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Abstract

An r-graph is any graph that can be obtained as a conic combination of its own
1-factors. An r-graph G(V, E) is said indecomposable when its edge set E cannot be par-
titioned as E = E; U E, so that G;(V, E;) is an r;-graph for ¢ = 1,2 and for some rq,75.
We give an indecomposable r-graph for every integer » > 4. This answers a question
raised in [11, 12] and has interesting consequences for the Schrijver System of the T-cut
polyhedron to be given in [9]. A graph in which every two 1-factors intersect is said to be
poorly matchable. Every poorly matchable r-graph is indecomposable. We show that for
every r > 4 ”"being indecomposable” does not imply ”being poorly matchable”. Next we
give a poorly matchable r-graph for every r > 4. The paper provides counterexamples to
some conjectures of Seymour [11, 12].
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1 Introduction

In this article graphs may have parallel edges but contain no loop. The set of edges with
precisely one endpoint in S is denoted by 9(S). To specify the graph, say G, we write dg(5).
Let r be a positive integer. The notion of r-graph is due to Seymour [12]: an r-graph is a
regular graph of valency r such that |0(S)| > r for every set of nodes S with |S]| odd.

We rely on standard notation d(S) = |0(S)| and d¢(S) = |0c(S)|. Moreover 0(v) = d({v})
and d(v) = d({v}). If G is an r-graph then G has an even number of nodes, since d(V(G)) = 0.
Given a graph G, a 1-factor of GG is a spanning subgraph of G which is a 1-graph.

The celebrated Edmonds’ matching polytope theorem [1] states that for every graph G the
vertices of the following polytope are integral:

ze >0 VYee€ E(Q)
z(0(w)) =1 YveV(G) (1)
z(0(S)) >1 VS CV(G) with |S| odd

Seymour [12] observed that Edmonds’ theorem is equivalent to the following statement:
a graph G is an r-graph if and only if G can be obtained as a conic combination of its own



1-factors. As a consequence, for every r-graph G and for every edge e of GG, there exists a
1-factor of G containing e (see [12, 6]).

Let G1(V, E1),...,Gg(V, Eg) be graphs on a common node set V' but with disjoint edge
sets E1, ..., Ex. We denote by Gy + ...+ Gy the graph G(V, E1 U...U E}) and say that G is
the sum of G1,...,Gy. Note that if G;(V, E;) is an ry-graph for i = 1,...,k then G1+...+ Gy
is an (r1 + ...+ rg)-graph. For k € IN, we denote by kG the graph obtained by summing up
k copies of G (that is, replacing every edge of G by k parallel edges).

An unslicable r-graph is an r-graph, which cannot be expressed as the sum of an (r — 1)-
graph and a 1-factor. An r-graph G, which can be expressed as the sum of an r;-graph and
an ro-graph, is said to be decomposable. When no such decomposition exists G is called inde-
composable. Finally, a graph in which every two 1-factors intersect is called poorly matchable.

In [11, 12], Seymour raised the following question:
Question 1 Does there exist a constant T such that every unslicable r-graph has r <779
In the same articles, he proposed the following.
Conjecture 1.1 The answer to Question 1 is positive and in fact we can take T = 4.

Conjecture 1.1 implies Conjecture 1.2 and makes Conjecture 1.3 imply Conjecture 1.4.
Conjecture 1.2 (Seymour [12]) Every r-graph is r + 1 edge colorable.

A Fulkerson coloring of an r-graph G is a decomposition of 2G into 1-factors.
Conjecture 1.3 (Berge-Fulkerson) Every 3-graph has a Fulkerson coloring.
Conjecture 1.4 (Seymour [12]) Every r-graph has a Fulkerson coloring.

The author, while working on a bound for the size of the coefficients in the Schrijver
System for the T-cut polyhedron (see [9]), became interested in the following question.
Question 2 Does there exist a constant T such that every r-graph with r > T is decomposable?

This article presents a counterexample to Conjecture 1.1. In fact, we settle Question 2 (and,
hence, Question 1) in the negative by constructing for every r an indecomposable r-graph.
More surprisingly, we exhibit for every r a poorly matchable r-graph.

2 Preliminary Observations

The Petersen graph is the 3-graph P shown in Fig. 1. The six 1-factors of P are all equiv-
alent under isomorphisms of P. Let M be a 1-factor of P. The essentially unique r-graph
P(r) =P+ (r —3)M, shown for r = 4 in Fig. 1 and dating back to Meredith (see [7]), acts
as a fundamental component in three of the constructions presented in this article.

