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Abstract

In these days, the world experiences an unprecedented demand for data and data services, driven 

mainly by the popularity of the Web services and by the evolution of the Internet towards an 

information super-highway. We introduce a hybrid scheduling that effectively combines broadcasting 

for very popular data (push data) and dissemination upon-request for less popular data (pull data) in 

asymmetric communication environments. In our solution, the server continuously broadcasts one push 

item and disseminates one pull item. The clients send their requests to the server, which queues-up 

them for the pull items. At any instant of time, the item to be broadcast is designated applying a pure-

push scheduling, while the item to be pulled is the one stored in the pull-queue, which has 

accumulated, so far, the highest number of pending requests. The value of the average expected 

waiting time spent by a client in the hybrid system, denoted by Texp-hyb, is evaluated analytically, and 

the cut-off point between push and pull items is chosen in such a way that  Texp-hyb is minimized. We 

find out that by doing so we can drop the cut off point to a value, which is much less than the total 

number of items present in the system, improving upon the average waiting time spent by a client in a 

pure push system and also on that spent in some of the hybrid systems already proposed in literature. 

1. Introduction 

Day by day the ability to interconnect computers through cable, satellite and wireless networks is 

increasing and proportionately to this is also increasing a new application based on data dissemination.

This application focuses on delivering data to a large population of clients. Often in dissemination-based 

systems, there exists communications' asymmetry. This asymmetry may arise due to several factors like: 

The downstream communication capacity (bandwidth from server to client) may be much greater 

than the upstream communication capacity (bandwidth from client to server); 

In Information Retrieval Applications, the clients make requests to the server through small 

request messages that result in the transfer of much larger objects; 

Systems with small number of servers an d large number of clients also result in such asymmetry.  

Basically, there are two approaches to spread data items in such systems: the Push-based data scheduling, 

and the pull-based data scheduling. 

A system where the client simply grabs the data being broadcast without making any requests is an 

example of push-based system. In such systems, the clients continuously monitor the broadcast process and 

retrieve the data items they require. The server, on the other hand, broadcasts data items on scheduled time 

no matter whether the particular item is being required at that time or not. On the contrary, pull-based 
systems are on demand traditional client server systems where clients and server have a request/response 

style of relationship. In such systems, the clients initiate the data transfer by sending requests and the server 

then makes a schedule to satisfy the clients’ requests.  

Both push- and pull- based scheduling have their own advantages and disadvantages; as shown in [4, 17] 

neither push nor pull based scheduling alone can achieve the optimal performance. A better performance is 

achieved when the two scheduling approaches are used in a combined manner.  

In this paper, we divide the data items in two disjoint sets – push-set and pull-set. A push-based scheduling 

is then used to broadcast the items in the push-set, whereas a pull-based scheduling is used to disseminate 

those in the pull-set. The system performance metric for our system is the average expected access time 

experimented by the clients, which depends upon the push scheduling, the pull scheduling and heavily upon 

the criteria used to partition the items in the push- and pull-sets. 



The rest of the paper is organized as follows: Section 2 reviews the past-related work that has been done in 

this area. Section 3, after introducing some preliminaries, offers motivations behind using our new hybrid 

system. Section 4 describes the behavior of the server and of the clients in the new hybrid scheduling. 

Besides, it devises the analytic evaluation of the average expected waiting time based on the push-based 

and pull-based scheduling adopted.  In Section 5, the experimental results are reported. Finally, conclusions 

are offered, along with some discussions on future work, in Section 6. 

2. State of the art: past related work 

Scheduling theory has been studied since decades. Among the research on broadcast scheduling, Acharya 

et al.  [1-3] came up with the idea of Broadcast Disks. In such an approach, data items are assigned to 

several disks of different sizes and speeds, and are then multiplexed on a single broadcast channel. From 

this channel, the clients can retrieve data items based on their probability of access. In effect, items of 

higher access probability are assigned to faster disks than the items of low access probability, which are 

assigned to slow revolving disks.  

