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Abstract

The goal of this paper is to provide a formalization of monotonic belief and belief about
belief in a multiagent environment. We distinguish between ideal beliefs, i.e., those beliefs
which satisfy certain “idealized” properties which are unlikely to be possessed by real agents,
and real beliefs. Our formalization is based on a set-theoretic specification of beliefs and,
then, on the definition of the appropriate constructors which present the sets identified.
This allows us to provide a uniform and taxonomic characterization of the possible ways in
which ideal and real beliefs can arise. We compare our notion of ideal with the notion of
logical omniscience from the modal literature, and show that the first is much weaker and
more granular than the second. We provide intuitions about the conceptual importance of
the cases analyzed by proving and discussing some equivalence results with some important
modal systems modeling (non) logical omniscience.

1 Introduction

The specification of beliefs in a multiagent framework is a traditional topic in many
research areas, including computer science. The standard approach is to start with a
single propositional signature, extend it with a unary modal operator for each agent,
and use possible world semantics to formally characterize what each agent believes.
Traditionally, “belief” corresponds to truth in all the considered possible worlds, and
a “world” is characterized by an assignment to the propositional signature. These
characterizations of “belief” and “world” lead to simple and very elegant formaliza-
tions of agents’ beliefs. However, the resulting agents suffer of the “logical omniscience
problem” [15]: agents are idealized to the extent that they believe all the proposi-
tional consequences of their own beliefs. Though there exists a great deal of work
which overcomes this problem (each approach modifying the above characterization
of “belief” or “world”, see [8] for an excellent overview of various approaches), all
such solutions lack the simplicity and elegance of the original approach (see also [17]).



In another tradition (see e.g. [12, 16]) each agent is modeled as a set of “interact-
ing” distinct theories, that here we call reasoners. The intuition is that each reasoner
models a point of view that the agent has (about its own beliefs, about the beliefs
of another agent, about the beliefs about the beliefs of another agent, . ..and so on);
while the “interaction” among reasonersmodels the fact that what is true in a view
is usually compatible with what is true in another view. The major feature of this
approach is that it allows for an incremental and modular specification of multiagent
systems. One can specify the beliefs of an agent, the beliefs he has about other agents,
...and so on, one by one, as distinct theories, and then impose the relations which
exist between these theories. A multiagent system is specified from the inside. This
feature is crucial in the modeling of complex situations where there is no (or it is hard
to define a) global scheme describing the overall application.!

This paper follows the second line of research and extends the current literature in
several ways. First, it sets up a formal framework for the extensional definition of be-
liefs in a multiagent systems, i.e., a framework in which agents’ beliefs are formalized
as sets of sentences satisfying certain properties. Then, following what is standard
practice in software specification, we define the appropriate constructors which inten-
sionally present such sets of beliefs. In particular, we use the multicontext formalism
originally introduced in [11] and then further developed in [12].

Second, in order to classify agents’ beliefs, we introduce the notions of “ideal
reasoner” (i.e. a reasoner whose beliefs are closed under propositional consequence)
and of “ideal observer” (i.e. a reasoner whose beliefs about another reasoner are
correct and complete). A “real reasoner” [“real observer”] is then defined as a reasoner
which is believes too much or too little with respect to an ideal reasoner [observer]
taken as reference. The distinction between the abilities to reason and observe, is
necessary in order to take into account the rich structure (i.e., the multiple theories
and their compatibility relations) of the formalism that we use. On the basis of such
distinction, we are able to taxonomically characterize all the possible sources of reality
by looking at the possible ways in which the constructors for ideality can “go wrong”.

Third, we study the relationship between ideality/reality and (non) logical om-
niscience and show that, even though ideality /reality and (non) logical omniscience
capture similar intuitions, there are some important differences. For instance, as
discussed in detail below, reality does not coincide with not ideality, and ideality is
a more granular and weaker notion than the notion of logical omniscience captured
in the standard approach (e.g., by the modal system K). In order to present ideal
reasoners and observers which are also logically omniscient, we have to ensure a cor-
respondence between the beliefs of the observer and those of the observed reasoner
which is tighter than that guaranteed by the ideality in the observing capabilities.
Finally, we show how it possible to capture various forms of non logical omniscience
presented in the literature as particular multicontext systems.

The paper is structured as follows. In Section 2 we specify beliefs and beliefs about
beliefs as certain sets of formulas constituent the notions of reasoner and observer,
respectively. In this section we also show how beliefs and beliefs about beliefs can be

1 As a matter of fact, our proposed framework formalizes ideas which have been exploited in many
complex applications developed in various areas of Artificial Intelligence, e.g., computational linguis-
tics [6, 26, 27], the formalization of opacity and transparency in belief contexts [1], the integration
of information coming from heterogeneous data bases [23], planning[19], and multiagent systems
3, 4, 14, 18, 25].



presented as certain kinds of multicontext systems. In Section 3 we define the mul-
ticontext systems for ideal belief and ideal belief about belief, MBK~. In Section 4
we characterize the possible forms of reality by analyzing how the constructors for
ideal belief and ideal belief about belief can be modified to generate incompleteness,
incorrectness, or a combination of them. The tricky part is in the definitions of incom-
pleteness and incorrectness. In Section 5 we compare MBK™ and some multicontext
systems for real belief with some important modal systems. The goal of this analysis
is to provide intuitions about the expressive power and conceptual importance of the
multicontext systems defined. Till Section 5 we limit ourselves to the case of only
two reasoners. This is a very strong hypothesis which, among other things, forces
us to deal only with the case of no nested beliefs. In Section 6 we show how the
definitions and methodology given in the previous sections can be uniformly lifted to
account for arbitrary sets of reasoners. As a particular important case, in Section 7
we show how multiple reasoners can be put together to generate nested beliefs, and
discuss how the equivalence theorems presented in Section 5 can be generalized to
this situation. We conclude in Section 8 with some concluding remarks and related
work. In particular, we focus on the works that we consider as most close to ours, i.e.,
Konolige’s deduction model of belief and the existing literature on formalizing belief
with multicontext systems.

To make the paper easier to read, we instantiate the approach and the technical
notions introduced to a running example which is developed all along the paper. The
example is adapted from Chapter 10 of Raymond Smullyan’s “Alice in Puzzleland”
[24] and goes as follows.

Example 1 Consider the scene represented in Figure 1. Two agents —Alice (left) and
Humpty Dumpty (right)— are thinking about the beliefs of a third agent —the White
Knight. The White Knight is a “looking glass logician”, namely he only believes
false beliefs. Furthermore, he believes the negation of the formulas which follow
from the negation of his (false) beliefs. In particular the White Knight believes
all the contradictory sentences. Alice and Humpty Dumpty have different beliefs,
different views of the beliefs of the other, different views of the beliefs of the White
Knight, ...and so on. Humpty Dumpty is a “keen arguer” while Alice is not; she has
limited capabilities both in reasoning and in having beliefs about beliefs. Furthermore,
Humpty Dumpty knows that the White Knight is a looking glass logician while Alice
does not; she ascribes to the White Knight reasoning capabilities similar to hers.

2 Reasoners and observers

As mentioned in the introduction, an agent is formalized as a set of “interacting”
theories. Let us see how this vague statement can be instantiated to Example 1.

Example 2 Consider the beliefs of Alice, as shown in Figure 1. Their formalization
requires only two theories, namely:

e a theory formalizing Alice’s view of the world (that is, Alice’s beliefs): her first
and fourth belief belong to this theory; and

e a theory, formalizing Alice’s view of the White Knight view of the world, which
contains her second and third belief.



...he [the White Knight] believes that
the Red King and the Queen are both asleep,

then, according to him, the Red King and
the Queen are both asleep.

Hence, according to him, it is the case that
the Red King is asleep!

Therefore he must believe
that the Red King isasleep. ...

... he[the White Knight] believes
that the Red King is asleep,

then, according to him, the
Red King isasleep.

Hence, according to him, it is the case that the
Red King and the Queen are both asleep!

Therefore he must believe
that they are both asleep. .....

Figure 1: Alice and Humpty Dumpty.
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Figure 2: Alice and Humpty Dumpty’s theories.

Analogously for Humpty Dumpty we have:

e a theory formalizing Humpty Dumpty’s view of the world: his first and fourth
belief belong to this theory; and

e 3 theory, formalizing Humpty Dumpty’s view about the White Knight view of
the world, which contains his second and third belief.

Figure 2 represents schematically the situation of Figure 1. The two boxes rep-
resent Alice and Humpty Dumpty. A circle stands for a theory formalizing a view.
Sequences of indexes in the name of the theory identify the view. Thus, “A” stands for
“Alice’s view of the world”, “A, W” stands for “Alice’s view about the White Knight
view of the world”, and analogously for the others. Arrows intuitively represent the
(compatibility) relation which exists between the connected theories. In this example
the relation is that “of the source theory having beliefs about the target theory”.

Notice that in Figure 2 we have only two theories per agent. Things may get more
complicated and we may have many more theories and arrows connecting them. For
instance, a belief that Alice has about the beliefs that the White Knight has about
some other agent A; would require a third theory. In this case, the schema of Figure 2
would have to be modified by adding a theory Ra,w,4, and an arrow from R4 w to
Ra,w,a;-

Even if very simple, Example 1 and its formalization in Example 2, suggest the
two basic means by which new beliefs can be inferred inside a view:

1. By reasoning inside the theory formalizing the view. Thus, for instance, in
Figure 1 (left), the third belief is derived from the second by applying a con-
junction elimination. To emphasize this fact we call a theory formalizing a view,
a reasoner.

2. By inferring beliefs from the fact that another reasoner has a belief. Thus, for
instance, in Figure 1 (left), the fourth belief (belonging to R4) is derived from
the fact that the third belief belongs to R4, w. We call observer a reasoner which



is capable of having beliefs about the beliefs of another reasoner. In Figure 2
the observers are the reasoners which are the source of an arrow.

We abstractly represent the reasoning capabilities of a reasoner R as a pair (L,T),
where L is a set of first order sentences and 7' C L. L is the language and T is the
set of beliefs or theorems of R. (Notationally, in the following, R; stands for the pair
(L;, T;).) In this paper we restrict ourselves to the propositional case; formulas are
thus propositional combinations of either propositional letters or expressions of the
form B(“A”), where A is a propositional formula. The latter formulas are called belief
sentences. A in B(“A”) is called the argument of B.

To represent abstractly the interaction capabilities of a reasoner we need two
reasoners, one having beliefs, the other having beliefs about the first. This is captured
by the notion of belief system.

Definition 3 (Belief System) Let B be a unary predicate symbol. A belief system
(for B) is a pair of reasoners (Rg, R1)s. The parameter B is the belief predicate, Ry
is the observer and R; is the observed reasoner of (R, Ry)s-

Ry ’s beliefs about Ry ’s beliefs are represented by the set of belief sentences which
are part of the beliefs of Ry.

