclosed at some point. Furthermore, the
need for intermediate credential disclosure calls for a struc-
turing of policy rules that is counter-intuitive from the point
of view of access control. For instance, a policy rules may
say that for access to the full text of on-line journal article
we must have already got the access to browsing the journal
table of content, plus additional credentials. Access to table
of contents could then specify some simpler set of creden-
tials. For the disclosure process to take place such natural
composition is not possible when using Yu et al. framework
[33].

Here, we prefer a more general and principled approach
based on logic that allows for a clean solution of these prob-
lems. For sake of simplicity (and popularity), assume that
the policy is expressed using Datalog rules or logic programs
with the stable model semantics (if we need negation to im-
plement some constraints like separation of duties). What
we need is a logical implementation of the following process:

1. the PolicyEvaluator receives the credentials and eval-
uates the request against the policy augmented with
the credentials i.e. whether the request is a logical
consequence of the policy and the credentials;

2. if the request is granted nothing needs to be done;

3. if the request fails we evaluate the given credential
against a release policy of the PolicyEvaluator to infer
which are the credentials whose need can be disclosed
on the basis of the credentials already received;

4. abduce the actually needed credentials by re-evaluating
the request against the policy and considering the po-
tentially disclosable credentials determined at the pre-

6

vious step; only the needed credential are communi-
cated to the client.

In a nutshell, what we need for the implementation of Poli-
cyEvaluator is to implement two main inference capabilities:
deduction and abduction [29]. We need to use deduction to
infer whether a request can be granted on the basis of the
present credentials as in [7, 2, 22, 15], we use abduction to
explain which minimum set of credentials would be neces-
sary to grant a failed request. Obviously it is not necessary
to use logic, what we claim is that the underlying logical
constructs that we need for our access decisions are these
two conceptually different operation.

Due to lack of space, here we just give the basic hint of
the formalization and more details will be given in the full
paper.

Definition 1 (Access Control). Let P be a datalog
program (or stratified logic program) representing an access
control policy, let r be an atom representing a request, let C
be a set of atoms representing a set of given credentials, the
request is granted if and only if P ∪ C |= r.

Definition 2 (Release Control). Let P be a data-
log program (or stratified logic program) representing a re-
lease control policy, let d be an atom representing a creden-
tial let C be a set of atoms representing a set of given creden-
tials, the credential d is disclosable if and only if P ∪C |= d.

The notion of release control subsumes the notion of ”pol-
icy” that is used by Yu et al. [33]. Indeed, a step of the
negotiation process by trust builder can now be explained
either as a successful entailment (the disclosure of a creden-
tial) or the disclosure of a logic rules.

Definition 3 (Access Control Explanation). Let P
be a datalog program (or stratified logic program) represent-
ing an access control policy, let r be an atom representing a
request, let C be a set of atoms representing a set of given
credentials, let DP ⊇ C be a set of atoms representing dis-
closable credentials, an explanation of missing credentials
CM ⊆ CP such that

1. P ∪ C 6|= r

2. P ∪ C ∪ CM |= r

3. P ∪ C ∪ CM is consistent

The first conditions says that the missing credentials are
indeed needed. The second condition says that they are
sufficient and the last condition says that they are actu-
ally meaningful. In presence of positive Datalog program
such as for Bonatti and Samarati’s logic [7], Li’s Delegation
Logic 1 [22], Samarati et al. authorization framework [28],
the consistency condition is satisfied by default. In presence
of constraints on the execution or negation as failure, as in
Bertino et al. Datalog programs for workflow policies [2] —
which can be easily augmented with credentials — the con-
sistency condition is essential to guarantee that the abduced
set of atoms makes sense. Indeed, constraints could make
P ∪ C ∪ CM inconsistent and therefore it would not make
much sense to say that the request r should be granted from
a system.

In Figure 5 is shown a logic program showing a univer-
sity online library access and release rules. The notations

for declarations, credentials, and services are borrowed from
Bonatti and Samarati [7]. Here decl means that it is a state-
ment (e.g., identity, address) declared by the client, while
cred is a statement declared and signed by a key corre-
sponding to some trusted authority. Consider rule 3 that
says ”to have access to service reading the client should
have access to library (presenting Id and some library card)
and a loan library card”. Rule 10 says ”to reveal the need
for a loan library credential there should be a declaration of
the library’s Id and some library credential”.