Later, Jain and Werth  [18] proved that the optimal expected access time results when the instances of each 

item to be pushed are equally spaced, while Bennett and Zhang [9] determined which packet from many 

input queue should be transmitted next in the output channel so that the channel is used in a fair way. The 

fact that the push broadcast scheduling problem was related to Packet Fair Queuing was brought up by 

Vaidya and Hameed in  [12, 14], who also studied scheduling for multiple broadcast channels and the 

impact of the transmission error on scheduling.  

For broadcast disks with polynomial cost functions, Bar-Noy et al. [6] presented an asymptotically optimal 

algorithm for a fluid model, where the bandwidth may be divided to allow for fractional concurrent 

broadcasting. They also give a greedy algorithm reaching the best performance in most cases. 

Mostly all of the above scheduling algorithms assume that the server knew the access probability of all the 

items in advance, however, in real time this is not the case. This problem was tackled in [13, 15]. Precisely, 

[13] proposed to use broadcast misses to understand the access patterns and Yu, Sakata and Tan [15] 

presented a statistical estimation model to estimate access probability.  

Besides, deadline constraints have been integrated into the Broadcast Disks model in [7, 8, 10], where, the 

server tries to compute a periodic schedule that provides worst case guarantees, even in the event of failures 

and data updates. However, this model is not bidirectional, that is, there is no uplink channel and 

consequently the server periodically broadcasts items based on a static estimation of the potential user 

population, not on the actual load.  

Although the push-based systems have attracted for their high capability to scale up, those systems may 

sacrifice some users’ needs to the public interest. Based on that, more recently, on-demand dissemination 

scheduling have been pursued (see [2] for a complete review) which propose advanced scheduling policies 

allowing, for example, preemption and using sophisticated performance metrics, like data item stretch.  

In addition, many researchers, including [3, 5, 19], realized that caching and prefecthing can save much of 

the expected access time and thus are important for both push and pull based data dissemination 

scheduling.  In particular, in [19], an efficient gain-based cache replacement policy, called SAIU, is 

designed for on-demand scheduling that balance individual and overall system needs. SAIU integrates in its 

performance measure the influence of the data retrieval delays, of the data sizes, of the data access 

probabilities as well as of the data update frequencies. 

Clearly, hybrid approaches, that use both the push-based and the pull-based scheduling algorithms in one 

system, appear to be attractive to meet both the massive data dissemination and the upon-request data 

delivery. Acharya, Franklin and Zdonik [4] present an asymmetric system with multiple clients and a single 

server to control the broadcast. In this system, the server pushes all the data items according to some push-

based scheduling, but simultaneously the clients are provided with a limited back channel capacity to make 

requests for the items, which are missing for a time interval greater than a given threshold. In this way, 

some of the items are both disseminated and also broadcasted, increasing the average waiting time. This 

happens, however, more frequently in low or medium loaded system since in heavily loaded systems 

clients’ requests on-demand are likely to be dropped/ignored by the server.  

In [13], a model for assigning the bandwidth to the push- and pull-scheduling in an adaptive way is 

proposed. To minimize the number of requests arriving at the server, as soon as an item becomes popular it 



is inserted in the push scheduling. Hence, the cut-off point between the push and the pull items is highly

dynamic. Clients listen to the broadcast first, and make a request only if the requested item is not in the

push broadcast program. To cope with the dynamism of the push-set, just the flat push scheduling, which

sends in round-robin fashion all the items, is adopted.

Finally, a hybrid approach is discussed in [17], which divides the data items in two disjoint sets: one for

push and one for pull according to their degree of access probability. Roughly speaking, the set of the pull

items contains those items which are so rarely requested in the system that no more than one or two 

requests for all of them are sent by the clients in a single unit of time (i.e., the time necessary to 

broadcast/disseminate a single data item). All the remaining items belong to the push-set.  Repeatedly, the

server broadcasts the push item precomputed by the packet fair queuing scheduling applied to the push-set,

and after broadcasting, it serves, in first-come-first-serve order, the pending requests arrived for the pull

items.  The reason behind the good performance of such a hybrid scheduling is that the pull-set is selected

in such a way that no more than one item can be disseminate between two broadcast items. However such a 

condition of the pull-set, when the system is highly loaded or all the items have more or less the same

degree of access probability, leads to the selection of an empty pull-set, reducing the hybrid scheduling to a 

pure-push scheduling.

