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Abstract
We describe the Multiple Solutions Method, a one-dimensional sam-

pling of the six-dimensional orbital confidence region that is widely appli-
cable in the field of asteroid orbit determination. In many situations there
is one predominant direction of uncertainty in an orbit determination or
orbital prediction, i.e., a “weak” direction. The idea is to record Multiple
Solutions by following this, typically curved, weak direction, or Line Of
Variations (LOV). In this paper we describe the method and give new in-
sights into the mathematics behind this tool. We pay particular attention
to the problem of how to ensure that the coordinate systems are properly
scaled so that the weak direction really reflects the intrinsic direction of
greatest uncertainty. We also describe how the multiple solutions can be
used even in the absence of a nominal orbit solution, which substantially
broadens the realm of applications. There are numerous applications for
multiple solutions; we discuss a few problems in asteroid orbit determi-
nation and prediction where we have had good success with the method.
In particular, we show that multiple solutions can be used effectively for
potential impact monitoring, preliminary orbit determination, asteroid
identification, and for the recovery of lost asteroids.

Keywords: Minor planets, Asteroids, Celestial mechanics, Astrome-
try,Surveys

1 Introduction

When an asteroid has just been discovered, its orbit is weakly constrained
by observations spanning only a short arc. Although in many cases a
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nominal orbital solution (corresponding to the least squares principle)
exists, other orbits are acceptable as solutions, in that they correspond
to RMS of the residuals not significantly above the minimum. We can
describe this situation by defining a confidence region Z(χ) in the orbital
elements space such that initial orbital elements belong to Z(χ) if the
penalty (increase in the target function, essentially the sum of squares
of the residuals, with respect to the minimum) does not exceed some
threshold depending upon the parameter χ. This situation also has a
probabilistic interpretation, in that the probability density at a given set
of initial orbital elements is a decreasing function of the penalty.

The problem is that in many applications we need to consider the set
of the orbits with initial conditions in the confidence region as a whole.
For example, we may need to predict some future (or past) event such
as an observation, the values of the perturbed orbital elements, a close
approach or even an impact, and this for all “possible” orbits, i.e., for
every solution resulting in acceptable residuals. Since the dynamic model
for asteroid orbits, essentially the N-body problem, is not integrable there
is no way to compute all the solutions for some time span in the future
(or past). We can only compute a finite number of orbits by numerical
integration.

Thus we must introduce the concept of the Virtual Asteroid (VA).
The confidence region is sampled by a finite number of VAs, each one
with an initial condition in the confidence region; in practice, the number
of VAs can range between few tens and few tens of thousands, depending
upon the application and upon the available computing power. This ab-
stract definition, however, does not indicate how a finite number of VAs
are selected among the continuum set of orbital elements spanning the
confidence region. It is perfectly acceptable to select the VAs at random
in the confidence region: this is the heart of the so called Monte Carlo
methods. The question arises if there is some method to select the VAs
which is optimal, in the sense of representing the confidence region with a
minimum number of points, thus with the minimum computational load
for whatever prediction.

The above question does not have a unique answer because, of course,
it depends upon the nature and the time of the prediction to be computed.
However, there is a basic property of the solutions of the N-body problem
which helps in suggesting an answer appropriate in many cases. Whatever
the cloud of VAs selected, unless they all have the same semimajor axis,
as time goes by the orbits will spread mostly along track because of their
different periods. Thus, after a long enough time, the set of VAs will
appear as a necklace, with pearls spread more or less uniformly along a
wire which is not very different from a segment of a heliocentric ellipse.
When this segment is long, e.g., a good fraction of the entire length of the
ellipse, the distance along track to the VA nearest the one being considered
controls the resolution of the set of predictions obtained by computing all
the VA orbits. Then it is clear that maximum efficiency is obtained by
spreading the VAs as uniformly as possible along the necklace.

Thus the basic idea of our method can be described as follows. We
will select a string, that is a one-dimensional segment of a (curved) line
in the initial conditions space, the Line Of Variations (LOV). There is a
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number of different ways to define, and to practically compute, the LOV,
but the general idea is that a segment of this line is a kind of spine of
the confidence region. Note that a simpler and more approximate notion
of LOV has been in use for a long time; it was obtained by fixing the
value of all the orbital elements (e.g., to the values corresponding to the
nominal solution), and by changing only the mean anomaly. When, after
a long time span, small differences in semimajor axis have propagated into
significant along track differences, this is indeed an approximation of the
LOV (as defined here) good enough to be useful in many cases, but not
always1.

Several different definitions of the LOV are possible. Milani (1999)
proposed a definition of the LOV as the solution of an ordinary differen-
tial equation, with the nominal least squares solution as initial condition
and the vector field defined by the weak direction of the covariance ma-
trix. However, in the same paper it was pointed out that such differential
equation is unstable, in particular in the cases where there is a largely
dominant weak direction, the same cases in which the definition of the
LOV is most useful. Thus a corrective step was introduced, based upon
differential corrections constrained on the hyperplane perpendicular to the
weak direction. This provided a stable algorithm to compute an approxi-
mation of the LOV as defined in that paper.

In this paper we show that the constrained differential corrections al-
gorithm can be used to define the LOV as the set of points of convergence.
By adopting this alternate definition we have two advantages. First, we
have a definition exactly (not approximately) corresponding to the nu-
merically effective algorithm used to compute the sample points along the
LOV. Second, this new definition does not use the nominal solution as an
initial condition, thus it is possible to define, and to practically compute,
the LOV even when the nominal least squares solution either does not
exist or anyway has not been found.

That is, the constrained differential corrections algorithm can provide
one solution along the LOV, starting from some initial guess (which a
posteriori may prove to be very far from the real orbit). This procedure
can be conceived as an intermediate step between the preliminary orbit
and the full differential corrections, and thus used to increase the number
of final least squares solutions. Even when the full differential corrections
fail, the constrained solution can be used to compute ephemerides of the
object, to be used for short term recovery. In both the above uses, the
constrained solution can play a role similar to the one of the so called
Väisälä orbits2.

Once the LOV is defined, it is quite natural to sample it by VAs at
regular intervals in the variable which is used to parameterize the curve.
Depending upon which definition is used, there is a natural parameteri-
zation. If the LOV is defined as solution of a differential equation, the
natural parameter is the independent variable of the differential equation.

1This approximation can fail in a catastrophic way if there is a close approach by some of
the VAs in between the observations and the prediction.

2Väisälä’s method to compute some “Väisälä” orbit from two observations should not be
confused with Väisälä’s method to solve Gauss’ problem of the orbit from three observations,
although of course the two algorithms are related.
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If it is defined as set of points of convergence of a constrained differential
corrections, a parameter related to the χ2 of the fit could be used. How-
ever, if the definition is generalized to the case where the nominal solution
is not available, there is no natural way to assign the value zero of the
parameter to one specific solution.

Anyway, once the sample is selected with equal spacing on the LOV, if
the time span between initial conditions and prediction is long, but there
are no strong perturbations in between, then the VAs will remain approxi-
mately uniformly spaced in the necklace. When there are close approaches
in between discovery and prediction time the situation can become much
more complicated ([Milani et al., 2004b]), but still the sampling is more
efficient than a Monte Carlo one.

This idea of “multiple solutions” sampling of the LOV was introduced
by Milani (1999) and used in different applications, such as recovery of
lost asteroids ([Boattini et al., 2001]) and identification of possible im-
pacts ([Milani et al., 1999]). In this paper we discuss additional appli-
cations, including asteroid identification and a more advanced form of
impact monitoring.

With the alternate definition introduced in this paper, the same ap-
plications become possible also in the case in which the nominal solution
is not available, e.g., because of divergence of the differential correction
process (as it is often the case when the observations are few or only cover
a short time span). In this case the LOV is defined, but we do not have
the nominal solution to act as a reference point on the LOV. Nevertheless,
the multiple solutions along the LOV can be used, e.g., in identifications.
This is especially important because the asteroids for which a nominal
solution cannot be computed are the ones which would be considered lost
according to the conventional algorithms. Each case in which the new
algorithms, discussed in this paper (and also in another paper in prepa-
ration), allow us to find other observations for a lost asteroid has to be
considered a success of comparable importance to the discovery of a new
object, because it is indeed a rediscovery.