Notice that here is no way to disclose the need for a cre-
dential such as cred(card(user, john, id1568), bibK). Such
credential must be given. The same is true for the decla-
ration about the university employee id which cannot be
disclosed. However, the lack of a rule for disclosure of a cre-
dential does not forbid us to use the very same credential in
some access rule.

If the PolicyEvaluator is given the declaration decl(id1568)
and the credential cred(card(user, john, id1568), bibK), to-
gether with the request for reading the journal articles on-
line. The query serv(reading) does not follows from the
policy and the given declarations and credentials. So, we
apply the release policy and infer that the following creden-
tials are disclosable:

decl(john, cs), decl(id1568),
cred(researcher(id1568, cs), csK),

cred(card(user, john, id1568), bibK),
cred(member(john, cs), csK),

cred(card(loan, john, id1568), bibK).

The abduction algorithm derive two possible answers for the
credentials:

CM1 = {decl(john, cs), cred(member(john, cs), csK)}
CM2 = {cred(card(loan, john, id1568), bibK), }

Both sets are minimal with respect to the subset inclusion
ordering and only CM2 is minimal with respect to a set car-
dinality ordering. In case the first set is chosen the PolicyE-
valuator will compile a <flow> node for sending the requests
back to the client.

It could be possible to avoid the presence of the release
policy by adding an additional field to a credential that can
be requested. Each time any such credential would be re-
quired to be true in the logical evaluation of the policy we
trigger an action sending the request to the client.

However, we believe that the separation of access and re-
lease policies is useful for practical reason in spite of the ad-
ditional complication that the two-policies system requires
for evaluation. The double query system is immaterial to
the human administrator who might simply buy a faster
machine. In contrast, the specification of policy is normally
done by humans and is a much more costly and error prone
process. The integration of release and access policy is such
that a change in the release policy requires modification to
the access policy which might have been unchanged. Fur-
thermore the separation of access and release policies allows
for separation of duties among administrators: one adminis-
trator can modify the access policy and another the release
policy. This can strengthen the robustness of the system.

7

Access Policy:

serv(query()) ← decl(Id), cred(card(Type, Name, Id), biblioK) (1)

serv(query(citations)) ← serv(access), cred(member(Name, Dept), KD), assoc(Dept, KD) (2)

serv(booking) ← decl(Name, Dept), cred(card(loan, Name, Id), biblioK) (3)

serv(reading) ← serv(access), cred(card(loan, Name, Id), biblioK) (4)

serv(reading) ← cred(academic(Name, UnivId), KU), assoc(university, KU) (5)

serv(reading) ← serv(query(citations)), cred(researcher(Name, Dept), KD), assoc(Dept, KD). (6)

Release Policy:

decl(Name, Dept) ← decl(Id). (7)

cred(researcher(Name, Dept), KD) ← decl(Name, Dept), cred(card(Type, Name, Id), bibK). (8)

cred(member(Name, Dept), KD) ← decl(Name, Dept). (9)

cred(card(loan, Name, Id), bibK) ← decl(Id), cred(card(Type, Name, Id), bibK). (10)

cred(academic(Name, UnivId), KU) ← decl(UnivId), decl(Name, Dept) (11)

Figure 5: University Library WS Access and Release Polices

Figure 6: Client Application Process Diagram

6. COMPONENT ALGORITHMS AS BUSI-
NESS PROCESSES

This section shows how we can describe entities in our ar-
chitecture and how they can communicate each other using
BPEL4WS [10].

The Client process is shown in Figure 6. In the figure, after
the Client has requested the ApplicationServer for getting a
service R, presenting its credentials, there are two cases: Ad-
ditional Request - in this case is returned a counter request
(a process), indicating what should be done by the Client.
After that locally is invoked a service DoAddRequestService
for executing the required process. Because of the while loop
again is requested the service R with the result of the pro-
cess; ResultOfOperation - in this case is returned the result
of the requested service R and the Client’s process finishes.
The ApplicationServer, after the Client’s request for access-
ing the service R, asks the RegistryServer (step 1 in Figure 7)
for locating its AuthorizationService. After that the Autho-
rizationService is invoked along with Client’s credentials and
the requested service R for taking the authorization decision
(step 2 in Figure 7). Then we can switch between explicit

Figure 7: Application Server Process Diagram

Grant/Deny response returned from the AuthorizationServer
in the case of which is executed or not the requested service
R and the results are returned back to the Client (step 4 in
Figure 7), or in the case of additional credentials is executed
the AddRequestService, which either executes some counter-
requirements that have to be presented to the Client or redi-
rects the entire request to the Client (step 4 in Figure 7).