3. Preliminaries and motivation behind our work

Before discussing the motivation behind our work, which improves on [17], let us introduce some

assumptions and terminologies.

First of all, we assume a system with a single server and multiple clients thereby imposing an asymmetry. 

The database at the server is assumed to be composed of D total number of distinct data items, each of unit

length. The access probability Pi of item i is a measure of how worth is having an item access/request that

is a measure of its degree of popularity. It is assumed that the server knows the access probability of each

item in advance. The items are numbered from 1 to D in decreasing order of their access probability, thus 

P1 P2  ... PD. Clearly, from time to time, the server recomputed the access probability of the items,

renumber them as necessary and eventually make available to all clients the new numbering of the items.

It is assumed that one unit of time is the time required to spread an item of unity length.

We say that the client accesses an item if that item is pushed, i.e. broadcasted by the server, while that an 

item is requested if the item is pulled, i.e. it is disseminated on air on demand. Moreover, let the load N of

the system be the number of requests/access in the system for unit of time.

Let the access time, Tacc,I be the amount of time that a client waits for a data item i to be broadcast after it

begins to listen. Moreover, let the response time, Tres,I  be the amount of time between the client request of

item i and the data transmission.

Clearly, the aim of the push scheduling is to keep  the access time for each push item i as small as possible, 

while that of the pull scheduling is to minimize the response time for each pull item i.
Recalling that the pure push-based systems repeat the same schedule cyclically, let a single repetition of the

schedule be termed a broadcast cycle. During a broadcast cycle, some items may appear several times.

Each appearance is referred to as an instance of the item. Indicated with s the space between two

consecutive instances of an item, if all instances of item i are equally spaced, then the space between any

two instances of item i will be denoted as si.

In a push-based system, one of the overall measures of the scheduling performance is called average
expected access time, Texp-acc, which is defined as 

D

i

iacciacc TPT
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where iaccT , is the average expected access time for item i. If instances are equally spaced in the broadcast

cycle, then iaccT , = si / 2. 

Many scheduling algorithms have been designed to minimize Texp-acc. One of them, the Packet Fair 
Scheduling has been widely studied and its performance is well modeled analytically [11]. Such a push

scheduling, which was used in [17], is also adopted in our hybrid scheduling as the push scheduling.



Therefore, from now on, in this paper, the term push scheduling indicates the cyclic scheduling derived by

the packet fair scheduling algorithm applied to the push-set.

Similarly, it can be defined the average expected response time, denoted Texp-res, for the pull scheduling.

In order to explain the rational behind our approach, let us first describe in details  the intuition behind the

hybrid scheduling in [17] and let us point out some of its drawbacks. 

Recall that in purely push-based systems, the server alone decides which data items have to be transmitted

without interacting with the clients, while in purely pull-based systems; the server is totally guided by the

clients’ requests. To make the average expected access time of the system smaller, the solution in [17] 

sends on-demand the less popular items immediately after having broadcasted the most popular items.

Indeed, let the push-set consist of the data items numbered from 1 up to K, termed from now on the cut-off
point, and let the remaining items from K+1up to D form the pull-set, the average expected waiting time

for the hybrid scheduling is defined as:

D

Ki

iresi

K

i

iacciresacchyb TPTPTTT
1

,

1

,expexpexp

Clearly, as the push-set becomes smaller, the average expected access time Texp-acc becomes shorter.

However, the pull-set size becomes larger, leading to a longer expected response time Texp-res. The size of 

the pull-set might also increase the average access time iacc,T , for every push item. In fact, if the hybrid

scheduling serves, between any two items of the cyclic push scheduling, all the pending requests for pull

items in First-Come-First-Served order, it holds for the average expected access time for item i:

iaccT , = (si  + si q)/ 2, 

where q is the average number of distinct pull items for which, arrives, at least one pending request in the

pull-queue for unit of time. From now on, we refer to q as the dilation factor of the push scheduling.

