

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14 http://www.dit.unitn.it

INDECOMPOSABLE r-GRAPHS AND SOME OTHER COUNTEREXAMPLES

Romeo Rizzi

September 1999

Technical Report # DIT-02-0052

Also: in *Journal of Graph Theory* 32 (1) (1999) 1--15.

Indecomposable r-graphs and some other counterexamples

Romeo Rizzi*

September 13, 1999

*Dipartimento di Matematica Pura ed Applicata, Università di Padova Via Belzoni 7, 35131 Padova, Italy romeo@euler.math.unipd.it

Abstract

An r-graph is any graph that can be obtained as a conic combination of its own 1-factors. An r-graph G(V, E) is said indecomposable when its edge set E cannot be partitioned as $E = E_1 \cup E_2$ so that $G_i(V, E_i)$ is an r_i -graph for i = 1, 2 and for some r_1, r_2 . We give an indecomposable r-graph for every integer $r \geq 4$. This answers a question raised in [11, 12] and has interesting consequences for the Schrijver System of the T-cut polyhedron to be given in [9]. A graph in which every two 1-factors intersect is said to be poorly matchable. Every poorly matchable r-graph is indecomposable. We show that for every $r \geq 4$ "being indecomposable" does not imply "being poorly matchable". Next we give a poorly matchable r-graph for every $r \geq 4$. The paper provides counterexamples to some conjectures of Seymour [11, 12].

Key words: r-graph; indecomposable; Petersen graph; Fulkerson Coloring.

1 Introduction

In this article graphs may have parallel edges but contain no loop. The set of edges with precisely one endpoint in S is denoted by $\partial(S)$. To specify the graph, say G, we write $\partial_G(S)$. Let r be a positive integer. The notion of r-graph is due to Seymour [12]: an r-graph is a regular graph of valency r such that $|\partial(S)| \geq r$ for every set of nodes S with |S| odd. We rely on standard notation $d(S) = |\partial(S)|$ and $d_G(S) = |\partial_G(S)|$. Moreover $\partial(v) = \partial(\{v\})$ and $d(v) = d(\{v\})$. If G is an r-graph then G has an even number of nodes, since d(V(G)) = 0. Given a graph G, a 1-factor of G is a spanning subgraph of G which is a 1-graph. The celebrated Edmonds' matching polytope theorem [1] states that for every graph G the vertices of the following polytope are integral:

$$\begin{cases}
 x_e \ge 0 & \forall e \in E(G) \\
 x(\partial(v)) = 1 & \forall v \in V(G) \\
 x(\partial(S)) \ge 1 & \forall S \subseteq V(G) \text{ with } |S| \text{ odd}
\end{cases}$$
(1)

Seymour [12] observed that Edmonds' theorem is equivalent to the following statement: a graph G is an r-graph if and only if G can be obtained as a conic combination of its own

1-factors. As a consequence, for every r-graph G and for every edge e of G, there exists a 1-factor of G containing e (see [12, 6]).

Let $G_1(V, E_1), \ldots, G_k(V, E_k)$ be graphs on a common node set V but with disjoint edge sets E_1, \ldots, E_k . We denote by $G_1 + \ldots + G_k$ the graph $G(V, E_1 \cup \ldots \cup E_k)$ and say that G is the sum of G_1, \ldots, G_k . Note that if $G_i(V, E_i)$ is an r_i -graph for $i = 1, \ldots, k$ then $G_1 + \ldots + G_k$ is an $(r_1 + \ldots + r_k)$ -graph. For $k \in \mathbb{N}$, we denote by kG the graph obtained by summing up k copies of G (that is, replacing every edge of G by k parallel edges).

An unslicable r-graph is an r-graph, which cannot be expressed as the sum of an (r-1)-graph and a 1-factor. An r-graph G, which can be expressed as the sum of an r_1 -graph and an r_2 -graph, is said to be decomposable. When no such decomposition exists G is called indecomposable. Finally, a graph in which every two 1-factors intersect is called poorly matchable.

In [11, 12], Seymour raised the following question:

Question 1 Does there exist a constant \overline{r} such that every unslicable r-graph has $r < \overline{r}$? In the same articles, he proposed the following.

Conjecture 1.1 The answer to Question 1 is positive and in fact we can take $\overline{r} = 4$.

Conjecture 1.1 implies Conjecture 1.2 and makes Conjecture 1.3 imply Conjecture 1.4.

Conjecture 1.2 (Seymour [12]) Every r-graph is r + 1 edge colorable.