The AuthorizationServer process, shown in Figure 8, is the
following: after the AuthorizationService has been invoked
by the ApplicationServer the PolicyCompositionService lo-
cated in the PolicyOrchestrator is invoked. The result of the

8

Figure 8: Authorization Server Process Diagram

service invocation (step 1 in Figure 8) is a policy compo-
sition process (e.g., BPEL4WS) indicating what should be
done by the AuthorizationServer in order to be taken the
final authorization decision. After obtaining the process
(step 2 in Figure 8), the AuthorizationServer starts execut-
ing it, requesting all needed PolicyEvaluators with respect
to that process, i.e. some of them in parallel, others in a
sequence etc. Here the policy composition process consists
of a sequence indicating that first the AuthorizationServer
has to execute all PolicyEvaluators relevant to the requested
service R orchestrated in a specific way (where the most in-
tuitive structure is a <flow> one indicating execution in
parallel, as shown in Figure 8), and after that executing the
ReleasePolicyService responsible for taking the final access
decision. After finishing the policy composition process, the
AuthorizationServer returns the final access decision to the
ApplicationServer (step 4 in Figure 8).

7. CONCLUSIONS AND RELATED WORK
As we have already discussed, a number of access control

models have been proposed for workflows [2], web services
[25], and role based access control on the web [11, 26], SOAP
messages [8], entire XML documents [1, 9], tasks [17] and
DRM [25], possibly coupled by sophisticated policy combi-
nation algorithms . However, they have mostly remained
within the classical framework. Even more liberal models
such as those for DRM based on usage [25] has assumed
that servers know their clients pretty well: they might not
know their names but they know everything about what,
when, and how can be used by these clients. We have dis-
cussed the proposals of Bonatti and Samarati [7] and Yu et
al. [33] more in details in Section 5.

If we look at the proposals for distributed access control

architectures [32, 34, 4, 16] the common thread is decoupling
access control logic from application logic, and possibly dis-
tribute the access control component. However we are still
within the same administrative boundaries.

For instance Woo and Lam [32] propose that the Appli-
cationServer offloads its authorization policy to an Autho-
rizationServer. After evaluating the policy the Authoriza-
tionServer hands out authorization certificate to the Client,
which the Client has to present along with its request.

An architecture close to ours has been proposed by Beznosov
et al. [4]. Authorizations are managed by an Authoriza-
tion Service, and its Access Decision Object (ADO). The
ADO obtains references to all PolicyEvaluators related to
the Client’s request, asks a decision combinator for combin-
ing decisions according to a combination policy, and returns
the decision back to the Client. Also the Akenti Policy En-
gine [16], the OASIS system [13], and the Adage system [34],
share the idea of an AuthorizationServer communicating with
application and various IdentityServers to obtain credentials
for the Client.

In most proposals, the possibility that servers may get
back to the calling Clients with some counter requests is not
considered. This even in the case where the Client is actu-
ally an AuthorizationServer querying different PolicyEvaluator
servers.

In this paper we have proposed a solution to address the
challenges of WS processes: a possible architecture for the
authorization of business processes for Web services. We
have identified an interactive access control model as a way
for protecting security interests wrt disclosure of informa-
tion and access control of both servers and clients. Logical
abduction is the solid semantical foundation upon which in-
teraction can be build.

In the model a Client interacts (contracts) with the servent
in order to finalize the necessary set of credentials needed to
satisfy all partners’ requirements related to the process. We
propose to use “mobile” processes as messages exchanged in
the architecture, and specified how entities in the architec-
ture can be implemented using WS processes themselves.

Future work is in the direction of studying the complexity
of the combined deduction and abduction process, for the
particular restricted policy that are typically used in formu-
lating workflow and WS security policies.

8. REFERENCES
[1] Bertino, E., Castano, S., and Ferrari, E. On

specifying security policies for Web documents with
an XML-based language. In Proceedings of the Sixth
ACM Symposium on Access control models and
technologies (2001), ACM Press, pp. 57–65.

[2] Bertino, E., Ferrari, E., and Atluri, V. The
specification and enforcement of authorization
constraints in workflow management systems. ACM
Transactions on Information and System Security
(TISSEC) 2, 1 (1999), 65–104.