The LOV can be also used as a tool to explore the geometry of the
confidence region, and this is of course more useful when this geometry is
complicated. When the penalty has separate local minima, the confidence
regions Z(χ) can have a topology changing with the value of χ, that is,
the number of connected components can change. This phenomenon is
already known in the context of preliminary orbit determination: the
Gauss problem of a two-body ellipse satisfying three observations can have
multiple solutions. For asteroids observed only over a short arc, especially
if this occurs near quadrature, it is possible to have a sum of squares of
the residuals with several local minima, each one close to one of the Gauss
solutions. Exploring the full geometry of the confidence region in these
cases is very difficult, but the behavior of the sum of squares along the
LOV can provide enough information to understand the situation, and to
avoid the faulty predictions which could result from a simplistic approach.
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2 The Line Of Variations

To discuss the definitions of the Line Of Variations we need to recall some
known results and define some notation about the least squares orbit
determination procedure.

2.1 Newton’s method and differential corrections

The weighted least squares method of orbit determination seeks to min-
imize the weighted RMS of the m observation residuals Ξ = (ξi), i =
1, . . . , m, so we define the cost function

Q =
1

m
ΞT W Ξ ,

where W is a square, symmetric3, positive-definite m × m matrix that
should reflect the a priori RMS and correlations of the observation errors.
We denote the design matrix, with the partials of the residuals with respect
to the elements by

B =
∂Ξ

∂X
(X) ,

an m× 6 matrix. Then we can compute the gradient of the cost function

∂Q

∂X
=

2

m
ΞT W B.

The stationary points of the cost function Q are solutions of the sys-
tem of nonlinear equations ∂Q/∂X = 0, which are usually solved by some
iterative procedure. The standard Newton’s method involves the compu-
tation of the second derivatives of the cost function:

∂2Q

∂X2
=

2

m

[

BT W B + ΞT W
∂B

∂X

]

=
2

m
CN ,

where CN is a 6×6 matrix, positive definite in the neighborhood of a local
minimum. Then one iteration of Newton’s method provides a correction
X −→ X + ∆X with

∆X =
[

CN
]−1

D ,

where

D = −BT WΞ = −m

2

∂Q

∂X

T

.

However, the most used method is a variant of Newton’s method, known
in this context as differential corrections, with each iteration making the
correction

∆X = −(BT WB)−1BT WΞ .

Thus the difference between Newton’s method and the differential cor-
rections method is only in the use of the normal matrix C = BT WB in-
stead of the matrix CN , and the covariance matrix Γ = C−1 instead of
ΓN = [CN ]−1; note that the right hand side D of the normal equations is
the same. One motivation for this simplification is that the computation

3But not necessarily diagonal ([Carpino et al., 2003]).
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of the three-index arrays of second derivatives ∂B/∂X = ∂2Ξ/∂X2 re-
quires to solve 216 scalar differential equations (on top of the usual 6+36
for the equations of motion and the variational equations for the first
derivatives).

With both methods, if the iterative procedure converges, the limit X∗

is a stationary point of the cost as a function of the elements X, that is
D(X∗) = 0. If a stationary point X∗ is a local minimum of Q(X) it is
called a best-fitting or nominal solution. Such nominal solutions may not
be unique (see Section 6), although they are generally unique when there
are enough observations over a long enough span of time.

There are cases of orbit determination with stationary points of Q(X)
not corresponding to local minima, but to generalized saddles
([Sansaturio et al., 1996]); thus the matrix CN , proportional to the Hes-
sian matrix, has some negative eigenvalue. Since C can have only eigen-
values ≥ 0, the saddles need to correspond to cases in which the term
Ξ W ∂B/∂X provides a significant contribution to CN , to the point of
changing the sign of at least one eigenvalue. This can happen more easily
when the residuals Ξ are large, that is the saddle corresponds to a value
of Q well above the minimum. However, if the matrix C is badly con-
ditioned, a very small eigenvalue of C can be perturbed into a negative
eigenvalue of CN even with moderate residuals Ξ, as in the example in
Subsection 6.

The expansion of the cost function at a point X = X∗ + ∆X in a
neighborhood of X∗ is

Q(X) = Q(X∗) +
1

m
∆XT CN ∆X + . . . =

= Q(X∗) +
1

m
∆XT C ∆X + . . . = Q(X∗) + ∆Q(X) ,

where the dots in the first equality indicate terms of order ≥ 3 in ∆X,
the dots in the second line contain also a term with the second derivative
of Ξ, which is only second order in ∆X, although it contains also Ξ. A
confidence region Z(χ) is defined by setting an upper limit to the penalty
∆Q:

Z(χ) =
{

X | ∆Q(X) ≤ χ2/m
}

.

2.2 The ellipsoid approximation

If the confidence region is small and the residuals are small, then all the
higher order terms in the cost function are negligible and the confidence
region is well approximated by the confidence ellipsoid ZL(χ) defined by
the quadratic inequality

ZL(χ) =
{

X | ∆XT C(X∗) ∆X ≤ χ2
}

.

Let the longest semiaxis of the confidence ellipsoid be in the direction
of the unit vector V1, which is an eigenvector of the normal matrix C(X∗),
computed at the nominal solution:

C(X∗) V1 = λ1V1

6



and the eigenvalue λ1 is the smallest among the eigenvalues of C(X∗); the
longest semiaxis of the confidence ellipsoid ZL(1) has length k1 = 1/

√
λ1.

Note that V1 is also an eigenvector of Γ(X∗) with eigenvalue 1/λ1 = k2
1 .

Let H be the hyperplane spanned by the other eigenvectors Vj , j =
2, . . . , 6. The tip of the longest axis of the confidence ellipsoid X1 =
X∗ + k1 V1 has the property of being the point of minimum of the cost
function restricted to the affine space X1 + H. It is also the point of
minimum of the cost function restricted to the sphere |∆X| = k1. These
properties, equivalent in the linear regime, are not equivalent in general
(see Appendix A).

2.3 The weak direction vector field

Let us consider the vector k1(X) V1(X). Indeed such vector can be defined
at every point of the space of initial conditions X: the normal matrix
C(X) is defined everywhere, thus we can find at each point X the smallest
eigenvalue of C(X):

C(X) V1(X) = λ1(X) V1(X) =
1

k2
1(X)

V1(X)

and the product k1(X) V1(X) is a vector field defined for every X.
The unit eigenvector V1 is not uniquely defined, of course −V1 is also

a unit eigenvector. Thus k1(X) V1(X) is what is called an axial vector,
with well defined length and direction but undefined sign. However, given
an axial vector field defined over a simply connected set, there is always a
way to define a true vector field F (X) such that the function X 7→ F (X)
is continuous. At the beginning of the procedure we can select the sign
according to some rule, e.g., in such a way that the directional derivative
of the semimajor axis a is positive in the direction +V1(X), or that the
heliocentric distance is increasing. Then the consistency of the orientation
is maintained by continuation4.

Other problems could arise if the normal matrix C(X), for some value
of the initial condition X, had a smallest eigenvalue of multiplicity 2.
The exact equality of two eigenvalues does not occur generically, and even
an approximate equality is rare, as it is possible to check with a large
set of examples5. Anyway, whenever the two smallest eigenvalues are of
the same order of magnitude the LOV method has serious limitations, as
discussed in Section 2.6.

Given the vector field F (X) as defined above, the differential equation

dX

dσ
= F (X)

has a unique solution for each initial condition, because the vector field
is smooth. Let us select the initial condition X(0) = X∗, that is σ = 0

4Our two impact monitoring systems, CLOMON2 and Sentry use different conventions for
the orientation of the LOV. Thus, in comparing the outputs of CLOMON2 and Sentry, it is
necessary to check whether the orientation of the LOV is the same.

5The eigenvalues of the covariance matrix are given with the orbital elements in the
NEODyS and AstDyS information systems.
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corresponds to the nominal solution. Then there is a unique solution
X(σ).

