-

View metadata, citation and similar papers at core.ac.uk brought to you by t CORE

provided by Unitn-eprints Research

UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A SAT BASED APPROACH FOR SOLVING FORMULAS OVER
BOOLEAN AND LINEAR MATHEMATICAL PROPOSITIONS

Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti,
Artur Kornilowicz and Roberto Sebastiani

2002

Technical Report # DIT-02-0041

Alsoin: Proc. 18th "Int. Conference of Automated Deduction, CADE'02"
LNAI series, Springer Verlag.
Alsoin: ITC-IRST technical report n. 0205-03

https://core.ac.uk/display/11828848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A SAT Based Approach for Solving Formulas
over Boolean and Linear Mathematical
Propositions*

Gilles Audemard!2, Piergiorgio Bertoli!, Alessandro Cimatti!,
Artur Kornilowicz'3, and Roberto Sebastiani'4

L ITC-IRST, Povo, Trento, Italy
{audemard,bertoli,cimatti,kornilow}@itc.it
2 LSIS, University of Provence, Marseille, France
3 TInstitute of Computer Science, University of Biatystok, Poland
4 DIT, Universita di Trento, Povo, Trento, Italy
roberto.sebastiani@dit.unitn.it

Abstract. The availability of decision procedures for combinations of
boolean and linear mathematical propositions opens the ability to solve
problems arising from real-world domains such as verification of timed
systems and planning with resources. In this paper we present a general
and efficient approach to the problem, based on two main ingredients.
The first is a DPLL-based SAT procedure, for dealing efficiently with
the propositional component of the problem. The second is a tight inte-
gration, within the DPLL architecture, of a set of mathematical deciders
for theories of increasing expressive power. A preliminary experimental
evaluation shows the potential of the approach.

1 Introduction

The definition of decision procedures for expressive logical theories, in partic-
ular theories combining constraints over boolean and real variables, is a very
important and challenging problem. Its importance lies in the fact that prob-
lems arising from different real-world domains, ranging from formal verification
of infinite state systems to planning with resources, can be easily encoded as de-
cision problems for such theories. The challenge is to define automatic decision
procedures, that are able to deal with a wide class of problems, but are also able
to recognize easy problems and to deal with them efficiently.

In this paper, we tackle the decision problem for boolean combinations of
linear mathematical propositions. We propose an approach based on the exten-
sion of efficient DPLL decision procedures for propositional satisfiability with a

* This work is sponsored by the CALCULEMUS! IHP-RTN EC project, contract code
HPRN-CT-2000-00102, and has thus benefited of the financial contribution of the
Commission through the IHP programme. We thank Andrew Goldberg, Stefano
Pallottino and Romeo Rizzi for invaluable suggestions about the problems of solving
linear (in)equalities.

set of mathematical deciders of increasing power. The approach is general and
incremental. It allows for the structured integration of mathematical solvers of
different expressive power within the DPLL decision procedure, with constraints
learning and backjumping. The mathematical solvers have different expressive
power, ranging from equalities, to binary linear inequalities, to full linear in-
equalities. More complex solvers come into play only when needed.

We implemented the approach in the MATH-SATsolver, based on the SIM
package for propositional satisfiability. An experimental evaluation was carried
out on tests arising from temporal reasoning [2] and formal verification of timed
systems [3]. In the first class of problems, we compare our results with the results
of the specialized system; although MATH-SAT is able to tackle a wider class of
problems, it runs faster that the TSAT solver, that is specialized to a problem
class. In the second class, we show the impact of a tighter degree of integration
and the different optimization techniques on the ability of the solver. Although
preliminary, the experimental evaluation is extremely promising.

The paper is structured as follows. In Section 2 we formalize the class of
problems of interest. In Section 3.1 we discuss the general architecture of the
solver, and the specific decision procedures that are currently integrated. In
Section 4 we present an experimental evaluation, and in Section 5 we describe
some related work and draw some conclusions.

2 MATH-SAT

By math-terms and math-formulas we denote respectively the linear mathe-
matical expressions and formulas built on constants, variables and arithmetical
operators over R and boolean connectives:

— a constant ¢; € R is a math-term;

— a variable v; over R is a math-term;

— ¢; -v; is a math-term, ¢; € R and v; being a constant and a variable over R;

— if ¢; and ¢, are math-terms, then —¢; and ({1 ® t2) are math-terms, ® €
{+7 _}'

— a boolean proposition 4; over B := { L, T} is a math-formula;

— if ¢;, to are math-terms, then (¢; < ¢2) is a math-formula, x € {=,#,>,<
>, <}

— if o1, 2 are math-formulas, then —; and (1 A p2) are math-formulas.

The boolean connectives V, —, « are defined from A and — in the standard
way. For instance, 4; A ((v1 + 5.0) < 2.0 - v3) is a math-formula.

An atom is any math-formula in one of the forms A; or (t; > t3) above
—respectively called boolean atoms and mathematical atoms. A literal is either
an atom (a positive literal) or its negation (a negative literal). If [is a negative
literal =1, then by “=I” we conventionally mean ¢ rather than ——). We denote
by Atoms(¢) the set of mathematical atoms of a math-formula ¢.