Every edge of P belongs to precisely two distinct 1-factors of P. Conversely, every two
of the six 1-factors of P have precisely one edge in common. This is expressed more formally
by the following proposition.



Figure 1: The Petersen Graph P and the Meredith Graph P(4).

Proposition 2.1 Associate to every pair of 1-factors of P the edge they have in common.
This is a one to one correspondence between edges and pairs of distinct 1-factors.

Proof. The Petersen graph can be defined as follows (see [3]): the nodes of P are the pairs
of elements in N5 = {1,2,3,4,5}, where two nodes {7, 7} and {h, k} of P are adjacent if and
only if they are disjoint. Thus P is a regular graph of valency (°;7) = 3 with () = 10 nodes
and % = 15 edges.

Let e = {i,j}{h,k} be any edge of P and let = be the single element in IN5 \ {3, j, h, k}.
A 1-factor containing e can not contain any other edge with an endpoint in {i,j} or {h,k}.
Moreover, no 1-factor containing e can contain {i,h}{j,k} or {i,k}{j,h}. Indeed, assume
on the contrary and without lost of generality to have a 1-factor containing both e and
{i,h}{j,k}. Then nodes {j,z} and {h,z} are both matched with node {i, k}, a contradiction.

We conclude that any 1-factor containing e has precisely 4 edges among the remaining 8
edges. These 8 edges form a circuit, whose 8 nodes appear in the following order:

{4k}, {i, =}, {5, h}, {k, 2}, {i; b}, {4, 2}, {3, K}, {h, 2}

Therefore, the 1-factors of P containing e are precisely two and have no edge in common
other than e.

The number of distinct 1-factors of P is, therefore, 2‘Eép)| = 6. The function which asso-
ciates to each edge e of P the pair of 1-factors containing e is injective, for we said that the
two 1-factors have no edge in common other than e. Since |E(P)| = 15 = () is the number
of pairs of 1-factors, the function is also surjective and bijective. O

An immediate consequence of Property 2.1 is the following.

Lemma 2.2 Let My, Ms be two edge-disjoint 1-factors of P(r) = P+ (r—3)M. Then either
M1 =M or M2 =M.

The following lemma is involved in a first construction of indecomposable r-graphs.

Lemma 2.3 Assume P(r) = G1 + G, where, for i = 1,2, G; is an r;-graph. Then there
exist k1, ko such that Gy =P + k1M and Go = koM or vice versa.

Proof: 1t suffices to show that P\ M is contained in either G7 or G5. Assume the contrary
and let e; (¢ = 1,2) be an edge of G; contained in P\ M. Let M; be a 1-factor of G; containing



e;. Thus M; and My are two edge-disjoint 1-factors of P(r) contradicting Lemma 2.2. O

A tight cut in an r-graph is an edge set of the form 9(S) where S is a set of nodes of odd
cardinality and d(S) = r. The following proposition plays a central role in proving that the
graphs to be constructed in the next section are indecomposable.

Proposition 2.4 Let 9(S) be a tight cut in an r-graph G. Then the graph G* obtained from
G by identifying all nodes in S is an r-graph.

Assume G = G+ ...+ Gp, where G; is an ri-graph (i = 1,...,h). Note that dg,(S) = ;
(i=1,...,h). Let G7,...,G} be the graphs obtained from G1,..., G}, by identifying all nodes
in S. As above G is an ri-graph (i =1,...,h). Moreover G* =G} + ...+ Gj,.

Lemma 2.5 Let G be a graph and S C V(G) with |S| odd. Let Gs and Gg be the graphs
obtained from G by identifying all nodes in S and in S = V(G) \ S respectively. If Gs and
Gg are both r-graphs then G is an r-graph.

Proof: Obviously G is r-regular. Assume dg(X) < r and |X| odd. Exchanging S and S,
if necessary, we can assume that |X N S| and |X U S| are odd. By submodularity of dg,
dg(X NS)+da(XUS) <dg(X)+da(S) <r+r. So, either de_(X NS) =dg(XNS) <ror
dgs(XUS) = dg(XUS) < r contrary to the assumption that both G's and Gz are r-graphs. O

3 An infinite family of counterexamples

Let r be any integer with r > 4. In this section we construct an unslicable r-graph U(r).

