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Abstract. Adaptive model selection can be de�ned as the process thanks

to which an optimal classi�ers h� is automatically selected from a func-

tion class H by using only a given set of examples z. Such a process is

particularly critic when the number of examples in z is low, because it

is impossible the classical splitting of z in training + test+ validation.

In this work we show that the joined investigation of two bounds of the

prediction error of the classi�er can be useful to select h� by using z for

both model selection and training. Our learning algorithm is a simple

kernel{based Perceptron that can be easily implemented in a counter{

based digital hardware. Experiments on two real world data sets show

the validity of the proposed method.

1 Introduction

In the framework of classi�cation problems, the machine learning community
refers to model selection as the task through which an optimal function class Hk

is selected from a given set H with the goal of optimizing the prediction error
of the classi�er h� extracted from Hk. Usually such a task involves a tradeo�
between the capability of the model to learn the given set of labeled examples
z = f(xi; yi)g

m

i=1, and a measure of the complexity of the model itself [11]. Each
(xi; yi) is supposed to be designed independently and identically distributed
over an unknown distribution P ; we use the following notation: xi 2 X , yi 2 Y ,
zi = (xi; yi) 2 X � Y = Z; z 2 Zm; X � <r; Y = f�1; 1g. In this paper
we consider digital learning algorithms A as operators that map z to a set of
parameters A, A:Zm ! A, A � (N+)m; in particular we consider the Digital
Kernel Perceptron with Pocket (DKPP), which leads to the following function
class: H = fh :K�A �X ! Y : h(�; x) = sgn(

Pm

j=1 �jyjK(xj ; x));K 2K; � 2
A; x 2 Xg. K(�; �) : X �X ! < is a kernel function that realizes a dot product
in the feature space [1]. The choice of the kernel perceptron (KP) is justi�ed
by recent studies that have revalued its role in classi�cation tasks, showing the
relation between its generalization ability and the sparsity of the �nal solution
[9]. Furthermore its simplicity suggests that a very simple digital hardware can be
designed. In this paper we propose an adaptive automatic procedure to select the



best function in H . Our approach is based on recent studies that have proposed
uniform (over the distribution P ) and data{dependent bounds for the error rate
of the KP [9] and for a given learning algorithm [3], respectively. In the next
section we brie
y introduce the DKPP learning algorithm, while in section 3 we
describe uniform and data{depended bounds; based on such bounds we propose
a procedure for adaptive model selection. In the end, in section 4 we comment
some experiments on two real{world data sets.

2 The DKPP algorithm

It is well known that the KP algorithm belongs to the class of kernel-based
approaches, in which a non linear classi�er is built after a mapping of the in-
put space to a higher, possibly in�nite, feature space via a function �. This
is a well-known theory that exploits the Reproducing Kernel Hilbert Space
(RKHS) framework [1], and recently has been applied with success by the ma-
chine learning community. Support Vector Machines (SVMs), designed by Vap-
nik [11], represent one of the most successful examples of a learning machine
based on a kernel method. In practice, the kernel function K(�; �) acts as an
operator that hides the non linear map in the feature space, thus avoiding to
work directly on �. For classi�cation purposes, the most used kernel functions
are: K(xi; xj) = xi � xj (linear), K(xi; xj) = (1 + xi � xj=r)