In the linear approximation, the solution X(σ) is the tip of the major
axis of the confidence ellipse ZL(σ). When the linear approximation does
not apply, X(σ) is indeed curved and can be computed only by numerical
integration of the differential equation.

This approach was used to define the LOV in ([Milani, 1999]). How-
ever, such a definition has the handicap of numerical instability in the
algorithms to compute it. As an intuitive analogy, for weakly determined
orbits the graph of the cost function is like a very steep valley with an
almost flat river bed at the bottom. The river valley is steeper than any
canyon you can find on Earth; so steep that the smallest deviation from
the stream line sends you up the valley slopes by a great deal. This prob-
lem cannot be efficiently solved by brute force, that is by increasing the
order or decreasing the stepsize in the numerical integration of the differ-
ential equation. The only way is to slide down the steepest slopes until
the river bed is reached again, which is the intuitive analog of the new
definition.

2.4 The constrained differential corrections

If the axial vector field V1(X) is defined for all X, then the orthogonal
hyperplane H(X) is also defined:

H(X) = {Y |(Y − X) · V1(X) = 0} .

Given an initial guess X, it is possible to compute a differential correc-
tion constrained to H(X) by defining the 5 × m matrix BH(X) with the
partial derivatives of the residuals with respect to the coordinates of the
vector H on H(X). Then the constrained normal equations are defined
by the constrained normal matrix CH , which gives the restriction of the
linear map associated to C to the hyperplane H(X), and by the right
hand side DH , which is the component of vector D along the hyperplane:

CH = BT
HW BH ; DH = −BT

HW Ξ ; CH∆H = DH

with solution
∆H = ΓH DH ; ΓH = C−1

H

where the constrained covariance matrix ΓH is not the restriction of the
covariance matrix Γ to the hyperplane (cfr. [Milani, 1999], Sect. 2.3).
The computation of CH , DH can be performed by means of a rotation
to a new basis in which V1(X) is the first vector, then CH is obtained by
removing the first row and the first column of C, DH by removing the
first coordinate from D.

The constrained differential correction process is obtained by com-
puting the corrected X ′ = X + ∆X where ∆X coincides with ∆H along
H(X) and has zero component along V1(X). Then the weak direction and
the hyperplane are recomputed: V1(X

′), H(X ′) and the next correction is
constrained to H(X ′). This procedure is iterated until convergence6. If

6In a numerical procedure, convergence is defined as having the last iteration with a small
enough correction; in this context, the following properties are satisfied only approximately.
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X is the convergence value, then DH(X) = 0, that is the right hand side
of the unconstrained normal equation is parallel to the weak direction

D(X) || V1(X) .

The above equation is equivalent to the following property: the restriction
of the cost function to the hyperplane H(X) has a stationary point in X:
the constrained corrections correspond to the intuitive idea of “falling
down to the river”.

Thus we can introduce a new definition of LOV as the set of points X
such that D(X)||V1(X) (the gradient of the cost function is in the weak
direction). If there is a nominal solution X∗, then D(X∗) = 0, thus it
belongs to the LOV. However, the LOV is defined independently from the
existence of a local minimum of the cost function.

2.5 Parameterizing and sampling the LOV

The equation D(X)||V1(X) corresponds to five scalar equations in six
unknowns, thus it has generically a smooth one parameter set of solutions,
i.e., a differentiable curve. However, we do know an analytic or anyway
direct algorithm neither to compute the points of this curve nor to find
some natural parameterization (e.g., by the arclength).

An algorithm to compute the LOV by continuation from one of its
points X is the following. The vector field F (X), deduced from the weak
direction vector field V1(X), is orthogonal to H(X). A step in the direction
of F (X), such as an Euler step of the solution of the differential equation
dX/dσ = F (X), that is X ′ = X+δσ F (X), is not providing another point
on the LOV, unless the LOV itself is a straight line (see Appendix A);
this would be true even if the step along the solutions of the differential
equation is done with a higher order numerical integration method, such
as a Runge-Kutta7. However, X ′ will be close to another point X ′′ on
the LOV, which can be obtained by applying the constrained differential
corrections algorithm, starting from X ′ and iterating until convergence.

If X was parameterized as X(σ), we can parameterize X ′′ = X(σ+δσ),
which is an approximation since the value σ + δσ actually pertains to X ′.
As an alternative, if we already know the nominal solution X∗ and the
corresponding local minimum value of the cost function Q(X∗), we can
compute the χ parameter as a function of the value of the cost function
at X ′′:

χ =
√

m · [Q(X ′′) − Q(X∗)] .

In the linear regime, the two definitions are related by σ = ±χ, but this
is by no means the case in strongly nonlinear conditions. Thus we can
adopt the definition σQ = ±χ, where the sign is taken to be the same as
that of σ, for an alternate parameterization of the LOV.

If we assume that the probability density at the initial conditions X
is an exponentially decreasing function of χ, as in the classical Gaussian
theory ([Gauss, 1809]), then it is logical to terminate the sampling of
the LOV at some value of χ, that is, the LOV we are considering is the

7In fact, we use a second order implicit Runge-Kutta-Gauss.
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intersection of the solution of the differential equation with the nonlinear
confidence region Z(b). When χ = |σQ| > b we stop sampling, even if
|σ| < b.

The algorithm described above can actually be used in two cases: a)
when a nominal solution is known, and b) when it is unknown, even
nonexistent. If the nominal solution X∗ is known, then we set it as the
origin of the parameterization, X∗ = X(0) and proceed by using either
σ or σQ as parameters for the other points computed with the alternat-
ing sequence of numerical integration steps and constrained differential
corrections. If, on the other hand, a nominal solution is not available we
must first reach some point on the LOV by making constrained differen-
tial corrections starting from some potentially arbitrary initial condition
(see Section 4.1). Once on the LOV we can begin navigating along it in
the same manner as is done when starting from the nominal point.

In such cases, we set the LOV origin X(0) to whichever point X of the
LOV we have first found with constrained differential corrections, when
starting from the initial guess. We then compute the other points as above
and use the parameterization σ with arbitrary origin. Unfortunately, the
parameterization σQ cannot be computed; however, it can be derived a
posteriori.

2.6 Selection of a metric

The eigenvalues λj of the normal matrix C are not invariant under a
coordinate change. Thus the weak direction and the definition of LOV
depend upon the coordinates used for the elements X, and different ones
would be obtained by using some other coordinates Y = Y (X). This is
true even when the coordinate change is linear Y = S X, in which case
the normal and covariance matrices are transformed by

ΓY = S ΓX ST ; CY =
[

S−1
]T

CX S−1

and the eigenvalues, solutions of det [CY − λ I] = 0 are the same if S−1 =
ST , that is if the change of coordinates is isometric. Otherwise, the eigen-
values in the Y space are not the same, and the eigenvectors are not the
image by S of the eigenvectors in the X space. Thus the weak direc-
tion and the LOV in the Y space do not correspond by S−1 to the weak
direction and the LOV in the X space.

A special case is the scaling, that is a transformation changing the
units along each axis, represented by a diagonal matrix S. The choice of
units should be based on natural units appropriate for each coordinate.

The coordinates we are using in orbit determination are the following:

• Cartesian heliocentric coordinates (position, velocity)

• Cometary elements (q, e, I, Ω, ω, tp, with tp the time of passage to
perihelion)

• Keplerian elements (a, e, I, Ω, ω, ℓ, with ℓ the mean anomaly)

• Equinoctial elements (a, h = e sin(̟), k = e cos(̟), p = tan(I/2) sin(Ω),
q = tan(I/2) cos(Ω), λ = ℓ + ̟, with ̟ = Ω + ω)
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• Attributable elements (α, δ, α̇, δ̇, r, ṙ, with α the right ascension, δ
the declination, r the range, the dots indicate time derivatives)

Table 1: Description of the five element sets used in the computations of the LOV, and their
respective native units and rescaling parameters.