By Lemma 2.3, the only way to decompose the r-graph P(r) = P + (r — 3)M into an
(r — 1)-graph and a 1-factor is P(r) = P(r — 1) + M. Let e = uv be any edge of P which is
not in M (all such edges are equivalent by symmetry). Take r distinct copies Ci,...,C, of
P(r)\e. Fori=1,...,r, copy C; contains two nodes of degree r — 1, namely u; and v;. Let
x and y be two nodes not belonging to V(C;) for any i. The r-graph U(r) is obtained from
the components C1, ..., C, and the nodes z,y by adding all edges zu; and yv; fori =1,...,7r.

When G = G1 + G2 we say that G5 is the complement of G in G.
Claim 3.1 The r-graph U(r) is unslicable.

Proof: Any 1l-factor F' of U(r) contains an edge incident with x. Assume without lost of
generality that zu; € F. For parity reasons, yv; € F. Therefore, F N E(C}) + ujvy is a
1-factor of Cy + ujvy. Moreover, the complement of F N E(C}) + uivy in C1 + ujvy is an
(r — 1)-graph. Apply Lemma 2.3. O

Evidently, ”being indecomposable” is a stronger property than ”being unslicable”. Since
every 2-graph is decomposable, the two properties are equivalent for r < 6. To prove them
to be distinct for every r > 6, we show that the unslicable r-graph U(r) is decomposable
whenever r > 6. Indeed, U(r) = G1(r) + G2(r), where G1(r) is the 3-graph collecting a copy



of P from components C7, Cy and C3 and a 3M from every other component. Also Gy(r),
which results as the complement of G1(r) in U(r), is an (r — 3)-graph.

4 The indecomposable r-graph G(r)

Let r be any integer with r > 4. In this section, we construct an indecomposable r-graph G(r).

Let z be any node of P(r) = P+ (r —3) M (all nodes are equivalent under isomorphism).
Let z,a,b be the neighbors of z, where zz € M. We indicate with < a,z,b >{) the graph
obtained from P(r) by removing node z. Symbolic representation of < a,z,b > = P(r) \ z
is indicated in Fig. 2.

Figure 2: P(r)\ z = < a,z,b >,

Let < ay, z1, by >Y), vy < @y, Ty, by >1(«T) be distinct copies of < a,z,b >{). Define C
to be the set of edges {bja;11 : 7 = 1,...,7r — 1} U {bra1}. Let {v1,...,v,_2} be a set
of nodes disjoint from all the V(< a;, x;, b; >z(-r)). For i = 1,...,r — 2 define E; as the
set of edges {v;z; : j = 1,...,7}. The graph G(r) is obtained from the components
< ai, x1, b >§r), ey < Qpy Ty, by >$«r),vl, .., Ur—2 by adding all the edges in C U F; U Ey U
.. .UE,_,.

For example G(4) and G(5) are shown in Fig. 3.

By Lemma 2.5, G(r) is an r-graph.
Claim 4.1 For every integer r > 4, G(r) is indecomposable.

Proof: Assume G(r) = G1 + G2 with G; ri-graph and G2 ro-graph. By Lemma 2.3 and
Proposition 2.4, either C C G or C' C Go. Assume without lost of generality that C' C G.
Proposition 2.4 implies:

|E(G2) N (E1U...UE, o) = 3ioy da\c(V(< @iy 24, b; >§T))) =
=Y day(V(< ai, i, b >7)) =11y

(2)

However, |[E(G2)NE;| =dg,(vi) =r2 (i =1,...,7—2) implies |E(G2) N (E1 U...UE,_9)| =
(r — 2)rg, in contradiction with (2). We conclude that G(r) is indecomposable. O



Figure 3: Graphs G(4) and G(5).

5 More indecomposable r-graphs

Let G1, G5 be two node-disjoint r-graphs. Choose v1 € V(G1) and vy € V(G3). Let G be any
r-regular graph obtained from G; and G by first removing nodes v;,v2, and then adding
some new edges with one endpoint in V(G1) \ {v1} and the other in V(G2) \ {v2}. We say
that G has been obtained by splicing G1 and G2 (at vy, v3). Proposition 2.4 and Lemma 2.5
imply the following.

Lemma 5.1 If G has been obtained by splicing two r-graphs G1 and G, then G is an r-graph.
Moreover, if G1 is indecomposable, then G is indecomposable.

Hence, we have an infinite number of indecomposable r-graphs for any given integer r > 4.
Let K, be the complete graph on n nodes. When r is odd, then S, = K, is a simple (no
parallel edges) r-graph. When r is even, then let M be any matching of K1 with [M| = .
Let S, be the graph obtained from K, by first subdividing every edge in M into two edges,
and next identifying all nodes of degree two so introduced. Again S, is a simple r-graph. To
obtain a simple indecomposable r-graph, start from any indecomposable r-graph and, while
some parallel edges are incident with a node z, splice at x with some simple r-graph like S,.

