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ABSTRACT 

Texture analysis based on the extraction of contrast features is very effective in terms of both 

computational complexity and discrimination capability. In this framework, max -min approaches 

have been proposed in the past as a simple and powerful tool to characterize a statistical texture. In 

the present work, a method is proposed that allows exploiting the potential of max-min approaches 

to efficiently solve the problem of detecting local alterations in a uniform statistical texture. 

Experimental results show a high defect discrimination capability, and a good attitude to real-time 

applications, which make it particularly attractive for the development of industrial visual 

inspection systems. 
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Abstract 

Texture analysis based on the extraction of contrast features is very effective in terms of both 

computational complexity and discrimination capability. In this framework, max -min approaches 

have been proposed in the past as a simple and powerful tool to characterize a statistical texture. In 

the present work, a method is proposed that allows exploiting the potential of max-min approaches 

to efficiently solve the problem of detecting local alterations in a uniform statistical texture. 

Experimental results show a high defect discrimination capability and a good attitude to real-time 

applications, which make it particularly attractive for the development of industrial visual 

inspection systems. 

1. Introduction 

Automatic systems for visual inspection of materials are becoming more and more popular, due to 

several reasons: the increasing power of digital signal processing architectures, the affordable cost 

of digital image acquisition and processing systems, the availability of fast algorithms able to 

achieve nearly human performance in several inspection tasks. Within this field, a typical problem 

to be solved is the identification of defects in a raw or processed material, which can usually be 

assimilated to the problem of detecting an anomalous distribution of colours or grey levels in an 

image with known characteristics. The most challenging situation occurs when the sample to be 

analysed presents a patterned or textured surface: in this case, the defect would appear as a local 

anomaly in a regular or statistical texture. 

A typical approach to this problem consists in identifying a parametric model able to represent a 

uniform texture, and then to define suitable techniques for system training and operation. During the 

training phase, the system should compute the optimum model parameters for a given texture 

sample. During the operation phase, the system should extract the relevant set of parameters from 

each input sample, and compare it with the model, in order to discriminate image areas that do not 

comply with the mock-up. To perform a comparison, suitable homogeneity measures should be 

adopted. 

As to the problem of texture representation, several models have been proposed that can be adopted 

in the framework of discriminating different texture. They can be roughly classified into two main 



groups: methods based upon spectral properties, and methods based upon spatial statistics of the 

texture. Gabor filters belong to the first category and are widely used in image processing 

applications where a high accuracy is required in both space and frequency domains: they have 

been successfully applied to the problem of texture representation and segmentation [1,2]. Other 

interesting approaches involve the exploitation of the multi-resolution and multi-scale properties of 

the wavelet decomposition, which are desirable feature in the problem of texture characterization 

[3,4]. 

Concerning techniques operating in the spatial domain, a wide variety of methods can be found in 

the scientific literature. Most important examples include structural methods, based on the 

definition of texture elements or texels and relevant construction rules [5]; approaches based on 

fractal geometry, where the main features used to classify different textures are the fractal or multi-

fractal dimensions [6]; and statistical methods. This last class includes several significant 

techniques. Methods using low-order statistics (e.g., histogram-based analysis, rank-order 

approaches [7]) are usually rather simple and fast, but usually are not sufficient guarantee a very 

high accuracy. High-order statistics (e.g., co-occurrence matrices [8]), provide much more accurate 

models, but are characterized by huge memory and computation requirements, even if fast solutions 

have been recently proposed [9]. Finally, auto-regressive models (e.g., Markov Random Fields [10], 

and hidden MRF [11]) provide powerful tools both to describe and to synthesize statistical textures. 