Cartesian x y z vx vy vz

Units AU AU AU AU/d AU/d AU/d
Scaling r r r v v v
Cometary e q tp Ω ω i
Units - AU d rad rad rad
Scaling 1 q Z 2π 2π π
Keplerian e a M Ω ω i
Units - AU rad rad rad rad
Scaling 1 a 2π 2π 2π π
Equinoctial a h k p q λ
Units AU - - - - rad
Scaling a 1 1 1 1 2π

Attributable α δ α̇ δ̇ r ṙ
Units rad rad rad/d rad/d AU AU/d
Scaling 2π π n⊕ n⊕ 1 n⊕

Note: Here r and v are the heliocentric distance and velocity, respectively, d
is one day. The angular rate n⊕ = 0.01720209895 rad/day, is approximately
the mean motion of the Earth and is numerically equivalent to the Gaussian
gravitational constant, k = 0.01720209895 (AU3/d2)−1/2. The quantity Z =
2πq3/2n−1

⊕ (1 − e)−1/2 is a characteristic time for a large eccentricity orbit.

Table 1 shows the scaling we have adopted. Cartesian position coor-
dinates are measured in Astronomical Units (AU), but they are scaled
as relative changes. Angles are measured in radians, but they are scaled
in revolutions (note that the inclinations are scaled by π). Velocities are
expressed in AU/day, in Cartesian coordinates they are scaled as relative
changes, angular velocities are scaled by n⊕, Earth’s mean motion. The
range rate is also scaled by n⊕ to make it commensurable to the range.

If the coordinate change is nonlinear, as it is for transforming between
each pair of the list above, then the covariance is transformed in the same
way by using the Jacobian matrix:

Y = Φ(X) ; S(X) =
∂Φ

∂X
(X) ; ΓY = S(X) ΓX S(X)T

and the constrained differential correction ∆Y can be computed accord-
ingly.

But the computations are actually performed in the X coordinates,
and so once the constrained differential correction ∆Y has been computed,
we need to pull it back to X. If ∆Y is small, as is typically the case when
taking modest steps along the LOV, then this can be done linearly

X ′ = X + S−1∆Y.
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However, when the constrained differential corrections are large, as is
likely to be the case when the initial point is not near the LOV then the
correction ∆Y must be pulled back to X nonlinearly, that is

X ′ = Φ−1(Y + ∆Y ).

As a result of the list of coordinates in Table 1, each one with and
without scaling, we can select 10 different LOVs. The question is to
select the most effective in a specific case of orbit determination and for
a specific use. Not surprisingly, that question is complex, but two rules
of thumb can be easily stated. If the arc drawn on the celestial sphere by
the apparent asteroid position is small, e.g., 1 degree or less, then there is
less nonlinearity in the coordinate systems which represent instantaneous
initial conditions, such as the Cartesian coordinates and the Attributable
elements. The latter have the special property that the angular variables
α, δ, α̇, δ̇ are well determined while range and range rate r, ṙ are very poorly
determined. At the limit, for an infinitesimal arc, the last two coordinates
are totally unknown and can be constrained only by the assumption that
the object observed belongs to the Solar System ([Milani et al., 2004a]).

On the contrary, orbital elements solving exactly the two body prob-
lem perform better in orbit determination whenever the observed arc is
comparatively wide, e.g., tens of degrees. The Cometary elements are
more suitable for high eccentricity orbits, the Equinoctial ones avoid the
coordinate singularity for e = 0 (also for I = 0). The Keplerian elements
have poor metric properties for both e ≃ 0 and e ≃ 1, thus are of little
use for these purposes.
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Figure 1: For the asteroid 2004 FU4 the computation of the LOV, by using only the first 17
observations, in different coordinates without scaling. The Cartesian and Attributable LOVs
are indistinguishable on this plot and so only the Attributable LOV is depicted.

Figures 1 and 2 show a comparison of the LOVs computed with differ-
ent coordinate systems, without and with the scaling defined in Table 1,
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Figure 2: As in the previous figure, but with the scaling of Table 1.

in the case of asteroid 2004 FU4 observed only over a time span of ≃ 3
days, with an arc of only ≃ 1◦. The data are projected on the (r, ṙ) plane,
with ṙ scaled by n⊕. For each coordinate system we show both the LOV,
sampled with 41 VAs in the interval −1 ≤ σQ ≤ 1, and the second LOV,
defined as the LOV but with the second largest eigenvalue λ2 of the nor-
mal matrix and the corresponding eigenvector V2. The dependence of the
LOV on the coordinates is very strong in this case. Note that the LOV of
the Cartesian and Attributable coordinates is closer to the second LOV,
rather than to the first LOV, of the Equinoctial coordinates.

In such cases, with a very short observed arc, the confidence region has
a two-dimensional spine, and the selection of a LOV in the corresponding
plane is quite arbitrary. For example, in scaled Cartesian coordinates, the
ratio of the two largest semiaxes of the confidence ellipsoid is 2.4. Then
the best strategy to sample the confidence region would be either to use
a number of LOVs, like in the figures, or to use a fully two-dimensional
sampling, as in ([Milani et al., 2004a]).

Note that the Attributable and the Cartesian coordinates in the un-
scaled case give almost identical first and second LOV (see Figures 1
and 3). This can be understood knowing that the (r, ṙ) plane of the
Attributable coordinates corresponds exactly to a plane in Cartesian co-
ordinates and, without scaling, the metric on this plane is the same.

Figures 3 and 4 show the comparison of the LOVs in the case of as-
teroid 2002 NT7 when the available observations were spanning 15 days,
forming an arc almost 9◦ wide. In this case the ratio of the two largest
semiaxes (in scaled Cartesian) is 7.3 and the LOVs computed with differ-
ent coordinates are very close. As the confidence region becomes smaller,
but also narrower, the long axis becomes less dependent upon the metric.
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Figure 3: For the asteroid 2002 NT7 the computation of the LOV, by using only the first
113 observations, in different coordinates without scaling. The Cartesian and Attributable
LOVs are indistinguishable.

3 Application 1: Impact monitoring

The sampling along the LOV is an essential tool whenever the predictions
are extremely nonlinear. This happens when the confidence region is very
large, at least in one direction, either at the initial epoch (because of very
limited observational data) or at some subsequent time (when the propa-
gation is especially chaotic, as in the case of repeated close encounters).

A critical application of confidence region sampling is the so called
impact monitoring. For an asteroid with an orbit still largely uncertain
we need to know if there is a non-vanishing, although small, probability of
collision with the Earth in the next, say, 100 years. Although Monte Carlo
sampling with randomly selected VAs is possible, for large asteroids we are
interested in detecting very small probabilities of impact (10−8, even 10−9)
and random sampling would not be efficient enough ([Milani et al., 2002]).

The use of the LOV in impact monitoring was introduced in ([Milani et al., 1999])
to sample in a more efficient way the confidence region with VAs more rep-
resentative of the possible sequence of future close approaches. [Milani et al., 2004b]
improved the procedure by exploiting the geometrical understanding of
the behavior of the LOV as a continuous string.

The computational realization of the structure of the LOV as a dif-
ferentiable curve is obtained by a version of the same method described
in Section 2.5. Given two VAs with consecutive index, Xk and Xk+1,
corresponding to the values σk and σk+1 of the parameter, VAs with non-
integer index corresponding to values σk < σ < σk+1 can be obtained by
first performing an approximate integration step

X ′(σ) = Xk + (σ − σk) F (X)

and then constrained differential corrections until convergence to the LOV
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Figure 4: As in the previous figure, but with the scaling of Table 1.

point X(σ)8.
In this application, when the impact is not immediate but results from

a resonant return, what matters most is sampling with VAs the values of
the semimajor axis compatible with the available observations. In such
cases the choice of coordinates and scaling is not critical. As an example,
Figures 3 and 4 refer to a case relevant for impact monitoring: with the
113 observations available until July 24, 2002, there was a probability of
1/90, 000 for an impact of 2002 NT7 on February 1, 2019.