p (polynomial) and

K (xi; xj) = exp
�
�kxi � xjk

2
=2�2

�
(Gaussian); p and �2 are usually indicated

as the hyperparameters of the problem. The KP has been applied with success
for classi�cation and function approximation tasks [6], [7], and its generalization
capabilities has been reported for example in [9]. It can be considered as the
dual formulation of the Rosenblatt's learning algorithm which, as known, can be
applied to any choice of the updating step �. The advantage of the dual formula-
tion consists in the fact that one can exploits the theory of kernels, thus allowing
an implicit non linear transformation; furthermore the choice � = 1 leads to the
fact that � 2 A. Table 1 sketches the 
ow of our algorithm, called DKPP. We
implemented the pocket algorithm [8] in order to accept errors on the training
set. This is a crucial point for optimal model selection, as will be clear in the
next sections. It is important to point out that the on-going research on kernel-
based methods suggests that many classi�ers perform comparably, provided that
a good kernel has been chosen [9]; therefore classi�ers like the DKPP, are very
appealing and show their superiority when targeting VLSI implementations, as
simple counter{based architectures can be designed. Figure 1 shows such an ar-
chitecture, where qij = yiyjK(xi; xj) and MSBi indicates the Most Signi�cant
Bit of the accumulator, in a 2's complement coding. In this paper we explore
the way of automatic tuning the model of the DKPP.

3 Uniform and data{depended bounds for the DKP

In general, the error rate (or prediction error), of a classi�er can be de�ned as the
probability for (x; y) drawn randomly over P that h is wrong, that is h(�; x) 6= y:



RAM

PE

  Memory
Controller

q
i

qi,j

0 EN countmux
0

1

clk

1
k+1α

0 EN countmux
0

1

clk

n
k+1α

j
kα

MSBi

acc

EN countmux
0

1

clk

err

0

Fig. 1. A counter{based architecture for the DKPP.

erP (h (�k;z; x); y) = Pr f(x; y) 2 Z : h (�k;z ; x) 6= yg [2], where �k;z = Ak(z) is
the vector obtained by Ak after the observation of z and over the function class
Hk. It is well known from the Probably Approximately Correct (PAC) learning
framework that the behavior of erP can be represented in terms of a bound
which holds with a given probability; in practice, usually one asserts that the
following inequality:

erP (h (�k;z ; x); y) � êrP (hk;z; z) + " (m; dk; Æ) (1)

holds with a given probability 1 � Æ; êrP (hk;z ; z) is the error rate of hk;z on z

(also known as empirical error rate), that is:
êrP (hk;z; z) =

1

m
ji : 1 � i � m;h (�k;z ; xi) 6= yij and dk is a measure of the com-

plexity of the function classHk (for example the Vapnik{Chervonenkis dimension
[11])1. Exploiting the well-known compression scheme by Warmuth et. al. [5], a
uniform bound for the DKPP has been recently proposed [9]; according to such
a theorem, with probability at least 1� Æ, the prediction error of the DKPP, as
long as êrP = 0, is:

erz (hk;z) �
1

m� dk

�
ln

��
m

dk

��
+ lnm+ ln

1

Æ

�
(2)

1 For simplicity, during the text we will use the notation erP (hk;z) =

erP (h (�k;z; x); y) and êrP (hk;z) = êrP (hk;z; z), to indicate the prediction error

and the empirical error rate of hk;z; furthermore, given a set S with jSj we intend
its cardinality.



where dk is the number of non zero alphas. We refer to eq. (2) as B1. In the
agnostic case (êrP 6= 0), one can use a more general result which permits the
calculus of " in a data{dependent way, thanks to the introduction of a measure,
called penalized complexity, that can be directly estimated on the basis of the
given training set z [3]:

erP (hk;z) � êrP (hk;z) + dk +

r
9

2m
ln

1

Æ
(3)

where, in this case, dk = max
h2Hk

�
êr

(1)

P (h)� êr
(2)

P (h)
�
, with:

êr
(1)

P (h) = 2

m
ji : 1 � i � m=2 � m;h (�; xi) 6= yij,

êr
(2)

P (h) = 2

m
ji : m=2 + 1 � i � m;h (�; xi) 6= yij. We refer to (3) as B2. The

measure dk, can be easily computed by applying the DKPP on a new trining set
z0 obtained by splitting z in two halves and by 
ipping the labels of the second
half [3]. In practice, it is easy to see that:

dk = 1� 2êrP (hk;z0 ; z0) (4)

The main goal to design an optimal learning systems, is to bound the right side of
equation (1), in order to bound the prediction error. This leads to the Structural
Risk Minimization (SRM) principle; according to SRM one looks for a function
h having lower empirical error over a �xed function class Hk, characterized by
the complexity d. From a formal point of view, one should build several function
classes in increasing size, that is increasing complexity (H1 � � � � � Hk � � � �),
and then pick a function h which has small training error and comes from a
classesHk having lower complexity (that is lower " according to (1)). Our idea for
adaptive model selection consists in building several Hk and then in measuring
their richness on the basis of B1;2. In practice we choose the function h� =
argmin

k
[êrP (hk;z) + " (m; dk; Æ)]. The general procedure is sketched in table 2.

