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Abstract

The main goal of the minimum zone tolerance (MZT) method is to achieve the best estimation of

the roundness error, but it is computationally intensive. This paper describes the application of a

genetic algorithm (GA) to minimize the computation time in the evaluation of CMM roundness

errors of a large cloud of sampled datapoints (0.2° equally spaced datapoints).

Computational experiments have shown that by selecting the optimal GA parameters, namely a

combination of the four genetic parameters related to population size, crossover, mutation, and stop

conditions, the computation time can be reduced by up to one order of magnitude, allowing real-

time operation.

Optimization has been tested using seven CMM datasets, obtained from different machining

features, and compared with the LSQ method.

The performance of the optimized algorithm has been validated with GA from the literature using

four benchmark datasets.
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1. Introduction

According to ISO 1101 [1], “A geometrical tolerance applied to a feature defines the tolerance zone

within which that feature shall be contained”.

Roundness is one of the main functional product features in machining and assembly when

handling, positioning and mating are involved.

The most used algorithms to determine form errors, particularly roundness errors, are:

• least-squares method (LSQ),

• maximum inscribed circle (MIC),

• minimum circumscribed circle (MCC), and

• minimum zone tolerance (MZT).

With the LSQ method, a circle is fitted to the profile using the least-squares method. The center of

that circle is used to fit the smallest circumscribed and the largest inscribed circles to the profile.

The radial separation between these two circles is the roundness error. The LSQ method [2] is the

most popular method for evaluating the roundness error. This method has been widely used in

CMMs in view of the simplicity of its application.

With the MIC and MCC methods [3], the largest inscribed and the smallest ciscumscribed circles

that contain the profile are respectively found. Next the centers of these circles are used to find,
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respectively, the smallest circumscribed and the largest inscribed circles. The radial separation

between the two concentric circles (substitute feature) is the roundness error.

Unfortunately the error evaluation with the above methods is not the optimum, resulting in a

possible overestimation. Therefore, although CMMs algorithms successfully reject defective parts,

they may also reject parts that satisfy the design tolerances. For this reason, alternative methods

able to achieve a better roundness estimate may produce economical benefits.

The MZT method consists of defining two concentric circles with minimum radial separation that

contain the sampled profile. The radial separation between these two circles is the roundness error.

By definition, the MZT method produces optimal as well as correct solutions, because the substitute

feature has the minimum radial separation. Hence, it detects fewer out of tolerance parts compared

to LSQ, MIC and MCC. ISO/TS 12181-2 [4] suggests that the MZT criterion should be applied to

evaluate roundness. The drawback of the techniques based on the MZT method is that it requires

the solution of a non-linear problem. The complexity and consequently the computation time of

MZT algorithms is very sensitive to the number of sampled datapoints. Due to the problem

complexity increase with the dataset size, suitable optimization algorithms are required.

In previous works, one of the authors developed a fast algorithms for small datasets to assess the

kind of waviness deviation on the profile in order to detect critical points such as peaks and valleys

[5] [6].

Among the fastest form error evaluation methods to implement, already available in the literature

based on the MZT, are the steepest descent algorithm, which has been applied for roundness

evaluation [7], and a two-dimensional simplex search method to evaluate several form features,

including roundness [8]. However they do not guarantee a global optimal solution for non-convex

problems.

Xiong [9] developed a general mathematical theory, a model and an algorithm for different kinds of

profiles, including roundness where the linear programming method and exchange algorithm are

used. As limaçon approximation is used to represent the circle, optimality of the solution is however

not guaranteed.

A strategy based on geometric representation for minimum zone evaluation of circles and cylinders

was proposed by Lai and Chen [10]. The strategy employs a non-linear transformation to convert a

circle into a line and then uses a straightness evaluation schema to obtain minimum zone deviations

for the feature concerned. This is an approximation strategy to minimum zone circles.

M. Wang et al. [11] presented a generalized non-linear optimization procedure based on the

developed necessary and sufficient conditions to evaluate roundness error.