On the contrary, when the observations cover only a short arc and
there is a possibility of impact at the first close approach to the Earth,
the choice of the coordinates and scaling in the definition of the LOV
can make a significant difference in the output of the impact monitor-
ing systems. Figures 1 and 2 refer to the case of 2004 FU4, for which
there was a Virtual Impactor in 2010 with probability 4 × 10−8. We
tested the CLOMON2 impact monitoring system by using Equinoctial,
Cartesian and Attributable elements, with and without scaling, selecting
the first and the second LOV. Of these 12 combinations, only 3 allowed
to detect the 2010 VI, namely the scaled Equinoctial first LOV and the
Cartesian/Attributable scaled second LOV. The same VI was also found
by Sentry with scaled Cometary elements (first LOV). Looking at Figure 2
it is clear that the four LOVs starting from which the 2010 VI was found
are close together.

4 Application 2: Orbit determination

The procedure based on constrained differential corrections (Section 2.4)
to obtain LOV solutions can be used starting with an arbitrary initial

8It would be possible to use an interpolation procedure also with the parameter σQ.
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guess X, which can be provided by some preliminary orbit. It can also
be used starting from a known LOV solution (be it the nominal or not)
as part of the continuation method (Section 2.5) to obtain alternate LOV
solutions. In both cases it can provide a richer orbit determination pro-
cedure.

4.1 LOV solutions from preliminary orbits

We can conceive a new procedure for computing an orbit starting from
the astrometric data. It consists of the following steps:

1. if some orbit X is already available, it is used as preliminary,

2. if no orbit is available, a preliminary orbit X is computed, e.g., with
Gauss’ method, but also with other methods suitable for short arcs
([Milani et al., 2004a]),

3. if the preliminary orbit algorithm fails, the orbit determination pro-
cedure is considered failed9,

4. if the preliminary orbit X is available, constrained differential cor-
rections are computed starting from X as first guess,

5. if constrained differential corrections converge to a LOV solution
XLOV (with RMS of the residuals ≤ Σ) then a full differential cor-
rection is attempted by using XLOV as first guess,

6. if the full differential corrections converge to a nominal solution X∗

(with RMS of the residuals ≤ Σ) then this is adopted as orbit (with
uncertainty described by its covariance),

7. if the full differential corrections fail, then XLOV is adopted (if avail-
able, and with RMS ≤ Σ) as orbit10,

8. if the constrained differential corrections fail to converge we start
differential corrections with the preliminary orbit X as first guess,

9. if these differential corrections converge to X∗ (with RMS of the
residuals ≤ Σ), it is then adopted as orbit,

10. if this last attempt fails the orbit determination procedure is con-
sidered to be failed.

The logic is also represented in the flowchart (Figure 5).
After obtaining a least squares orbit, be it a nominal or just a LOV so-

lution, we can apply the continuation algorithm of Section 2.5 for multiple
LOV solutions.

By this procedure, it is possible to obtain a significantly larger number
of orbits. The increase results from:

• LOV solutions in cases where nominal solutions are not available,

• nominal solutions computed thanks to the intermediary of the LOV
orbit, while the iterations starting from the poorer preliminary orbit
would diverge,

9Unless some other preliminary orbit algorithm is available.
10In this case, the covariance provides information on the uncertainty but it is not possible

to define formally a confidence region because the minimum value of the cost function is not
known (and may not exist).
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• multiple LOV solutions computed by continuation from all the avail-
able nominal solutions,

• multiple LOV solutions computed by continuation from all the LOV
solutions obtained directly from the preliminary orbit, when no nom-
inal is available.

A quantitative assessment of this increase in the orbit catalogs is ob-
tained from the large scale test of the following section.

4.2 Large scale orbit determination test

The results of a large scale application of the procedure described above
to compute as many least squares orbits as possible, and then to explicitly
sample the LOV with VAs, are as follows.

We have used all the astrometric data on unnumbered asteroids as
made public by the Minor Planet Center on the 9th of November, 2003
(7.5 million observations). We have computed as many least squares orbits
as possible among the 233, 411 designations corresponding to independent
asteroid discoveries.

The procedure described above was applied to all designations, in
Equinoctial coordinates (unscaled) and with the control value for the
normalized RMS of the residuals set to Σ = 3. Note that in this test
the modern (after 1950) observations have been weighed at 1 arcsec, thus
normalized RMS = 3 essentially means unnormalized RMS = 3 arcsec. If
more than one preliminary orbit is available, e.g., from the existing cat-
alogs, from Gauss’ and from other preliminary orbit methods, in case of
failure we repeat the procedure starting from each preliminary orbit. The
final outcome can thus be either a full orbit, or a constrained orbit, or a
complete failure.

The relative number of successes in the orbit determination procedure
depends upon the quality of the data for the designations. For this pur-
pose, we classify the designations in 7 quality classes by the length of the
observed arc, the number of observations and the number of nights in
which they have been taken, as described in Table 2.

Clearly, the data of the best qualities are such that in almost all cases
either a nominal, or at least a LOV solution can be computed; as the qual-
ity decreases the relative number of orbit-less designations increases. As
an example, for the 78, 672 quality 1 cases a nominal orbit has been com-
puted (by converging full differential corrections) in all cases. For these
orbits, essentially coinciding with the multi-opposition asteroids, the un-
certainty (as measured by the linear confidence region ZL(3)) is so small
that the usage of LOV methods for future prediction is generally not nec-
essary. However, there are exceptions: by consulting the AstDyS online
service11 providing ephemerides with sky plane uncertainties for all the
multi-opposition asteroids, we can find 14 cases with a sky-plane uncer-
tainty ellipse with a major axis exceeding 6◦ and another 23 exceeding 3◦.
To recover these, the LOV methods can be very useful.

11http://hamilton.dm.unipi.it/astdys/
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Table 2: Classification of the designated asteroids according to the amount and timing of
the available astrometry.

Quality Code No. Nights Arc Length (d) No. Obs.

1 ≥ 5 ≥ 180 ≥ 10

2 ≥ 4 ≥ 20 ≥ 8

3 ≥ 3 ≥ 6.5 ≥ 6

4 ≥ 3 ≥ 1.5 ≥ 6

5 ≥ 2 ≥ 6.5 ≥ 4

6 ≥ 2 ≥ 3

7 = 1 ≥ 3

For qualities 2, 3 and 4, that is for asteroids observed at a single
apparition but in at least three separate nights, almost all, actually 99.7%
of the objects, ended up with a full least squares orbit (see Table 3).

For qualities 5 and 6 (two-nighters) a significant fraction of the output
orbits was constrained, that is, a constrained orbit was computed, but
the attempt to use it as first guess for a full differential correction failed.
Moreover, of the nominal solutions computed, a significant fraction was
obtained only by using a LOV solution as intermediary. For a two-nighter,
Gauss’ method for preliminary orbit is unreliable, and the full differential
corrections starting from it often diverge.

For quality 7 (one-nighters) the number of full least squares orbits
is very small, even the constrained orbits are few (3%), moreover the
uncertainty of these orbits is quite ridiculous12.

The comparison with the classical differential correction algorithm,
without passing through the constrained computations (column ’D. C.’ in
Table 3) shows that a large number of complete orbits have been com-
puted only by means of the intermediate step provided by the constrained
solutions. The number of such cases is not large (a few hundreds) for
objects observed in at least 3 nights (quality 2,3 and 4), but there are
thousands of new orbits obtained in this way for two-nighters (quality 5
and especially quality 6).

In the discussion of identifications, in the following Section, both the
orbits remaining as constrained and the complete ones obtained passing
through the constrained contribute to the catalogs of orbits, and therefore
to the increase on the number of possible identifications. The question, of
course, is whether these additional orbits are good enough to be useful,
and this is discussed in Section 5.

For all the cases of quality 2 to 7 in which we have been able to

12The only one-nighters for which a comparatively accurate orbit can be computed are some
Near Earth Asteroids, in particular the ones with very high proper motion.
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Table 3: The performance of the various preliminary orbit determination strategies discussed
in the text.

QC Objects w/N. w/o N. D. C. M.S.

1 78, 672 78, 672 0 78, 672 N.A.