Focusing on the problem of detection of texture faults, some specific advances were published in 

the literature in the last years. Even in this case, a distinction can be formulated between techniques 

based on spectral measurements and techniques working on spatial statistics. In [12] a comparison 

between the two approaches is outlined. Among spectral domain techniques, an interesting work is 

presented in [13], where concepts deriving from the wavelet theory are integrated with the use of 

co-occurrence matrices. Detection of defects is performed by decomposing the texture image into 

sub-bands and then partitioning the resulting images into non-overlapping sub-windows and 

classifying them based on a set of co-occurrence parameters. 

On the other hand, statistical measures demonstrated to be successfully applicable to the detection 

texture faults. Higher-order statistics (HOS) are used in [14], where feature vectors consisting of 

hybrid combinations of second- and higher-order statistics, are classified as defective or non-

defective on the basis of the Mahalanobis distance. Simpler approaches employ information 

extracted from the statistics of lower order: in [15] texture faults are detected through the use of an 

adaptive lattice filter, driven by the knowledge of the first-order statistics contained in a modified 

grey level histogram. 



A common drawback of the approaches based on the computation of image statistics is the strict 

relationship between performance and complexity. In particular, co-occurrence matrices, fractals 

and structural approaches show a very good discrimination capability but require a huge 

computation, while simpler methods based on low-order statistics (e.g., histograms) are suitable for 

real-time implementations but show a limited reliability and accuracy. Contrast-based approaches 

[16, 17] are a very interesting alternative, for they do not require all the texture pixels to be taken 

into account in the statistics. In the max-min technique, only a set of ‘significant’ points, 

corresponding to the local maxima and minima (extremes) of the intensity function along one-

dimensional scan lines are used for texture characterization. The advantage of such a procedure in 

terms of complexity reduction is twofold. First, statistical analysis is applied only to the local 

extremes, which are proven to be representative for the whole texture, while representing a small 

fraction of the total image pixels. Second, the analysis is performed on one-dimensional arrays, thus 

reducing the complexity to a few vector operations. Nevertheless, an in-depth study of the 

performance of the ‘max-min’ technique reveals that the basic method, although very effective in 

texture discrimination, is almost unusable with application to the problem of texture fault detection. 

This depends on the fact that large uniformly textured areas are needed to extract significant 

parameters, thus preventing the possibility of an accurate detection and segmentation of typical 

texture defects, which just affect small image regions. 

Further stud ies lead to a modified approach, described in this paper. Here, the texture is scanned 

with a particular windowing procedure, and a set of features is extracted from each texture sample 

for the purpose of a binary classification (‘correct’ or ‘defective’ pattern). The method requires an 

adaptation phase, consisting in the off- line analysis of a sample texture, aimed at determining a 

‘texture model’ (prototype). Then, during operation, the texture samples are analysed to verify their 

compliance with the model. 

In the following sections, the max-min approach is briefly reviewed, the proposed algorithm is 

described in detail, experimental results are discussed, and finally, conclusions are drawn. 

2. The Max-Min Approach 

The max-min approach proposed in [16] consists of the following iterative procedure: 

i. extract an image scan- line and put it into a linear vector; 

ii. process the vector with a non- linear smoothing filter using a threshold TS ; 

iii. extract the maxima and minima of the filtered vector, count them and store the result; 

iv. repeat steps (ii)-(iii) for a fixed number of iterations N. 



The smoothing filter is aimed at progressively reducing the number of extremes at each step, by 

eliminating the less ‘significant’ ones (where the significance is related to the amplitude of the 

luminance variation). The following algorithm achieves it: 

IF   ( xk+1 - yk > TS/2 )   THEN   yk+1 = xk+1 - TS/2 

ELSE  IF   ( | xk+1 - yk | < TS/2 )   THEN   yk+1 = yk 

  ELSE  IF  ( xk+1 - yk < - TS/2 )   THEN   yk+1 = xk+1 + TS/2 

where xi and yi are the grey levels of the i-th point of the vector before and after 

smoothing, and TS is a proper pre-defined threshold (see [16]). After a given number of 

iterations N, a feature vector is built, given by the (N-1) ratios between the number of 

extremes before and after each filtering step. Such a vector provides a kind of texture 

signature, which can be used for classification purposes. 