A Fulkerson coloring of an r-graph G is a decomposition of 2G into 1-factors.

Conjecture 1.3 (Berge-Fulkerson) Every 3-graph has a Fulkerson coloring.

Conjecture 1.4 (Seymour [12]) Every r-graph has a Fulkerson coloring.

The author, while working on a bound for the size of the coefficients in the Schrijver System for the T-cut polyhedron (see [9]), became interested in the following question.

Question 2 Does there exist a constant \overline{r} such that every r-graph with $r \geq \overline{r}$ is decomposable? This article presents a counterexample to Conjecture 1.1. In fact, we settle Question 2 (and, hence, Question 1) in the negative by constructing for every r an indecomposable r-graph. More surprisingly, we exhibit for every r a poorly matchable r-graph.

2 Preliminary Observations

The Petersen graph is the 3-graph \mathcal{P} shown in Fig. 1. The six 1-factors of \mathcal{P} are all equivalent under isomorphisms of \mathcal{P} . Let M be a 1-factor of \mathcal{P} . The essentially unique r-graph $\mathcal{P}(r) = \mathcal{P} + (r-3)M$, shown for r=4 in Fig. 1 and dating back to Meredith (see [7]), acts as a fundamental component in three of the constructions presented in this article.

Every edge of \mathcal{P} belongs to precisely two distinct 1-factors of \mathcal{P} . Conversely, every two of the six 1-factors of \mathcal{P} have precisely one edge in common. This is expressed more formally by the following proposition.

Figure 1: The Petersen Graph \mathcal{P} and the Meredith Graph $\mathcal{P}(4)$.

Proposition 2.1 Associate to every pair of 1-factors of \mathcal{P} the edge they have in common. This is a one to one correspondence between edges and pairs of distinct 1-factors.

Proof: The Petersen graph can be defined as follows (see [3]): the nodes of \mathcal{P} are the pairs of elements in $\mathbb{N}_5 = \{1, 2, 3, 4, 5\}$, where two nodes $\{i, j\}$ and $\{h, k\}$ of \mathcal{P} are adjacent if and only if they are disjoint. Thus \mathcal{P} is a regular graph of valency $\binom{5-2}{2} = 3$ with $\binom{5}{2} = 10$ nodes and $\frac{10\cdot3}{2} = 15$ edges.

Let $e = \{i, j\}\{h, k\}$ be any edge of \mathcal{P} and let x be the single element in $\mathbb{N}_5 \setminus \{i, j, h, k\}$. A 1-factor containing e can not contain any other edge with an endpoint in $\{i, j\}$ or $\{h, k\}$. Moreover, no 1-factor containing e can contain $\{i, h\}\{j, k\}$ or $\{i, k\}\{j, h\}$. Indeed, assume on the contrary and without lost of generality to have a 1-factor containing both e and $\{i, h\}\{j, k\}$. Then nodes $\{j, x\}$ and $\{h, x\}$ are both matched with node $\{i, k\}$, a contradiction.

We conclude that any 1-factor containing e has precisely 4 edges among the remaining 8 edges. These 8 edges form a circuit, whose 8 nodes appear in the following order:

$${j,k}, {i,x}, {j,h}, {k,x}, {i,h}, {j,x}, {i,k}, {h,x}$$

Therefore, the 1-factors of \mathcal{P} containing e are precisely two and have no edge in common other than e.

The number of distinct 1-factors of \mathcal{P} is, therefore, $\frac{2|E(\mathcal{P})|}{5}=6$. The function which associates to each edge e of \mathcal{P} the pair of 1-factors containing e is injective, for we said that the two 1-factors have no edge in common other than e. Since $|E(\mathcal{P})|=15=\binom{6}{2}$ is the number of pairs of 1-factors, the function is also surjective and bijective.

An immediate consequence of Property 2.1 is the following.

Lemma 2.2 Let M_1, M_2 be two edge-disjoint 1-factors of $\mathcal{P}(r) = \mathcal{P} + (r-3)M$. Then either $M_1 = M$ or $M_2 = M$.

The following lemma is involved in a first construction of indecomposable r-graphs.

Lemma 2.3 Assume $\mathcal{P}(r) = G_1 + G_2$, where, for i = 1, 2, G_i is an r_i -graph. Then there exist k_1, k_2 such that $G_1 = \mathcal{P} + k_1 M$ and $G_2 = k_2 M$ or vice versa.