2 52, 927 52, 906 14 52, 888 20.0

3 18, 760 18, 642 66 18, 543 19.8

4 7, 818 7, 684 120 7, 518 18.9

5 7, 452 6, 199 972 5, 189 14.7

6 56, 098 29, 097 19, 068 22, 240 13.4

7 2, 200 62 57 9 7.2

Tot 223, 927 193, 262 20, 297 185, 059 17.3

Note: The columns contain: QC, the quality code as defined in Table 2; w/N,
number of nominal solutions obtained with differential corrections using the
LOV solutions as intermediary; w/o N, number of cases in which a LOV solution
could be computed but a nominal solutions could not; D.C., number of nominal
solutions obtained by the classical procedure, full differential corrections without
intermediaries; M.S., average number of multiple solutions computed per object
with some least squares orbit, taking into account that the target was to compute
21 solutions per object. The average number of multiple solutions per object in
the Tot (total) row does not take into account the quality 1 orbits.

compute a least squares orbit (be it full or constrained), we have applied
the multiple solution computation by continuation of Section 2.5 (again in
unscaled Equinoctial elements), attempting to compute 21 VAs (including
the one used as starting point, that is 20 additional solutions) for each
designation. The results are shown in the last column of Table 3 and, as
expected, are very good for qualities 2, 3 and 4, that is almost all the
sought for VAs have been computed.

For quality 5 and 6 the results are good, but their interpretation is
less straightforward, because many multiple solutions have been computed
starting from constrained solutions. The multiple solutions obtained in
this case can still be considered as VAs, sampling the LOV but not “cen-
tered” in the segment of the LOV corresponding to lower values of the
residuals normalized RMS. On the other hand, the two-nighters are the
objects for which the observational information is not enough. Even when
a nominal orbit can be found, it typically has an enormous uncertainty:
RMS(a) > 1 AU is common, and RMS(e) > 1 does occur, that is, a
large fraction of the nominal orbits are not significantly better than a
constrained orbit. Then these are the objects for which recovery or iden-
tification is absolutely necessary, thus they are the ones on which testing
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innovative algorithms is more important.

5 Application 3: Orbit Identification

The designations correspond to independent asteroid discoveries, but they
do not necessarily correspond to physically different objects. Identification
is the process by which two (or more) designations are found to contain
observations of the same object, by computing a least squares fit to all
the observations, with acceptable residuals. The difficulty is not as much
in testing one identification once it has been proposed: this is done by
using differential corrections and outlier rejection ([Carpino et al., 2003]).
Rather, the problem is how to decide among the ≃ 230, 000 × 230, 000/2
couples which ones should be tested as candidates for identification. Of
course this requires some filtering procedure, selecting couples of designa-
tions on the basis of some metric describing similarity between the two.

The procedures to propose identifications belong to different types,
essentially depending upon the quality of observational data available for
each designation. We use the classification given in ([Milani, 1999]), and
in this paper we shall discuss mainly orbit identifications and briefly at-
tributions (in the last Subsection). We only marginally discuss linkages,
which will be the subject of further research. The procedure for recovery
of a lost asteroid (by finding it either in the sky or in the image archives)
using the multiple solutions method has been thoroughly discussed in
([Boattini et al., 2001]).

5.1 The orbit identification algorithm

Orbit identification applies to the case where both designations have a
least squares orbit (which could be a nominal solution, but also a con-
strained solution). The procedure involves the computation of a sequence
of similarity metrics between the nominal solutions of some pair of des-
ignations, taking also into account their uncertainty (as expressed by the
covariance matrix). The method is described in ([Milani et al., 2000]) and
we will only briefly summarize it here.

Let X1 and X2 be the least squares solutions (at the same epoch) for
the two designations and let C1, C2 be the corresponding normal matrices.
The two cost functions of the two separate orbit determination processes
are:

Qi(X) = = Qi(Xi) +
1

mi

(X − Xi) · Ci (X − Xi) + . . .

= Q∗

i + ∆Qi ; i = 1, 2 ,

where mi is the number of scalar residuals.
For the two orbits to represent the same object we need to find a

low enough minimum for the joint cost function, formed with the sum of
squares of the m = m1 + m2 residuals:

Q = =
1

m
(m1Q1 + m2Q2)

21



=
1

m
(m1Q

∗

1 + m2Q
∗

2) +
1

m
(m1∆Q1 + m2∆Q2)

= Q∗ + ∆Q = Q∗ +
χ2

m

where Q∗ is the value corresponding to the sum (with suitable weighting)
of the two separate minima.

The linear algorithm to solve the problem is obtained when the χ2

value is approximated by the sum of the quadratic approximations of the
separate ∆Qi:

χ2 ≃ (X − X1) · C1 (X − X1) + (X − X2) · C2 (X − X2)

The minimum for χ2 can be found by minimizing the non-homogeneous
quadratic form above. If the new joint minimum is X0, then by expanding
around X0 we have

χ2 ≃ (X − X0) · C0 (X − X0) + K

and by comparing the last two formulas we find:

C0 = C1 + C2

X0 = C−1
0 (C1 X1 + C2 X2)

K = X1 · C1 X1 + X2 · C2 X2 − X0 · C0 X0

providing the new minimum point. The expected χ2 value K for the
identification, corresponding to X0 (in the linear approximation), is given
by another quadratic form

K = ∆X · C ∆X

where ∆X = X2 − X1 is the difference of the two orbital element sets,
and the symmetric matrix C is given by

C = C1 − C1 C−1
0 C1 = C2 − C2 C−1

0 C2 .

The orbit identification penalty K is computed and used as a control
to filter out the couples of orbits which cannot belong to the same object
(unless the observations are exceptionally poor). To the orbit couples
passing this filter we apply the differential correction algorithm, with X0

as first guess.
This algorithm has been used successfully13, but it is far from detecting

all the identifications which are hidden in the data. The main limitation
is typical of the algorithms based upon linearization: if the difference ∆X
is not small, assuming that the normal matrices C1, C2 (and consequently
C0, C) are independent from the point X where they are computed is a
poor approximation.

Our new algorithm strives to decrease the size of the penalty K for
candidate couples for identification, thus revealing them as a priori more

13We have so far proposed, by using this algorithm, more than 4, 000 orbit identifications
published by the MPC.
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suitable for identification. This is obtained by replacing the nominal so-
lutions X1, X2 with two sets of VAs X

(i)
1 , X

(k)
2 , with i, k = 1, Nm (in the

tests of this paper, Nm ≤ 21, as described in Table 3). Then we compute
Ki,k, the expected value of χ2 for the identification between each pair of
VAs, and select the two indexes i, k corresponding to the minimum value
Kmin. If this minimum is low enough, the pair of designations is proposed
for identification, using as first guess the value X0 as computed for these
two VAs.

5.2 Comparative tests

The main goal of this paper is to show the advantages of the new algo-
rithms with respect to the previous ones. Thus we need to measure how
many reliable identifications can be found with the new methods, on top
of the ones found by a thorough application of some previous method. For
this purpose, we have performed three full computations on exactly the
same observational data for unnumbered (but designated) asteroids made
public by the MPC in November 2003:

Nominal Single (NS) solution: We have applied the orbit identifica-
tion algorithm ([Milani et al., 2000]) to a catalog of nominal orbits
obtained through the classical method of differential corrections.

Constrained Single (CS) solution: We have computed the orbits by
exploiting the use of the constrained differential correction as first
step, as described in Section 4, and then we have searched for the or-
bit identifications with the same algorithm as in ([Milani et al., 2000]),
but using the enlarged set of orbits.

Constrained Multiple (CM) solutions: We have used the same ex-
tended set of orbits, but tested the multiple solutions identification
algorithm described above.

For the sake of simplicity, when referring either to these three tests
or to the corresponding algorithms, hereafter we will denote them by
“NS”, “CS” and “CM” respectively, although we will mainly focus on the
comparison between the last two.

Analysis of the outputs

The overall numbers associated with the different tests are summarized in
Table 4. The main conclusion is the superiority of the algorithm based on
multiple solutions: the number of proposed identifications is more than
three times the number obtained by the CS method and more than ten
times the amount got in the NS test. Besides, out of the 11737 proposed
identifications only 7.6% were not included among those found by the CM
method and only 0.6% were not found by at least one of the two methods
CS and CM.