By interpretation is a map Z which assigns real values and boolean values to
math-terms and math-formulas respectively and preserves constants, arithmeti-
cal and boolean operators:

— I(A4;) € {T, L}, for every A; € A;
— I(¢;) = ¢, for every constant ¢; € R;
— I(v;) € R, for every variable v; over R;
- (tl ® t2) = I(tl) ®Z(t2), for all math-terms t;, t; and ® € {—|—, -, '};
— Z(t1 < te) = Z(t1) < Z(ta), for all math-terms 1, 3 and <1 € {=,#,>,<, >
<}
— I(—1) = =Z(¢1), for every math-formula ¢ ;
— Z(p1 A p2) = Z(p1) AZ(p2), for all math-formulas g1, @a.
Eg., Z((vi —v2 2 4) A (mA1V (11 = 1)) is (Z(v1) —Z(v2) > 4) A (-Z(A1) V
(Z(v1) = Z(v2))). We say that T satisfies a math formula ¢, written Z = ¢,
iff 7(¢) evaluates to true. E.g., A1 — ((v1 + 2vy) < 4.5) is satisfied by an
interpretation Z s.t. Z(A;) = T, Z(v1) = 1.1, and Z(v2) = 0.6.
We call MATH-SAT the problem of checking the satisfiability of math-formulas.
As standard boolean formulas are a strict subcase of math-formulas, it follows
trivially that MATH-SAT is NP-hard.

A truth assignment for a math-formula ¢ is a truth value assignment u to (a
subset of) the atoms of ¢. We represent truth assignments as set of literals

M= {041,...,aN,ﬁ,Bl,...,—!,BM,Al,...,AR,ﬁAR_H,...,—!AS}, (1)

Q1,...,QN,B1,- .., Bm being mathematical atoms and Ay, ..., Ag being boolean
atoms, with the intended meaning that positive and negative literals represent
atoms assigned to true and to false respectively.

We say that p propositionally satisfies ¢, written p |=p ¢, iff it makes ¢
evaluate to true. We say that an interpretation 7 satisfies an assignment p iff 7
satisfies all the elements of . For instance, the assignment {(v; —vs > 4.0), 14, }
propositionally satisfies (vy — va > 4.0) A (m A1 V (v1 = v2)), and it is satified by
Z s.t. I(vy) = 6.0, Z(v2) = 1.0, Z(A,) = L. Intuitively, if we see a math-formula
¢ as a propositional formulas in its atoms, then =, is the standard satisfiability
in propositional logic.

Ezample 1. Consider the following math-formula ¢:

p= {—|(21}2 — vz > 2) VAl} A
{—|_AzV (21]1 — 4uy > 3)} A
{(3’[)1 — 2’1}2 S 3) VAQ} A
{-(2uz +vs >5) Vo(3v; —u3 <6) V-A41} A
{Al \Y (3’1)1 - 2’1)2 S 3)} A
{(’1)1 — Vs S 1) V (’1}5 =95 —31)4) V"Al} A
{Al V ('1)3 = 3vs + 4) \% AQ}

The truth assignment given by the underlined literals above is:

= {~(2v2—v3 > 2), - Az, (3v1—2v2 < 3), (v1—vs < 1), (3v1—v3 < 6), (vs = 3vs+4)}.

1 is an assignment which propositionally satisfies ¢, as it sets to true one literal
of every disjunction in ¢. Notice that u is not satisfiable, as both the following
sub-assignments of p

{(3’[)1 —2uy < 3), —|(2U2 — vz > 2),ﬁ(3’U1 —wv3 < 6)} (2)
{(v1 —vs < 1), (v3 = 3vs +4),(3v1 —v3 <6)} 3)
do not have any satisfying interpretation. <

3 The Solver

3.1 General idea

The key idea in our approach to solving the MATH-SAT problem consists in
stratifying the problem over N layers Lg, L1, . .., Ly_1 of increasing complexity,
and searching for a solution “at a level as simple as possible”. In our view, each
level considers only an abstraction of the problem which interprets a subgrammar
Go,G1,...,Gn_1 of the original problem, Gny_; being the grammar G of the
problem. Since L,, refines L,,_1, if the problem does not admit a solution at level
Ly, then it does not at Lg,...,L,_1. If indeed a solution S exists at Ly, either
n equals N — 1, in which case S solves the problem, or a refinement of S must
be searched at L, 1. In this way, much of the reasoning can be performed at a
high level of abstraction. This results in an increased efficiency in the search of
the solution, since low-level searches, which are often responsible for most of the
complexity, are avoided whenever possible.

The simple and general idea above maps to an N-layered architecture of the
solver. In general, a layer L, is called by layer L, _; to refine a (maybe partial)
solution S of the problem. L,, must check for unsatisfability of S and (a) return
failure if no refinement can be found, or (b) invoke L, 11 upon a refinement S’,
unless n equals N — 1. An explanation for failure can be added in case (a), to
help higher levels “not to try the same wrong solution twice”. Ly must behave
slightly differently, by enumerating (abstract) solutions.

Our solver MATH-SAT realizes the ideas above over the MATH-SAT prob-
lem. MATH-SAT works on 5 refinement layers. Ly takes into account only propo-
sitional connectives, and is realized by a DPLL propositional satisfiability pro-
cedure, modified to act as an enumerator for propositional assignments. To op-
timize the search, Ly does not actually ignore mathematical atoms; rather, it
abstracts them into boolean atoms, in order to reason upon them at an abstract
level. As such, Ly incorporates an association between newly introduced bool-
ean atoms and originating mathematical atoms, which is used to communicate
with Ly. L considers also equalities, performing equality propagation, building
equality-driven clusters of variables and detecting equality-driven unsatisfiabili-
ties. Ly handles also inequalities of the kind (vy — va < ¢), € {<, >, <, >}, by
a variant of the Bellman-Ford minimal path algorithm. L3 considers also general
inequalities —except negated equalities— using a standard simplex algorithm.
Finally, L4 considers also negated equalities.

boolean MATH-SAT (formula ¢, interpretation & I)
p="0;
return MATH-DPLL (o, u,Z);

boolean MATH-DPLL (formula ¢, assignment & p, interpretation & T)
if (p==T){ /* base */
Z = MATH-SOLVE(p) ;
return (Z # Null) ; }

if (p==1) /* backtrack */
return False;
if {a literal [occurs in ¢ as a unit clause} /* unit propagation */
return MATH-DPLL(assign(l,), p U {l}, I);
= choose-literal(p); /* split */

return (MATH-DPLL(assign(l,¢),pU{l},Z) or
MATH-DPLL(assign(—l,), p U {-l},Z));

Fig. 1. Pseudo-code of the basic version of the MATH-SAT procedure.