Proof: It suffices to show that $\mathcal{P} \setminus M$ is contained in either G_1 or G_2 . Assume the contrary and let e_i (i = 1, 2) be an edge of G_i contained in $\mathcal{P} \setminus M$. Let M_i be a 1-factor of G_i containing

A tight cut in an r-graph is an edge set of the form $\partial(S)$ where S is a set of nodes of odd cardinality and d(S) = r. The following proposition plays a central role in proving that the graphs to be constructed in the next section are indecomposable.

Proposition 2.4 Let $\partial(S)$ be a tight cut in an r-graph G. Then the graph G^* obtained from G by identifying all nodes in S is an r-graph.

Assume $G = G_1 + \ldots + G_h$ where G_i is an r_i -graph $(i = 1, \ldots, h)$. Note that $d_{G_i}(S) = r_i$ $(i = 1, \ldots, h)$. Let G_1^*, \ldots, G_h^* be the graphs obtained from G_1, \ldots, G_h by identifying all nodes in S. As above G_i^* is an r_i -graph $(i = 1, \ldots, h)$. Moreover $G^* = G_1^* + \ldots + G_h^*$.

Lemma 2.5 Let G be a graph and $S \subseteq V(G)$ with |S| odd. Let G_S and $G_{\overline{S}}$ be the graphs obtained from G by identifying all nodes in S and in $\overline{S} = V(G) \setminus S$ respectively. If G_S and $G_{\overline{S}}$ are both r-graphs then G is an r-graph.

Proof: Obviously G is r-regular. Assume $d_G(X) < r$ and |X| odd. Exchanging S and \overline{S} , if necessary, we can assume that $|X \cap S|$ and $|X \cup S|$ are odd. By submodularity of $d_G(X \cap S) + d_G(X \cup S) \le d_G(X) + d_G(S) < r + r$. So, either $d_{G_{\overline{S}}}(X \cap S) = d_G(X \cap S) < r$ or $d_{G_S}(X \cup S) = d_G(X \cup S) < r$ contrary to the assumption that both G_S and $G_{\overline{S}}$ are r-graphs. \square

3 An infinite family of counterexamples

Let r be any integer with $r \geq 4$. In this section we construct an unslicable r-graph U(r).

By Lemma 2.3, the only way to decompose the r-graph $\mathcal{P}(r) = \mathcal{P} + (r-3)M$ into an (r-1)-graph and a 1-factor is $\mathcal{P}(r) = \mathcal{P}(r-1) + M$. Let e = uv be any edge of \mathcal{P} which is not in M (all such edges are equivalent by symmetry). Take r distinct copies C_1, \ldots, C_r of $\mathcal{P}(r) \setminus e$. For $i = 1, \ldots, r$, copy C_i contains two nodes of degree r-1, namely u_i and v_i . Let x and y be two nodes not belonging to $V(C_i)$ for any i. The r-graph U(r) is obtained from the components C_1, \ldots, C_r and the nodes x, y by adding all edges xu_i and yv_i for $i = 1, \ldots, r$.

When $G = G_1 + G_2$ we say that G_2 is the *complement* of G_1 in G.

Claim 3.1 The r-graph U(r) is unslicable.

Proof: Any 1-factor F of U(r) contains an edge incident with x. Assume without lost of generality that $xu_1 \in F$. For parity reasons, $yv_1 \in F$. Therefore, $F \cap E(C_1) + u_1v_1$ is a 1-factor of $C_1 + u_1v_1$. Moreover, the complement of $F \cap E(C_1) + u_1v_1$ in $C_1 + u_1v_1$ is an (r-1)-graph. Apply Lemma 2.3.

Evidently, "being indecomposable" is a stronger property than "being unslicable". Since every 2-graph is decomposable, the two properties are equivalent for r < 6. To prove them to be distinct for every $r \ge 6$, we show that the unslicable r-graph U(r) is decomposable whenever $r \ge 6$. Indeed, $U(r) = G_1(r) + G_2(r)$, where $G_1(r)$ is the 3-graph collecting a copy

of \mathcal{P} from components C_1 , C_2 and C_3 and a 3M from every other component. Also $G_2(r)$, which results as the complement of $G_1(r)$ in U(r), is an (r-3)-graph.

4 The indecomposable r-graph G(r)

Let r be any integer with $r \geq 4$. In this section, we construct an indecomposable r-graph G(r).