The smallest indecomposable r-graphs (for r = 4,5,6), we were able to construct, are
given in Fig. 4. The first graph in Fig. 4 is, in fact, the smallest possible counterexample to
Conjecture 1.1 (see [8]).

6 Poorly matchable r-graphs: a recursive construction

An r-graph G is said to be poorly matchable if G does not contain two disjoint 1-factors.

Since every r-graph has a 1-factor, every poorly matchable r-graph is indecomposable. Thus,
”being poorly matchable” is a stronger property than "being indecomposable”. For r = 3,
the two properties are equivalent, because the presence of two disjoint 1-factors implies 3



Figure 4: Small indecomposable r-graphs.

edge colorability. However, the two properties are distinct for every r > 4. This is proven
in Subsection 6.1 by showing that, for all » > 4, the indecomposable r-graph G(r) from
Section 4 has two edge-disjoint 1-factors.

Subsection 6.2 gives a poorly matchable r-graph G" for every integer r > 4. The con-
struction we propose is, however, recursive, and the size of G is probably exponential in 7.
(Whereas, for G(r), we have |V(G(r))| = (10 — 1)r + (r — 2) = 10r — 2, which is linear in r).

The following three statements are equivalent for an r-graph G: (i) G is poorly matchable;
(ii) G does not contain a spanning 2-graph; (iii) G does not contain two disjoint spanning
r-graphs.

Therefore, the existence of a poorly matchable r-graph for every integer » > 3 has the
following consequence.

Proposition 6.1 There exists no constant K such that every r-graph with r > K can be
expressed as the sum of a K-regular graph and an (r — K)-graph.

Proof. For any given K € IN, consider a poorly matchable (K + 2)-graph. O

We propose the following conjecture.

Conjecture 6.2 FEvery 3r-graph is the sum of r 3-regular graphs.

6.1 Two edge-disjoint 1-factors in G(r)
This subsection gives two edge-disjoint 1-factors in G(r): Mi(r) and Ms(r).

To specify Mi(r) and Ms(r), we rely on the description of G(r) in Section 4.
e Mi(r)NC = {b—_1a,}, whereas My(r) N C = {bras}.

o For 1 <i<r—2 Oy (v;) = vjz; whereas 6M2(T)(vi) = V;Tiyo.

eFor3<i<r—2andj =12 M(r)nEKa;z; b >§T)) is a copy of M with z
removed. (Remember < a,z,b > is P(r) = P + (r — 3)M with a node z removed).



It remains to determine M (r) and My(r) on E(< a, Z,, b, >$T))UE(< Qr_1, Tr_1, br_1 >,(nr_)1)
and E(< a1, z1, by >§T)) U E(< ag, 2, by >§”): both of them are described by Fig. 5.

Figure 5: M (r) and My (r) on the first and last two < a,z,b > components.

As an example, Fig. 6 shows M;(r) and My(r) in G(r) for r = 4, 5.

Figure 6: M; and Mj in G(4) and G(5).

6.2 Constructing the poorly matchable r-graph G”

The Petersen graph P is an indecomposable 3-graph and, hence, a poorly matchable 3-graph.
Thus, let G3 = P. This subsection shows how to construct a poorly matchable r-graph G”
from a poorly matchable (r — 1)-graph G"~! whenever r > 4.

Let G be an r-graph, and let e, f = uv be two parallel edges of G. Take a copy of P(r)
node-disjoint from G and choose a node z in P(r). Let z be the node of P(r) joined to z by
r — 2 edges, and let a,b be the other two nodes of P(r) adjacent to z. Remove node v from
G and node z from P(r). Next, add edges ua and ub. Finally, add a set of edges with one
endpoint in V(P(r)) \ {z} and the other in V(G) \ {v} to obtain an r-regular graph G*. We
say that G* is obtained from G by P-splicing at v distinguishing e and f.

Note that P-splicing is a particular instance of the splice operation defined in Section 5.
Hence, by Lemma 5.1, G* is an r-graph. Moreover, we have the following.



Lemma 6.3 If G* has two edge-disjoint 1-factors, then G has two edge-disjoint 1-factors M
and My such that {e, f} € M; U M.