The decomposition in MATH-SAT is significant both because it allows ex-
ploiting specialized efficient algorithms to deal with each layer, and because a
number of significant problems can be expressed using one of the subgrammars
Gy, G, G,. For instance, classical planning problems can be encoded in Gy, both
the solving of disjunctive temporal constraints and the reachability of timed sys-
tems can be encoded in G». In those cases, the specialized search algorithms are
used, so efficiency is not sacrificed to expressivity.

3.2 Lg: The boolean solver

To solve the satisfiability problem for our math-formulas, we have implemented
a solver based on a variant of DPLL, along the guidelines described in [16]. The
basic schema of such a procedure, called MATH-SAT, is reported in Figure 1.
MATH-SAT is sound and complete [16].

MATH-SAT takes as input a math-formula ¢ and returns a truth value as-
serting whether ¢ is satisfiable or not, and in the former case an interpretation
7 satisfying . MATH-SAT is a wrapper for the main routine, MATH-DPLL.
MATH-DPLL looks for a truth assignment p propositionally satisfying ¢ which is
satisfiable from the mathematical viewpoint. This is done recursively, according
to the following steps:

— (base) If ¢ = T, then p propositionally satisfies . Thus, if p is satisfi-
able, then ¢ is satisfiable. Therefore MATH-DPLL invokes MATH-SOLVE(u),
which returns an interpretation for g if it is satisfiable, Null otherwise.
MATH-DPLL returns True in the first case, Flalse otherwise.

— (backtrack) If ¢ = L, then p has lead to a propositional contradiction.
Therefore MATH-DPLL returns False.

— (unit) If a literal [occurs in ¢ as a unit clause, then ! must be assigned
T.Thus, MATH-DPLL is recursively invoked upon assign(l,¢) and the as-
signment obtained by adding I to u. assign(l, ¢) substitutes every occurrence
of [in ¢ with T and propositionally simplifies the result.

— (split) If none of the above situations occurs, then choose-literal(p) returns
an unassigned literal [according to some heuristic criterion. Then MATH-
DPLL is first invoked upon assign(l,¢) and p U {I}. If the result is False,
then MATH-DPLL is invoked upon assign(—l,¢) and pU {-l}.

MATH-DPLL is a variant of DPLL, modified to work as an enumerator of
truth assignments, whose satisfiability is recursively checked by MATH-SOLVE.
The key difference wrt. standard DPLL is in the “base” step. Standard DPLL
needs finding only one satisfying assignment u, and thus simply returns True.
MATH-DPLL instead also needs checking the satisfiability of u, and thus it
invokes MATH-SOLVE(). Then it returns T'rue if a non-null interpretation sat-
isfying p is found, it returns False and backtracks otherwise.

The search space of the MATH-SAT problem for a math-formula ¢ is infinite.
However, MATH-DPLL partitions such space into a finite number of regions,
each induced by the mathematical constraints in one assignment y proposition-
ally satisfying . Each such region may contain an up-to-infinite set of satis-
fying interpretations. If so, MATH-SOLVE picks and returns one of them. Also,
since MATH-SOLVE works in polynomial space, MATH-SAT works in polynomial
space.

3.3 Li-L4: The mathematical solver

MATH-SOLVE takes as input an assignment p, and returns either an interpre-
tation Z satisfying p or Null if there is none. (For simplicity we assume to
rewrite all the negated mathematical literals in p into positive atoms, e.g.,
ﬁ(tl = tz) — (tl 75 tz), —|(t1 > tz) — (tl < tz), etc.)

Li: Eliminating equalities The first step eliminates from pu all equalities and
simplifies p accordingly. First, all atoms in the form (v; = v;) are removed
from p and all variables occurring there are collected into equivalence classes
Ei,...,E;, ..., Ey, and for each E; a representant variable v; € E; is designated.
Then, for each E;, all variables in E; are substituted by their representant v} in
the mathematical atoms of p. All valid atoms (like, e.g., (v; — v; # 2), (v; —v; >
—1)) are removed, together with all duplicated atoms. If an inconsistent atom
is found (like, e.g., (v; — v; = 2), (v; — v; < —1)) then MATH-SOLVE terminates
returning Null.

Second, each remaining atom in the form (v; = ...) in g is removed, by
applying equality propagation. Throughout this phase, all valid and duplicated
atoms are removed, and, if an inconsistent atom is found, then MATH-SOLVE
terminates returning Null.

Ly: Minimal path plus negative cycle detection If only atoms in the form
(vi —vj pac) are left, > € {>,<,>,<}, then the resulting problem is solved

by invoking a minimum path algorithm with cycle detection, a variant of the
Bellman-Ford algorithm described in [8], which either returns a satisfying in-
terpretation for the variables v;’s or verifies there is none. In the former case
MATH-SOLVE decodes back the resulting interpretation and returns it, other-
wise it returns Null. The algorithm is worst-case quadratic in time and linear
in size.