Example 4 Consider Example 2. Humpty Dumpty is formalized by the belief system
(Ru,Ru, w)s with Ry and Ry w being respectively the observer and the observed
reasoner. We formalize the fact that Humpty Dumpty knows that the White Knight
is a looking glass logician as follows:

o the language Ly, w of Ry, w is a full propositional language;

o the set of beliefs Ty, w of Ry, w is closed under the “Rule of the Looking Glass

Logician”
Ay,

A
—— RLGL

where RLGL is applicable only if (A4 A...A—Ag) D —A is a tautology (k > 0).

Compare this formalization with the definition of looking glass logician given in
Example 1.

We formalize the fact that Humpty Dumpty is a keen arguer by imposing that he
is able to derive all the possible consequences of what he knows, and that he believes
all the belief sentences B(“A”), with A a belief of his view of the White Knight. We
have therefore the following:

e the language Ly of Ry is a full propositional language whose set of belief
sentences is {B(“A”) | A € Ly, w}, and

e the set of beliefs Ty of Ry is closed under the “Rule of Propositional Logic”
Ai,..., Ay
A

where RPL is applicable only if (4; A ... A Ax) D A is a tautology (k > 0).
Furthermore, the set of belief sentences in Ty is

{B(“A”) | A € Tu,w}-



Alice is formalized by the belief system (R4, Ra,w)s. The description of Alice
given in Example 1 is quite loose. We can however expect the following conditions to
hold:

o the languages L4, w and L4 are closed under subformulas;
o the set of beliefs Ty, w and T4 are closed under the rules

AL AN Ay

AL AN Ay
— A 4,

1,

NE.;

o the set of belief sentences in L4 corresponds to some given subset I' of La,w,
i.e., it is the set {B(“A”) | A€ I',T C La w}; and

e given the same set I' as above, the set of belief sentences in Ty is

{B(“A”)| A€ TowNT}

The first two items reflect the fact that Alice has limited reasoning capabilities, and
the assumption that Alice ascribes to the White Knight reasoning capabilities similar
to hers. The last two items reflect the fact that Alice has limited capabilities in having
beliefs about her beliefs.

As we will see in Example 7, the above conditions allow us to formalize Humpty
Dumpty’ and Alice’s reasoning in Figure 1.

Presenting a belief system requires representing the reasoning and interaction ca-
pabilities of each reasoner in the belief system. The reasoning capabilities of a reasoner
can be represented by some set of facts (its basic beliefs) together with some infer-
ence engine which allows it to derive beliefs from the beliefs it already has. For each
reasoner R;, we thus introduce a corresponding context C;, defined as an axiomatic
formal system, i.e., a triple {L;,Q;,A;), where L; is the language, €); is the set of
axioms and A; is the set of inference rules of C;. (Notationally, in the following, a
context C; is implicitly defined as (L;, Q;, A;).) The interaction capabilities of a rea-
soner can be represented by some set of bridge rules, i.e., inference rules with premises
and conclusions in different contexts. For instance, the bridge rule

Cl:Al
02:A2

allows us to derive the formula As in context C5 just because the formula A; has
been derived in context C;. (Notationally, we write C : A to mean the formula A
in the context C.) Contexts and bridge rules are the components of multicontext
systems (MC systems), where an MC system is defined as a pair (family-of-contexts,
set-of-bridge-rules).? Derivability in a MC system MS, in symbols hys, is defined in
[11]. For sake of completeness this definition is reported in Appendix A. Appendix A
contains also a detailed description of the notation used for representing contextual

2Multicontext systems can be thought of as particular Labelled Deductive Systems (LDS)s [9, 10].
In particular, multicontext systems are LDSs where labels are used only to keep track of the context
formulas belong to, and where inference rules can be applied only to formulas belonging to the
“appropriate” context.



inference rules and bridge rules. Roughly speaking, derivability in a MC system is a
generalization of Prawitz’ notion of deduction inside a Natural Deduction System [22]
obtained by allowing multiple languages (one per context) and by indexing formulas
with the context they belong to.

We are interested in interactions between Ry and R; which enable Ry to derive
B(“A”) when Ry derives A and/or viceversa. The particular class of MC systems
presenting belief systems can therefore be characterized as follows:

Definition 5 (MR ~) An MC-system ({Cy,C1}, BR) is an MR~ system?® if BR is

Ci:A o Co:B(“A”) __
Co:B(“A”) up Cl ‘A dn

and the restrictions include:
R%,:  Ci:A does not depend on any assumption in Cf.

RE,: Co:B(“A”) does not depend on any assumption in Cp.

The rule on the left is called reflection up, the one on the right, reflection down.
The restrictions are such that a formula can be reflected up or reflected down only if
it does not depend on any assumptions, i.e., if it is a theorem. Reflection up allows
to prove B(“A”) in Cy just because A has been proved in C, while reflection down
has the dual effect, i.e., it allows to prove A in C; just because B(“A”) has been
proved in Cy. The intuition is that the reasoner Ry (whose reasoning capabilities are
characterized by Cj) believes B(“A”), i.e., it believes that the reasoner R; (whose
reasoning capabilities are characterized by C;) believes A, if R; actually believes A
and the bridge rules allow Ry to derive B(“A”).

Up to Section 6, given an MR~ system ({Cy, C3}, BR) where o and f§ are arbitrary
strings, we implicitly assume that the context of the premise of the rule of reflection
down is Cy if o < B (according to the lexicographic order), and Cg otherwise.

The sense in which an MR~ system presents a belief system is made precise by
the following definition:

Definition 6 (Belief System presented by an MR~ System) Let MS = ({Cy, C1}, BR)
be an MR~ System. MS presents the belief system (Ro, R1)s if T; = {A | bus Ci: A}
(i =0,1).

Definition 6 says that the beliefs of a reasoner R; consist of all the theorems proved
by the MR~ system, which belong to L;.

Example 7 Consider the belief system (Rg, Ry, w)s formalizing Humpty Dumpty
in Example 4. This belief system can be presented by an MR~ system

({Cu,Cu,w} {Ryp R b
where

o Ly w and Ly satisfy the corresponding conditions in Example 4,

3The abbreviations MR and MBK (where the letters “M”, “R”, “B” and “K” stand for “Multi”,
“Reflection”, “Belief” and the modal logic K, respectively) come from [12]. The minus in the super-
script, when used, indicates that the defined system is weaker than the corresponding system in [12].



e Ay w and Ap consists of RLGL and RPL respectively, and

e there are no other restrictions on the applicability of Ry, and Rg, other than
those mentioned in Definition 5.

In this class of MR~ systems it is possible to formalize Humpty Dumpty’s rea-
soning process shown in Figure 1, namely, to prove that if the White Knight believes
that the Red King is Asleep (RKA), then he also believes that the Red King is Asleep
and the Red Queen is Asleep (RQA). In other words, if B(“RKA”) is provable in Cy,
then also B(“RKA A RQA”) is provable in Cy. The proof goes as follows:

Cr:B(“RKA”) o,
CH,W :RKA dn
RLGL
CH’W:RKA/\RQA B
Cu:B(“RKANRQA”) ~ ™

Along the same lines, it is possible to present Alice’s belief system (R4, Ra,w)s
with the corresponding MR~ system

({Ca, Ca,w}, {Ryp: Ran})
where
o L, w and L, satisfy the corresponding conditions in Example 4,
o Ay w and Ay consists of AE; and AE,, and

e the only additional restriction on the applicability of Ry, and Rf, is that the
premise of Ry, must belong to I'.

In these systems, provided that RQA belongs to I', we are able to prove Alice’s belief
that if the White Knight believes that both the Red King and the Red Queen are
asleep, then he also believes that the Red King is asleep. This corresponds to Alice’s
reasoning in Figure 1. The proof goes as follows:

Ca:B(“RKAARQA”) _
Caw:REANRQA dn
CA,W :RQA B T

3 Ideal reasoners and observers

Reasoners and observers can be categorized depending on their reasoning and inter-
action capabilities, respectively. We say that reasoners and observers are ideal if they
satisfy certain closure properties in the sense made precise by the following definition.

Definition 8 (Ideality) Given a belief system (Rg, R1)s, we say that:
e R; (1=0,1) is an Ideal Reasoner if



— L; is closed under the formation rules for propositional languages, and

— T; is closed under tautological consequence.
e Ry is an Ideal Observer if

— L = {A| B(“4”) € Lo}, and
— Ty = {A| B(“A”) € Ty}.

The intuition is that Ry and R; are ideal reasoners if they are able to believe all
and only the (tautological) consequences of what they know. Ry is an ideal observer
if it believes all and only those belief sentences whose argument is a belief of R;.
Notice that no request is made about the specific elements of the sets defining an
ideal reasoner or an ideal observer. Thus, for instance, whether a formula belongs to
the set of beliefs of an ideal reasoner is left undetermined; we only require that, if this
is the case, so must be for all its consequences. This choice reflects how, in practice,
ideality is dealt with in the literature where, for instance, K is the modal system for
omniscience no matter what theoretic axioms are added.

Notice that the “empty” reasoner — the reasoner with empty language — is
ideal. Analogously, any “absolutely contradictory” reasoner — any reasoner with a
full propositional language L believing any proposition in L — is ideal. At a first sight
this might go against our intuitions. However it is a fact that these reasoners satisfy all
the conditions for ideality. A good way to think about this is to see these reasoners as
the result of a process of limit where we progressively decrease the number of atomic
formulas of a language (in the case of empty reasoner) or increase the number of
theorems (in the case of absolutely contradictory reasoners).

Example 9 Consider Example 4. In general, Ry w is not an ideal reasoner; in
fact its beliefs are not closed under tautological consequence. Ry is instead an ideal
reasoner as well as an ideal observer of Ry . Concerning Alice, R4, w and R, are
again not ideal reasoners while R4 is an ideal observer of R4 w only if I' = L4 w.

The closure conditions for ideality can be captured by posing appropriate restric-
tions on MR~ systems. Let us consider the following definition:

Definition 10 (MBK™) An MR~ system ({Cy,C1}, BR) is an MBK™ system if
the following conditions are satisfied:

e [y and L; contain a given set P of propositional letters, the symbol for falsity
1, and are closed under implication*;

e Ay (A1) includes the instances

A,y A

i RPIL,,

such that (A1 A... A A) D A is a tautology and k € {0,1,2}5;

4We also use standard abbreviations from propositional logic, such as —A for A D 1, AV B for
—AD B, AAB for =«(-=AV-B), T for L D L.

5Notice that RPL; is a derived inference rule of RPLz, and thus both Ag and A; are not minimal.
However, the case k = 1 allows for a more natural formulation of Definition 28 in Section 5.2.

10



o [ = {A | B(“A”) S Lo};

e the restrictions on the applicability of reflection up/down are only those listed
in Definition 5.