Let z be any node of $\mathcal{P}(r) = \mathcal{P} + (r-3)M$ (all nodes are equivalent under isomorphism). Let x, a, b be the neighbors of z, where $xz \in M$. We indicate with $\langle a, x, b \rangle^{(r)}$ the graph obtained from $\mathcal{P}(r)$ by removing node z. Symbolic representation of $\langle a, x, b \rangle^{(r)} = \mathcal{P}(r) \setminus z$ is indicated in Fig. 2.

Figure 2: $\mathcal{P}(r) \setminus z = \langle a, x, b \rangle^{(r)}$.

Let $\langle a_1, x_1, b_1 \rangle_1^{(r)}, \ldots, \langle a_r, x_r, b_r \rangle_r^{(r)}$ be distinct copies of $\langle a, x, b \rangle^{(r)}$. Define C to be the set of edges $\{b_i a_{i+1} : i = 1, \ldots, r-1\} \cup \{b_r a_1\}$. Let $\{v_1, \ldots, v_{r-2}\}$ be a set of nodes disjoint from all the $V(\langle a_i, x_i, b_i \rangle_i^{(r)})$. For $i = 1, \ldots, r-2$ define E_i as the set of edges $\{v_i x_j : j = 1, \ldots, r\}$. The graph G(r) is obtained from the components $\langle a_1, x_1, b_1 \rangle_1^{(r)}, \ldots, \langle a_r, x_r, b_r \rangle_r^{(r)}, v_1, \ldots, v_{r-2}$ by adding all the edges in $C \cup E_1 \cup E_2 \cup \ldots \cup E_{r-2}$.

For example G(4) and G(5) are shown in Fig. 3.

By Lemma 2.5, G(r) is an r-graph.

Claim 4.1 For every integer r > 4, G(r) is indecomposable.

Proof: Assume $G(r) = G_1 + G_2$ with G_1 r_1 -graph and G_2 r_2 -graph. By Lemma 2.3 and Proposition 2.4, either $C \subseteq G_1$ or $C \subseteq G_2$. Assume without lost of generality that $C \subseteq G_1$. Proposition 2.4 implies:

$$|E(G_2) \cap (E_1 \cup \ldots \cup E_{r-2})| = \sum_{i=1}^r d_{G_2 \setminus C}(V(\langle a_i, x_i, b_i \rangle_i^{(r)})) =$$

$$= \sum_{i=1}^r d_{G_2}(V(\langle a_i, x_i, b_i \rangle_i^{(r)})) = rr_2$$
(2)

However, $|E(G_2) \cap E_i| = d_{G_2}(v_i) = r_2$ (i = 1, ..., r-2) implies $|E(G_2) \cap (E_1 \cup ... \cup E_{r-2})| = (r-2)r_2$, in contradiction with (2). We conclude that G(r) is indecomposable.

Figure 3: Graphs G(4) and G(5).

5 More indecomposable r-graphs

Let G_1, G_2 be two node-disjoint r-graphs. Choose $v_1 \in V(G_1)$ and $v_2 \in V(G_2)$. Let G be any r-regular graph obtained from G_1 and G_2 by first removing nodes v_1, v_2 , and then adding some new edges with one endpoint in $V(G_1) \setminus \{v_1\}$ and the other in $V(G_2) \setminus \{v_2\}$. We say that G has been obtained by splicing G_1 and G_2 (at v_1, v_2). Proposition 2.4 and Lemma 2.5 imply the following.

Lemma 5.1 If G has been obtained by splicing two r-graphs G_1 and G_2 , then G is an r-graph. Moreover, if G_1 is indecomposable, then G is indecomposable.

Hence, we have an infinite number of indecomposable r-graphs for any given integer $r \geq 4$. Let K_n be the complete graph on n nodes. When r is odd, then $S_r = K_{r+1}$ is a simple (no parallel edges) r-graph. When r is even, then let M be any matching of K_{r+1} with $|M| = \frac{r}{2}$. Let S_r be the graph obtained from K_{r+1} by first subdividing every edge in M into two edges, and next identifying all nodes of degree two so introduced. Again S_r is a simple r-graph. To obtain a simple indecomposable r-graph, start from any indecomposable r-graph and, while some parallel edges are incident with a node x, splice at x with some simple r-graph like S_r .

The smallest indecomposable r-graphs (for r = 4, 5, 6), we were able to construct, are given in Fig. 4. The first graph in Fig. 4 is, in fact, the smallest possible counterexample to Conjecture 1.1 (see [8]).