Ls: Linear programming Otherwise —unless some negated equality (¢; # ¢;)
exist — a linear programming (LP) simplex algorithm is invoked, which, again,
either returns a satisfying interpretation for the variables v;’s or verifies there is
none. MATH-SOLVE behaves as in the previous case. This algorithm is worst-case
exponential in time (but it is well-known that it exhibits polynomial behavior
in non-pathological practical cases) and always requires polynomial memory.

L4s: Handling negated equalities Neither minimal path nor LP procedures
handle negated equality constraints like (¢; # ¢;). In many significant cases —
including the ones of practical interest for us, see Section 4— it is always possible
to avoid them.

However, in order to preserve expressiveness our design handles them. A
trivial way to handle the problem is to split every negated equalities (¢; # t;)
into the disjunction of the corresponding strict inequalities (¢; > ;) V (¢; < t;),
and handle the distinct problems separately. This is, of course, rather inefficient.

Instead, we first ignore negated equalities and run one of the algorithms on
the remaining part. (i) if there is no solution, then the problem is unsatisfiable
anyway, so that it is returned Null; (ii) if a solution Z is found, then it is
checked against the negated equalities: if it does not contradict them, then 7 is
returned; (iii) if not, the negated equalities are split and the resulting problems
are analyzed.

Notice that the latter event is extremely rare, for two reasons. First, MATH-
SOLVE finds a solution at most once in the whole computation. All the other
problems are unsatisfiable. Second, a constraint like (¢; # t;) covers only a null-
measuring portion of the space of the variables in ¢; and t5, while the space of
the solutions of a solvable linear problem is typically a polyhedron containing
infinitely many solutions. Thus (¢; # t;) makes a solvable problem unsolvable
only if the solution space degenerates into a n-dimensional point.

3.4 Improvements & optimizations

We describe some improvements and optimizations for MATH-SAT, some of
which come from adapting to our domain improvements and optimizations of the
DPLL-based procedures for modal logics [12,14,13] and for temporal reasoning
and resource planning [2,19].

Preprocessing atoms One potential source of inefficiency for the procedure of
Figure 1 is the fact that semantically equivalent but syntactically different atoms
are not recognized to be identical [resp. one the negation of the other] and thus
they may be assigned different [resp. identical] truth values. This causes the

undesired generation of a potentially very big amount of intrinsically unsat-
isfiable assignments (for instance, up to 24!°™s(¢¥)=2 assienments of the kind
{('1)1 < 1)2)7 (’1)1 2 ’1}2), })

To avoid these problems, it is wise to preprocess atoms so that to map se-
mantically equivalent atoms into syntactically identical ones:

— exploit associativity (e.g., (v + (v2 +v3)) and ((v1 + v2) + v3)) = (v1 +
V2 + 03));

— sorting (e.g., (v1 +va <ws+1), (va+v1 —1<w3) = (v1 + vy —v3 <1));

— exploiting negation (e.g., (v1 < v2), (V1 > v2) = (v1 < v2), ~(v1 < v2)).

Early Pruning (EP) If an assignment p' is unsatisfiable, then all its supersets
are unsatisfiable. If the unsatisfiability of an assignment p' is detected during its
recursive construction, then this prevents checking the satisfiability of all the up
to 2lAtoms(@)l=Ir'l truth assignments which extend pu'.

This suggests to introduce an intermediate satisfiability test on incomplete
assignments just before the “split” step:

if Likely-Unsatisfiable(p) /* early pruning */
if (MATH-SOLVE(p) = Null)
then return False;

If the heuristic Likely- Unsatisfiable returns True, then MATH-SOLVE is invoked
on the current assignment p. If MATH-SOLVE() returns Null, then all possible
extensions of p are unsatisfiable, and therefore MATH-DPLL returns False and
backtracks, avoiding a possibly big amount of useless search.

In this case MATH-SOLVE needs not returning explicitly the interpretation
7, so that it can avoid decoding back the solution found by the solver. Moreover,
negated equalities (t; # t;), if any, can be ignored here, as they may only make
a satisfiable problem unsatisfiable, not vice versa.

Example 2. Consider the formula ¢ of Example 1. Suppose that, in four recursive
calls, MATH-DPLL builds, in order, the intermediate assignment:

/,L' = {—|(2U2 — vz > 2),"142, (31)1 —2uy < 3), —|(3’U1 —v3 < 6)} (4)

(rows 1, 2, 3 and 4 of ¢), which contains the conflict set (2) and is thus un-
satisfiable. If MATH-SOLVE is invoked on p/, it returns Null, and MATH-DPLL
backtracks without exploring any extension of p'. <

Likely-Unsatisfiable avoids invoking MATH-SOLVE when it is very unlikely that,
since last call, the new literals added to u' can cause inconsistency. (For instance,
when they are added only literals which either are purely-propositional or contain
new variables.)

Enhanced early pruning (EEP) In early pruning, the call to MATH-SOLVE is
not effective if y is satisfiable. Anyway such a call can produce information which
can be used to reduce search afterwords. In fact, the mathematical analysis of

p performed by MATH-SOLVE can allow to assign deterministically truth values
to some mathematical atoms 1 € p, and this information can be returned by
MATH-SOLVE as a new assignment 7, which is unit-propagated away by MATH-
DPLL.

For instance, assume that all the following mathematical atoms occur in the
math-formula. If (v; —vs < 4) € p and (v; —vs < 6) & u, then MATH-SOLVE can
derive deterministically that the latter is true, and thus return an assignment 7
containing (v; — vs < 6). Similarly, if (v; — v > 2) € p and MATH-SOLVE(u)
finds that v; and vy belong to the same equivalence class, then it 7 contains
—|('l}1 — Vo > 2)

(Mathematical) Backjumping (BJ) An alternative optimization starts from
the same observations as those of early pruning. Any branch containing a conflict
set is unsatisfiable. Thus, suppose MATH-SOLVE is modified to return also a
conflict set n causing the unsatisfiability of the input assignment . (As for Lo,
a negative cycle represents a conflict set; as for L3, a technique for returning a
conflict sets in LP is hinted in [19].) If so, MATH-DPLL can jump back in its
search to the deepest branching point in which a literal [€ 7 is assigned a truth
value, pruning the search space below.

