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Abstract

We introduce the notion of T-pairing and give a min-max characterization for the
minimum size of a T-cut. We show that the coefficients in the minimal TDI system for
the T'-cut polyhedron can be arbitrarily big.
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1 Introduction

Given a connected graph G = (V, E) and S C V, the cut dg(S) (subscripts omitted when
no confusion arises) is the set of those edges in E with precisely one endnode in S. When
T C V has even cardinality, the pair (G, T) is called a graft. A T-cut is a cut §(S) such that
|S NT|is odd. In the following, R, and N denote the set of non-negative reals and the set
of non-negative integers, respectively. Given a cost function ¢ : E — Ry, the cost ¢(F') of
a set of edges F is defined as ) . c.. Denote by Agr,. the minimum cost of a T-cut in
(G,T,c). When, as a special case, ¢ = 1, then we denote by Agr the minimum size of a
T-cut in (G, T).
A T-pairing is a partition of T' into pairs. The value of a T-pairing P is defined as:

valGo(P) = min_Ac,fu).c
Let P be any T-pairing and §(S) be any T-cut. Since |[SNT| is odd, P contains a pair {u, v}
such that §(S) is a {u,v}-cut. Therefore, c(6(5)) > Ag {u,v},c = valg,c(P) and the value of P
is a lower bound on Ag, 7. Our main result is the following.

Theorem 1.1. The mazimum value of a T-pairing equals the minimum cost of a T-cut.

Theorem 1.1 is proven in Section 2. In Section 3, we give some negative results for the
minimal TDI system of the T-cut polyhedron. These exclude the possibility of characterizing
AT, along the lines of the characterization of optimal T-joins in terms of T-borders given
by Sebd [12]. We conclude this introduction with an application of Theorem 1.1 and a deep
result of Nash-Williams. (Further applications and extensions of Theorem 1.1 can be found

in [3].)



Theorem 1.2 (Nash-Williams [7]). Every undirected graph G has an orientation C_—'i such
that for every ordered pair of nodes (z,y) there are |Ag (5,)/2] arc-disjoint paths in G from
T toy.

When D = (V, A) is a digraph and S C V, then d},(S) denotes the number of arcs in A
with tail in S and head in V'\ S.

Corollary 1.3. For any graft (G,T), there ezists an orientation D of G such that d,(S) >
[ AG,1/2] for every subset S of V with |SNT| odd.

Proof: Given a graft (G,T'), let P be a T-pairing of value Ag 7. By Theorem 1.2, there
exists an orientation D(V, A) of G(V, E) with the property that for every pair P € P there are
[ Ag,7/2] arc-disjoint paths from whichever node in P to the other. Consider now any subset
S of V with |[SNT| odd: by parity reasons, there must exist some pair {s,t} € P with s € S
and t ¢ S. Hence, D contains |Ag,r/2] arc-disjoint paths from s to ¢ and d},(S) > [Ag,r/2]
follows. O

2 Gomory-Hu trees and minimum 7-cuts

Given a graft (G, T), a T-join is an edge subset J C E such that every node v € V is incident
with an odd number of edges in J iff v € T. Clearly, when J is a T-join and C is a T-cut,
then |J N C| is odd. As an example, when G is a tree, then (G,T) admits a unique T-join J,
and J contains precisely those edges e of G such that {e} is a T-cut.

Given a pair (G,c), let H be a tree with V(H) = V and wp, be a non-negative weight
assigned to every edge h of H. The pair (H,w) is a Gomory-Hu tree of (G, c¢) if for every two
nodes u,v € V the following property holds: if A is any edge of minimum weight in the unique
path between u and v in H, and where S}, denotes any of the two connected components in
the graph obtained from H by deleting h, then dg(Sy) is a minimum {u, v}-cut for (G, ¢) and
¢(0G(Sp)) = wp. In [5], Gomory and Hu proved that a Gomory-Hu tree always exists and
showed how to construct one efficiently. In [8], Padberg and Rao gave an algorithm to find
minimum T-cuts. Their algorithm was based on the following observation.

Lemma 2.1. Let (H,w) be a Gomory-Hu tree for (G,c). Let J be the T-join of H. Let h be
an edge of J such that wp, = minee j we. Then §g(Sy) is a minimum T -cut.

Proof: Let §g(S) be a minimum T-cut. Let h = uv be an edge in the T-cut 6,(S) of
J. We claim that d¢(Sp) is a minimum T-cut. Indeed, |S; N T is odd since h € J. More-
over, 6g(Sf) is a minimum {u, v}-cut since h is an edge of H. Hence, c(d¢(S5)) < c(d¢(S)). O

Proof of Theorem 1.1: Let (H,w) be a Gomory-Hu tree for (G,¢). Let J be the T-join
of H. By Lemma 2.1, Ag, 1. = mingcjwy. Clearly, every component of (V,.J) has an even
number of nodes in 7. Construct a T-pairing P by arbitrarily pairing up the nodes of T
inside the components of (V, J). Clearly, valg,.(P) = A1, and Theorem 1.1 follows. O

The clutter of minimal 7-joins and the clutter of minimal T-cuts are easily checked to be
the blocker of each other. In [2], Edmonds and Johnson showed this pair [6, 4] of clutters to
be ideal.