Proof: Let My, Ms be two edge-disjoint 1-factors of G*. Let K = 0g+(V(P(r)) \ {z}) de-
note the set of edges which have been added by P-splicing. Since [V (P(r)) \ {z}| = 9 is
odd, then |M{ N K| and |Ms N K| are both odd. Hence, |M; N K|,|My N K| > 1. In fact,
|MiNK|,|M3sNK| =1, since all edges in K are incident either with = or with u. Therefore,
after identifying all nodes in V/(P(r)) \ {z}, M{ and Ms become two edge-disjoint 1-factors
My and M5 of G.

If {e, f} C MiUMoy, then {e, f} C M{UM; and, after identifying in G* all nodes in V(G)\{v},
M7 and MJ become two edge-disjoint 1-factors of P(r) contradicting Lemma 2.2. O

We are now ready for the recursive construction: Let G™ ! be a poorly matchable (r —1)-
graph. Let M be a 1-factor of G"='. Then H" = G"~! 4+ M is an r-graph. Let M be the
set of those edges of G"~! that have multiplicity 1 in G"~! and 2 in H". (M will stand
for the edges in H" \ G"™!). Let V47 be a node cover for M with |Vz| = [M|. Obtain G”
from H" by P-splicing at every node v € V57 distinguishing the unique edge in 95/(7) and
the unique edge in 05;(v). If G" has two edge-disjoint 1-factors, then, by Lemma 6.3, H"
has two edge-disjoint 1-factors M; and Ms with (M; U M) N (M U M) having no parallel
edges. But then, by eventually substituting the edges in M with those in M having the same
endpoints, M; and M, are two edge-disjoint 1-factors of G"!. We conclude that G” is a
poorly matchable r-graph, as in Fig. 7.

Figure 7: The poorly matchable 4-graph G*.

The construction proposed is not deterministic. Non-isomorphic r-graphs can, in fact,
be obtained starting from a same (r — 1)-graph. From P, however, a sole graph G* can be
derived. Graph G* has 50 nodes. We have found no poorly matchable 4-graph on less than



50 nodes.

7 Avoiding tight cuts

All the unslicable, indecomposable, or poorly matchable r-graphs seen until now contain
some tight cuts. This section gives a poorly matchable 4-graph without tight cuts as a
counterexample to the following conjectures.

Conjecture 7.1 Every unslicable r-graph with v > 4 has a tight cut.
Conjecture 7.2 FEvery indecomposable r-graph with r > 4 has a tight cut.

Conjecture 7.1 is still strong enough to imply Conjecture 1.2. Conjecture 7.2 is still strong
enough to make Conjecture 1.3 imply Conjecture 1.4.

Figure 8: The node gadget.

We employ a technique with some similarities to superposition. Superposition is a method
for constructing snarks introduced in [4, 5] as a practical and effective means for capturing
and exploiting “global type conditions” as suggested in [2].

The idea is to take a poorly matchable 3-graph, like P, as skeleton. Next, every node in
the skeleton is replaced by a distinct copy of the "node gadget” shown in Fig. 8 and every
edge in the skeleton is replaced by a distinct copy of the ”"edge gadget” shown in Fig. 9.

e, f. ) .

e £, .

D

™

Figure 9: The edge gadget.

The skeleton acts like a map, telling how edge and node gadgets are mutually connected.
The resulting graph G4 is shown in Fig. 10.

10



Figure 10: A poorly matchable 4-graph without tight cuts.

One can check that G4 is a 4-graph without tight cuts. Let M; and M, be two edge-
disjoint 1-factors of G4. Let ¢ : E(G4) — {(0,0),(0,1),(1,0)} be defined as follows:

(1’
ple) =9 (0,
(8

When F' C E(G4) we define ¢(F) = Y . ¢(e), where the sum is componentwise and modulo
2. Then ¢ satisfies the following conditions:

EVEN SET: Let S be an even set of nodes. Then ¢(9(S5)) = (0,0).

ODD SET: Let S be an odd set of nodes. Then ¢(9(S5)) = (1,1).

EDGE GADGET: ¢({e1,e2}) = o({f1, f2}) # (1,1).
Proof: Edge gadgets contain an even number of nodes. Hence ¢({e1,ea}) = ¢({f1, fo}) by

0) if e € M,
1) ife€M2
0) ifed M UM,

11



the Even Set Condition. Moreover, ¢({e1,e2}) = &({f1, f2}) # (1,1) by Lemma 2.2. O
NoDE GADGET: {¢({z1,z2}), 9({y1,92}), 6({21, 22}) } = {(0,0), (0, 1), (1,0)}.