Notice the difference w.r.t. early pruning. Both prune the search tree under
a branch containing a conflict set. On one hand, backjumping invokes MATH-
SOLVE only at the end of the branch, avoiding useless calls. On the other hand,
early pruning prunes the search as soon as there is one conflict set in the as-
signment, whilst backjumping can prune a smaller search tree, as the conflict
set returned by MATH-SAT is not necessarily the one which causes the highest
backtracking.

Example 3. Consider the formula ¢ and the assignment p of Example 1. Sup-
pose that MATH-DPLL generates u following the order of occurrence within ¢,
and that MATH-SOLVE(u) returns the conflict set (2). Thus MATH-DPLL can
backjump directly to the branching point —(3v; — v3 < 6) without branching
first on (v3 = 3vs + 4) and —=(2vy — v3 > 2), obtaining the same pruning effect
as in example 2. If instead MATH-SOLVE(u) returns the conflict set (3), forcing
a branch on (v3 = 3vs; +4). O

(Mathematical) Learning When MATH-SOLVE returns a conflict set 7, the
clause -7 can be added in conjunction to ¢. Since then, MATH-DPLL will never
again generate any branch containing 7.

Ezample 4. As in Example 3, suppose MATH-SOLVE(u) returns the conflict set
(2). Then the clause =(3v; —2vy < 3) V (2u9 — w3 > 2) V (3v; — vz < 6) is added
in conjunction to ¢. Thus, whenever a branch contains two elements of (2), then
MATH-DPLL will assign the third to L by unit propagation. <

Learning is a technique which must be used with some care, as it may cause
an explosion in size of . To avoid this, one has to introduce techniques for
discarding learned clauses when necessary [4].

001+ L ! tn : : 001+
2 4 6 8 10 12 14 2 4 6 8 10 12 1

r r

25 vars 30 vars

Fig. 2. Comparison between TSAT and MATH-SAT. k = 2, n = 25,30, L = 100,
r := m/n in [2,...,,14]. 100 sample formulas per point. Median CPU times (secs).
Background: satisfiability rate.

Notice the difference w.r.t. standard boolean backjumping and learning [4].
In the latter case, the conflict set propositionally falsifies the formula, while in
our case it is inconsistent from the mathematical viewpoint.

Triggering This technique is a generalization we propose of a technique adopted
in [19]. It comes from the consideration (proved in [16]) that, if we have mathe-
matical atoms occurring only positively [resp. negatively] in the input formulas,
we can drop any negative [positive] occurrence of them from the assignment to be
checked by MATH-SOLVE. This is particularly useful when we deal with equality
atoms occurring only positively, as it avoids handling negated equalities.

4 Some experimental results

We’ve implemented MATH-SAT in C; MATH-DPLL is built on top of the SIM
library [11]; MATH-SOLVE uses alternatively a home-made implementation of
Bellman-Ford minimal path algorithm with negative cycle detection [8], and the
Simplex LP library LP_SOLVE [5], as described in Section 3.3.

All experiments presented here were run under Linux RedHat 7.1 on a 4-
processor PentiumIIT 700MHz machine with more than 4GB RAM, with a time
limit of 1 hour and a RAM limit of 1GB for each run. (All the math-formulas in-
vestigated here are available at http://www.science.unitn.it/ rseba/Mathsat.html,
together with our implementation of MATH-SAT.)

4.1 Temporal Reasoning

As a first application example, we consider one of the most studied problems in
the domain of temporal reasoning, that of solving the consistency of disjunctive
temporal problems (DTP). Following [18], we encode the problem as a particular
a MATH-SAT problem, where the math-formulas are in the restricted form:

/\ \/(vlij — v2;; < cij), (5)

vg;; and c;; being real variables and integer constants respectively. Notice that
here (i) there are no boolean variables (ii) constraints are always in the form
(vi —v;j < c¢) and (iii) they always occur positively.

[18] proposed as a benchmark a random generation model in which DTPs are
generated in terms of four integer parameters k,m,n, L: a DTP is produced by
randomly generating m distinct clauses of length k of the form (5); each atom is
obtained by picking v1,; and vy;; with uniform probability 1/n and ¢;; € [-L, L]
with uniform probability 1/(2L + 1). Atoms containing the same variable like
(vi —v; < ¢) and clauses containing identical disjuncts are discharged.

[2] presented TSAT, a SAT based procedure ad hoc for DTPs like (5) based
on Bohm SAT procedure [7] and the Simplex LP library LP_SOLVE [5]. In the
empirical testing conducted on the same benchmarks as in [18], TSAT outper-
formed the procedure of [18]. TSAT is enhanced by a form of forward checking
and of static learning, in which it learns binary constraints corresponding to
pairs of mutually-inconsistent mathematical atoms.

We have run TSAT and MATH-SAT with enhanced early pruning and math-
ematical learning on the two hardest problems in [2]. The results are reported in
Figure 2. As with TSAT, MATH-SAT curves have a peak around the value of r in
which we have a 50% satisfiability rate. MATH-SAT is always faster than TSAT,
up to one order of magnitude. Similarly to what happens with the optimiza-
tions of TSAT [2], when dropping either enhanced early pruning or mathematical
learning in MATH-SAT the performances worsen significantly. Thus, although
MATH-SAT is a general-purpose procedure, it turns out to be competitive —and
even faster— than a current state-of-the-art specific procedure for this problem.