Y. Wang [12] proposed a general-purpose algorithm for constrained non-linear optimization

problems for minimum zone evaluation of form tolerances. He used a technique similar to the

sequential quadratic programming method, verifying that an optimal solution to the quadratic

programming problem can be obtained in a finite number of iterations.

Samuel and Shunmugam [13] established a minimum zone limaçon based on computational

geometry to evaluate roundness error; with geometric methods, exact global optimal solutions are

found by exhaustively checking every local minimum candidate.

Other researchers like Chang and Lin [14] have used the Monte Carlo simulation method to

evaluate roundness errors.

Another approach is based on the Voronoi diagram as described by Roy and Zhang [15]; the

method yields a very accurate measurement of the roundness error, but it is computationally

intensive.

As for genetic algorithms (GAs) to find the solution of the MZT problem, as proposed in this paper,

Sharma et al. [16] used a standard GA for the evaluation of multiple form tolerance classes such as

straightness, flatness, roundness, and cylindricity. There was no need to optimize the algorithm

performance, choosing the parameters involved in the computation, because of the small dataset

size (up to 100 datapoints).



Wen et al. [17] implemented a GA in real-code, with only crossover and reproduction operators

applied to the population. Thus in this case mutation operators were not used. The algorithm

proposed is robust and effective, but it has only been applied to small datasets.

Another metaheuristic method to approach this problem is swarm particle optimization (SPO) [18].

MZT, despite its complexity, is a potential replacement of traditional methods in industry for the

mentioned economical benefits. However for on-line inspection the computation time becomes a

key factor. So not only the roundness error needs to be minimized, but also the computation time is

a performance index.

Metaheuristic methods are faster with large cloud of sampled datapoints compared to those cited

above, consequently they are suitable in manufacturing systems where the total computation time is

an index of the system performance for on-line evaluation.

GAs differ considerably in conception from other search methods. The basic difference is that while

other methods always process single points in the search space, GAs maintain a population of

potential solutions, and so perform a multi-directional search.

The proposed GA has been tested on larger datasets than available in the literature (1800 sampled

datapoints).

Larger datasets available by CMM scanning techniques allow reducing the form error estimation

but they would require optimal GA parameters for faster convergence. On the other hand, larger

datasets allow an effective tuning in order to minimize the computation time, because the GA

parameters optimized on larger datasets may provide useful information about the behavior of GAs

with few hundreds or less datapoints, like in standard CMM applications.

The optimal GA parameters have been experimentally evaluated on seven datasets and the

performance validated on four datasets from the literature.

2. The MZT problem

In the MZT problem, the unknown are the (x,y) coordinates of the center (MZC) of the inner and

outer (concentric) circles with the minimum radial separation containing all the sampled points

(Figure 1). The two concentric circles are the substitute feature of the inspected profile and the

difference between the inner and the outer circle is the minimum zone error (MZE).

[Figure 1 about here.]

Figure 1: Profile of sample n. 1 (Table 2) with 1800 equally spaced CMM datapoints and substitute

features: minimum, medium, and maximum circles for current (x,y).

Given a profile r(x,y,θ), with θ ∈ (0, 2π], of a section perpendicular to the axis of a cylindrical

feature, the roundness error R(x,y) is defined by:

),(),(),( yxMICyxMCCyxR −= , (x,y) ∈ ),,( θyxrE (1)

where MCC(x,y) and MIC(x,y) are the radii of the substitute feature of centre (x,y), and ),,( θyxrE  is

the area enclosed by r(x,y,θ):
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As a CMM samples a finite number, n, of equally-spaced points θi = i×
n

π2
, i=1,...,n, the MCC(x,y)

and MIC(x,y) are evaluated by:
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MZE is evaluated by applying the MZT data-fitting method to solve the following optimization

problem:
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where ),,( iyxrE θ  is the convex envelopment of the n equally-spaced sampled points, i.e. the search

space.

3. Genetic parameters

GAs were proposed for the first time by Holland [19] and constitute a class of search methods

especially suited for solving complex optimization problems [20].