Tests performed on the above algorithm demonstrated that it is able to classify with good reliability 

different textures, given that a sufficient number of pixels is available. On the contrary, its 

inadequateness appears evident when applied to the identification of small-size anomalies within 

uniform textures. This fact can be easily verified by considering an example. Let us apply the max-

min method to the two different textures in Figs. 1.a and 1.b (selected from the Brodatz album). The 

algorithm provides a set of features for each vector of image pixels given in input (a group of scan 

lines extracted from one of the textures). The intra- and inter-set Euclidean distances calculated on 

these feature sets confirm that the two clusters are sufficiently compact and separated to guarantee a 

correct classification of the texture samples (see Table I). Then, let us create a synthetic image (see 

Fig. 1.c) by inserting a 100×100 patch of texture 1.b in texture 1.a. Although a human observer 

easily perceives the presence of the anomaly, the feature vectors extracted from the anomalous scan 

lines do not reveal any significant variation. This is clearly visible in the chart of Fig. 2, where the 

distance of each scan line of Fig. 1.c from the prototype of texture 1.a is plotted. In this context, the 

prototype is achieved by averaging a certain number of feature vectors, extracted from “correct” 

scan lines. 

The reason of the inefficiency of the max-min approach in this case is twofold. First, the topology 

of the analysed scan lines is such that only a few pixels of the defective area are included in each 

inspected sample, thus not sufficient to influence the global statistics. Second, the relative density of 

extremes at different smoothing thresholds provides an incomplete characterisation of the texture, 

which in turn gives highly unstable statistics if only a few samples are available, as in the case of 

texture fault detection. 



3. Contrast-Based Feature Extraction and Defect Localization 

The proposed method includes an adaptation phase (to be performed off- line) and an anomaly 

detection phase (on- line). The adaptation phase is aimed at generating a prototype of a regular 

texture, while the detection phase consists in the location of possible defects and the consequent 

identification of the area affected by the anomaly. This task is achieved by comparing the texture 

samples with the prototype. 

Both phases share a common core algorithm, which includes three main operations: 

• scan a texture image with a particular windowing procedure; 

• for each sample, extract the local extremes at various smoothing thresholds; 

• for each local maximum or minimum, compute a set of parameters that will be used to construct 

the feature vector associated to the relevant sample. 

In the adaptation phase, these operations are applied to a training set made up of a certain number of 

samples extracted from a regular texture. This operation leads to the definition of a prototype 

vector, calculated by averaging the feature vectors extracted from the samples themselves (i.e., 

computing the centroid of the cluster). In practical applications, the training set can be constructed 

by randomly taking some patterns from different non-defective mock-ups of the inspected material. 

The number of samples to be included in the training set clearly depends on the feature vector 

dimension (in our tests it was set equal to 10 times the number of features). If a sufficiently large 

acquisition of a correct texture is available, spatial sampling can be a reasonable alternative, 

provided that a sufficiently large number of samples can be achieved. During defect detection, the 

three above mentioned operations are similarly performed to compute the distance of the inspected 

pattern from the prototype, thus allowing to discriminate defective regions. 

The following subsections offer a detailed description of the processes of texture scanning and 

feature extraction, which are of fundamental importance for the effectiveness of the method. 

3.1 Windowing procedure  

In section 2 we observed that one of the main difficulties in using the max-min approach to detect 

texture faults is the low percentage of defective pixels in the analysed samples, which does not 

allow a sufficient statistical characterisation of the local texture. A bare reduction of the scan line 

dimension is not an effective solution. In fact, although it leads to an increased percentage of 

defective points in the analysed sample, it also implies a very limited dimension of the sample, 

which compromises the reliability of the estimation. A better solution can be to analyse groups of 

consecutive scan lines, achieved by partitioning the texture in small areas to be independently 

processed. Nevertheless, this procedure must be carefully studied in order to avoid losing precision 

in defect identification. 