4.2 Model Checking properties of timed systems

As a second application example, we consider the verification and debugging of
properties for timed timed systems (e.g., real-time protocols). In short, a timed
system is represented as a timed automaton [1], that is, an automaton augmented
by real clock variables z, clock resetting statements in the form (z := 0) and clock
constraints in the form (z i ¢), > € {>, <, >, <}. The automaton can perform
either instantaneous transitions, which are conditioned by clock constraint and
can affect the value of boolean variables and resetting statements, or time elapse
transition, which increment all clocks by the same value § and keeps all values.

In [3] we have extended to timed systems the notion of bounded model check-
ing (BMC) [6] and presented a way to encode such problem into a MATH-SAT
problem. Given an automaton A, an LTL property f and an integer bound &,
we consider the problem of finding an execution of A of up to length k verifying
f, and we encode it into the satisfiability of a CNF math-formula [[A, f]],, s.t.
any interpretation of [[A, f]], corresponds to a desired execution path.

We introduce a new real variable z representing the current value of zero,
and we rewrite every occurrence of a clock x with the difference x — z. Then, we
replicate the propositional and real variables from 0 to k —e.g., x; represents
the variable = at step i— and “unroll” the transition relation from step 0 to step

enter_ql [t1:=0] (@<=T) e
= enter_ql (@>=1) E _mj'[)’@
enter g1 [t1:=0] (t1<= ;)/_\‘(‘1 <7 [©2:=0] [t1:=0] exit_ql {240 =0 eital (g
_ . " enler_q2 . erfter_q2
(tL>=1) :w@ (lzez“ % exit [g2
=0

[t1:=0] exit_ql [t1:=0] exit_ql

enter_ql [t1:=0]

(@<=T) =0 - [t1:=0] exitql g% 2 T%

Fig. 3. Timed automata for the post-office problem, for N=1 (left) and N=2 (right).

k — 1, so that we have

k—1
(A Al :=To A N Toiga A [[f]]g- (6)

=0

Iy is a math formula over the variables at step 0 representing the initial states;
T;,i+1 is a math formula over the variables at steps ¢ and 7 + 1 representing the
transition relation; [[f]], is a math formula over all the variables from step 0 to
step k representing the condition that the path must verify the LTL formula f.
(See [6, 3, 9] for details.) The mathematical atoms in [[A4, f]], are all of the kind
(x=y), (xi—2zi =z —2;) or (x —y<ic), > € {<, >, <, >}, such that:

1. every atom in the form (z; — 2z; = x; — ;) occurs only positively in [[A4, f]],,
2. for every atom (z = y) in [[4, f]];, there is a corresponding atom (z > y)
in [[A, fll; sit. 7(z =y) = (x > y) is a clause in [[A, f]],.

We have customized a version of MATH-SAT explicitly for this kind of prob-
lems. First, MATH-SOLVE(u) ignores every negated equality in p. In fact, by
point 1., literals like ~(z; — 2; = x; — 2;) can be ignored because of triggering,
and, by point 2., literals like =(z = y) can be ignored because they are subsumed
by (z > y). Second, following [10,17], the encoder provides some semantic in-
formation on the boolean variable, so that the heuristic function choose_literal()
of Figure 1 can split first on variables labeling transitions, and in order of their
step index.

In [3] we presented some empirical tests on timed protocol verification, in
which the approach of encoding such problems into math-formulas and running
MATH-SAT over them turned out to be competitive wrt. using state-of-the-art
verification systems. There the focus was on the encoding, and the goal was to
show the effectiveness of our approach w.r.t. other verification approaches. Here
instead we focus specifically on the effectiveness of MATH-SAT in solving math-
formulas. As we are not aware of any existing decision procedure able to handle
efficiently math-formulas of this kind, we restrict to showing how the various
variants and optimizations affect the efficiency of MATH-SAT on this kind of
formulas on an example.

2| 3| 4| b 2l 3| 4 5 2| 3| 4 5 20 3| 4 5
0.01{0.05|0.24(1.29| 10.01/0.05|0.25|1.29| |0.01/0.04|0.23|1.31| |0.10{0.05|0.25{1.28
0.02(0.08/0.37|2.01| |0.01]|0.08(0.35|2.01| [0.02|0.07|0.36(/1.91| |0.01{0.08|0.38|2.01
0.03(0.10{0.51|2.92|]0.02|0.09(0.50{2.95| |0.02|0.10|0.51{2.92| (0.02|0.10|0.51|2.83
0.03(0.13]0.62|5.07| |0.03]|0.13|0.68|5.06| |0.03|0.13|0.65(5.00| (0.03|0.14|0.68|5.08
0.04|0.17/0.90{8.96| 10.03/0.16/0.90|8.80| |0.03]0.17|0.88|8.80| [0.04|0.18|0.89{8.90
0.04|0.24|1.82| 37| |0.05/0.24|1.80| 35| |0.05/0.23|1.78| 37| |0.05/0.25|1.83| 36
0.05{0.41|4.59| 231| |0.05/0.41|4.54| 230| |0.06/0.41(4.53| 232| |0.06|0.40|4.64| 229

S
- _—
o@oo\]c»cnu;wwz

0.92| 16| 950 0.90| 15| 945 0.80| 14| 913 0.86| 15| 916

0.99| 72|>1h 0.98| 73|>1h 0.85| 68|>1h 0.83| 70{>1h
11 302|>1h 299|>1h 276|>1h 288|>1h
12 592|>1h 592|>1h 502|>1h 529|>1h
13 >1h >1h >1h >1h
14 >1h >1h >1h >1h
X 10.22|3.09| 991|>5h| [0.20|3.04| 990|>5h| [0.22|2.80| 870|>5h| [0.22|2.89| 911|>5h