[3] Bettini, C., Wang, X. S., and Jajodia, S. An
architecture for supporting interoperability among
temporal databases. In Temporal Databases: Research
and Practice (1998), no. 1399, Springer-Verlag Lecture
Notes in Computer Science, pp. 36–55.

[4] Beznosov, K., Deng, Y., Blakley, B., Burt, C.,
and Barkley, J. A resource access decision service
for CORBA-based distributed systems. In Proceedings

9

of 15th IEEE Annual Computer Security Applications
Conference. (ACSAC ’99) (1999), IEEE Press,
pp. 310–319.

[5] Blaze, M., Feigenbaum, J., Ioannidis, J., and
Keromytis, A. D. The role of trust management in
distributed systems security. 185–210.

[6] Bob Atkinson, et al. Web Services Security
(WS-Security). IBM, Microsoft, VeriSign, April 2002.
http://www-
106.ibm.com/developerworks/webservices/library/ws-
secure/.

[7] Bonatti, P., and Samarati, P. A unified framework
for regulating access and information release on the
Web. Journal of Computer Security . (to appear).

[8] Damiani, E., di Vimercati, S. D. C., Paraboschi,
S., and Samarati, P. Fine grained access control for
SOAP E-services. In Proceedings of the tenth
international conference on World Wide Web (2001),
ACM Press, pp. 504–513.

[9] Damiani, E., di Vimercati, S. D. C., Paraboschi,
S., and Samarati, P. A fine-grained access control
system for XML documents. ACM Transactions on
Information and System Security (TISSEC) 5, 2
(2002), 169–202.

[10] Francisco Curbera, et al. Business Process
Execution Language for Web Services (BPEL4WS).
BEA, IBM, Microsoft, 7 2002. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/.

[11] Giuri, L. Role-based access control on the web. ACM
Transactions on Information and System Security
(TISSEC) 4, 1 (2001), 37–71.

[12] Godik, S., and Moses, T. eXtensible Access Control
Markup Language (XACML). OASIS, February 2003.
www.oasis-open.org/committees/xacml/.

[13] Hine, J. A., Yao, W., Bacon, J., and Moody, K.
An architecture for distributed OASIS services. In
IFIP/ACM International Conference on Distributed
systems platforms (2000), Springer-Verlag New York,
Inc., pp. 104–120.

[14] Imamura, T., Dillaway, B., and Simon, E.
XML-Encryption Syntax and Processing. W3C,
December 2002.
http://www.w3.org/TR/xmlenc-core/.

[15] Jajodia, S., Samarati, P., Subrahmanian, V. S.,
and Bertino, E. A unified framework for enforcing
multiple access control policies. In Proceedings of the
1997 ACM SIGMOD international conference on
Management of data (1997), ACM Press, pp. 474–485.

[16] Johnston, W., Mudumbai, S., and Thompson, M.
Authorization and attribute certificates for widely
distributed access control. In Proceedings of Seventh
IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WET ICE ’98) (1998), IEEE Press,
pp. 340–345.

[17] Joshi, J. B. D., Aref, W. G., Ghafoor, A., and
Spafford, E. H. Security models for web-based
applications. Communications of the ACM 44, 2
(2001), 38–44.

[18] Kaler, C., and Nadalin, A. Web Services Secure
Conversation (WS-SecureConversation). IBM and

Microsoft, 12 2002.
http://www.ibm.com/developerworks/library/ws-
secon/.

[19] Kaler, C., and Nadalin, A. Web Services Trust
Language (WS-Trust). IBM and Microsoft, 12 2002.
http://www.ibm.com/developerworks/library/ws-
trust/.

[20] Kreger, H. Web Services Conceptual Architecture
(WSCA 1.0), May 2001. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSCA.pdf.

[21] Kudo, M., and Hada, S. XML document security
based on provisional authorization. In Proceedings of
the 7th ACM conference on Computer and
Communications Security (2000), ACM Press,
pp. 87–96.

[22] Li, N., Grosof, B. N., and Feigenbaum, J.
Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on
Information and System Security (TISSEC) 6, 1
(2003), 128–171.

[23] Mark Bartel, et al. XML-Signature Syntax and
Processing. W3C, IETF, February 2002.
http://www.w3.org/TR/xmldsig-core/.

[24] OASIS Security Services TC. Security Assertion
Markup Language (SAML). OASIS, November 2002.
www.oasis-open.org/committees/security/.