In this work a particular texture scanning method was set up, which allows to achieve both a 

statistically significant sample dimension and a sufficient incidence of the defect within the 

analysed sample. The procedure consists in tiling the image and applying to each block a moving-

window scanning procedure, consecutively performed in the x and y directions of the image plane. 

The choice of the block size for image tiling is strictly application-dependent, for it is connected 

both to the texture scale (also related to the acquisition resolution) and to the dimension of the flaws 

to be detected. Generally speaking, the window must contain a sufficient portion of the texture in 

order to be statistically significant, and possible defects should impact to a sufficient extent the 

analysed sample (at least 10% of the surface). In the experiments carried out, the window size was 

manually set, in the range 50×50÷150×150 pixels. It is also possible to set up automatic procedures 

for this task, for instance by analysing the statistics of a large number of fixed-size blocks extracted 

from a regular texture pattern, and progressively incrementing the block size until the statistical 

parameters converge to a constant value (spatial stationariety). 

Concerning the window size, it should be set to an odd number M of block rows ranging from 3 to 

7. The window is shifted by one line at a time, thus with an overlap of M-1 rows (see Fig. 3.a); for 

each positioning, the block rows embraced by the moving window are organised in a linear array 

(by a bi-directional raster scanning), from which a set of contrast features is extracted. 

This procedure is applied in both training and operation phases. In the training process, every 

feature vector is collected independently of the window position (owing to the hypothesis of 

stationariety), and used to generate the texture prototype. A different prototype is created for the 

two spatial directions (x, y), in order to take into account possible spatial anisotropies in the texture. 

Samples used to generate the two prototypes can be possibly overlapped in the x and y directions. 

During defect detection, the window is progressively centred on the inspected line, and the relevant 

feature vector is used to determine the compliance of the corresponding line with the prototype. 

Lines that show different properties from the prototype are marked as defective, and are matched 

with the lines in the perpendicular direction to locate defective points, as shown in Fig. 3.b. Of 

course, this procedure does not produce an exact segmentation of the defect, but it allows 

identifying with a very good reliability the bounding rectangle that includes it. 

As to the identification of defective lines, a simple threshold applied to the mean square difference 

(MSD) between the feature vector associated to the currently inspected line and the prototype can 

produce an adequate result. The adopted threshold T can be manually set up, or can be 

automatically determined by taking into account the dispersion of the samples in the adaptation set: 

to this purpose, all the patterns in the training set are used to reliably estimate the distribution of the 

correct texture samples. A simple solution consists in computing the distance among each sample j 



in the training set and the prototype MSD(j), and setting the threshold to T=TD=max j{MSD(j)}: a 

sample is then considered defective if its distance from the prototype exceeds TD. This solution is 

very easy and yields good results if the training set is sufficiently homogeneous; otherwise, better 

results can be obtained by considering the variance of the sample distances. If σD is the standard 

deviation of the MSD between the training feature vectors and the relevant prototype, good results 

can be achieved by setting the threshold to T=Tσ=3σD. Nevertheless, in practical applications where 

a very large number of images are analysed using the same system set-up, the manual setting of the 

threshold (obtained through a simple user interface) can become a competitive solution. 

By applying the method so far described it is possible to process images samples of 150 to 1000 

pixels, depending on block and window size, which are usually adequate to achieve reliable 

statistics. Moreover, even for very small-sized defects (10-20 pixels in diameter), the percentage of 

defective points is high enough to affect the statistics of the involved samples. 

3.2 Characterisation of local extremes 

The example given in Fig. 2 shows that the density of local extremes at different scales is not 

sufficient in general to completely characterise a texture. In particular, this measure fails when 

different textures are present in the analysed sample, a situation that is common in texture fault 

detection problems. 