A breakdown of the results obtained in the tests is displayed in Ta-
ble 5, which shows the number of identifications that have been proposed
by the CS and the CM algorithms (first row), as well as the subset of
identifications that could not be found in the NS test (second row). The
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Table 4: Summary of the tests’ results.

NS CS CM

Prop. pairs 3,596,522 6,535,286 70,834,326

Prop. ids. 1,006 3,041 10,849

Pub. ids. 305 549 1,449

Note: For the tested algorithms, each row shows the number of proposed pairs
(i.e., pairs sent to the differential correction algorithm, satisfying the control
Kmin < 20, 000), the number of proposed identifications (i.e., pairs that pass
the differential corrections, with RMS of the residuals < 1.2 arcsec) and the
number of identifications published by the MPC.

role played by the constrained orbits becomes apparent from the data
included in the third and fourth rows: 55% of the identifications found
only by the CS and CM methods involve at least one asteroid with con-
strained orbit. This feature is even more remarkable when the attention is
restricted to those identifications only proposed by the CS method, where
the percentage raises to 82%.

Table 5: A detailed analysis of the identifications proposed by the CS and CM methods.

Only in Only in In
PROP. IDS. CS CM CS & CM TOTAL

Total 817 8,625 2,224 11,666
Not in NS 760 8,388 1,583 10,721
1 C 527 3,697 916 5,140
2 C 96 512 114 722

Note: This table emphasizes the role played by the orbits obtained through
constrained differential corrections: the third and fourth rows show the number
of identifications in which one or both of the involved asteroids have an orbit
computed by means of that procedure.

Clearly, a first indication of the power of any of the algorithms is
given by the number of proposed identifications (the more the better!).
However their final reliability will be measured by counting the fraction of
proposed identifications that reach publication: this implies the residuals
of the proposed identifications have been inspected (first by us, then by
the MPC) and found to be indicative of a good fit, without suspicious
trends and systematic effects. The third row in Table 4 summarizes the
number of identifications that have been published for each algorithm.
Table 6 gives the same data as in Table 5 for the identifications which
have been published.
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Table 6: As in Table 5, but for published identifications.

Only in Only in In
PUB. IDS. CS CM CS & CM TOTAL

Total 41 941 508 1490
Not in NS 34 907 248 1189
1 C 23 307 114 444
2 C 1 30 5 36
Credited 19 531 203 753

Note: The last row indicates the number of identifications that have been
credited to us.

Once again, the CM method provides the most remarkable results.
Moreover, the comparison between the results obtained by the CS and
CM procedures shows that only a very small percentage (∼ 2.75%) of
published identifications found by the former escape to the latter.

Particularly interesting are those identifications in which the two as-
teroids involved have a constrained orbit. Among them, the most out-
standing cases are those in which the proposed identification has been
confirmed by an additional identification with a third asteroid. Examples
of such a situation are:

1992 SB3 = 2000 PG14 = 2003 GU11

1996 VC13 = 1998 GR = 2002 CB303

1999 DT4 = 2000 LC4 = 2001 US181

1995 SJ32 = 1998 MN15 = 2000 YE89

1998 GX = 1996 VJ21 = 2000 TU71

where the last two identifications were obtained in both the CS and CM
tests, whereas the first three were only found by the CM method. Also
remarkable in these examples is the fact that, except for the last case, the
first two asteroids of each identification were two-nighters.

The superiority of the CM method is clear from the data analysis
presented so far. This conclusion is reinforced when we take into account
that the tests have been performed six months after the observational
data set was issued. The critical test is then to measure how many of
the published identifications are credited to our group by the MPC. This
means that the identification is not only reliable, but has not been found
before by other groups, even though they had all the time to try. In fact, as
shown in the last row of Table 6, over 50% of the published identifications
are credited to us.

Working with a comparatively old data set has the advantage that
most of the published identifications are well established, allowing more
reliable conclusions on the efficiency of the algorithm, moreover all the
new identifications found are a confirmation that our new methods reach
farther than the previously known methods of identifications.

With the NS method, which has been in use since 1999, to have a good
fraction of the identifications credited to us required to process the data
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in a very short time, as soon as the data were available. With the new
CS and CM methods, more than 52% of the identifications credited to us
involve two objects discovered before January 1, 2003. This percentage
reaches 91% for a discovery date before October 1, 2003 (one month before
the observational data set used in this paper was issued). There is no need
to rush to get the results before the competition.

Improving the filter parameters

The practical implementation of the tested algorithms are based on the
computation of a number of semi-norms, introduced in ([Milani et al., 2000]),
each one computed as the square root of an identification penalty in some
subspace. The most simple, called d, is exclusively based on the difference
of the Equinoctial orbital elements:

d =

√

(

a1 − a2

a1 + a2

)2

+ (h1 − h2)2 + (k1 − k2)2 + (p1 − p2)2 + (q1 − q2)2

In addition, we use the following three metrics that depend not only
upon the orbital elements but also upon the uncertainties:

• d2 is based on the equinoctial elements p and q whose definition
include the orbital inclination, a quantity usually well determined
from the observational data.

• d5 uses five orbital elements, leaving out the mean longitude that
usually carries the biggest uncertainty (and is responsible for most
of the nonlinearity).

• d6, uses the full set of equinoctial elements; note that, for the same
couple of orbits, d6 ≥ d5 ([Milani et al., 2000], Section 2.3).

Those metrics, initially designed to handle nominal solutions, have been
suitably adapted to the multiple–solution context.

The first stage in the orbit identification algorithms is to apply these
metrics as a cascading series of filters on each pair of asteroids. For each
distance metric we select a limit value, beyond which the distance is
deemed too great to deserve further testing. The metric filters are se-
quentially applied in the order above: this corresponds to an ascending
order in accuracy and computational complexity. The increase in com-
putational load is balanced by the decreasing number of pairs that reach
each successive filter. Those pairs that successfully pass all the filters in
the first stage (the proposed pairs of Table 4) are sent to a least squares fit
and are recognized as proposed identifications when the corresponding dif-
ferential correction algorithm is convergent to an orbit with an acceptable
RMS.

Another motivation for the comparative tests between the CS and CM
algorithms was to investigate the behavior of the different filters, with the
goal of fine tuning the cutting values for efficiency and reliability of the
detection of identifications.

The plots in Figures 6 and 7 provide a direct comparison of the filter
values for those identifications simultaneously obtained by the CS and the
CM methods. The interpretation is as follows: points with a better filter
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Figure 6: Comparison of the filter values d (up) and d2 (bottom) for the identifications
simultaneously obtained in the CS and CM tests. Each plot shows, using crosses, the values
taken by a filter parameter in both methods. The crosses marked with a circle correspond to
published identifications. The straight line marks the location where the values of the metrics
is equal for both methods (those points above this line represent identifications in which the
multiple-solutions algorithm improves the value obtained by the single-solution method).

value in the CM than in the CS method are located above the diagonal
lines. The main feature shown in those pictures is the migration of the
cloud of points to the upper half as the quality of the filter increases.
This means that, as expected, in most of the cases the CM algorithm
significantly lowers the identification penalty between orbits and, hence,
the nonlinearity of the problem. Note that this is exactly the goal we
were pursuing when introducing the multiple identification algorithm at
the end of the previous Subsection.

For each filter, Table 7 shows the precise percentage of proposed iden-
tifications that improve the metric value in the CM test with respect to
that obtained by the CS one. The percentage of improved values barely
exceeds 50% for the first filter and it almost reaches 100% for the last
filter. When the analysis is restricted to the published identifications, the
corresponding percentages are larger.

The histograms collected in Figure 8 refer not only to the common
identifications found by the CM and the CS tests but to the whole pop-
ulation of proposed (void bars) and published (solid bars) identifications
found by each method. These histograms depict the normalized distribu-
tion of the values for the different filters used.

Another comparison of the different metrics is given in Table 8, which
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Figure 7: As in Figure 6, but for distances d5 and d6.

shows several percentiles for the distribution of values of each distance.
Even though the results displayed for the d distance are slightly worse for
the CM algorithm, its superiority is rather evident for the other metrics.
For instance, to find 95% of the published identifications, the CM method
lowers by a factor 2 the percentile values of d5 and d6 with respect to
those needed by CS.