Theorem 11 Let (Ry, R;)s be the belief system presented by an MBK™ system.
Then

e Ry and R; are ideal reasoners, and

e Ry is an ideal observer.

The proof is straightforward. It is sufficient to observe that the first two conditions
in Definition 10 ensure that each R; is an ideal reasoner (i = 0,1); while the last two
ensure that Rg is an ideal observer.

4 Real reasoners and observers

At first, one is tempted to define reality as not ideality, in the same way as not
omniscience is usually defined as absence of omniscience. However this is not what
we want. Consider for instance the empty reasoner and any absolutely contradictory
reasoner. These are ideal reasoners, nevertheless we would like to say that they are
also real. There is in fact a sense in which the empty reasoner believes “too little”
while any absolutely contradictory reasoner believes “too much” with respect to what
we would consider an ideal situation. Analogously, consider a reasoner which is not
aware of a proposition or does not believe a true sentence, but whose formation and
inference rules are complete for propositional logic. This reasoner is an ideal reasoner,
however we would like to say that it is also a real reasoner. This reasoner simply does
not know all it ought to know.

Differently from what is the case for ideality, reality is a relative notion which states
the absence of certain properties with respect to a specific reference. When talking of
a real reasoner or a real observer we mean that such a reasoner or observer believes
too little or too much (i.e., it is incomplete or incorrect) with respect to a reasoner
or observer taken as reference. This intuition is already informally articulated, even
if limited to beliefs and reasoners, in [13]. In particular, in that paper a reasoner
is defined real relatively to another reasoner, independently of (what we have called
here) the belief system of which it is part. However, the formalization of these ideas
is more complex than it might seem, and, as the technical development discussed
below shows, the notion of reality informally introduced in [13] is not correct. The
key observation is that two reasoners or observers cannot be compared independently
of the belief system of which they are part.

The proofs of the theorems in this Section are reported in Appendix B.

4.1 Realizing MR~ systems

The starting point is to define when a belief system is (in)correct or (in)complete with
respect to another belief system (notationally, we write (R4,, Ra,)s C (RB,, BB, )8
to mean R4, C Rp, and R4, C Rp,):

11



Definition 12 (Belief System Correctness/Completeness) A belief system (Rg,, Rg, )s
is correct [complete] with respect to a belief system (Rj,,Rr)s if (RE,, RE,)s C
<R107 RII)B [<R105R11)B Cc <RE0, RE1>B]-

The intuition is that, for instance, in a correct belief system, each reasoner main-
tains a subset of the beliefs of the corresponding reasoner in the reference belief sys-
tem. If the beliefs of one reasoner (for example of Rg,) are strictly contained in the
beliefs of the corresponding reasoner (Rj,) then the belief system is incomplete. We
say that (Rg,, Rg,)s is real with respect to (Ry,, Ry, )s, to mean that (Rg,, Rg, )s
is incomplete or incorrect with respect to (Ry,, R, )s. Analogously, we say that a
reasoner (observer) is real when it believes more or less beliefs (beliefs about beliefs)
than it should, i.e., when it is incorrect or incomplete with respect to another reasoner
(observer) taken as reference.

The next step is to “propagate” the notions of (in)correctness and (in)completeness
from belief systems to MR~ systems. However things are complicated as a comparison
between MR~ systems based simply on set inclusion of the components does not work.
For instance, it is easy to think of two different sets of axioms with the same proof-
theoretic power. To solve this problem we introduce a new operation @ such that,
if C =(L,Q,A) and C' = (L', Q',A") are two contexts, then C' ® C' is the context
(LUL',QUQ', AUA'). This allows us to give the following definition (notationally,
in the fOHOWing, MSE = <{CEO; CE1}; BRE) and MSI = <{CI0;CI1}; BRI> are MR™
systems presenting the belief system (Rg,, R, )s and (Ri,, Rr, )s, respectively):

Definition 13 (MR~ Correctness/Completeness) MSg is a correct [complete]
realization of MSy if ({Cg, ® C1,,Cg, ® Cr, }, BRg U BRy) and MSy [MSg] present
the same belief system.

MSg is equivalent to MSy if it is correct and complete with respect to MS;. We
talk of realization to emphasize the process by which the constructors of a real belief
system [real reasoner, real observer] are defined starting from those of a reference belief
system [reasoner, observer]. Consider for instance the notion of correct realization.
MSg is a correct realization of MSj if adding its proof-theoretic power to that of MS;
results into a system which still has the same proof-theoretic power as MS;. From the
above definition, it trivially follows that MSg is a correct realization of MS; if and
only if MSj is a complete realization of MSg. As trivial examples, the empty system
is a correct realization of any reference system MS;. Any absolutely contradictory
system MS is complete with respect to any reference system whose two languages
stand in a subset relation with the corresponding languages of MS.

Consider the following two examples in which T is a given, finite set of propositional
formulas.

Example 14 Let MS; be the smallest MBK ™~ system. Let MSg be defined as MS;
except that Ap, consists of the instances of RPLy whose conclusions belongs to the
set of formulas I'. Then, MSg is a correct but incomplete realization of MS;.

Example 15 Let MS; be the smallest MBK ™~ system. Let MSg be defined as MS;
except that Ry, has the additional restriction that the premise belongs to the set of
formulas I'. Then, MSg is a correct but incomplete realization of MS;.

12



In the above two examples, the observer of the belief system presented by MSg is
the same. However, Example 14 and Example 15 model two very different situations.
In the first example, we have an ideal reasoner R, ideally interacting with a non ideal
reasoner Rg,. In the second example, both Rg, and Rg, are ideal reasoners, but the
interaction between the two is not ideal. If we assume that Rp, formalizes an agent
a’s beliefs about the world while Rg, formalize a’s beliefs about his beliefs about the
world, then in the first case we think that a is not capable of ideal reasoning about
the world, while in the second he is assumed to be not capable of ideally observing
its own beliefs.

To save space, from now on, we consider incompleteness only. With some provisos,
all the results presented below can be replicated for incorrectness.

The link between MSEg being an incomplete realization of MS; and the incom-
pleteness of (Rg,, RE, )= with respect to (Rr,, Rr, )= is established by the following
theorem.

Theorem 16 Let MSg be a correct realization of MS;. Then
e (Rg,,Rg,)s is correct with respect to (Ry,, Ry, )s, and

¢ (Rg,,RE,)s is incomplete with respect to (Ry,, Ry, )s if and only if MSg is an
incomplete realization of MSj.

The proof is a consequence of the fact that ({Cr, ® C1,,CEg, ®Cr, }, BRe UBRy)
and MS; present the same belief system. The second item of Theorem 16 states that
we have achieved what we wanted, i.e., that incompleteness between two MR ™ systems
corresponds to incompleteness in the belief systems presented, and viceversa. Notice
however that this result holds under the hypothesis that MSg is a correct realization
of MS;. This hypothesis is necessary in order to guarantee that (Rg,, Rg, )s is correct
with respect to (Ry,, Ry, )s- In fact, the viceversa of the first item of Theorem 16 does
not hold. That is, MSg can be an incorrect realization of MS; and (Rg,, Rk, )s be
correct with respect to (Ry,, Ry, )s. Consider the following example.

Example 17 Let MS; be the smallest MBK ™ system. Suppose MSg is defined as
MS; except that Ag, is empty. Then MSg is a correct but incomplete realization of
MS;. From Theorem 16, we have that (Rg,, Rg,)s is correct and incomplete with
respect to (Ry,, R, s, i-€.,

(REy, REy)s C (Riy, Riy)s-

However, consider the system MS’; obtained from MSg by adding to Ag, the inference

rule
AV -A

) P

for any propositional letter A in Lg,. Then MS%; is an incorrect realization of MS;
even though the belief systems presented by MSg and MS%, are the same (In fact
p can never be applied in MS%, as an empty Ap, implies that there is now way to
derive AV —A).

13



From Definition 13, correct realizations have the property that the result of adding
the components of MS; to MSg defines an MR~ system which still presents a correct
belief system. Intuitively, this property guarantees that correct realizations gener-
ate theorems in a way which is consistent with how theorems are generated by the
reference MR~ system.

4.2 Realizing contexts and bridge rules

The next step is to find necessary and sufficient conditions for having realizations of
MR~ systems. Via Theorem 16 this provides necessary and sufficient conditions on
the presented belief systems.

Definition 18 (Context Incompleteness) We say that

o CE, is an incomplete realization of Cy, if MSg is an incomplete realization of
<{CE0 @ CIOJCEl}J BRE);

o Cg, is an incomplete realization of Cp, if MSg is an incomplete realization of
<{CE050E1 D 011}3 BRE)a

e BRp is an incomplete realization of BR; if MSg is an incomplete realization of
({CE'O ) CE'1 }, BRE‘ U BR])

Example 19 Consider Example 14. In this case, C'r, is a complete realization of
C1,, CE, is an incomplete realization of C, and BRE is a complete realization of
BR;.

Example 20 Consider Example 15. In this case, C'g, is a complete realization of
Cr,, CE, is a complete realization of Cj, and BRg is an incomplete realization of
BR;.

Notice that in both examples Cg, is a complete realization of C', even though the
beliefs of Rg, are strictly contained in the beliefs of Ry, i.e., Tg, C T7,. This is exactly
what one would expect since the reasoning capabilities of Ry, and Rg, (modeled by
Cg, and CJ, respectively) are the same. Section 5.2 provides two substantial examples
of incomplete realizations of contexts and bridge rules.

Theorem 21 MSg is an incomplete realization of MS; if and only if at least one of
the following three conditions is satisfied:

e CE, is an incomplete realization of Cfy,;
e (g, is an incomplete realization of Cf,;

e BRpg is an incomplete realization of BR;.

14



4.3 Realizing the components of contexts

The next and final step is to iterate what done in Section 4.2 to the components of
contexts. Via Theorem 16 and Theorem 21, this provides necessary and sufficient
conditions on the presented belief systems.

(Notationally, in the following, if C; is a context, P; and W; are the set of atomic
formulas and the set of construction rules for L;, respectively. L; is therefore defined as
the smallest set generated from P; and closed under W;, in symbols L; = Cl(P;, W;).)

Definition 22 (Context’s Component Incompleteness) Let A be one of the
letters in {P, W, 2, A}. For i € {0,1}, we say that Ag, is an incomplete realization of
Ay, if MSg is an incomplete realization of ({Co, C1}, BRE), where®:

<Cl(PEjUPIj,WEj),QEj,AEj) ifj=diand A= P;

<Cl(PEj,WEJ.UW[j),QEj,AEj) ifj=diand A=W;

Cjz <LEJ-;WEJ-79EJ-UQIJ-,AE:,-> 1f]=zandA=Q,
(LEJ-;WEJ-;QEJ-;AEJ-UAIj) if j=iand A = A;
Cg. otherwise.