To increase the discrimination performance of the classifier, several parameters were initially 

considered, and their values computed on a large set of samples. The objective was to find 

significant measures, able to describe the statistical properties of the peaks and valleys (maxima and 

minima) that alternate in the line scanning of a texture. After normalizing the feature vector, a 

careful selection was accomplished by measuring the relative weight of each parameter inside the 

vector and the correlation factor of each pair of coefficients. The less significant coefficients were 

then discarded, while the correlated ones were simplified, modified or merged (when semantically 

admissible). At the end of this process, a set of seven parameters was defined. To build the feature 

vector connected to a texture sample, the values of the seven parameters are calculated at each 

smoothing iteration, thus generating a vector of dimension 7×N, N being the number of iterations. 

The basis parameters are described hereafter: 

• Density of local extremes: it is given by the ratio between the number of local extremes Nextr 

and the total number of pixels in the sample Npel : 

 pel

i
estri

estr Ni
N

N
d ,..,1   ,

)(
)( ==   (1) 



• Expected value of local maxima Mk and minima mk : it is the mean value of the grey levels 

associated to the extremes, independently calculated for maxima (peaks) and minima 

(valleys): 
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• Variance of local maxima and minima: it is the mean square deviation of the grey levels 

associated to the extremes from the corresponding expected values: 
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• Power of peaks and valleys : it is the mean value of the peaks/valleys power, defined as the 

square sum of the differences between the grey levels xi of the pixels belonging to the 

peak/valley and the basis k of the relevant peak/valley (i.e., the minimum grey level for peaks 

and the maximum grey level for va lleys): 
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Fig. 4 provides a graphical representation of the various elements used to compute the above 

parameters, sketched on a sample scan line. 

4. Analysis of Computational Complexity 

One of the main goals of the proposed method is to develop a technique able to reliably detect 

texture faults with very little needs in terms of hardware and computation. This is a very 

desirable feature in many industrial systems that require low-cost and nearly real-time image 

analysis tools (e.g., the visual inspection of materials in a production line). In this section, the 

computational complexity of the method is analysed in detail to demonstrate the viability of the 

proposed approach from this viewpoint also. 

To this aim, the number of elementary operations (sums, products, and comparisons) to be 

executed for each image pixel is calculated. Since the complexity strictly depends on the number 



of extremes found in a scan line, we considered the worst case, consisting in a continuous 

alternation of maxima and minima. Based on a sample dimension of Npel pixels, and neglecting 

the operations not depending on Npel (Npel  >> 1), one needs, for a single smoothing threshold: 

- pelN  comparisons  to determine local extremes (maxima and minima); 

- 
2
pelN

 sums  to calculate the density of maxima; 

- 
2
pelN

 sums  to calculate the mean value of maxima; 

- 
2
pelN

 products and 
2
pelN

 sums  to compute the variance of maxima; 

- 
2
pelN

 products and pelN  sums  to compute the power of maxima; 

An equal number of elementary operations are required for the computation of parameters 

relevant to local minima. Summarizing the above data, and multiplying for the number of 

thresholds N adopted in the iterative smoothing procedure, we achieve: 





⋅⋅
⋅⋅

productsNN

scomparisonandsumsNN

pel

pel

2

7
 

Finally, we have to consider that the texture analysis is applied as a sliding window and the 

scanning is sequentially operated in the horizontal and vertical directions. Then, the above 

operations are performed 2M times for each pixel, where M is the window size (number of block 

rows that forms a texture sample). The expression we obtain is the number of operations for a 

texture sample, which must be further divided by Npel to achieve the number of elementary 

operations per pixel: 
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We should take into account the normalization and the computation of the distance from the 

prototype, but the relevant number of operations is negligible as compared to the above, being 

Npel >> 1. It can be observed that the order of complexity is linear with the dimension of the 

window, which is usually quite small. Furthermore, this number is largely overestimated, being 

the number of local extremes typically much lower than Npel and rapidly decreasing with the 

smoothing iterations. Table I shows the time spent (in msec) to process a 512x512 b/w texture 

image, for some typical parameter settings: simulations were performed on a Sun Spark Ultra 80 

workstation running Sun-Solaris operating system. Furthermore, the algorithm enjoys a very 

high degree of parallelism that makes it suitable for fast DSP implementation. 