6 Poorly matchable r-graphs: a recursive construction

An r-graph G is said to be *poorly matchable* if G does not contain two disjoint 1-factors. Since every r-graph has a 1-factor, every poorly matchable r-graph is indecomposable. Thus, "being poorly matchable" is a stronger property than "being indecomposable". For r=3, the two properties are equivalent, because the presence of two disjoint 1-factors implies 3

Figure 4: Small indecomposable r-graphs.

edge colorability. However, the two properties are distinct for every $r \geq 4$. This is proven in Subsection 6.1 by showing that, for all $r \geq 4$, the indecomposable r-graph G(r) from Section 4 has two edge-disjoint 1-factors.

Subsection 6.2 gives a poorly matchable r-graph G^r for every integer $r \geq 4$. The construction we propose is, however, recursive, and the size of G^r is probably exponential in r. (Whereas, for G(r), we have |V(G(r))| = (10-1)r + (r-2) = 10r - 2, which is linear in r).

The following three statements are equivalent for an r-graph G: (i) G is poorly matchable; (ii) G does not contain a spanning 2-graph; (iii) G does not contain two disjoint spanning r-graphs.

Therefore, the existence of a poorly matchable r-graph for every integer $r \geq 3$ has the following consequence.

Proposition 6.1 There exists no constant K such that every r-graph with r > K can be expressed as the sum of a K-regular graph and an (r - K)-graph.

Proof: For any given $K \in \mathbb{N}$, consider a poorly matchable (K+2)-graph.

We propose the following conjecture.

Conjecture 6.2 Every 3r-graph is the sum of r 3-regular graphs.

6.1 Two edge-disjoint 1-factors in G(r)

This subsection gives two edge-disjoint 1-factors in G(r): $M_1(r)$ and $M_2(r)$. To specify $M_1(r)$ and $M_2(r)$, we rely on the description of G(r) in Section 4.

- $M_1(r) \cap C = \{b_{r-1}a_r\}$, whereas $M_2(r) \cap C = \{b_1a_2\}$.
- For $1 \le i \le r 2$ $\partial_{M_1(r)}(v_i) = v_i x_i$ whereas $\partial_{M_2(r)}(v_i) = v_i x_{i+2}$.
- For $3 \leq i \leq r-2$ and j=1,2 $M_j(r) \cap E(\langle a_i, x_i, b_i \rangle_i^{(r)})$ is a copy of M with z removed. (Remember $\langle a, x, b \rangle_i^{(r)}$ is $\mathcal{P}(r) = \mathcal{P} + (r-3)M$ with a node z removed).

It remains to determine $M_1(r)$ and $M_2(r)$ on $E(\langle a_r, x_r, b_r \rangle_r^{(r)}) \cup E(\langle a_{r-1}, x_{r-1}, b_{r-1} \rangle_{r-1}^{(r)})$ and $E(\langle a_1, x_1, b_1 \rangle_1^{(r)}) \cup E(\langle a_2, x_2, b_2 \rangle_2^{(r)})$: both of them are described by Fig. 5.

Figure 5: $M_1(r)$ and $M_2(r)$ on the first and last two $\langle a, x, b \rangle^{(r)}$ components.

As an example, Fig. 6 shows $M_1(r)$ and $M_2(r)$ in G(r) for r=4,5.

Figure 6: M_1 and M_2 in G(4) and G(5).

6.2 Constructing the poorly matchable r-graph G^r

The Petersen graph \mathcal{P} is an indecomposable 3-graph and, hence, a poorly matchable 3-graph. Thus, let $G^3 = \mathcal{P}$. This subsection shows how to construct a poorly matchable r-graph G^r from a poorly matchable (r-1)-graph G^{r-1} whenever $r \geq 4$.

Let G be an r-graph, and let e, f = uv be two parallel edges of G. Take a copy of $\mathcal{P}(r)$ node-disjoint from G and choose a node z in $\mathcal{P}(r)$. Let x be the node of $\mathcal{P}(r)$ joined to z by r-2 edges, and let a, b be the other two nodes of $\mathcal{P}(r)$ adjacent to z. Remove node v from G and node z from $\mathcal{P}(r)$. Next, add edges ua and ub. Finally, add a set of edges with one endpoint in $V(\mathcal{P}(r)) \setminus \{z\}$ and the other in $V(G) \setminus \{v\}$ to obtain an r-regular graph G^* . We say that G^* is obtained from G by \mathcal{P} -splicing at v distinguishing e and f.