J

Example 23 Consider Example 14. In this case, Ag, is an incomplete realization of
Ar,.

Definition 22 fixes the intuitively correct but formally wrong classification provided
in [13]. That paper discusses in detail the intuitions underlying this classification
and provides various examples. As already discussed in [13], the various forms of
incompleteness (in the signature, formation rules, axioms, inference rules) model very
different intuitions. For instance, the incompleteness in the signature models the case
in which a reasoner is not aware of some primitive propositions. This is the case,
for example, of the Bantu tribesman in [7] who is not aware that personal computer
prices are going down. A “more civilized” tribesman might be aware of computers
and their prices, but he might not believe that their prices are decreasing. The latter
situation is modeled with a reasoner incomplete in the axioms. Incompleteness in
the formation rules and/or inference rules are best suited for modeling the limitation
of resources that real reasoners have both in constructing sentences and in proving
theorems.

Theorem 24 Cfg, is an incomplete realization of Cy, (¢ = 0,1) if and only if at least
one of the following four conditions is satisfied:

e Pg, is an incomplete realization of Pr,;
e Wg, is an incomplete realization of W7, ;
e (g, is an incomplete realization of €2;;

e Ag, is an incomplete realization of Ay;.

6Strictly speaking, (LEj,WE].,QEJ. U QIj,AEj) is not assured to be a context unless Qlj -
Lg;. More carefully, we should write (LEj,WEJ.,QEj U (QIJ. n LE].),AEJ.). Analogously for
(LEJ' ) WEJ' ) QEJ' ) AEj u AIJ- >
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It is important to notice that the classification provided by Definitions 18 and 22 is
exhaustive in the sense that it considers all the constructors on MR~ systems. This,
together with Theorems 21 and 24, achieves the goal set up in Section 1, that is, these
definitions provide an exhaustive classification of all the possible forms and sources
of reality.

5 A comparison with modal systems

The most common approach to the formalization of the beliefs of an agent a is to
take an axiomatic formal system, extend its language with a modal operator B,” and
(under the objective interpretation of belief [21]) take BA as representing the fact that
a believes A. The desired properties of a’s beliefs are obtained by considering some set
of axioms (each set characterizing a particular modal system ¥, see for example [2, §]).
The beliefs ascribed to the agent are represented by the formulas A such that BA is
provable in ¥. More formally, a modal system ¥ is a pair (L, T') such that

o L contains the set PU{L} of propositional letters (with P as in Definition 10),
is closed under implication and the modal operator B; and

e T C L and T is closed under tautological consequence.

A formula A is a theorem of ¥ (K A) if A € T. A is derivable from a set T' of
formulas (I' i, A) if (A4 A...ANA,) DA €T and {A4,...,A,} CT. We also say
that ¥ is K,,-classical if any formula of the form (BA; A ... A BA,) D BA belongs
to T whenever (A1 A... AN A,;) D A belongs to T, (n = 0,1,2). Ki-classical modal
systems are said to be monotone, Ka-classical modal systems are said to be regular,
and {Ko, Ka}-classical modal systems are said to be normal.

An MC system MS = ({Cy,C:1 }, BR) and a modal system ¥ = (L, T') are said to
be equivalent if for any formula A in Ly,

hus Co:A < H AT, (1)

where AT is the modal counterpart of A, i.e., it is obtained replacing any monadic
atomic formula M(“B”) with MB in A.

The proofs of the theorems in this Section are in Appendix C. Notice that in this
section, coherently with the analysis given above, we restrict ourselves to the case
of no nesting of modal operators (no nested beliefs). This assumption is lifted in
Section 7.

5.1 Normal modal systems

We start by studying whether the smallest normal modal system K and the smallest
MBK™ system are equivalent. This is motivated by the fact that the observer pre-
sented by an MBK™ system is both an ideal reasoner and an ideal observer; in other
words, it is saturated with respect to the properties that we have considered (of rea-
soning, of observing). Analogously, K is the smallest normal system which is meant

"Notationally, we write modal operators using calligraphic style.
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to model omniscient agents (see [8]). MBK™ and K turn out to be not equivalent. In
fact, for any set of propositional formulas I' U {A}, we have

Th A= {BA: A €T}k BA.

This property gives K a form of ideality with respect to derivations which is much
stronger than the form of ideality possessed by Ry, which is only with respect to
theorems. One way to fill the gap between K and Ry is to add to the set of axioms of
the context Cy the corresponding of the K axiom BA D (B(A D B) D BB). Namely,
for any propositional formulas A and B,

B(“A”) D (B(“A D B”) > B(*B"))

should be an element of Qy. The resulting system can easily be proved equivalent to
K. Another possibility is to drop the restriction on reflection down and take Ag to
be the set of inference rules for Classical Natural Deduction Systems.

Definition 25 (MBK) An MC system ({Cy, C1}, BR) is an MBK system if it sat-
isfies all the conditions of Definition 10 except that

e A includes the set of Classical Natural Deduction Rules,

e RY, has no restrictions.

Theorem 26 Let K be the smallest normal modal system and let MBK be the small-
est MBK system. K and MBK are equivalent.

The above theorem (similar to Theorem 5.1 in [12]) is proved as a corollary of
Theorem 29 (see Section 5.2). The effect of unrestricting reflection down is to allow
a very interesting form of reasoning called simulative reasoning in [6], and also imple-
mented in many applications (see, e.g., [6, 14]). Intuitively, in any MBK system it is
possible to

1. make assumptions in Cy about Ci’s beliefs (e.g., assume Cy:B(“A;1”),...,Co:
B(“An”))’

2. evaluate in C] the consequences of these assumptions (e.g., infer by reflection
down Cy:A;,...,C1: A, and perform deduction in C deriving C; : B), and

3. reflect back the result in Cy (e.g., infer by reflection up Co:B(“B”) depending
on Co:B(“A1”),...,Co:B(“A,")).

Consider for instance the following deduction of (the translation of) the K axiom:

Co:B(“4”) ., Co:B(“4DB") .,
CllA dn 01:14 OB dn
DE;
CltB RB
CO :B(“B”) up DI
C(]IB(“ADB”)DB(“B”) 0
Dlp

CO:B(“A”) D (B(“A D B”) D B(“BU))
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C4’s reasoning capabilities are used by Cy to infer modal formulas (e.g., the K
axiom) which would otherwise have to be asserted as axioms, or derived from these
axioms by modal reasoning (in X, by using the K axiom). In this perspective the
choice (in Definition 25) of Ag as a set of Classical Natural Deduction Rules is crucial
in order to guarantee that

T,Co: A bus Co:B => T hys Co:AD B

holds, also when T', Cy: A ks Co: B is proved by a deduction across languages (notice
that this property is exploited twice — in the last two steps — in the deduction
above). Using RPLy as a rule for propositional logic (see Definition 10) the above
deduction would not be possible as there would be no way to make an assumption
in Cp, make inferences in C; with an open assumption in Cp, and then close this
assumption once the appropriate theorems have been reflected up from C; to Cp.
As originally shown in [12], MBK can be extended to obtain MC systems equiv-
alent to stronger normal modal logics. This can be done simply by adding further
appropriate bridge rules. Technically, the idea is to keep reflection down unrestricted
and use the new bridge rules to increase and control the propagation of information
between Cy and C;. Intuitively this shows how the idea of simulative reasoning can
be extended beyond what originally described in [6]. More importantly, it provides an
effective tool for formally specifying the agents’ simulative capabilities in the current
implementations of multiagent systems. Consider for instance an agent a (modeled
by Co) which is able to export assumptions about its own beliefs in the mental image
that it has of itself (modeled by C1). Technically, this can be modeled via the bridge
rule:
Co:B(“A”)
C1:B(“A”)

br -

Adding 4y, to the set of bridge rules of an MBK system, makes it possible to prove
Co:B(“A”) D B(“B(“A”)”), i.e., the first order translation of the positive introspective
aziom BA D BBA (if a believes A, then it believes that it believes A). A proof is the
following:

Co:B(“A”)
Cl :B ( “A” ) or B (2)
C()ZB(“B(“A”)”) up

Dlp.
CO:B(“A”) DB(MB(“A”)”) 0
We may also assume that a is able to export its own assumptions about what it does
not believe in the mental image that it has of itself. This situation can be modeled
by the following bridge rule:

Co:—B(“A4”)

— 5,
Cr:-B(*A7)

which allows to prove the corresponding of the negative introspective axiom —BA D
B-BA (if the a does not believe A, then it believes that it does not believe A) along
the same lines as the proof (2).
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5.2 Classical modal systems

Let us consider K, , modal systems, namely systems which are Kp-classical and KCy-
classical. Consider the smallest K}, ; system. Then,

if p =0 and ¢ = 1 we have Fagin’ and Halpern’s system of local reasoning [7, 8];
e if p =0 and ¢ = 2 we have the smallest normal modal system K;

e if p = ¢ =1 we have the smallest monotone modal system M [2];

e if p = ¢ =2 we have the smallest regular modal system R [2].

Starting from an MBK system ({Cy,C;}, BR) —presenting the belief system
(Ro, R1)s— we can obtain equivalent MC systems by weakening the reflection prin-
ciples or the deductive machinery of C;. In the first case Ry is no longer guaranteed
to be an ideal observer; in the second R; is no longer guaranteed to be an ideal rea-
soner. Notice that to obtain an equivalence result we have to start from MBK and not
MBK ™. In fact the modal systems mentioned above still possess a (limited) form of
ideality with respect to derivations. That is, in any K, ; modal system ¥ if k € {p, ¢}
then

Al,...,Ak kA= BAl,...,BAk b BA.

Definition 27 (MBK, ;) An MC system ({Co,C1}, BR) is an MBK,, ; system if it
satisfies all the conditions of Definition 25 except that R, has the further restriction
that the premise depends on exactly p or g occurrences of formulas in L.

Definition 28 (MBK;, ,) An MC system ({Co,C1}, BR) is an MBK  system if it
satisfies all the condltlons of Definition 25 except that RPL; in A; has the further
restriction that k& € {p,q}.

Theorem 29 Let K, ; be the smallest KC;, ,-classical system and let MBK,, ,, MBK], |
be the smallest MBK, , and MBK , systems respectively. K, , is equivalent to
MBK,,, and MBK], .

Similar to what happens in Examples 14 and 15, MBK, , and MBK], , present
the same observer. However in MBK,, q the source of the (eventual) reality is in the
bridge rules (modeling the reasoners’ interaction capabilities), while in MBK,  is in
one of the contexts (modeling the reasoners’ reasoning capabilities).

Finally, it is easy to prove that MBK, as defined in Theorem 26, and MBK0 2
as defined in Theorem 29, are equivalent. The two systems differ only for the set of
inference rules in C;. However, these two sets are equivalent: any inference rule in
one set is a derived inference rule in the other.