Basic Basic+BJ Basic+EP Basic+EEP

Table 1. MATH-SAT CPU times for the Post-office problem with various optimizations

E\N| 2| 3 4 5 2| 3| 4 5 2| 3| 4| 5 2l 3| 4| 5

2{0.01]0.05{0.25| 1.28| [0.01|0.05|0.24| 1.29| |0.01|0.05|0.24|{1.30| [0.01]|0.05|0.24(1.30
3/0.01]0.08(0.38| 1.98| |0.02{0.07/0.37| 1.98| |0.01{0.07|0.36{2.05| |0.01]|0.07(0.37(1.97
4|0.02|0.10(0.49| 2.65| |0.02{0.10{0.49| 2.65| |0.02|0.10|0.50{2.73| |0.02{0.10|0.49|2.68
5(0.02{0.13|0.63| 3.48| |0.03|0.13|0.64| 3.45| [0.03(0.13|0.62|3.51| [0.03]0.13|0.61|3.48
6/0.03|0.16(0.74| 4.27| |0.03]0.16|0.75| 4.22| |0.03|0.16|0.76{4.33| |0.03{0.15|0.78|4.26
7(0.04|0.19(0.88| 5.21| [0.05(0.19|0.91| 5.13| |0.04/0.19|0.87|5.19| [0.04|0.19|0.90(5.02
810.04(0.24|1.09| 6.46| |0.03]0.23|1.10| 6.43| |0.05/0.22(1.07|6.40| |0.05(0.23|1.07|6.10

9 0.36(1.48| 8.98 0.36(1.44| 9.08 0.28]1.28/8.15 0.28]1.29|7.54
10 0.29(2.78| 16 0.29|2.81| 16 0.28]1.83| 11 0.28(1.80(9.97
11 8.43| 42 8.45| 42 2.89| 19 2.94| 15
12 5.10| 159 5.03| 155 2.07| 47 1.80| 33
13 685 742 115 80
14 208 207 38 23
310.17{1.60|22.2|1145 0.2|1.58(22.2|1199| (0.19|1.48|12.5| 265| |0.19(1.48(12.3| 194

Basic Basic+BJ Basic+EP Basic+EEP

Table 2. MATH-SAT CPU times for the Post-office problem with customized
choose_literal and various optimizations

Consider a post office with N desks, each desk serving a customer every T'
seconds. Every new customer chooses the desk with shorter queue and, when
more than one queue has minimal length, the minimal queue with the minimum
index. It is not possible to change a queue after entering it. We want to prove
that, although all desks have the same serving time 7" and customers are “smart”,
one customer can get into the annoying situation of finding himself in queue
after one person, whilst all other queues are empty, and having to wait for a
non-instantaneous period in this situation.

The corresponding timing automata for N = 1 and N = 2 are represented
in Figure 3. Each location is labeled by N integers l1l5...l, representing respec-
tively the lengths of queues 1, 2, ..., N. For each queue i a clock variable ¢; counts

the serving time of the currently served customer. The property is encoded as
(20...0)16,1 A (20---0)k A (6k71 > 0)

for some step k > 1, that is, the system is in location 20...0 at both steps £ — 1
and k and a non-null amount of time J;_1 elapses between these two steps. We
fix to 2 the maximum queue length of queue 1 and to 1 for the others; this will be
enough to show that the problem has a solution, provided the queuing policy of
customers. Although the problem is very simple, the size of the automata grow
as 3-2N.

We encoded this problem as described in [3], for increasing values of k and
N, and we ran different versions of MATH-SAT on the resulting formulas. The
resulting CPU times are reported in Tables 1 and 2. The last row X' of each table
represents the sum of the values in the corresponding column. Table 2 differs
from Table 1 for the fact that in the latter we have used the customized version
of choose_literal() described above.

All problems are unsatisfiable for £ < 2N + 4 and satisfiable for k > 2N + 4,
as the minimum path satisfying the property has length 2V + 4. If we consider
the case N = 2 of Figure 3, such a path is:

enterql entergs entergy
— — —

00 10 11 T2 91 98 91 "V g 91 *T¥4 99 =T 9

that is, customers C1,C2,C3 enter at time 0; after T seconds three new events
occur sequentially within a null amount of time: C1 is served by desk 1, a new
customer C4 enters queue 1 (as both queues are of length 1), and C2 is served by
desk 2. After this, customers C3 and C4 are in queue 1 while nobody in queuing
at desk 2, and C4 will have to wait another T seconds before starting being
served.

The CPU times in Tables 1 and 2 suggest the following considerations.

First, MATH-SAT with the customized heuristic choose_literal() —which
chooses transition variables first in order of their step index— dramatically out-
performs the basic version, no matter the other optimizations. In fact, as in [10],
initial states and transitions are the only sources of non-determinism: once their
values are set, the truth values of all other atoms are either irrelevant or de-
rive deterministically from them. This may drastically restrict the search space.
Moreover, as in [17], selecting the transitions in forward [backward] step order
allows to avoid selecting transition in intermediate steps whose firing conditions
are not reachable from the initial states [resp. from whose consequences the goal
states are not reachable].

Second, math backjumping is ineffective on these tests. This is due to the fact
that, unlike with DTPs, with these math-formulas the conflict sets returned by
MATH-SOLVE are very long and nearly always useless for both math backjumping
and learning. In fact, when a (possibly small) conflict set is returned by Bellman-
Ford, there is no obvious way to reconstruct back the corresponding minimum
conflict set by undoing the variable substitutions over the equivalence classes.