Note that \mathcal{P} -splicing is a particular instance of the splice operation defined in Section 5. Hence, by Lemma 5.1, G^* is an r-graph. Moreover, we have the following.

Lemma 6.3 If G^* has two edge-disjoint 1-factors, then G has two edge-disjoint 1-factors M_1 and M_2 such that $\{e, f\} \not\subseteq M_1 \cup M_2$.

Proof: Let M_1^*, M_2^* be two edge-disjoint 1-factors of G^* . Let $K = \partial_{G^*}(V(\mathcal{P}(r)) \setminus \{z\})$ denote the set of edges which have been added by \mathcal{P} -splicing. Since $|V(\mathcal{P}(r)) \setminus \{z\}| = 9$ is odd, then $|M_1^* \cap K|$ and $|M_2^* \cap K|$ are both odd. Hence, $|M_1^* \cap K|, |M_2^* \cap K| \geq 1$. In fact, $|M_1^* \cap K|, |M_2^* \cap K| = 1$, since all edges in K are incident either with x or with u. Therefore, after identifying all nodes in $V(\mathcal{P}(r)) \setminus \{z\}$, M_1^* and M_2^* become two edge-disjoint 1-factors M_1 and M_2 of G.

If $\{e, f\} \subseteq M_1 \cup M_2$, then $\{e, f\} \subseteq M_1^* \cup M_2^*$ and, after identifying in G^* all nodes in $V(G) \setminus \{v\}$, M_1^* and M_2^* become two edge-disjoint 1-factors of $\mathcal{P}(r)$ contradicting Lemma 2.2.

We are now ready for the recursive construction: Let G^{r-1} be a poorly matchable (r-1)-graph. Let M be a 1-factor of G^{r-1} . Then $H^r = G^{r-1} + M$ is an r-graph. Let \overline{M} be the set of those edges of G^{r-1} that have multiplicity 1 in G^{r-1} and 2 in H^r . (M will stand for the edges in $H^r \setminus G^{r-1}$). Let $V_{\overline{M}}$ be a node cover for \overline{M} with $|V_{\overline{M}}| = |\overline{M}|$. Obtain G^r from H^r by \mathcal{P} -splicing at every node $\overline{v} \in V_{\overline{M}}$ distinguishing the unique edge in $\partial_M(\overline{v})$ and the unique edge in $\partial_{\overline{M}}(\overline{v})$. If G^r has two edge-disjoint 1-factors, then, by Lemma 6.3, H^r has two edge-disjoint 1-factors M_1 and M_2 with $(M_1 \cup M_2) \cap (M \cup \overline{M})$ having no parallel edges. But then, by eventually substituting the edges in M with those in \overline{M} having the same endpoints, M_1 and M_2 are two edge-disjoint 1-factors of G^{r-1} . We conclude that G^r is a poorly matchable r-graph, as in Fig. 7.

Figure 7: The poorly matchable 4-graph G^4 .

The construction proposed is not deterministic. Non-isomorphic r-graphs can, in fact, be obtained starting from a same (r-1)-graph. From \mathcal{P} , however, a sole graph G^4 can be derived. Graph G^4 has 50 nodes. We have found no poorly matchable 4-graph on less than

50 nodes.

7 Avoiding tight cuts

All the unslicable, indecomposable, or poorly matchable r-graphs seen until now contain some tight cuts. This section gives a poorly matchable 4-graph without tight cuts as a counterexample to the following conjectures.

Conjecture 7.1 Every unslicable r-graph with $r \geq 4$ has a tight cut.

Conjecture 7.2 Every indecomposable r-graph with $r \geq 4$ has a tight cut.

Conjecture 7.1 is still strong enough to imply Conjecture 1.2. Conjecture 7.2 is still strong enough to make Conjecture 1.3 imply Conjecture 1.4.

Figure 8: The node gadget.

We employ a technique with some similarities to *superposition*. Superposition is a method for constructing snarks introduced in [4, 5] as a practical and effective means for capturing and exploiting "global type conditions" as suggested in [2].

The idea is to take a poorly matchable 3-graph, like \mathcal{P} , as skeleton. Next, every node in the skeleton is replaced by a distinct copy of the "node gadget" shown in Fig. 8 and every edge in the skeleton is replaced by a distinct copy of the "edge gadget" shown in Fig. 9.

Figure 9: The edge gadget.

The skeleton acts like a map, telling how edge and node gadgets are mutually connected. The resulting graph G_4 is shown in Fig. 10.

Figure 10: A poorly matchable 4-graph without tight cuts.