GAs maintain a population of individuals that are represented by their chromosomes, which are

made of genes; GAs operate on the genes, which represent the inheritable properties of the

individuals, by means of genetic operators. In each generation, the genetic operators are applied to

selected individuals from the current population in order to create a new generation according to the

iterative standard scheme in Figure 2 also used in this work.

A fitness function is assigned to an individual in order to reflect how well a solution fulfills the

requirements of the given problem. The fitness function also makes it possible to evolve only good

solutions.

[Figure 2 about here.]

Figure 2: Standard GA scheme.

The standard genetic operators are the following:

Selection: during this operation, a solution has a probability of being selected according to its

fitness. One mechanism that allows fitness proportional selection is the roulette wheel procedure.

Each individual has a chance to be selected, which is directly proportional to its fitness in the

roulette wheel. Tournament selection is another reproduction mechanism. Tournament selection

involves running several tournaments among a few individuals randomly chosen from the

population. The individual with the best fitness is selected for crossover. If the tournament size is

larger, weak individuals have a smaller chance of being selected. A third reproduction mechanism is

elitist selection. With this method, the individuals are ordered on the basis of their fitness function;

the best individuals produce offspring. The next generation will be composed of the best

chromosomes chosen between the set of offspring and the previous population.



Crossover: new individuals are generally created as offspring of two parents. This method allows

inheriting genes from parents with high fitness by the selection mechanism. One or more so-called

crossover points are selected within the chromosome of each parent, at the same place in each. The

parts delimited by the crossover points are then interchanged between the parents. The resulting

individuals are the offspring. These kinds of crossovers are controlled by the crossover probability.

Beyond one point and multiple point crossover, there exist more sophisticated crossover types. The

so-called knowledge-augmented crossover operator constructs offspring from parents by making

use of domain knowledge related to the given problem. Another crossover mechanism is arithmetic

crossover, which generates offspring as a component-wise linear combination of the parents.

Mutation: a new individual is created by making modifications to one selected individual. The

modifications consist of changing one or more values in the representation, or in adding/deleting

parts of the representation. In GAs, mutation is a source of variability, and is applied in addition to

selection and crossover. This method prevents the search to be trapped only in local solutions. The

mutation probability controls the operator behavior.

Stop criterion: the algorithm has an iterative behavior and needs a stop condition to end the

computation. Possible criteria include: overcoming a predefined threshold for the fitness function or

iteration number or their combinations.

3.1 GA for roundness error evaluation

We use a GA in order to apply the MZT data-fitting algorithm [16] [17] [21].

A GA to solve the optimization problem (6) for a two-dimensional search space entails a population

of chromosomes made of pairs of coordinates (their genes). These genes represent respectively the x

and y coordinates of the center of the substitute feature of radii MCC(x,y) and MIC(x,y), in other

words a set of possible candidates of the MZC for the optimization problem (Figure 1). For three-

dimensional features such as spheres and cylinders, a third coordinate (z), and consequently a third

gene, is required.

A fitness function defines the goodness of each chromosome (x,y) as solution of (6). As shown by

(1), the fitness function is represented by the roundness error R(x,y).

By applying genetic operators, the data-fitting algorithm evolves from generations of 2D

coordinates implicitly exploring the search space, until a stop condition establishes the convergence

to the MZC.

4. The proposed GA to assess the MZT to large datasets

GAs are able to provide a (local) optimum in all cases. However, to improve their convergence,

particularly with large datasets, the genetic parameters need to be tuned.

In this work we describe the configuration of the genetic parameters in order to optimize the

computation time for an evaluation error target.

The GAs performance are influenced by the following four main parameters as detailed in Table 1:

- population size (pop),

- probability of crossover (pc),

- probability of mutation (pm), and

- stability condition (N).

To stop the algorithm the stability condition with the mechanism described in Table 1 is proposed

because the computation time is the main focus of this work. The selection of N is a compromise

between two opposites criteria too small a value leads to an early stop of the evaluated generations

with a non-optimal solution; too big a value guarantees the optimal solution, but causes an

unacceptable increase in the computation time.