Proof: By the Odd Set Condition, ¢({z1,z2}) + ¢({y1,y2}) + ¢({z1,Z2}) (1,1). By the
Edge Gadget Conditiona ¢({$la$2})a¢({ylay2})a¢({zlaz2}) 7é (11 ) Thus ( 50)5(05 1) €
{o({z1,22}), 6({y1,92}), ({21, 22}) }.

But then {¢({z1,22}), ¢({y1,12}), 6({z1, 22})} = {(0,0), (0,1), (1,0)}. O

Let e be any edge of P. Let ej,es be two edges of G4 entering the edge gadget rela-
tive to e on a same side. Define ¢/(e) = ¢({e1,e2}). By the Edge Gadget Condition, ¢’ is
well defined. By the Edge Gadget and Node Gadget Conditions, ¢’ is a coloring of the edges
of P by colors (0,0), (0,1), and (1,0). Since P is not 3 edge colorable, G4 is poorly matchable.

We recall that a Fulkerson coloring of an r-graph G is a decomposition of 2G into 1-factors.

Observation 7.3 Let H be an indecomposable 3-graph and let Hy be the poorly matchable
4-graph obtained from H as skeleton graph through the above described construction with Node
and Edge Gadgets as in Figs. 8 and 9. From a Fulkerson coloring for H, one can derive a
Fulkerson coloring for Hy as shown in Fig. 11.

1,2
X,y

x,7 y,7 X,7

y,8 e X,8 y,8 e

x
o]

5,6

34

<
~

Figure 11: Deriving a Fulkerson coloring for Hs from one for H.

8 Poorly joinable r-graphs: a positive result

Given a graph G, a join of G is a set of edges J C E(G) such that an odd number of edges
in J is incident with each node in V(G). An r-graph G is poorly joinable, if every two joins
of GG intersect. By definition, ”"poorly joinable” = ”poorly matchable”. For a 3-graph, the
two properties are equivalent. In an early attempt of extending the construction proposed in
the previous section and obtain poorly matchable r-graphs without tight cuts for r > 4 we
found ourselves looking for poorly joinable r-graphs with r > 3. This approach ended in the
following proposition.

Proposition 8.1 There exists no poorly joinable r-graph for r > 3.

Proof: Let G be an r-graph with » > 3. If r is even, then let M be any 1-factor of G, and
observe that M and G\ M are two disjoint joins of G. So r is odd, and we want to prove
that G is the sum of three disjoint joins of G. We can assume that G is 4-edge connected,
because 2-edge cuts give rise to an easy decomposition of the problem. By [14], G contains

12



two disjoint spanning trees. So G contains two disjoint joins. O

In our opinion, the next item which makes sense to attempt to pack into r-graphs are
joins. To stress this belief, we pose the following question.

Question 3 Which functions f(r) are there such that every r-graph with r > 7 admits f(7)
disjoint joins? Could f(r) = | 5| possibly work? What about f(r) =r—27

The above question becomes even more relevant in view of its extension to grafts by arguments

as given in [8].

9 Open Problems

The Petersen graph seems quite unavoidable in all our counterexamples. This suggests gen-
eralizing Tutte’s conjecture as follows.

Conjecture 9.1 Every indecomposable r-graph has a Petersen minor.

Seb6 pointed out that Conjecture 9.1 is equivalent to the following conjecture of Lovasz.

Conjecture 9.2 The 1-factors of a graph with no Petersen minor form a Hilbert basis.
The following questions are left open.

Question 4 Does there exist a constant 7 such that every unslicable r-graph with r > T
contains some tight cuts?

Question 5 Does there exist a constant T such that every indecomposable r-graph with r > T
contains some tight cuts?

We propose the following,.
Conjecture 9.3 The answer to Question 4 is positive and in fact we can take 7 = 5.

In [12], Seymour mentioned to have proven Conjecture 1.2 for r < 6. In [13], Seymour gave a
second proof that Conjecture 1.2 holds for r < 6. In fact, as a consequence of the approxima-
tion algorithm to edge color multigraphs described in [10], Conjecture 1.2 holds for r < 12.
Therefore, a positive answer to Question 5 with 7 < 13 would imply Conjecture 1.2.

As far as we know the following is still open.

Conjecture 9.4 Every planar r-graph is decomposable (and hence is r edge colorable).
Conjecture 9.5 The 1-factors of a planar graph form a Hilbert basis.

Finally, we insist on a conjecture introduced in Section 7.

Conjecture 9.6 FEvery r-graph contains r — 2 disjoint joins.
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