One can check that G_4 is a 4-graph without tight cuts. Let M_1 and M_2 be two edge-disjoint 1-factors of G_4 . Let $\phi: E(G_4) \mapsto \{(0,0),(0,1),(1,0)\}$ be defined as follows:

$$\phi(e) = \begin{cases} (1,0) & \text{if } e \in M_1\\ (0,1) & \text{if } e \in M_2\\ (0,0) & \text{if } e \notin M_1 \cup M_2 \end{cases}$$

When $F \subseteq E(G_4)$ we define $\phi(F) = \sum_{e \in F} \phi(e)$, where the sum is componentwise and modulo 2. Then ϕ satisfies the following conditions:

EVEN SET: Let S be an even set of nodes. Then $\phi(\partial(S)) = (0,0)$.

ODD SET: Let S be an odd set of nodes. Then $\phi(\partial(S)) = (1,1)$.

Edge Gadget: $\phi(\{e_1, e_2\}) = \phi(\{f_1, f_2\}) \neq (1, 1)$.

Proof: Edge gadgets contain an even number of nodes. Hence $\phi(\{e_1, e_2\}) = \phi(\{f_1, f_2\})$ by

the Even Set Condition. Moreover, $\phi(\{e_1, e_2\}) = \phi(\{f_1, f_2\}) \neq (1, 1)$ by Lemma 2.2. \square Node Gadget: $\{\phi(\{x_1, x_2\}), \phi(\{y_1, y_2\}), \phi(\{z_1, z_2\})\} = \{(0, 0), (0, 1), (1, 0)\}.$ Proof: By the Odd Set Condition, $\phi(\{x_1, x_2\}) + \phi(\{y_1, y_2\}) + \phi(\{z_1, z_2\}) = (1, 1).$ By the Edge Gadget Condition, $\phi(\{x_1, x_2\}), \phi(\{y_1, y_2\}), \phi(\{z_1, z_2\}) \neq (1, 1).$ Thus, $(1, 0), (0, 1) \in \{\phi(\{x_1, x_2\}), \phi(\{y_1, y_2\}), \phi(\{z_1, z_2\})\}.$ But then $\{\phi(\{x_1, x_2\}), \phi(\{y_1, y_2\}), \phi(\{z_1, z_2\})\} = \{(0, 0), (0, 1), (1, 0)\}.$

Let e be any edge of \mathcal{P} . Let e_1, e_2 be two edges of G_4 entering the edge gadget relative to e on a same side. Define $\phi'(e) = \phi(\{e_1, e_2\})$. By the Edge Gadget Condition, ϕ' is well defined. By the Edge Gadget and Node Gadget Conditions, ϕ' is a coloring of the edges of \mathcal{P} by colors (0,0), (0,1), and (1,0). Since \mathcal{P} is not 3 edge colorable, G_4 is poorly matchable.

We recall that a Fulkerson coloring of an r-graph G is a decomposition of 2G into 1-factors.

Observation 7.3 Let H be an indecomposable 3-graph and let H_4 be the poorly matchable 4-graph obtained from H as skeleton graph through the above described construction with Node and Edge Gadgets as in Figs. 8 and 9. From a Fulkerson coloring for H, one can derive a Fulkerson coloring for H_4 as shown in Fig. 11.

Figure 11: Deriving a Fulkerson coloring for H_4 from one for H.

8 Poorly joinable *r*-graphs: a positive result

Given a graph G, a join of G is a set of edges $J \subseteq E(G)$ such that an odd number of edges in J is incident with each node in V(G). An r-graph G is poorly joinable, if every two joins of G intersect. By definition, "poorly joinable" \Rightarrow "poorly matchable". For a 3-graph, the two properties are equivalent. In an early attempt of extending the construction proposed in the previous section and obtain poorly matchable r-graphs without tight cuts for r > 4 we found ourselves looking for poorly joinable r-graphs with r > 3. This approach ended in the following proposition.

Proposition 8.1 There exists no poorly joinable r-graph for r > 3.

Proof: Let G be an r-graph with r > 3. If r is even, then let M be any 1-factor of G, and observe that M and $G \setminus M$ are two disjoint joins of G. So r is odd, and we want to prove that G is the sum of three disjoint joins of G. We can assume that G is 4-edge connected, because 2-edge cuts give rise to an easy decomposition of the problem. By [14], G contains

two disjoint spanning trees. So G contains two disjoint joins.