Table 1: Genetic operators, their parameters and mechanisms

Genetic

operator

Parameter Remark

- pop population size

selection - elitist selection

crossover pc one point crossover of the pc×pop parents’ genes (i.e. coordinates) at

each generation

mutation pm pm×pop individuals are modified by changing one gene (i.e.

coordinate) with a random value

stop criterion N the algorithm computes N generations after the last best roundness

error evaluated rounded off to the fourth decimal digit (0.1 µm)

The total computation time can be considered as an index of the algorithm performance for a given

workstation.

GA was implemented on Intel® Core
TM

2 Duo CPU P8400 @ 2.26 GHz Workstation, using C++

5.0.

4.1 Large datasets

Different materials (steel, aluminum, and marble), geometrical features and processes (drilling and

internal turning) have been considered (Table 2).

Table 2: Experimental set

Dataset Diameter [mm] Process Material

1 10 drilling aluminum alloy

2 10 milling steel

3 14 turning steel

4 17 drilling marble

5 23 turning steel

6 25 turning aluminum alloy

7 39 turning steel

For each dataset, the profile was acquired by scanning: a cloud of 1800 equally spaced points on the

circumference (two tenths of a degree each) was sampled during the scan. The sampled profile of

dataset n. 1 is also shown in Figure 1.



4.2 Explorative phase

The genetic parameters have been preliminarily explored over the range pointed out by the literature

(Table 3) on the datasets of Table 2:

- pop, 4 values: 200 − 300 − 400 − 500; this range is higher than proposed in the literature

because of the higher complexity coming from the larger datasets;

- pc, 14 equally-spaced values between 0.01 and 0.9;

- pm, 14 equally-spaced values between 0.001 and 0.04;

- N was conservatively set AS HIGH AS to 150.

Table 3: GA parameters from the literature

Genetic parameter Values from [16] Range from [21]** Optimal values from

[21]**

pop 30 10 – 50 30

pc 0.6 0.8 0.8

pm 0.033 0.06, 0.1 0.06

generation number 50 180 – 4000 4000

** for cylindricity.

Values of pop, pc and pm greater than respectively 500, 0.9 and 0.04 have also been explored and

ignored because produced no significant improvement.

4.3 Computational experiments

The results of computation experiments are shown in Figure 3 with the total computation time as a

function of pop, pc and pm. The four graphs are parameterized on pop and represent the contour

maps of time in the two-dimensional space pc-pm.

[Figure 3 about here.]

Figure 3: GA parameters optimization: average computation time on the datasets of Table 2 as a

function of pc and pm for four different values of pop.

Figure 3 is the result of 784 runs of the GA by changing the parameters of pop, pc and pm as

designed.

It can be noticed that the computation time increases with pop in the examined range. For this

reason we have shifted the optimization range below 100.

On the other hand, lower values of the population size do not provide sufficient accuracy in the

detection of the roundness error.

[Figure 4 about here.]

Figure 4: GA parameters exploration: minimum roundness error R* on dataset n. 1 of Table 2 as a

function of pc and pm for 2 different values of pop upon an area of promising configuration (from

Figure 3) of pc and pm.

As an example, R* = 0.0239 mm (as also reported in Table 5) is the minimum roundness error of

dataset n. 1 of Table 2 and it has been used as the target error in the explorative search shown in



Figure 4. It has been noticed that R* cannot be reached with pop = 50 for most pc and pm values as

shown from the black area in Figure 4. For pop = 70 instead the white coverage is almost filling the

examined range of pc and pm. Consequently pop = 70 is the lower bound of the optimization phase

discussed in the next paragraph.

5. GA optimization

As a consequence of the explorative phase, the GA optimization has been carried out in the range

70 – 100 of pop on the datasets of Table 2.

The results of computational experiments for the GA optimization are shown in Figure 5.

As for Figure 3, Figure 5 is the result of 784 runs of the GA by changing the parameters of pop, pc

and pm as designed. Each run has a similar profile to the one displayed in the left inset for pop=70,

pc=0.7 and pm=0.07.

[Figure 5 about here.]

Figure 5: GA parameters optimization: average computation time on the datasets of Table 2 as a

function of pc and pm for four different values of pop and convergence of the average roundness

error for the selected parameters (left inset).