To limit the growth of the iacc,T , and therefore that of the T , the push-set is taken in [17] enough

large that, in average, no more than 1 request for all together the pull items arrives from all the clients

during a single unit time. To guarantee a dilation factor q equal to 1 when the system load is equal to N,

[17] introduces the concept of the build-up point B. B is the minimum index between 1 and D for which it

holds , where N is the average access/requests for unit of time. In other words, [17]

pushes all the items from 1 up to B to guarantee that no more than 1 item is waiting to be disseminate, and

therefore to achieve a dilation factor q equal to 1. 
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After having bounded the dilation factor to 1, [17] chooses as the cut-off point between the push and pull

items the value K, with K > B, such that K minimizes the average expected waiting time for the hybrid

system.

Intuitively, the partition between push and pull items found out in [17] is meaningful only when the system

load N is small and the access probabilities are much skewed. Under these conditions, indeed, the build-up

point B is low. Hence, there may be a cut-off K, such that B < K < D, which improves on the average

expected access time of the pure-push system. However, when either the system has a high load N and/or

all items have almost the same degree of probability, the distinction between the high and low demand

items becomes vague, artificial, hence the value of build-up point B increases, finally leading to the

maximum number D of items in the system. Thus, in those cases, the solution proposed in [17] almost

always behaves as a pure push-based system.

To corroborate what discussed so far, in Table 1, the relation of the value of the load N (taken in the

columns); of the distribution of the access probabilities ( in rows) with the value of the build up point B 

is illustrated, when the total number of distinct items D is 20.



According to the previous literature, we assume that the access probabilities Pi follow the Zipf's distribution

with access skew coefficient :

)/1(

)/1(

1
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i

The access probabilities P1 … PD are well balanced for small values of , while they become skewed for 

increasing values of . Table 1B shows the relation of access probability of 10 items with .

Table 1(a)     Table 1(b)

Table 1:  (a) Build-up point B for several values of N (taken in the columns) and (in rows)  when

D = 20; (b) Access Probability of 10 items (in rows) with varying  (in Columns)

In the remaining of this paper, we present a hybrid scheduling that improves on [17] when the load is high

or when the access probabilities are balanced, that is, when the scheduling in [17] reduces to the pure-push

scheduling.  The solution proposed in this paper again partitions the data items in the push-set and the pull-

set, but it chooses the value of the cut-off point K between those two sets independent of the build-up point.

Indeed, we let the pull-queue grow in size, and the push-set can contain any number of data items. After

each single broadcast, we do not flush out the pull-queue, which may contain several different pending

requests. In contrast, we just pull one single item: the item, which has the largest number of pending,

requested in the pull-queue. Observe that simultaneously with every push and pull, N more access / 

requests arrive to the server, thus the pull-queue grows up drastically at the beginning. In particular, if the

pull-set consists of the items from K+1 up to D, at most N requests can be inserted in the

pull-queue at every instance of time, out of which, only one, the pull item that has accumulated the largest

number of requests, is extracted from the queue to be pulled.

i
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We are sure, however, that the number of distinct items in pull-queue cannot grow uncontrolled since the

pull-queue can store at most as many distinct items as those in the pull-set,  that is no more than KD
items.  So, after a while, the new arriving requests will only increase the number of clients waiting in the

queue for some item, leaving unchanged the queue length. From this moment, we say that the system has 

reached a steady state. In other words, the pending requests will start to accumulate behind each pull-item

without increasing anymore the queue length. Hence, just pulling the high demanded pull item, the system

will not serve just one client but many. Our intuition is that a pull item cannot be stuck in the pull-queue for

more than as many unit of time as the length of the queue. Indeed, in the worst case, when all the pull items

have more or less the same access probability, the number of pending requests will be in average the same

for all the pull items. Then, the system serves the pull-queue in a round-robin manner, and each pull item

waits in average half of the length the pull-queue before being pulled. Besides, when the access probability



of the pull items vary a lot (i.e., larger than or equal to 1), the expected average response time can only

decrease for the high demanded pull items, possibly improving the average expected response time.

exp

(hyp

In conclusion, the main contribution of our approach is to show that to preserve a constant dilation of the

push scheduling is not necessary to avoid that the pull-queue starts to build-up. That is, it is not necessary

to choose the cut-off point K larger than the build-up point B. In fact, our approach guarantees a dilation 

factor q equal to 1 just pulling a single item, and it shows that when K is chosen independent of B, a better

tradeoff between the average expected access time and the average expected response time can be found. 