Note that, theoretically, one could only use B2. Actually, it is known that several
function classes, such as the Gaussian one, have typically an high complexity,
and the corresponding measure dk, found according to the maximal discrepancy
estimate, does not give any useful information on the problem (dk = 1); on the
other hand, in these cases we have êrP = 0, thus allowing the use of B1. Our
experiments show that the joined investigation of B1;2 can assure an optimal
model selection for di�erent real{world problems.

4 Experiments

We test our approach on two well{known datasets from [4, 10], that is sonar
(SNR) and pima indian diabetes (PIMA), respectively. The results are summa-
rized in table 3. Both data sets are two{class problems with r = 60 and r = 8
input features respectively, whilst the number of training samples are m = 104
and m = 576; TS indicates the number number of errors on 104 and 192 val-
idation patterns respectively. We applied the model selection method to select



Table 1. The DKPP algorithm.

Step Description

1. set � = 0, �opt = 0, nerr = m

2. Repeat until no mistakes occur or a max number of steps has been reached

3. for i = 1 to m do

4. compute MSBi = yi

�
sgn

�P
j
�jyjK(xi; xj)

��
5. if MSBi < 0 then

6. �i = �i + 1

7. compute err = ji : yi

�
sgn

�P
j
�jyjK(xi; xj)

��
< 0j

8. if err < nerr then �opt = �, nerr = err

9. end for

10. �k;z = �opt

Table 2. A procedure for adaptive model selection.

Step Description

1. set k = 1

2. Select a kernel function (es: linear, polynomial or gaussian)

3. Select a value for the hyperparameter (build Hk)

4. Apply DKKP and �nd �k;z = Ak(z), dk
5. Compute Bk;f1;2g = êrP (hk;z) + " (m;dk; Æ)

6. k = k + 1

7. Choose h� = argmin
k

Bk;f1;2g

Table 3. Experiments for the sonar and pima indian diabetes datasets.

SNR �2 = 0:1 �2 = 0:5 �2 = 1:0 p = 2 p = 3 p = 4

B1(TS) 1.86(11) 1.82(7) 1.96(10) 6.58(19) 4.8(15) 4.8(13)

B2(TS) { { { { { {

PIMA �2 = 0:05 �2 = 0:1 �2 = 0:5 p = 2 p = 3 p = 4

B1(TS) 1.41(53) 1.6(50) 2.16(60) { { {

B2(TS) { { { 0.5(41) 0.51(40) 0.6(43)



one among two kernel functions (Gaussian and polynomial) and the associated
hyperparameter (�2 or p). As expected, there is a substantial agreement between
the bounds B1;2 and TS; as reported in table 3, our criteria chooses the best
model, that is a Gaussian kernel with �2 = 0:5 for SNR and a polynomial with
p = 2 or p = 3 for PIMA. As a �nal remark note that with '{' we mean that
corresponding bound does not give any useful information for model selection.
For example, in the case of B2, it means that dk = 1 for every value of the
hyperparameter, while in the case of B1 it simply means that we cannot apply
equation (2) as we are in presence of an agnostic case.

5 Conclusion

In this paper we have propose an eÆcient method for adaptive model selection.
We used a digital kernel based perceptron with pocket, but our approach could
be applied to other learning systems as well, as long as good bounds of the
prediction error are provided; in particular, in this work we have investigated
the use of two di�erent kinds of bounds: a uniform bound, that can be applied
to systems characterized by a high level of complexity, and a data{dependent
bound. Experiments on two real world problems have demonstrated the validity
of the method.
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