[25] Park, J., and Sandhu, R. Towards usage control
models: beyond traditional access control. In Seventh
ACM Symposium on Access Control Models and
Technologies (2002), ACM Press, pp. 57–64.

[26] Park, J. S., and Sandhu, R. RBAC on the Web by
smart certificates. In Proceedings of the fourth ACM
workshop on Role-based access control (1999), ACM
Press, pp. 1–9.

[27] Rscheisen, M., and Winograd, T. A
communication agreement framework for access/action
control. In Proceedings of the IEEE Symposium on
Research in Security and Privacy (1996).

[28] Samarati, P., Reiter, M. K., and Jajodia, S. An
authorization model for a public key management
service. ACM Transactions on Information and
System Security (TISSEC) 4, 4 (2001), 453–482.

[29] Shanahan, M. Prediction is deduction but
explanation is abduction. In Proceedings IJCAI ’89
(1989), Morgan Kaufmann, pp. 1055–1060.

[30] W3C. Web Services Architecture.
http://www.w3.org/TR/ws-arch.

[31] Wijesekera, D., and Jajodia, S. Policy algebras for
access control the predicate case. In Proceedings of the
9th ACM conference on Computer and
Communications Security (2002), ACM Press,
pp. 171–180.

[32] Woo, T. Y. C., and Lam, S. Designing a distributed
authorization service. In Proceedings of Seventeenth
Annual Joint Conference of the IEEE Computer and
Communications Societies. INFOCOM (1998), vol. 2,
IEEE Press, pp. 419–429.

[33] Yu, T., Winslett, M., and Seamons, K. E.
Supporting structured credentials and sensitive
policies through interoperable strategies for automated
trust negotiation. ACM Transactions on Information
and System Security (TISSEC) 6, 1 (2003), 1–42.

10

[34] Zurko, M., Simon, R., and Sanfilippo, T. A
user-centered, modular authorization service built on
an RBAC foundation. In Proceedings of the IEEE
Symposium on Security and Privacy (1999), IEEE
Press, pp. 57–71.

APPENDIX

A. AN AUTHORIZATION AND DATA FLOW
EXAMPLE

This section shows an authorization example of the mes-
sage flow in our architecture, shown in Figure 9. The fol-
lowing example describes how the architectural components
compute an authorization decision:

1. A Client asks the RegistryServer that it wants to invoke
a specific service R;

2. The RegistryServer looks up for this R and returns a list
of appropriate ApplicationServer(s);

3. The Client requests the ApplicationServer for invoking
the service R, presenting its credentials;

4. After the ApplicationServer has received the Client’s re-
quest, it checks for its AuthorizationServer offering this
service (using the RegistryServer) and requests it for
taking an authorization decision, presenting Client’s
credentials and the requested service R;

5. The AuthorizationServer queries a PolicyOrchestrator for
a policy composition related to evaluating the service
R;

6. The PolicyOrchestrator returns to the AuthorizationServer
a graph of activities, BPAct, representing policy com-
position process;

7. The AuthorizationServer starts executing the process
BPAct (requesting all PolicyEvaluators with respect to
that BPAct);

8. The PolicyEvaluators return to the AuthorizationServer
their access decisions either as explicit YES/NO or as
a process indicating what should be done by the Client;

9. After collecting the results from all the PolicyEvalua-
tors, the AuthorizationServer invokes a service (located
at PolicyOrchestrator) indicated by BPAct, which is re-
sponsible for getting the final access decision based on
the results from step 8 and the information release pol-
icy related to the requested service R;

10. The final access decision returned by the PolicyOrches-
trator is either explicit YES/NO or a process indicating
what should be done by the Client in order to get the
service R;

11. The AuthorizationServer pass back to the Application-
Server the final access decision returned by the Policy-
Orchestrator;

12. The ApplicationServer enforces the access decision re-
turned by the AuthorizationServer and sends the result
back to the Client;

13.-15. In the case of interactive counter request returned to
the Client the same starts executing it and after that
re-requests the ApplicationServer for the service R pre-
senting the new credentials it has obtained.

16. The ApplicationServer after being requested by the Client,
requests the AuthorizationServer for taking the autho-
rization decision with the new set of Client’s credentials;

17. The AuthorizationServer returns the final access decision
(YES/NO) to the ApplicationServer;

18. The ApplicationServer enforces the access decision re-
turned by the AuthorizationServer and sends the result
back to the Client.

11

Figure 9: A data and authorization flow diagram

12