5.1 Results and discussion

From the observation of Figure 5 it can be noticed that varying the pop value, there is always the

same optimal region for pc and pm, and the same occurred in Figure 3. This region is placed as

specified in Table 4.

Table 4: Optimal range of GA parameters from computational experiments and selected value used

in benchmark tests

Parameter Optimal range Selected values

pop 70 – 80 70

pc 0.7 – 0.8 0.7

pm 0.001 – 0.010 0.007

generation number 40 – 130 –

N – 30

With regard to pop, the computation time increased with this parameter, so the optimal value is the

lowest one: pop ≥ 70. Smaller optimality areas are also present (brighter areas of Figure 5).

By comparing the performance in Figure 3 and Figure 5 it is clear that an incorrect or random

choice of the parameters can lead to an increase of the computation time by one order of magnitude,

from 70-80 s to 6-9 s.

The optimal range in Table 4 can be compared to values from the literature (Table 3) although we

have worked with large datasets: in particular, it can be noticed that pop increases from 30 (50 for

cylindricity) to 70. It has also been shown that a lower pop (e.g. 50 in Figure 4) does not allow

sufficient accuracy to the GA.



The pop increase from 30 to 70 seems a consequence of the larger dataset.

The mutation probability pm also shows a significant change, three times lower and over.

The reduction of pc or pm can be considered as a beneficial effect, because it reduces the effect of

the parameter itself and the “entropy” of the algorithm.

A lower pc or pm reduces the random search and enforces the solution search in fewer areas with

higher success probability. Lower crossover and mutation is then beneficial for the convergence

speed with user defined accuracy because fewer search areas are involved.

It is then speculated that the dataset size increase is beneficial for the GA stability. If a larger

dataset implies a lower pm (like in the current case) and a lower pm provides higher stability to the

algorithm, it could be concluded that with larger datasets the search is less random and driven by

the most promising areas.

This looks reasonable because of the higher amount of information involved.

[Figure 6 about here.]

Figure 6: Convergence of MZT for the seven datasets of Table 2 with the selected values of the

optimal parameters in Table 4.

Figure 6 shows the convergence of the algorithm with the selected values of the optimal parameters

in Table 4 on the seven datasets.

The behavior of the convergence curve changes for the different datasets, because of their different

nature. However already after 10 generations, their average represents the general trend within a

range of 0.8 µm. From Figure 6 it can also be noticed that the major improvements on R(x,y) are

concentrated in the first few tenths of generations, particularly before 100.

As far as the stop criterion is concerned, it has been observed that the speed of convergence of the

roundness error is lower than 0.1 µm per 16 generations. By increasing N over 16 the computation

time increases without significant accuracy improvement nevertheless N can be conservatively set

to 30 as reported in Table 4.

For applications where the accuracy matters more than the computation time (e.g. prototypical

versus mass production) N can be increased accordingly.

6. Benchmark tests

In Table 5 the algorithm with the selected values of the optimal parameters in Table 4 has been

compared with the LS method. The computation time in Table 5 is related to the stability condition

of N=30 hence the total amount of processed generations are between 40 and 130 (Table 4).



Table 5: Test phase. Comparison between GA and LSE on the seven datasets of Table 2.

Computation time for LSE is approximately zero for all datasets.

Datasets LSE [mm] MZE [mm] t [s]

1 0.0242 0.0239 3.2

2 0.0299 0.0262 3.4

3 0.0292 0.0273 2.1

4 0.0668 0.0666 1.2

5 0.0725 0.0667 13.4

6 0.0934 0.0925 2.9

7 0.0423 0.0391 1.3

From Table 5 it can be noticed that by paying a low computation time, the roundness error

estimation can be reduced by up to 6 µm.

The proposed algorithm has been compared with four datasets from the literature as detailed in

Table 6. Unfortunately no large datasets are available (thousands datapoints versus less than

hundred).

Table 6: Comparison with other datasets and optimization algorithms from the literature.