3 On the minimal TDI system for the 7-cut polyhedron

Given a graft (G,T), let Pgr denote the T-cut polyhedron (the dominant of the T-cut
polytope). Note that Pg 7 is of blocking type and hence has full dimension. It follows [11]
that Pg 7 admits a unique (up to scaling) minimal TDI system S, 7. In this section, we show
that the coefficients in Sg 7 can be arbitrarily big. This contrasts with the nice results on
the minimal TDI system for the T-join polyhedron given in [12]. More precisely, a T-border
of a graft (G,T) is a subset B of E such that all components of G'\ B have an odd number of
nodes in 7. Denote by o(B) the number of components in G\ B. It is easy to see that, when
B is a packing of T-borders (i.e. a collection of disjoint T-borders), then ) 5 p @ gives a
lower bound on the size of a minimum 7-join. It is shown in [12] that for every graft (G,T)
and for every cost function ¢ : £ — N there always exists a T-join J and a collection B of
T-borders (repetition is allowed), with no edge e in more than ¢, T-borders of B, and such

that ¢(J) = > pgen o(f ), Clearly, this nice min-max characterization is only possible because
the left side coeflicients of the minimal TDI system for the T-join polyhedron are all 0-1.

Let P C RF be a non-empty polyhedron of blocking type. A non-negative integral
function w : E — N is called a weighting on E and the rank of w is defined as r(w) =
min{wz : z € P}. Clearly, the following infinite system defines P.

wzr > r(w) Yw:E—N
{24 (1

Moreover, System 1 is integral and TDI. The minimal TDI system Sp of P is therefore a
subsystem of System 1. A weighting w is closed if r(w') < r(w) for every weighting w’ : E +— N
with v’ < w and w' # w. A separation of w is a pair w1, wy : E + N such that wi +wy = w
and r(w1) + r(w2) = r(w). If w does not admit any separation with wy,ws # 0 then w is
said non-separable. As shown in [9], the proof of Lemma 2.1 in [1] can be easily adapted to
obtain the following characterization of those constraints which are in Sp.

Lemma 3.1. An inequality of the form wxz > r(w) is in Sp if and only if w # 0 is closed
and non-separable.

Proof: If wz > r(w) is in the minimal TDI system for P then w is clearly closed and
non-separable. To see the converse, let w : £ — N be a closed non-separable weighting.
Consider the linear programs:

PRIMAL: DuaAL:
min Wz max Y . moon T (W) Yw
wz > r(w) Yw:E—N S i sN W < @
{ z> 0 y> 0

The dual has the following integral solution:
yﬂ):l’ waO Vw#ﬂ_l

to which corresponds the optimum value r(w). It suffices to show that no integral optimal
dual solution has y3 = 0. Suppose such a solution does exist. To it correspond w1, we, ..., w;
not necessarily distinct such that @ > wi+wo+. .. +w; and r(wy)+r(we)+...+r(w;) = r(w).



Since w is closed and ygz = 0 then 5 > 2. But then w is separable. O

A graph G is called an r-graph if there exist rk 1-factors of G (repetition allowed) such
that every edge of GG is contained in precisely & of them. An r-graph is called indecomposable
when its edge set can not be partitioned as F1 U E5 so that G;(V, E;) is an r;-graph for s = 1,2
and for some 1,72 > 0. In [9, 10], indecomposable r-graphs were shown to exist for every 7.

Claim 3.2. For every integer r, there ezists a graft (G,T) such that Sqr contains an in-
equality ax < b with b > r.

Proof: Let G be an indecomposable r-graph. We show that the graft (G, V) satisfies the
claim. Let 1 be the all 1’s weighting on E. Then (1) = r since G is a r-graph. Moreover, 1
is closed since every edge of G is contained in a (trivial) minimum V-cut of (G, V,1). Finally,
1 is non-separable since G is indecomposable. Apply Lemma 3.1. O

Claim 3.3. For every integer r, there exists a graft (G,T) such that Sgr contains an in-
equality ax < b with o left side coefficient equal to r.

Proof: Let G be an indecomposable r-graph. Let H be the graph obtained from G by
adding two new nodes v and v and an edge uv. We show that the graft (H,V (H)) satisfies
the claim. Let w be the weighting on F(H) defined by w(uv) = r and w(e) = 1 for every
e € E(G). Then, w is closed and non-separable and r = r(w). Apply Lemma 3.1. O
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