5.3 The Logic of General Awareness

Let us now consider Fagin’ and Halpern’s logic of general awareness [7, 8]. The idea
of this logic is to distinguish between what an agent explicitly believes (modeled via
a modal operator X) and what an agent implicitly believes (modeled via the modal
operator B). Intuitively, an agent’s explicit beliefs represent its actual beliefs, while
its implicit beliefs model how the world would be if the agent explicit beliefs were
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true [7, 20]. In order to characterize what an agent explicitly believes, Fagin and
Halpern introduce another modal operator A: the formula 4A means that the agent
is “aware” of A. An agent explicitly believes A if and only if it implicitly believes A
and is aware of A. More precisely, a normal modal system AW = (L oy, Taw) is a
system of general awareness if

o L 4y is closed under the modal operators B, X and .A%; and

e any formula of the form XA < (BA A AA) (explicit belief definition axiom)
belongs to T 4w -

Given a set of formulas T", an agent is aware of I in a system of general awareness
AW = (L aw, Taw), if for any formula A € T, the awareness axiom AA belongs to
T . If this is the case, we say that AW is an AWr system.

To capture AWr systems, we introduce a new predicate X corresponding to the
modal operator X. The set of formulas T’ of which an agent is aware determines the
set of Ry’s beliefs the reasoner Ry can explicitly observe. In other words, if A has
been derived in the context Cp, then X(“A”) can be derived in Cy by reflection up
only if A eT.

Definition 30 (MAWT) Let I' be aset of formulas. An MC system MS = ({Cy,C1}, BR)
is an MAWT system if the following conditions are satisfied:

e Ly and L; are full propositional languages,
e A, includes the set of Classical Natural Deduction rules,
o A; includes

A,y A
A

with the restriction that (4; A... A A;) D A be a tautology and k € {0, 2}.
o Li ={A|B(“A”) € Lo} = {A| X(“A”) € Lo},

RPL,

e BR consists of the following bridge rules:

Ci:A e Co:B(“4”)

e i B
C():B(“A”) up CI:A Rdn

CIZA Rx C(]:X(“A”) <
C()ZX(“A”) up Ci:A dn

and the restrictions for the applicability are:
R%,:  C1:A does not depend on any assumption in Cf.
R3p:  C1:A does not depend on any assumption in C; and A € T'.

Theorem 31 Let T" be a set of propositional formulas. Let AWr be the smallest
AWr system, and let MAWTr be the smallest MAWr system. MAWr and AWr are
equivalent.

8 As before, we do not allow for nesting of modal operators.
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Notice that in a MAWp system there is no explicit notion of awareness in the ob-
server language. Instead, this notion is built in the structure of the system. Of course,
analogously to what happens for modal K (and all the other modal logics), we can
construct an MBK system equivalent to MAWT simply by adding to the observer’s set
of axioms the (corresponding of the) awareness and explicit belief definition axioms.

6 Complex belief systems

So far we have concentrated on the basic configuration of one reasoner having beliefs
about another reasoner. However, we may have more complex configurations with
multiple reasoners organized in multiple belief systems possibly sharing one or both
reasoners, or their belief predicate. For example, we may have an “isolated” reasoner
(a reasoner which is neither being observed by another reasoner nor an observer of
other reasoners) as well as a reasoner observing another reasoner which, in turn, is
(possibly) observing other reasoners and so on. These arbitrary configurations of
reasoners are formally described as complex belief systems.

Definition 32 (Complex belief system) Let I be a set of indexes. Let B be a
tuple of binary relations over I. Then a complez belief system is a pair ({R;}ic1, B),
where {R;}icr is a family of reasoners. The k-th element of B has an associated belief
predicate B*.

The k-th binary relation in B describes all the pairs of reasoners (belief systems)
whose belief predicate is BX. In the simplest case, a complex belief system consists of a
set, of belief systems, each two belief systems with distinct reasoners and distinct belief
predicate. In this case, the cardinality n; of I is twice the cardinality n; of B. As the
simplest example of this situation, the complex belief system ({Ro, R1}, ({(0, 1)}))
corresponds to the belief system (R, R1)s. n; may be also smaller than 2 x ng, in
which case there is at least one reasoner which is the constituent of more than one
belief system. Finally, n; may be greater than 2 x np, in which case either there are
isolated reasoners or there is at least one belief predicate which is shared by more
than one belief system.

We use MC systems to present complex belief systems generalizing in the obvious
way the notion of MR~ system and of MR~ system presenting a belief system.

Definition 33 (MR}~) Let I be a set of indexes. Let B be a tuple of binary rela-
tions over I. An MC system ({C;}icr, BR) is an MR}~ system if BR consists of the
bridge rules

Cj:A Bk Ci:Bk(“An)

C;:BF(«a”) Cj:A

with (i, j) belonging to the k-th relation in B, and the restrictions include that the
premise of each bridge rule does not depend on assumptions in the context it belongs
to.

R ®3)

Definition 34 (Complex Belief System presented by an MR}~ System) An
MR}~ system MS presents the complex belief system ({R;}icr, B) if T; = {A| hus
C; :A} (Z € I).
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Figure 3: A belief system. Figure 4: A complex belief system.

It is possible to represent the structure of a complex belief system as a direct
graph, whose nodes represent reasoners and whose edges represent relations among
reasoners. Each edge is labeled with the unary predicate corresponding to the relation.
Thus, for example, a belief system ({Ro, R1}, ({(0, 1)})) —as, e.g., presented by an
MR~ system (see Definition 5)— corresponds to Figure 3. The complex belief system
({Ro,R1}, (B,X)) (where both B and X are the binary relation {({0, 1)}) —as, e.g.,
presented by an MAWr system (see Definition 30)— corresponds to Figure 4.

Trivially, all the results presented in Sections 2, 3, 4 can be applied to each belief
system (MR~ system) inside a complex belief system (MR}~ system). An open
question remains of which are the interesting structures that complex belief systems
may have. If we had such a characterization, we could (try to) give notions of ideality
and reality for complex belief systems and (try to) see how the results presented in
Sections 2, 3, 4 can be generalized. However, as far as we know, such a characterization
does not exist. We hope that our current research on the formal specification of
multiagent systems will provide us with some ideas in this direction.

7 A comparison with modal systems — part II

We do not have any uniform way to translate MC systems presenting complex belief
systems into equivalent modal systems. This does not seem possible in general, mainly
because modal logics do not seem to have the modularity and flexibility provided
by complex belief systems. Technically, a result proved in [5] shows that there are
(complex) belief systems such that it is not possible to construct an equivalent modal
system with a finite schematic set of axioms.

We can provide equivalence results with modal logics in the case of nested beliefs
possibly in presence of multiple agents. This can be done by generalizing the equiv-
alence theorems presented in Section 5. In our framework the situation of nested
beliefs and multiple agents can be represented by a complex belief system with a tree
structure like that in Figure 5. In Figure 5 there is an external observer, represented
by R., which observes n agents, each agent a; represented by a reasoner R;. Each
reasoner R; (with ¢ € [1,n]) can be taken as a model of a;’s beliefs as seen by the
external observer. Analogously, each reasoner R;, .. ;. (with 41,...,i in [1,n]) can be
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Figure 5: A tree of reasoners.

taken as a model of agent a;, as seen by agent a;,_,, as seen by ..., as seen by the
external observer (see [13] for a longer discussion about this system).

Example 35 Consider Example 1. Let us now suppose that we want to formalize
the situation where there is only one agent, e.g. a reader of Example 1, who has his
own views of the situation described in Figure 1. We have only one agent, the reader,
that we formalize as an external observer R, having beliefs about Alice’ and Humpty
Dumpty’s beliefs. The complex belief system formalizing this situation is

<{R€7RA7RH7RA,W7RH,W}7 <{<67 A>}a{<6= H>}’{<A= A=W>7<H7 H, W>})>

This complex belief system is depicted inside the box of Figure 6. The surrounding
box represents the external observer.

Notice that introducing an external observer allows us to represent Alice and
Humpty Dumpty’s beliefs in a single theory. Thus, if

BA(“BW(“RQA”)”) V; BH(“BW(“RKA/\ RQAJ))J))

belongs to T, this intuitively means that the external observer believes that Alice
believes that the White Knight believes that the Red Queen is Asleep, or that Humpty
Dumpty believes that the White Knight believes that the Red King and the Red Queen
are both asleep.

For the sake of simplicity, let us concentrate on the case of a single agent a cor-
responding, in modal logics, to the nesting of a single modal operator. The tree
structure reduces to a chain of reasoners ({R;}o<i<n, ({{i, i+1) |0 <i <n—1}))in
which Ry observes R;, R, observes Ry, and so on. Assuming that this chain is finite
and that the language of the bottom reasoner is propositional, we are able to model
agents whose beliefs are nested up to the height of the chain.

The limit case of an infinite chain allows for the representation of agents with
arbitrary level of nesting in their own beliefs. In order to generalize the equivalence

9The notion of external observer was first introduced by Konolige [16] and it is used here with
the same intuitive meaning.
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The external observer

Figure 6: The complex belief system formalizing the external observer.

results in Section 5 to the nested case, we consider MC systems corresponding to an
infinite chain of reasoners. More precisely, we consider MC systems ({C;}icw, BR),
where BR contains for all i € w, a pair of bridge rules like those given in (3) (page 21)
with j =i+ 1. An MC system MS = ({C;}icwn, BR) and a modal system ¥ = (L, T')
are said to be equivalent if for any formula A in Lo, Equation (1) holds.
Notationally from now on we will write MBK, MBK,, ;,, MBK;, ., MAWT, K, K}, 4,
AWy meaning the systems defined in the previous sections extended to allow for
arbitrary nesting (these systems will be formally defined below). Furthermore, if MS
= ({C;}icw, BR) is an MC system, then MS¥ is the MC system ({C;, Ci41}, BRYY),

where BR¥ is the set of bridge rules in BR of the form
Ci+1 :A Rﬁp C, B( A ) Rg
CrB(“A7) Cinid v

Notice that BR* is the set of the bridge rules given in (3) with j =4 + 1.
We are now ready to see how the results in Section 5 generalize. The following
definition and theorem generalize Definition 25 and Theorem 26.

Definition 36 (MBK) An MC system ({C;}icw, BR) is an MBK system if for each
i € w, MBK*" satisfies the conditions in Definition 25.

Theorem 37 Let K be the smallest normal modal system and let MBK be the small-
est MBK system. K and MBK are equivalent.

Even more, consider the smallest MBK system MS such that for each i € w,
Cz'ZB(“A”) 41
Cz'+1 :B(«An) br>
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or
Ci:-B(“A”) .