Data Methods MZE [mm] t [s]

Benchmark n. 1

39 datapoints

Reference [3]

Proposed GA

GA [17]

EGA [17]

0.0085

0.0085

0.0085

0.0106

-

0.05

0.28*

0.75*

Benchmark n. 2

100 datapoints

Reference [22]

Proposed GA

GA [17]

EGA [17]

0.9574

0.9649

0.9574

1.0866

0.02*

0.11

0.40*

1.05*

Benchmark n. 3

24 datapoints

Reference [7]

Proposed GA

GA [17]

EGA [17]

0.0382

0.0382

0.0382

0.0405

-

0.09

0.25*

0.69*

Benchmark n. 4

25 datapoints

Reference [7]

Proposed GA

0.0293

0.0295

-

0.05

* not comparable because no processor information is declared.

For each dataset, the first values of MZE are optima and have been determined by the author of the

original datasets with various methods. The other three methods considered are GAs, for

comparison within the same class of methods.

The performance of the proposed GA are very close to those of the method proposed by the author

of the respective original datasets and those available in [17], hence the GA accuracy can be



considered validated. In addition the computation time of the proposed GA is generally lower than

that declared.

The proposed algorithm shows lower roundness error with benchmarks n. 1, 3 and 4. Consequently,

the worst performance of the proposed GA on the benchmark n. 2 seems related to its higher

roundness error (almost 1 mm). With this assumption, the proposed GA is more suitable for the

inspection of more accurate manufacturing operations.

Considering the optimal result on the small datasets from [17], where the GA ran without mutation,

and that the computational experiments in all the search range (pop = 70 – 500) detected the same

optimal region for pc and pm where pm was in the lower bound, it can be concluded that mutation is

not a fundamental operator for the examined problem.

7. Conclusion

In this paper a fast algorithm for accurate evaluation of roundness errors with large datasets

according the MZT criterion has been developed.

The GA parameters optimization has been carried out on seven datasets starting from initial GA

parameters taken from the literature.

Computational experiments have pointed out the following outlook:

- larger dataset require higher population size values as preliminarily conjectured;

- the literature values for the probability of crossover have not been significantly affected by the

larger dataset;

- the mutation probability decreases with larger datasets because of the higher amount of

information on the involved part. It is also conjectured that mutation is not a fundamental

operator for the examined problem.

- a stability condition has been imposed corresponding to a convergence speed greater than 0.1

µm per 30 generations and the stop criterion determined.

Simulations have shown that the optimal genetic parameters lead to a significant decrease (one

order of magnitude) of the computation time (from 70-80 s to 6-9 s).

The proposed GA with the optimal parameters has also been compared with benchmarks from the

literature, necessarily smaller, showing its effectiveness.

The proposed GA can be directly applied in the shop floor to achieve the economic benefits claimed

by using the scheme (Figure 2) and parameters (Table 4) described in the paper.

By reducing the computation time of the minimum zone tolerance method, the most accurate

method to evaluate roundness errors can be profitably applied real-time (on-line).

The higher speed of convergence on large datasets allows the application of the MZT to CMM

scanning techniques, which involve thousands of points. The optimum dataset size requires further

investigation.

Future work includes the investigation of different genetic mechanisms like roulette wheel selection

or knowledge-augmented crossover, neglecting mutation.
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Figure 1: Profile of sample n. 1 (Table 2) with 1800 equally spaced CMM datapoints and substitute

features: inner, medium, and outer circles for current (x,y).
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Figure 2: Standard GA scheme.
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Figure 3: GA parameters optimization: average computation time on the datasets of Table 2 as a

function of pc and pm for 4 different values of pop.
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Figure 4: GA parameters exploration: minimum roundness error R* on dataset n. 1 of Table 2 as a

function of pc and pm for 2 different values of pop upon an area of promising configuration (from

Figure 3) of pc and pm.
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Figure 5: GA parameters optimization on the datasets of Table 2: average computation time as a

function of pc and pm for 4 different values of pop and convergence of the average roundness error

for the selected parameters.
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Figure 6: Convergence of MZT for the 7 datasets of Table 2 with the optimal parameters in Table 4.
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