 4. The new hybrid algorithm 

We are now in position to describe the behavior of our asymmetric system of communication.

As said, we assume that the database of the server contains the D items, indexed from 1 to D according to

their decreasing access probabilities. That is, for the items 1 … D, it holds P1  P2  ... PD. Moreover, the

clients to designate the data items they are interested in use the same indexes.

The server performs several actions simultaneously. From one side, it monitors the access probabilities of 

the data items and the system load. When those parameters diverge significantly from the assumptions

previously made by the system, the server renumber the data items, and recalculates the cut-off point K to 

separate the push-set from the pull-set, as illustrated in Figure 1. Note that K is selected in such a way that

the average expected waiting time of the hybrid scheduling Texp-hyb is minimized. In order to evaluate the

cut-off point, recall that it holds:
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Substituting for iacc,T the optimal instance space
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of the push items (see [11, 

18]) and for iresT ,  the maximum length D –K of the pull-queue, K is selected   in such a way that
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is minimized.

Integer function CUT OFF POINT (D, P = {P1, P2 ...PD}): K

/* D: Total No. Of items in the Database of the server

P: Sorted vector of access probability of items in decreasing order

K: Optimal Cut off Point */

K: = 1; Texp_hyb  (0): = Texp_hyb   (1): = D;



while K < = D and   Texp_hyb   (K-1) > = Texp_hyp (K) do

begin

Set
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iiihyp ;

K: = K + 1; 

end

return (K-1) 

Figure 1: Algorithm to set the optimal cut-off point K between the push and pull items. 

In addition, the server listens to all the requests of the clients and manages the pull-queue. The pull-queue,

implemented by a max-heap, keeps in its root, at any instant, the item with the highest number of pending

requests. For any request i, if i is larger than the current cut-off point K, i > K, i is  inserted in the pull-

queue, the number of the pending requests for i increased by one, and the heap information updates

accordingly.  Vice versa, if i is smaller than or equal to K, i <= K, the server simply drops the request

because that item will be broadcast by the push-scheduling sooner or later. 

Finally, the server is in charge of deciding at each instant of time which item must be spread. The

scheduling is derived as explained in Figure 2, where the details for obtaining the push scheduling are

omitted.  The interested reader can found them, for example, in [11]. 

Procedure HYBRID SCHEDULING; 

while true do

    begin 

compute an item from the push scheduling and broadcast it; 

if the pull-queue is not empty then

extract the most requested item from the pull-queue,

clear the number of pending requests for that item, and pull-it

    end;

Figure 2: Algorithm at the server that produces the hybrid scheduling 

To retrieve a data item, a client performs the following actions:

Procedure CLIENT-REQUEST (i):

/* i :  the item the client is interested in */

begin

send to the server the request for item i; 

wait until listen for i on the channel

end

Figure 3: The algorithm that runs at the client site

Note that the behavior of client is independent of the fact that the requested item belongs to the push-set or 

to the pull-set.



5. Experimental Results 

It remains now to evaluate the performance of the new proposed algorithm.

First of all, we compare the simulation results of the new algorithm with those of the hybrid scheduling in

[17], with the results of  the pure-push scheduling and with the analytic expression used to derive the

optimal cut-off point.  We run experiments for D=100, for the total number of access / requests in the

system M = 25.000 and for N=10 or N=20. The results are reported in Table 2 and 3, respectively for N=

10 and N= 20. 

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

New 40.30 37.78 35.23 32.36 29.38 25.95 22.95 19.90 17.04

[17] 44.54 42.35 40.01 37.31 34.12 29.93 24.38 20.61 17.04

Push 45.03 43.01 40.50 37.47 34.30 30.90 27.75 24.50 20.86

Analytical 36.01 36.21 35.04 33.56 29.94 29.73 27.09 25.19 22.51

Table 2: Expected hybrid access time for different values of (taken in the columns) and

   different algorithms (taken in the rows) when N = 10. 