Ci+1 :—|B(“A”) 51)7'7

or both, belong to the set of bridge rules. Then, the positive introspective axiom
or/and the negative introspective axiom become provable in any context C; (e.g., for
the positive introspective axiom, substitute C; for Cy and Cj44 for C} in the proof (2)).
Indeed, MS turns out to be provably equivalent to the smallest normal modal system
containing the positive introspective axiom, or the negative introspective axiom, or
both of them; depending on the set of bridge rules that are added (see [12] for formal
proofs of these facts).
The following definition generalizes Definition 27.

Definition 38 (MBK,,) An MC system ({C;}icw, BR) is an MBK,,, system if for
each i € w, MBK;L,fq satisfies the conditions in Definition 27.

Theorem 39 Let X, ; be the smallest normal modal system and let MBK,, , be the
smallest MBK,, , system. K, , and MBK, , are equivalent.

Notice that in Section 5 we have two MC systems equivalent to X, , in the case
of no nested beliefs (see Definitions 27, 28 and Theorem 29). Indeed, the above
theorem only partially generalizes Theorem 29. In fact, though the MC systems in
Theorem 29 present the same observer, they have different properties and generalize
in different ways. From Theorem 39, MBK, , turns out to be equivalent to X, 4.
Consider instead MBK, , = ({Ci}icw, BR), defined as the smallest MC system such
that for each ¢ € w, MBK’ fl’ satisfies the conditions in Definition 28. MBKj, i
not equivalent to K, 4. ThlS is because a belief system with an ideal reasoner 1deally
observing a (possibly) real reasoner (as in Definition 28) cannot be iterated without
making each observed reasoner ideal. More precisely, for each i € w, A; has to be
complete for propositional logic (since —considering MBK, “ and Deﬁn1t1on 28— A;
includes the set of Classical Natural Deduction Rules). As a consequence, MBK}, |
not equivalent to KCp 4 unless {p, ¢} = {0, 2}.

Finally, the following definition and theorem generalize Definition 30 and Theo-
rem 31 respectively.

Definition 40 (MAWT) Let I be a set of formulas. An MC system ({C;}icw; BR)
is an MAWT system if for each i € w, MAVVI‘Ez satisfies the conditions in Definition 30.

Theorem 41 Let I" be a set of propositional formulas. Let AWr be the smallest
AWr system and let MAWr be the smallest MAWT system. AWr and MAWr are
equivalent.

In Appendix D we hint the proofs of the theorems in this section.

8 Conclusions

In this paper we have provided a taxonomic analysis of ideal and real belief. As far
as we know such an analysis has never been done before. The main novelties are:
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e Our analysis is based on a set-theoretic (instead of model-theoretic) character-
ization of belief and belief about belief.

e We distinguish between the abilities to reason and observe. We introduce the
notions of ideality and reality. In particular, for us reality does not mean not
ideality. Ideality characterizes the presence of certain idealized properties; real-
ity the fact that a real reasoner (observer) computes too little or too much with
respect to another reasoner (observer). We have also characterized how each
constructor in an MR~ system affects reality.

e We compare our notion of ideality with the notion of logical omniscience [15],
equivalent to Konolige’s notion of “saturation” [16]. We see that ideality is a
more granular and weaker notion than the notion of logical omniscience. We
show how it is possible to define multicontext systems presenting logically omni-
scient agent and capture also various forms of non logical omniscience presented
in the literature.

Considering the other approaches, we see the following technical differences. The
main difference with modal approaches is our use of multiple theories. We have argued
that our approach allows for a modular and incremental specification of beliefs in a
multiagent framework. As shown by the equivalence result in Theorem 29, various
multicontext systems —each modeling a different situation— can correspond to a
single modal logic. We believe that it is possible to define modal systems which
capture such different situations. However, the question is on how natural and simple
the resulting approach would be.

If we consider Konolige’s deduction model of belief [16], our approach shares the
intuitions. There are however some important technical differences. First, in his belief
systems, the deduction rules associated to each theory must be sound (with respect
to classical logic). This is not the case in our approach. For example, the “rule of the
looking glass logician” RLGL in Example 4 is not sound. Second, Konolige’s “attach-
ment rule” (relating what an agent believes to what is true in the views of the agent)
is much stronger than the reflection principles that we use to ensure the correspon-
dence between the observer and the observed reasoner. This for example is pointed
out by the fact that Konolige’s “saturated reasoners” do not necessarily correspond
to ours reasoners with ideal reasoning and observing capabilities. Third, Konolige
considers only configurations of reasoners corresponding to trees. Our framework is
more flexible. For example, in MAWr systems, different views are implemented with
a single reasoners accessed in different ways. Furthermore, we can easily extend our
framework to allow also for bridge rules modeling various relations among reasoners.
For example, we can impose that the set of belief of one reasoner R; is a subset of
the set of belief of another reasoner Ry simply by adding the bridge rule

Ci:A
C2:A

This rule is for example useful if R; [Ry] represents the “explicit” [“implicit”] belief
of an agent (see [13, 20]).

Finally, this work improves on [1, 3, 4, 12, 13] for the novelties introduced above.
All these works are about the formalization of belief with MR systems, i.e., MR~
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systems in which the restriction on reflection down is dropped. In particular, [1] is
about the formalization of opacity and transparency within the belief predicate. [3, 4]
show how multicontext systems allows for “elaboration tolerant” formalizations of the
Three Wise Men puzzle. [12] is the first paper on the subject: it defines the underlying
intuitions and focuses on defining various MR systems provably equivalent to the most
popular normal modal logics. [13] defines some MR, systems formalizing various kind
of non logical omniscience, and proves equivalence results with corresponding modal
logics. In this paper, we introduce: the notions of reasoner, observer, belief system
(Section 2); the notion of ideality (Section 3); the notion of reality, the taxonomy
showing how multicontext systems can present reality (Section 4); the comparison
with logical omniscience and also equivalence results with various modal systems
modeling non logical omniscience (Section 5). Notice that in most of the paper we
consider MR~ systems, and introduce MR systems only in Section 5. As we have
seen, the apparently minor detail of dropping the restriction on reflection down has
a dramatic impact on the properties of the presented reasoners. Finally, it is worth
remarking that this work can be seen as providing the foundations to the work in
formalizing belief with multicontext systems.
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A Derivability in a MC system
We follow Prawitz [22] in the notation and terminology.

Let C = (L,Q,A) be a context (presented as an axiomatic formal system). We
represent an inference rule ¢ € A as follows (0 < n < m):

[Bn+1] [Bm]
A Ap Appr ... A L (4)
i .

with the understanding that A; ... A,, Apt1 ... A, A, By ... By, € L. (4) repre-
sents a rule ¢ discharging the assumptions B,,41,...,Bn.

Let MS= ({C;}ic1, BR) be an MC system (where {C;};cs is a family of contexts
and BR is a set of bridge rules). We represent a bridge rule § € BR as follows
(0<n<m):

[Cri1: Bnta] [Cr: Brn]
ClAlann Cn+1:An+1 CmAm (5)
C:A 6.

(5) must be read similarly to (4). Notice that in (4) we drop C in C': A leaving this
information implicit. This trick allows us to use directly and without rephrasing the
notation and terminology from [22]. This cannot be done for bridge rules (nor in the
notion of deduction given below) as bridge rules (and deductions) involve formulas
belonging to different contexts.

We now define what we mean by II being a deduction in MS of a formula C': A
depending on a set of formulas T’

1. A formula C;: A is a deduction in MS of C;: A depending on (i) the empty set
if A€ Qy; (i7) {C;: A}, otherwise.
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2. If for each i € {1,...,m} II; is a deduction in MS of C} : 4; depending on I';
and ¢ as represented in (4) belongs to Ag, then

m,...10,,

Ck:A ;

is a deduction of C}: A depending on

U i\ {Crt:Bni1,...,Cr:Bp}.
1<i<m

3. If for each i € {1,...,m} II; is a deduction in MS of C;: A; depending on TI';
and ¢ as represented in (5) belongs to BR, then

m,...T,

cAa 0

is a deduction of C': A depending on

U Ti\{Cht1:Bny1,---,Cry: B}

1<i<m

C': A is derivable from a set of formulas I' in MS (T ks C;: A) if there exists a
deduction of C;: A depending on IV and I" CT'. C;: A is a theorem in MS (hys C;: A)
if it is derivable from the empty set.

B Proofs of the Theorems in Section 4

In this section
e (; is an abbreviation for Cg, & Cr,,
e MS is the MC system ({Co,C1}, BRg U BRy), and
e (Ry, R1)s is the belief system presented by MS.

If MS' and MS" are two MR~ systems, we also write MS' < MS"”, MS’' < MS” and
MS' < MS" as abbreviations for

e MS' is a correct realization of MS”,
e MS' is equivalent to MS” (or, MS' < MS" and MS” < MS'),

e MS' is a correct and incomplete realization of MS" (or, MS' < MS" and MS’ #
MS"),

respectively.
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B.1 Proof of Theorem 16
Theorem 16 Let MSE be a correct realization of MSr. Then

o (Rp,, RE,)s is correct with respect to (Ry,, Rr,)s, and

e (Rg,,RE,)s is incomplete with respect to (Ry,, Rr,)s if and only if MSE is an
incomplete realization of MSy.

By hypothesis, we have that MSg is a correct realization of MSy, i.e.

<R107RI1>B = <R07R1>B' (6)

Considering the first item, we have to prove that
(REo, REy)s C (Rpgs Ry e (7)

Clearly, (Rg,, Re,)s C (Ro, R1)s. The thesis follows from equation (6).
For the second item, we prove that (Rg,, Rg,)s is complete with respect to
(R1,, Rr,)s if and only if MSg is a complete realization of MSy.
(RE,, RE,)s is complete with respect to (Ry,, Rp,)s <= (Definition 12)
(RIoaRh)B c <RE05RE1>B <~ (eq' (7))
(RIO’RII)B = <RE05RE1>B <~ (eq' (6))
(Ro,R1)s = (RE,, RE,)s <= (Definition 13)
MSE is a complete realization of MS;.

B.2 Proof of Theorem 21

Theorem 21 MSEg is an incomplete realization of MSt if and only if at least one of
the following three conditions is satisfied:

o Cg, is an incomplete realization of Cy,;
o Cg, is an incomplete realization of Cr, ;

e BRE is an incomplete realization of BRy.

We prove the two directions of the equivalence separately.

=) We prove the counter-positive. By hypothesis, we have that

MSEg = <{CE0 @ CIO’CEl}’ BRE)J (8)
and

MSE = <{CE050E'1 @ 011}7 BRE')a (9)
and

MSEg < <{CEO,CE1}, BRgp U BR[). (10)

We have to prove that (Rg,, Rg,)s = (Ro, R1)s-
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From equations (8) and (9) we have L;, C Lg, and Ly, C Lg, respectively.
Since L; = Ly, U Lg,, we also have L; = Lg,.