Third, simple and enhanced early pruning improve CPU times slightly in
Table 1 and very relevantly in Table 2. In particular, this synergy with the

customized heuristics choose_literal() is due to the fact that the latter can often
choose a “bad” transition whose mathematical prerequisites are not verified in
the current state. Without early pruning, this causes the generation of a whole
search tree of mathematically inconsistent assignments, whose inconsistency is
verified one by one. With early pruning, MATH-DPLL invokes MATH-SOLVE
and backtracks just after one sequence of unit propagations.

Fourth, whilst enhanced early pruning seems not faster that simple early
pruning in the results of Table 1, a significant improvements appears in Table
2. This synergy with the customized heuristics choose_literal() is due to the fact
that in many situations the value of a clock z is zero —(z = z) in our encoding—
because of either resetting or propagating a previous zero value. If so, performing
an enhanced early pruning test before choosing the next transition allows to
falsify all incompatible transition prerequisites on x —like, e.g., (z — 2z > T)—
and thus to avoid choosing the corresponding “bad” transition.

A final consideration on the effectiveness of our layered architecture arises as
soon as we do some profiling: a significant number of MATH-SOLVE calls —about
70% with basic MATH-SAT, 20-30% with EP, about 10% with EEP— are solved
directly by propagating equalities (L;), without calling Bellman-Ford (Ls).

5 Related work and Conclusions

In this paper we have presented a new approach to the solution of decision
problems for combinations of boolean propositions and linear equalities and in-
equalities over real variables. The approach is general, since it allows to integrate
different levels of mathematical solving. This also allows for a significant degree
of efficiency, since the more expensive solvers are called only when needed by
the subproblem being analyzed. For instance, MATH-SAT is faster than TSAT
on the specific class of problems for which the latter has been developed. The
other closest related work is [19], where the LPSAT solver is presented, han-
dling math-formulas in which all mathematical atoms occur only positively. The
approach, however, is hardwired to the domain of planning, and there is no
reference to the architectural issues. In [15], a data structure based on Binary
Decision Diagrams (BDDs), combining boolean and mathematical constraints, is
used to represent the state space of timed automata. The approach is sometimes
very efficient, but it inherits the worst-case exponential memory requirements
from BDDs.

In the future, we plan to extend the work presented in this paper along
the following directions. First, we will tighten the integration of the different
solvers within the SAT architecture. This will allow to incrementally construct
the equivalence classes for equality reasoning, and reuse the previously con-
structed information. Then, we will explore the extensions of the approach to
more complex (i.e., quadratic) mathematical constraints, and their applications
to formal verification of programs.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Alur. Timed Automata. In Proc. 11th International Computer Aided Verifica-
tion Conference, pages 8-22, 1999.

A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal
reasoning. In Proc. European Conference on Planning, ECP-99, 1999.

G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded Model
Checking for Timed Systems. Technical Report 0201-05, ITC-IRST, Trento, Italy,
January 2002. Submitted for publication.

. R. J. Bayardo, Jr. and R. C. Schrag. Using CSP Look-Back Techniques to Solve

Real-World SAT instances. In Proc AAAI’97, pages 203—208. AAAI Press, 1997.
Michel Berkelaar. The solver Ip_solve for Linear Pro-
gramming and Mixed-Integer Problems. Available at
http://elib.zib.de/pub/Packages/mathprog/linprog/lp-solve/.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. CAV’99, 1999.

M. Buro and H. Buning. Report on a SAT competition. Technical Report 110,
University of Paderborn, Germany, November 1992.

Boris V. Cherkassky and Andrew V. Goldberg. Negative-cycle detection algo-
rithms. Mathematical Programming, 85(2):277-311, 1999.

A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding of
LTL Model Checking into SAT. In Proc. 3rd International Workshop on Verifica-
tion, Model Checking, and Abstract Interpretation, volume 2294 of LNCS. Springer,
2002.

E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the Rest Will Follow:
Exploiting Determinism in Planning as Satisfiability. In Proc. AAAI’98, pages
948-953, 1998.

E. Giunchiglia, M. Narizzano, A. Tacchella, and M. Vardi. Towards an Efficient
Library for SAT: a Manifesto. In Proc. SAT 2001, Electronics Notes in Discrete
Mathematics. Elsevier Science., 2001.

F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics
from propositional decision procedures - the case study of modal K. In Proc.
CADE13, LNAL Springer Verlag, August 1996.

F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics
from propositional decision procedures - the case study of modal K(m). Information
and Computation, 162(1/2), October/November 2000.

I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Proc. of Tableauz’98,
number 1397 in LNAI, pages 27-30. Springer-Verlag, 1998.

J. Moeller, J. Lichtenberg, H. Andersen, and H. Hulgaard. Fully Symbolic Model
Checking of Timed Systems using Difference Decision Diagrams. In Electronic
Notes in Theoretical Computer Science, volume 23. Elsevier Science, 2001.

R. Sebastiani. Integrating SAT Solvers with Math Reasoners: Foundations and
Basic Algorithms. Technical Report 0111-22, ITC-IRST, November 2001.

Ofer Shtrichmann. Tuning SAT Checkers for Bounded Model Checking. In Proc.
CAV’2000, volume 1855 of LNCS. Springer, 2000.

K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of tem-
poral constraints. In Proc. AAAI pages 248-253, 1998.

S. Wolfman and D. Weld. The LPSAT Engine & its Application to Resource
Planning. In Proc. IJCAI 1999.