5. Experimental Results 

Several simulations were carried out to verify the effectiveness of the proposed approach. In order 

to validate the performance of the algorithm on a controlled environment, the method was first 

tested on a set of 10 synthetic images, obtained by including small extraneous patches in a 

homogeneous texture pattern, as already shown in Fig. 1. The textures used to build this set were 

selected from the Brodatz collection, by previously equalizing the average grey level in order to 

avoid biasing the result. 

The chart in Fig. 5 allows evaluating the discrimination capability of each feature in the analysis of 

the defective test image of Fig. 1.c. In particular, each curve plots the distance between horizontal 

texture samples and prototype (extracted from the texture of Fig. 1.a) for a specific feature. It is 

possible to observe that in this case the power of peaks is the dominant feature. Fig. 6 shows the 

distance between each horizontal sample and the prototype, calculated on the overall feature vector. 

A direct comparison between the charts in Figs. 2 and 6 makes evident that the proposed method 

provides dramatically better discrimination capabilities: in fact, it is now possible to clearly identify 

the defective area (extraneous patch) and segmenting the flaw by a unique threshold. This result 

was achieved by directly processing the entire texture 512x512 pels without tiling (due to the very 

large size of the “defect”), setting the window size to M=3 rows (columns), and using N=4 

smoothing iterations. Therefore, each analysed sample had a size of 1536 pixels, and was 

represented by a feature vector of dimension 28; anomalous samples contained 300 pixels of the 

extraneous texture, equal to 20% of sample dimension. 

A quantitative performance index was also defined in order to better evaluate the results achieved. It 

simply consists in the percentage image area that is wrongly classified by the system (pixels 

belonging to the extraneous patch that are not detected, and pixels belonging to the main texture 

classified as faulty). The average error rate computed on the entire synthetic test set was equal to 

2.6%, with all the errors concentrated on the borders of the defective area and no correct areas 

classified as defective (false alarms rate = 0). 

In a second phase, the method was tested on a large set of natural images, including textured 

ceramic tiles and ornamental stones (granite tiles). The adopted test set was acquired in the 

framework of some industrial grants targeted to the definition of suitable technologies for automatic 

visual inspection of construction materials. It includes over 300 images with different types of 

defects (cracks, blobs, stains and other imperfections) over differently textured natural and synthetic 

materials. Also in these conditions, the performance of the proposed method was very satisfactory, 

as confirmed by the following examples. 



Figs. 7 and subsequent illustrate some examples of natural defect identification. In all the examples 

shown hereafter, the image was regularly partitioned in blocks of 125x125 pels, to which the texture 

fault detection algorithm is applied. Furthermore, the size of the window and the number of 

smoothing iterations were kept fixed M=5 and N=4, respectively, in order to verify the possibility 

of applying the algorithm to different data sets without fine-tuning the parameter settings. Fig. 7.a 

presents a detail of a regular ceramic tile, characterized by a pseudo-random enamel glazing, 

acquired at a resolution of 300 dpi with a uniform illumination system. Fig. 7.b shows a detail of a 

defective tile, with the region of interest including the flaw marked by a dashed box. Fig. 7.c 

compares the manual defect segmentation operated by the expert (white line) with the defect 

bounding automatically extracted by the algorithm (black line). It is possible to observe that only 

minor discrepancies are present in this case between the two classifications, concentrated in the 

border of the defective area. As in the synthetic case, the inability of the original max-min approach 

to solve the problem is made evident by the chart in Fig. 8, which shows the distance of horizontal 

scan lines of the defective texture from the prototype, based on the parameter “density of extremes”. 