We now show that T; = Tg,. Let II be a proof of C;: A in MS. We show that
CE, : A is provable in MSg, by induction on the number n of applications of
bridge rules in II.

n =0 If ¢ = 0 the thesis follows from equation (8). If 4+ = 1 the thesis follows
from equation (9).

n =m+ 1 For simplicity, we assume ¢ = 1. The case for 4 = 0 is analogous.
The proof II has the form

Y S _ En
Co:B(“A1”) RE Co:B(“A,”) RE
Cl ZAl dn Cl ZAn dn
b))
Cl :A
where Co:B(“A1”),...,Co:B(“A,”) are the first occurrences of formulas in Cy

met on the thread from C;: A to the leaves of II.
Let k € {1,...,n}. Given the restrictions on the bridge rules, we have that

e
COZB(“A];;”)

is a proof in MS of Cy:B(“A”). Hence — X, contains less than n applications
of bridge rules — Cg, :B(“A”) is provable in MSg, and — from equation (10)
— there exists a proof I}, of Cg, : Ay in MSg. From this it follows that

m, .. 1,
)Y
Ci:A

is a proof of C1: A in ({Cg,,Cr, ® Cr,}, BRE). The thesis then follows from
equation (9).

We consider only the incompleteness of Cg,. The other two cases are analogous.
Suppose the first condition is satisfied. Hence:

MSg < <{CE0 @C}O,CEI}, BRE>

and then

MSg < {{Cg, ® Cr,,Cp, ® Cr,}, BRp U BRy).
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B.3 Proof of Theorem 24

Theorem 24 Cg, is an incomplete realization of Cr, (i =0,1) if and only if at least
one of the following four conditions is satisfied:

e Pg, is an incomplete realization of Pr,;

o Wg, is an incomplete realization of Wi, ;

o O, is an incomplete realization of Q,;

o Apg, is an incomplete realization of Ay, .

We consider the case i = 0 (the case ¢ = 1 is analogous).

=) Suppose none of the conditions is satisfied. From

MSEg = <{<Cl(PE'0 UPIOJWEO)JQEOJAEO)JCEl}J BRE)

we have P;, C Lg,. Hence, from

MSEg < <{<CZ(PE05WE0 UWIO)7QEO,AEO)’CE1}5 BRE)

we also have Ly, C Lg,. Finally, given

MSE = <{<LE0,WEO,QE0 U QIOJAEO)JCEI}J BRE>

and

MSEg < <{<LE0’WE030E05AE0 UAIO)’CE1}3 BRE)

it is easy to show that for any proof in ({Cg, ® C1,,CE, }, BR), there exists a
proof with the same conclusion in MSg.

<=) We consider only the incompleteness of Pg,. The other two cases are analogous.
Suppose the first condition is satisfied. Hence:

MSE < <{<CI(PE0 UPIOJWEO)JQEO7AEO)JCE1}J BRE)

and then
MSg < {{Cg, ® Cr,,Cg,}, BRE).
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C Proofs of the Theorems in Section 5

From here on, without loss of generality, we assume that the set of inference rules Ag
of the context Cy be

A ADB
TD DEg (modus ponens),

[4]
B I (imply introduction),
A5B

[-A]
1 N (reductio ad absurdum).
A 0

Furthermore, for any modal operator B, by B" A we mean BA if n = 1, A otherwise.
Analogously, for any belief predicate B, by B"(“A”) we mean B(“A”) if n =1, A
otherwise.

Consider either MBK,, ;, or MBK] = or MAWr. It can be easily shown that any
deduction IT of Cy: A depending on C;, : A4, ...,C;, : Ay issuch thati; = ... =i, =0,
(the bridge rules with conclusions in Cy have the restriction that the premise does
not depend on any assumption in Ci). In the following, we will make extensive and
tacit use of this fact.

The following lemma will be useful later.

Lemma 42 Let ¥ be either K, ; or AWr. If A is a propositional formula and K, A
then A is a tautology.

All the theorems in Section § are about the equivalence between an MC system
MS = ({Co, C1}, BR) and a modal system ¥ = (L, T'). We recall that MS and ¥ are
equivalent if for any formula A in Ly,

bus Co: A <k AT,

where At is obtained replacing any monadic atomic formula M(“B”) with MB in A.

For convenience, we define (.)* as the inverse function of (.)*, i.e., such that if
A is a formula in a given modal language, A* is the expression obtained replacing
any modal atomic formula MB with M(“B”) in A. Then the above definition of
equivalence can be restated as follows. An MC system MS = ({Cy,C1}, BR) and
a modal system ¥ = (L, T) are equivalent if for any formula A in L such that A*
belongs to Lyg,

hus Co: A" <—=h; A.

C.1 Proof of Theorem 29

Theorem 29 Let Kp 4 be the smallest Ky q-classical system and let MBK,, ,, MBK], ,
be the smallest MBK), , and MBK,, , systems respectively. Ky, is equivalent to MBK, ,
and MBK], .
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If Kp,g = (L, T), T is the smallest set closed under the inference rules

(Al/\.../\Ak) DAk+1
(BAI VAN BAk) D) BAk+1

RK},

if (A1 A... A Ag) D Agy1 is a propositional formula and k € {p, q}, and

Ar .. A

RPL
Akt1 k

if (A1 A.. A Ag) D Agqq is a tautology and k € {0, 2}.

C.1.1 From K, , to MBK, ; and MBK],
Lemma 43 If i, = A then sk, , Co:A* and I—MBK; . Co: A*.

Proof By induction on the structure of the proof II of A.

Base case (RPLg): A is a tautology (and hence also A* is a tautology). Since Agq is
complete for propositional logic, A* is provable in Cjy.

Step case (RPLz): If A is the consequence of an application of RPL, then the thesis
follows from the induction hypothesis and the fact that Ag is complete for
tautological consequence.

Step case (RKy (k € {p,q})): A has the form (BA; A ... ABAg) D BAky1 and is
the conclusion of an application of RKy. Then (A1 A ... A Ag) D Agyy is
a propositional formula provable in K, , and hence (Lemma 42) a tautology.
From this, it follows that

Co:B(“Ar") . Co:B(“Ar”) .
CltAl dn CltAk dn
RPL

Cl:Ak+1 B k

is a deduction in MBK, , and MBK;, , of Cp: B(“A;11”) depending on Cj :
B(“A1”),..., Co:B(“Ax”). Hence Co:(B(“A1”)A...AB(“A”)) D B(“Ag41”)
is provable in MBK,, ; and MBKj, .

C.1.2 From MBK, , to K, ,

Consider a deduction II in MBK,, ,. If assume(C;: A,II) is the total number of times
the formula C;: A is assumed in II, we say that II is stratified if each occurrence in II
of the conclusion of RPL, depends on a set of formulas I such that

e I'C Ly, or

o I'C Lo and (3¢, gcr assume(Co: A, IT)) < maz(p, q)-
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Lemma 44 If II is a deduction of C;: A depending on C;: Ay,...,C;: A, then II is
stratified.

Proof : Assume there exists a conclusion C : B of an application of RPLs; not
satisfying the two conditions. Hence, C : B depends on a formula Cy: D. Even more,
given the restriction on R, all the formulas in the thread from C;: A to C1:B are
the conclusion of an application of RPLy and thus

e belong to Ly, and
e depend on Cy:D.

In particular, for the conclusion C; : A of the whole deduction, we have that ¢ = 1
and that C;: A depends on Cy: D, contradicting the hypothesis that all the formulas
C;: A depends on belong to Lj;.

Lemma 45 If II is a stratified deduction of C;: A* depending on the formula occur-
rences C;, : Af,...,C;, 1 Ay and r = min(i,41, . .. ,ip) then

Bi~TAy,...,B""TA, Fep g BT A.
Proof By induction on the structure of the deduction II.

Base case (assumption): C;:A* is an assumption. Trivially, A b, , A.

Base case (RPLg): C4:A is a tautology. A is provable in KCp, 4 by one application of
RPLy.

Step case (RPLz): The deduction II has the form (0 < s < n)

Cj:iAf...CjiAr  CjiAb,...Cj:A%
21 E2
Ci:A

RPL,

If j =1 or n = 0 the thesis trivially follows from the induction hypothesis.

If j =0 and 0 < n < maz(p, q), there are two cases:

e 0 < s <n=maz(p,q) = 2: by induction hypothesis we have 4; b, BB
and Ay b, BBs. The thesis follows from the fact that (B1 A By D A) is
a tautology and hence BB1,BBs k. . BA.

e s =0 [s =n]: in this case
P [ X
CltBl L CI:BQ

is a proof of C;: By [C1:Bs]. Hence

RN [ Y
CliBl 01232 CllBl 01:32

O A RPL, Orid RPL,y
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is a deduction of C;: A depending on Cj : By [Cy: Bi] with length strictly
less than the length of the deduction II. Hence, by induction hypothesis, we
have By b, , A [Bi1 tx,,, 4] and then (since maz(p,q) > 0) BB b, , BA

Kp,a

[BB; k, , BA]. The thesis trivially follows.

Step case (DEg): The deduction II has the form (0 < s < n)

C()A’{COA: C():A:_'_l...C():A;

¥ Yy

Co:B* Co:B* D A* E

Co:A* o
The thesis trivially follows from the induction hypothesis.
Step case (DIp [Lo]): The deduction II has the form
Co:A7...Cy A} Co:A7...Co: A}
b b))
Co :C* I C() L
Co:B* D C* 2o Co: A* Lo

Two cases:

e Cy:C* [Cy: L] depends on Cy: B* [Cp:—A*]: by induction hypothesis we
have Ay,...,A,,Bh,, C [A1,...,An,~A K, L]

e Cy:C* [Cy: L] does not depend on Cy : B* [Cp : ~A*]: by induction
hypothesis we have Ai,..., Ay b, , C [A1,..., Ap bk, , L]

B D C [Ay,..., Ay K, A] trivially

p,q

In both cases, the thesis Aq,..., A, K
follows.

p,q

Step case (Ry,): The deduction IT has the form

Co:Ar...Cy: AL
b))
CltB
Co:B(“B”)

B
Rap

(notice that in this case n € {p, q}).

Two cases:

e n = 0: By induction hypothesis k., , B. Since 0 € {p,q}, we also have
F,., BB.

e 1. > 0: The thesis trivially follows from the induction hypothesis.
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Step case (R5,,): The deduction II has the form

C()ZAT C()A:L
_z
Co:B(“A")

Cl:A

B
Rdn

Two cases:

e n = 0: By induction hypothesis, k., , BA. From this it follows that
0 € {p,q} and hence the thesis h, , A.

e 1 > 0: The thesis trivially follows from the induction hypothesis.
Lemma 46 If hypk, , Co: A* then 5 A.

Proof Trivial consequence of Lemma 44 and Lemma, 45.