In our opinion, the next item which makes sense to attempt to pack into r-graphs are joins. To stress this belief, we pose the following question.

Question 3 Which functions f(r) are there such that every r-graph with $r \geq \overline{r}$ admits $f(\overline{r})$ disjoint joins? Could $f(r) = \lfloor \frac{r}{2} \rfloor$ possibly work? What about f(r) = r - 2?

The above question becomes even more relevant in view of its extension to grafts by arguments as given in [8].

9 Open Problems

The Petersen graph seems quite unavoidable in all our counterexamples. This suggests generalizing Tutte's conjecture as follows.

Conjecture 9.1 Every indecomposable r-graph has a Petersen minor.

Sebő pointed out that Conjecture 9.1 is equivalent to the following conjecture of Lovász.

Conjecture 9.2 The 1-factors of a graph with no Petersen minor form a Hilbert basis.

The following questions are left open.

Question 4 Does there exist a constant \overline{r} such that every unslicable r-graph with $r \geq \overline{r}$ contains some tight cuts?

Question 5 Does there exist a constant \overline{r} such that every indecomposable r-graph with $r \geq \overline{r}$ contains some tight cuts?

We propose the following.

Conjecture 9.3 The answer to Question 4 is positive and in fact we can take $\overline{r} = 5$.

In [12], Seymour mentioned to have proven Conjecture 1.2 for $r \leq 6$. In [13], Seymour gave a second proof that Conjecture 1.2 holds for $r \leq 6$. In fact, as a consequence of the approximation algorithm to edge color multigraphs described in [10], Conjecture 1.2 holds for $r \leq 12$. Therefore, a positive answer to Question 5 with $\overline{r} \leq 13$ would imply Conjecture 1.2.

As far as we know the following is still open.

Conjecture 9.4 Every planar r-graph is decomposable (and hence is r edge colorable).

Conjecture 9.5 The 1-factors of a planar graph form a Hilbert basis.

Finally, we insist on a conjecture introduced in Section 7.

Conjecture 9.6 Every r-graph contains r-2 disjoint joins.

10 Acknowledgments

We thank Michele Conforti for suggesting the problem and Ajai Kapoor for his assistance in simplifying the proposed family of indecomposable r-graphs. Bill Jackson suggested how to prove that there exists no poorly joinable r-graph for r > 3. Paul Seymour, besides posing the problem in [12], contributed with a second original and unpublished proof in [13].

References

- [1] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices. *Journal of Research of the National Bureau of Standards* B., Mathematics and Mathematical Physics Vol. 69B, 125–130, 1965
- [2] M.A. Fiol, A Boolean algebra approach to the construction of snarks. *Graph Theory, Combinatorics, and Applications*, (Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Shwenk, Eds.) 493–524, Wiley, New York, 1991
- [3] M.A. Isaacs, Infinite families of snarks. J., (Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Shwenk, Eds.) 493–524, Wiley, New York, 1991
- [4] M. Kochol, A cyclically 6-edge-connected snark of order 118. Discrete Mathematics, Vol. 161 297–300, (1996)
- [5] M. Kochol, Snarks without Small Cycles. Journal of Combinatorial Theory Ser. B, Vol. 67 34–47, (1996)
- [6] L. Lovász, Matching structure and the matching lattice. Journal of Combinatorial Theory Ser. B, Vol. 43 187–222, (1987)
- [7] G.H.J. Meredith, Regular *n*-Valent *n*-Connected NonHamiltonian Non-*n*-Edge-Colorable Graphs. *Journal of Combinatorial Theory Ser. B*, Vol. 14 55–60, (1973)
- [8] R. Rizzi, On packing T-joins. manuscript 1997
- [9] R. Rizzi, T-couplings and T-connectors. manuscript 1997
- [10] A. Caprara and R. Rizzi, Improving a Family of Approximation Algorithms to Edge Color Multigraphs. *Inform. Process. Lett.*, Vol. 68 11–15, (1998)
- [11] P.D. Seymour, Some unsolved problems on one-factorizations of graphs. Graph Theory and Related Topics, (J.A. Bondy and U.S.R. Murty, Eds.), 367–368, Academic Press, New York, 1979
- [12] P.D. Seymour, On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. *Proceedings of the London Mathematical Society*, Vol. 38 423–460, (1979)
- [13] P.D. Seymour, private communication
- [14] Y. Shiloach, Edge-disjoint branchings in directed multigraphs. *Inform. Process. Lett.*, Vol. 8 24–27, (1979)