It is possible to observe that scan lines enclosing the flaw do no t present particular statistical 

difference as compared to normal samples. On the contrary, Fig. 9 demonstrates that the proposed 

feature set is able to significantly discriminate among normal and defective areas: in particular, it is 

to be pointed out that in this case there is not a unique dominant feature (as in the synthetic test), but 

there is a good complementarity among the various features (e.g., mean value and variance of 

maxima). Again, the chart in Fig. 10 shows the distances between texture samples and prototype, 

calculated on the entire feature vector, together with the defect bounding coordinates (horizontal 

direction) and ideal thresholds (sample coordinates are relative to the region of interest). 

In the example of Figs. 11-14, showing the results achieved on a different type of ceramic material, 

an incomplete detection of the defect is achieved, being the bottom part of the flaw very difficult to 

characterize in the horizontal direction (as shown by the relevant charts). In Fig. 15, a different 

defect occurred on the same material of Fig. 11 is identified by the algorithm: in this case, being the 

defect (a small crack) quite thin and elongated, the algorithm is able to catch only a part of it. This 

example highlights a limitation of the proposed technique, which provides better results in the 

presence of defects with isotropous shapes. Finally, in Figs. 16-17 two different defects occurred on 

a third type of textured tile are exactly detected. 

A major problem with natural images lies in the fact that they are usually characterised by less 

evident defects, with different shapes and dimensions. As a consequence it is often not possible to 

exactly specify the size and extension of a defect even for a human observer (in particular, the 

borders are in general ambiguous). Furthermore, the proposed algorithm is not able to perform an 



exact segmentation, but just defines the rectangle that bounds the image rows and columns 

classified as defective. Consequently, to extend the use of a quantitative index of performance to the 

case of natural images, it was first necessary to ask a human expert to manually segment the defect, 

and then, to compute the bounding rectangle of the flaw identified by the expert. The performance 

index is then defined as the percentage difference between the two bounding rectangles (the one 

defined by the expert and the one computed by the algorithm). The accuracy measured in this case 

is slightly lower as compared to the synthetic case, with an average error percentage of 4.2%, over a 

set of 200 images. Again, errors were mainly localised near the borders of defective areas, which 

usually contain a very low percentage of anomalous pixels (particularly, in round-shaped defect). In 

the case of natural images, a small percentage of false detection was also recorded, in particular 

when the window size is set very small in the attempt to identify little defects over very large scale 

textures: in this case it could happen that the texture statistics within the window are not sufficient 

to characterise all the possible texture variations within the prototype. Since this can be a limiting 

factor for algorithm applicability, some studies are being conducted to define a more complex 

matching, based on the use of multiple prototypes. 

6. Conclusions 

A new method for the detection of texture fault was proposed, which uses a set of contrast-based 

features calculated with a separate windowing procedure along x and y directions. The method is an 

extension of the max-min approach, which exploits the properties of local extremes of the 

luminance function along one-dimensional scan- lines of a texture to identify anomalous regions. 

Extensive tests demonstrated the effectiveness of this approach and its appropriateness in the 

context of automated visual inspection systems. Theoretical estimations of the algorithmic 

complexity as well as practical ones (through implementation on standard computer platforms as 

well as on parallel DSP architectures), confirmed the usability of the method in real-time inspection 

systems. 
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FIGURE AND TABLE CAPTIONS 

 

Table I – Time required (in msec) to process a 512×512 pels texture on a Sun Spark Ultra 80 

workstation running Sun-Solaris operating system, for various settings of the M, N parameters. 

Table II - Inter- and intra-set distances of the feature vector clusters achieved by the max-min 

approach on the textures in Fig. 1.a-b 

Figure 1 - (a), (b) two textures taken from the Brodatz album, 512×512 pels; (c) a synthetic pattern 

obtained by introducing a 100×100 region of texture (b) in texture (a). 