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

New 41.96 39.39 36.59 33.49 30.39 27.20 23.88 21.14 18.26

[17] 44.44 42.45 40.10 37.39 33.78 30.69 27.54 23.23 19.49

Push 44.70 42.61 40.30 37.65 34.12 30.78 27.71 23.94 21.07

Analytical 37.59 35.68 34.53 33.06 29.94 29.73 27.09 24.43 24.24

Table 3: Expected hybrid access time for different values of (taken in the columns) and

   different algorithms (taken in the rows) when N = 20. 

For both Tables 2 and 3, the value of is varied from 0.50 to 1.30, so as to have the access probabilities

of the items initially from similar to very skewed. Note that for no larger than 1, the analytic average

expected access time is close to that measured with the experiments. This confirms that, when the access

probabilities are similar, the pull items remain in the pull-queue for a time no larger than  to total number of

pull items that is D-K.  For larger values of , the experimental measure of the expected response time is 

smaller that the analytic expected value because due to the fact that the access probabilities are very skew

fewer than D-K items can be present simultaneously in the pull-queue. Therefore, the actual waiting time of

the client is eventually shorter than D-K. Further experimental results have shown that when  is varied

from 0.90 to 1.30; the length of the pull-queue is approximated better by the value  than by

D-K. Moreover, as earlier discussed, when the system is highly loaded, the scheduling algorithm in [17],

whose cut-off point K must be larger than the build-up point B, almost reduces to the pure-push scheduling.

Contradictory to [17], the new hybrid algorithm, even with very high loaded system, experiments better

results than a pure-push based system as illustrated in Figure 4.
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Figure 4: Pure-push scheduling Vs new algorithm 

Besides, in Figure 5, the values of the cut-off point K for our solution, which takes K independent of B, and

for the hybrid scheduling proposed in [17] are depicted for N=10 and N=20.

Figure 5: Cut-off point when N = 10; N = 20 

6. Conclusions 

We offer the following conclusions:

As already pointed out in [17], by separating the most demanded items from the less demanded

ones, broadcasting the former and disseminating the latter, the total overall expected waiting time

of the system drops.

If the cut off point between the push and the pull items is chosen in such a way that the no more

than one pending request for pull item arrive in a unit of time, as in [17], for large number of 

requests / access arriving to the system, the system has a behavior similar to that of a total push

system.

To overcome such a drawback, we propose a new hybrid scheduling which continuously

broadcasts one push item and disseminates one pull item. The clients send their requests to the

server, which queues up only those for the pull items. At any instant of time, the item to be

broadcast is designated applying the packet fair queue scheduling to the push items, while the item

to be pulled is the one stored in the pull-queue which has accumulated, so far, the highest number

of pending requests. The cut-off point between push and pull items is chosen in such a way that

the analytic expected access time of the hybrid system is minimized, and is independent of the

number of pending requests arriving in a unit of time. We found that by doing so we can drop the

cut-off point to a value, which is much less than the total number of items present in the system,

improving upon the expected access time of the hybrid scheduling in [17]. 

As the experiments pointed out, our new hybrid approach is more effective than [17] when the

access probabilities are similar than when they are skewed. 

Finally, several further aspects remain to be investigated to make our system more suitable for real 

scenario. For example, in this paper, we assumed that the server knows the access probability of each item

in advance, which may not be the case in the real scenario, as the demand for an item may change

according to time. Thus our future work will might try to choose the cut off point in a dynamic way

according to the changing access probability of the items present. We have also assumed   that the server

broadcast and disseminates the items on the same channel. A much better performance could be expected if

we could use two channels one for broadcasting the data items and the other for disseminating the rest. Our

future work could also investigate how the expected access time is related to the cut off point if the items in

the database of the server are not of equal length, or if a deadline constraint is associated with each item



requested.  Even more challenge is the perspective of supporting mobile clients, which pass from a base 

station to another (possibly broadcasting different flows of information) and which may experience poor 

transmission conditions.  
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