C.1.3 From MBK’p’q to Kp g

Lemma 47 If II is a deduction of C; : A* depending on Cj, : Aj,..., C;, : A} then
BitAy,...,BinA, Fep.o BiA.

Proof The proof is by induction on the length of the deduction II. All the cases
almost trivially follow from the induction hypothesis. The only non trivial case is
when we consider the inference rule RPL; in A; (k € {p,q}). In this case, the
deduction II has the form

o ok
CliAl . CliAk
Cl :Ak+1

RPIL,

If each premise C1:4;, with 1 < j <k, depends on {Cj, : 47, ...,Cj, : 4] }, then by

19"

induction hypothesis B/*A;,,...,B"A; k. BAj. The thesis follows from the fact

G1y--

that (A3 A ... A Ag) D Apyq is a tautology and hence BA,, ..., BAy b, , BAgy1.

C.2 Proof of Theorem 31

Theorem 31 Let T be a set of propositional formulas. Let AWr be the smallest
AWr system, and let MAWr be the smallest MAWr system. MAWr and AWr are
equivalent.

Without loss of generality, we assume I' C L 4.

C.2.1 From AWr to MAWp

If A € Ly, define At as follows:
« At= (Bt 5 Ch),if A= (B> C);
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o At =B(“B!"), if A = BB;
o At =X(“Bt), if A = XB;

o Al — T,f A=AB and B €T,
~ | X(“B'”),if A= AB and B ¢ T;

o At = A, otherwise.
Notice that for any formula A not containing the modal operator A, At = A*.

Lemma 48 If I-,,, . A then hw,. Co (At

Proof The proof is by induction on the structure of the proof of A.
Base case (RPLy): A is a tautology (and hence also At is a tautology). Since Ag is

complete for propositional logic, C;: At is provable.
Base case (awareness axiom): A = AB (B € T"). At = T, which is provable in Cj.
Base case (explicit belief definition): A = XB < (AB A BB). Two cases:

e If B ¢TI, At = X(“B”) & (X(“B”) AB(“B”)). (X(“B”) AB(“B”)) D
X(“B”) is a tautology and hence provable in Cy. X(“B”) D (X(“B”) A
B(“B”)) is logically equivalent to X(“B”) D B(“B”), which is provable in
Cy as a consequence of the following deduction:

Co:X(“B”) __
Cl :B g"
C()ZB(“B”) up

e If BeT, At = X(“B”) & (T AB(“B”)), which is logically equivalent to
X(“B”) + B(“B”). We have already established that X(“B”) D B(“B”) is
provable in Cy. B(“B”) D X(“B”) is also provable in Cy as a consequence
of the following deduction:

Co:B(“B”) _,
Cl :B R‘)i(”
CO ZX(“B”) up

Step case (RPL»): If A is the consequence of an application of RPLs, then the thesis
follows from the induction hypothesis and the fact that Ag is complete for
tautological consequence.

Step cases (RKy, (k € {0,2})): A has the form ((BA1 A ... ABAg) D BAg+1). By
hypothesis, the propositional formula (4; A ... A Ax) D Ajy1 is provable in
AWr and hence (Lemma 42) is a tautology. AT = (B(“41”)A... AB(“4”)) D
B(“Ak+17)) is provable in Cy as a trivial consequence of the following deduction:

Co:B(“Ar”) _ Co:B(“Ay”)
T A, Tdn o Ve
Ci: 44 Ci: Ay RPL,
CliAk+1 RB
CO :B(“A]H_l”) up
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Lemma 49 Let A a formula not containing the awareness operator. If k4. A then
I-MAWF C() A*

Proof By Lemma 48, if F4,,, A then haw,. Co : AT. Since A does not contain the
awareness operator A, At = A*,

C.2.2 From MAWT to AWr

Lgmma 50 'If ITis a deduction of C;: A* depending on C;, : A7,...,C;, : A} then
B" Ay, ..., B A, Faw, B*A.

Proof We prove the Lemma by induction on the structure of II.

Base case (assumption): C;:A* is an assumption. Trivially B'A by, BIA.

Base case (RPLy): Cy : A is a tautology. Trivially k. A and hence (by RK))
Faw, BA.

Step case (RPL»): The deduction II has the form (0 < j <m < n)

Ci, AT ...C AT Cijpr: A5 - Ci B Ay,
5, %,
Cl:Bl 013B2
Cl:A

RPL,

By induction hypothesis, we have both
Bi1A,,...,B" A, Faw,. BBy

and ’ '
B+t A; 1, ..., B Ay baw, BBs.

The thesis follows from the fact BBy, BB 4. BA.

Step cases (DEg, Dlg, Lo): The thesis easily follows from the induction hypothesis.

Step cases (R}, R5,,,RY,,RY,): Let p € {R},Ry,,RX ,RY }. The deduction II has

up) up) up) up?
the form
Ci AT, ..., C 1A
¥
Cj:B*
" p
C;:A

By induction hypothesis we have B A;,..., B A, b4 BIB.

Various cases:

e p=R;,: A* =B(“B”), j =i+ 1. The thesis is straightforward noticing
that BB = B"*'B = B'BB = BA.

e p=R5,: B* =B(“A”), i = j + 1. The thesis is straightforward noticing
that BB = B"1B = Bi"1BA = B A.
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e p=Ry: A =X(“B"),j =i+ 1 B'B = BB and B'A = XB. By
construction, Ry, is applicable only if B € I'. Hence k4, AB. Since
Faw,. (AB A BB) D X B, the thesis follows.

e p=R}: B*=X(“A""),i=j+1. BB = XA and B'A = BA. But
Faw, XA D BA, whence the thesis.

Lemma 51 If Kyaw, Co:A* then b, A.

Proof Trivial consequence of Lemma 50.

D Proofs of the Theorems in Section 7

Without loss of generality, we assume that the set of inference rules of each context
C; be {DE;, DI;, L;} (we index the name of the inference rule with the index of the
corresponding context), each defined analogously to the corresponding inference rule
given at the beginning of Appendix C.

For the proof of Theorem 37 see [12].

D.1 Proof of Theorem 39

Theorem 39 Let K, , be the smallest normal modal system and let MBK,, , be the
smallest MBK,, , system. K, , and MBK, , are equivalent.

The direction from Kp, 4 to MBK,, ;, can be easily established as a consequence of
the following lemma (partially generalizing Lemma 43).

Lemma 52 If b, A then Ky, Ci: A%, (i € w).

Proof The proof of the above lemma, is analogous to the proof of Lemma 43. The
only different step is when we consider an application of RK. In this case, by
induction hypothesis we have that for each j € w

Fupk, , Cj: (AT A...NA}) D Apyy.

In particular, the above equation holds for j = i+ 1. The thesis trivially follows from
the following deduction.

Ci:B(“A") L, CoBOAY) Lo
Cipr1: AT dn Cz'+1:AZ dn CH_I;(A’I A /\AZ) ) AZ_H B
* i+1
Ci+1 :Ak—i-l B +

For the direction from MBK, , to X, 4 it is important Lemma 53 —similar to
Lemma 4.2 in [12]— given below.

We generalize the notion of “stratified deduction” given in Appendix C. We now
say that a deduction II is stratified if

e each occurrence in II of the conclusion of either DI; or L; depends on formulas
belonging to L;, and
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e each occurrence in II of the conclusion of DE; depends on a set of formulas T’
such that

- T C Li, or
—TCLiand ), . acr assume(Ci1:A,II) < maz(p,q).

Lemma 53 If C;: Ay,...,Ci: A, Fuexk, C;: A then there is a stratified deduction in
MBKp’q of CzA from Ci:Al, .. .,C,'ZAH.

Proof The proof is in two steps. We first show that for any deduction IT of C;: A
from a set I' of formulas, there is a deduction II' of C; : A from I' such that the
conclusion Cy: B of an DI or L depends on IV C Lj. For such a IT', we then show
that if II' is a deduction of C;: A from C;: Aq,...,C;: A, then II' is stratified. The
proof of the first step is an easy generalization of Lemma 4.2 in [12].

If the conclusion C}: B of an DI depends on C;:C with k > j, let Cj_q :B(“D”)
be the first occurrence at level k£ — 1 met on the thread from C}: B to (an occurrence
of the assumption) C;:C. The sub-deduction of Cj_;:B(“D”), containing C;:C, is
moved aside in the following way (the same argument applies to Ly as well):

II; Cy:D
Cix—1:B(“D”) 11,
Cy:D Ck:B ]
I, —  GuE5B  CeaB(EDY) ()
Cy:B CkDD(EDB) Cr:D
Cr.:EDB Cr:EDB
H3 H3
H1 Ck:D
Cr—1:B(“D”) II,
Ck:D CkJ- Hl
I, . Cy:B Crx—1:B(“D”) (12)
Ck:J_ Cy,:DDB Cr:D
Cy:B Cr:B
H3 H3

Note that the result of the transformation is still an MBK, ; deduction. In fact no
application of Ry, or R}, is performed in IIz from C}:D to Cy: B (or C: L) which
means that Cy : D can be an assumption of II,. Furthermore the assumptions and
the conclusion of the starting deduction and the target deduction are the same.

The second part of the proof is analogous to the proof of Lemma, 44.

The thesis is an easy consequence of Lemma 53 and of the following lemma.

Lemma 54 If II is a stratified deduction of C;: A* depending on the formula occur-
rences C;, : A%,...,C;, : AY and r = min(i,41,. .. ,ipy) then

Bi~TAy,...,B"TTA, Fep g BT A.
Proof The proof is analogous to the proof of Lemma 45 (with the step DE; corre-

sponding to the step RPL, in the proof of Lemma, 45).
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D.2 Proof of Theorem 41

Theorem 41 Let I' be a set of propositional formulas. Let AWr be the smallest
AWr system and let MAWr be the smallest MAWr system. AWr and MAWr are
equivalent.

The above theorem is an easy consequence of the following lemmas.

Lemma 55 If b4, . A then hyaw, Ci: Al (i e w).

Proof The proof of the above lemma is analogous to the proof of Lemma 48. The
only different step is when we consider an application of RK. In this case, we can
reason similarly to what done in the proof of Lemma 52.

Lemma 56 Let A a formula not containing the awareness operator. If k4, . A then
l_MAWr C(J tA*.

Proof The proof is analogous to the proof of Lemma 49.

Lemma 57 If I is a deduction of C;: A* depending on Cj;, : Af,...,C;, + A}, then
BilAlJ s JBi" An I_.AWF BtA

Proof First, we assume that each occurrence in I of the conclusion of either DI;
or 1; depends on formulas belonging to L;. This does not cause any loss of gen-
erality because we can “move aside” deductions as in Equations 11 and 12 also in
MAWT . Then, the proof is analogous to the proof for the not nested case (with DE;
corresponding to the step RPLs).
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