Figure 2 - Distance of horizontal scan lines of texture 1.c  from the prototype of texture 1.a, with 

application of the original max-min approach. Vertical lines mark the extraneous area. 

Figure 3 - Texture scanning procedure. (a) A horizontal moving window of vertical size 3 is applied 

to a block. (b) The scanning is repeated in the vertical direction to identify defective pixels. 

Figure 4 - Basic elements used for feature vector computation in a sample scan line. 

Figure 5 - Distance of texture samples of Fig. 1.c from the prototype, analysed feature by feature 

(horizontal scanning). Vertical lines mark the defective area 

Figure 6 - Distance of texture samples of Fig. 1.c from the prototype after the application of the 

proposed method (horizontal scanning). Vertical lines mark the defective area, while horizontal line 

indicates the optimum threshold (perfect identification of the defect). 

Figure 7 – Example of texture fault detection on a natural image (ceramic tile). (a) A sample of the 

regular texture; (b) a sample containing a flaw (dust blotch): the block containing the defect is 

marked by a dashed line; (c) identification of the defect: by an expert (white) and by the proposed 

method (black) 

Figure 8 - Distance of horizontal scan lines of Fig. 7.b (defective block only) from the prototype 

extracted from the regular texture of Fig. 7.a, with application of the original max-min approach. 

Vertical lines mark the horizontal bounds of the flaw. 

Figure 9 - Distance of texture samples of Fig. 7.b from the prototype (defective block only), 

analysed feature by feature (horizontal scanning). Vertical lines mark the defective area 

Figure 10 - Distance of texture samples of Fig. 7.b from the prototype after the application of the 

proposed method (horizontal scanning). Vertical lines mark the defective area, while horizontal line 

indicates the optimum threshold (set by hand). 



Figure 11 – Example of texture fault detection on a natural image (ceramic tile). (a) A sample of 

the regular texture; (b) a sample containing a flaw (enamel stain): the block containing the defect is 

marked by a dashed line; (c) identification of the defect: by an expert (white) and by the proposed 

method (black) 

Figure 12 - Distance of horizontal scan lines of Fig. 11.b (defective block only) from the prototype 

extracted from the regular texture of Fig. 11.a, with application of the original max-min approach. 

Vertical lines mark the horizontal bounds of the flaw. 

Figure 13 - Distance of texture samples of Fig. 11.b from the prototype (defective block only), 

analysed feature by feature (horizontal scanning). Vertical lines mark the defective area 

Figure 14 - Distance of texture samples of Fig. 11.b from the prototype after the application of the 

proposed method (horizontal scanning). Vertical lines mark the defective area, while horizontal line 

indicates the optimum threshold (set by hand). 

Figure 15 – Detection of another type of flaw on the same textured material of Fig. 11.a. (a) sample 

containing the flaw (small crack): the block containing the defect is marked by a grey box; (b) 

identification of the defect: by an expert (white) and by the proposed method (black) 

Figure 16 – Detection of another type of flaw on a different material (natural stone). (a) Sample 

containing a flaw (chipping): the block containing the defect is marked by a grey box; (b) 

identification of the defect: by an expert (white) and by the proposed method (black) 

Figure 17 – Detection of another type of flaw on the same material of Fig. 16.a. (a) sample 

containing the flaw (bump): the block containing the defect is marked by a grey box; (b) 

identification of the defect: by an expert (white) and by the proposed method (black) 

 

 



 

Table I 

            M 
 N 

3 5 7 

 3 132 223 309 
 4 185 292 417 
 5 232 371 512 

 

 

Table II 

Maximum intra-set distance 
for  texture 1.a 

Maximum intra-set distance 
For  texture 1.b 

Minimum inter-set distance 
between 1.a e 1.b 

0.04419 0.13009 0.19075 
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Figure 10 
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