To understand these results, we need to take into account two com-
peting effects. On one hand, the CM method decreases all the distances
by selecting the minimum among a finite set of couples of VAs. On the
other hand, the size of the catalog of orbital elements used as input to
the identification filters is so huge in the CM method that it is difficult to
handle. Thus we have given up, in the CM method, one device used in the
NS and CS methods: given one input catalog of orbits, we propagate it to
a number of different epochs (e.g., 5 epochs in this test). For each couple
of designations being tested, we select the catalog with epoch closest to
the midpoint of the two discovery dates ([Milani et al., 2000], Section 5).
Thus in the CM method the covariance of the orbital elements is, in most
cases, propagated for a longer time span: this increases the size of the
confidence region and enhances the nonlinear effects.

Thus the data shown in the Figures and Tables of this subsection
indicate that the CM method is not effective in decreasing (with respect to
the CS method) the value of the d distance, and only marginally effective
in decreasing d2. The advantage of the multiple solutions method becomes
very significant for the d5 and d6 metrics, apparently by far exceeding the
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Table 7: CM vs. CS: improvement of the metric values.

d d2 d5 d6

% prop. ids. 52.2 57.3 79.0 97.0

% pub. ids. 69.6 62.2 85.0 97.1

Note: The first row shows the percentage of proposed identifications whose
metric values have been improved in the CM test with respect to the CS one.
The second row presents similar data for published identifications.

Table 8: Some percentiles for the distributions of the filter values as obtained for the pub-
lished identifications found in the CS and CM tests.

% Pubs. found 75 90 95 99 99.9

d CS 0.192 0.242 0.273 0.293 0.297

CM 0.211 0.273 0.287 0.295 0.299

d2 CS 0.559 1.495 2.412 5.347 9.144

CM 0.266 0.974 2.175 5.954 8.100

d5 CS 327.1 1167 2013 2781 2991

CM 74.6 474.4 1047 2491 2962

d6 CS 1331 3437 5821 15873 19806

CM 92.7 1057 3022 12440 18262

negative effect of the lack of the multiple epochs catalogs.
Finally, we have used the extensive tests to perform a fine tuning on the

selection of the cutting values for the different filters in order to maximize
the results with minimum computational effort.

A good measure of the performance of each algorithm is provided by
the ratio between the number of published and proposed identifications.
Since testing proposed identifications by differential corrections is the most
computationally intensive step of the procedure, this corresponds to the
results over cost ratio. Therefore, we aim at selecting the filter cutting
values in such a way that this ratio is maximum.

To achieve this goal we have used a discrete four dimensional grid
that results from taking equally spaced nodes in the range of variation
of each of the four distances. In this grid we have selected those points
for which a fixed percentage of published identifications are lost. The
optimal choice for the filter cutting values corresponds to the point of
the grid that makes maximum the number of discarded potential identi-
fications (i.e., maximizes the ratio between published and proposed iden-
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Figure 8: Normalized histograms for the values of the four filter distances (CS, left and CM,
right). Each figure showsthe relative distribution of values of a given filter: void bars for all
proposed identifications, solid bars for the published ones.

tifications). The results of this computation, for several percentages of
published identifications that we would be accepting to lose, are given in
Table 9.

Except for the lower percentages, where the cutting values tend to
equalize in both methods, we observe again slightly greater values for d
in the CM method and substantial lesser values for the other metrics,
which is consistent with the comments made above on the behavior of the
distributions. This situation is displayed in the plots collected in Figures
9 and 10, which show the optimal parameter region for both algorithms
when the maximum percentage of lost published identifications is fixed at
5%.

In summary, from the massive tests carried out, we can conclude that
the algorithm based in the computation of multiple solutions for each
asteroid represents a great advance towards the solution of the asteroid
identification problem: it allows us not only to find many more identi-
fications, but also those which are more difficult and have been hidden
in the catalogs for a long time. Nevertheless, there is room for improve-
ment at least in two areas. First, we would like to improve efficiency,
since not all the steps of the procedure have yet been optimized: e.g.,
the very time consuming check of the residuals to decide which proposed
identifications are worth submitting for publication requires much more
automation. Second, we can aim at a more complete search for identi-
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Table 9: Filter cutting values: optimal selection.

% Pubs. lost 25 10 5 1 0.1

d CS 0.210 0.255 0.285 0.300 0.300

CM 0.225 0.285 0.300 0.300 0.300

d2 CS 5.400 9.000 8.550 9.000 9.000

CM 8.100 8.550 7.650 7.650 8.550

d5 CS 2100 3000 3000 3000 3000

CM 1350 1950 2100 2700 3000

d6 CS 2000 4000 7000 17000 20000

CM 1000 2000 4000 13000 19000

% dpp CS 90.74 70.24 46.34 7.06 0.88

CM 88.85 65.66 46.66 19.47 4.13

Note: The first row gives the percentage of published identifications that would
be lost when the optimal filter cutting values listed in the subsequent rows are
used. The last two rows show the percentage of discarded proposed pairs (dpp),
that is, those pairs that when using the filter values of the corresponding column
would not reach the differential correction procedure.

fications, possibly exploiting the freedom to choose coordinates, scaling
and the second eigenvalue in the definition of the LOV. The current test
has been conducted using the Equinoctial coordinates, no scaling and the
first LOV; as it is clear from Section 2.6, different proposed identifications
could easily be obtained with other choices.

5.3 Observation attribution

We now discuss attributions of a set of observations, for which a set of
orbital elements is not available, to another discovery for which there are
enough observations to compute a least squares orbit. We shall not repeat
the formulas of the linear attribution algorithms ([Milani et al., 2001])
because they are conceptually the same as those shown in Section 5.1,
with a different interpretation for the symbols.

Let X1 be an attributable, that is a 4-dimensional vector representing
the set of observations to be attributed; its coordinates are (α, δ, α̇, δ̇), that
is the same as the first four components of an Attributable elements set.
To compress the information of a set of observation, forming a small arc
on the celestial sphere, into representative angles and angular velocities,
we use a fit to a low degree polynomial of time, separately for δ and α.
Let C1 be the normal matrix of such a fit.

Let X2 be a predicted attributable, computed from a known least
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Figure 9: Distribution of identifications obtained by the CS (up) and CM (bottom) methods
in the d–d2 plane. Each proposed identification is represented by a single cross. Encircled
crosses correspond to those published. Shaded rectangles are optimal regions (at the 5% loss
level).

squares orbit. Let Γ2 be the covariance matrix of such an attribution,
obtained by propagation of the covariance of the orbital elements (as ob-
tained in the least squares fit, be it full or constrained). Then C2 = Γ−1

2

is the corresponding marginal normal matrix.
With this new interpretation for the symbols X1, X2, C1, C2, the algo-

rithm for linear attribution uses the same formulas of Section 5.1, with the
identification done in the 4-dimensional attributable space. In particular,
the attribution penalty K is computed and used as a control to filter out the
pairs orbit-attributable which cannot belong to the same object (unless
the observations are exceptionally poor). To the pairs orbit-attributable
passing this filter we apply the differential correction algorithm, with the
known orbit as first guess.

This algorithm is effective whenever the distance (in the 4-dimensional
attributable space) between X1 and X2 is not too large and the penalty
is small, thus the linear approximation is accurate. Let us suppose this is
not the case because the prediction X2 has a large uncertainty (i.e., Γ2 has
large eigenvalues); this can be due either to a weak orbit determination
at the epoch of the observations, or to a long propagation, because the
two designations have been discovered far in time from each other. Then
the confidence region of the prediction X2 is not well represented by the
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Figure 10: As in Figure 9, but in the d5–d6 plane. Note that in exact arithmetic d5 ≤ d6.
The exceptions (below the diagonal in the plots) indicate numerically unstable cases, with
very badly conditioned normal matrices. These extremely unstable computations nonetheless
provide some reliable identifications!

confidence ellipsoid

ZL(X2) =
{

X|(X − X2)
T C2 (X − X2) ≤ χ2

}

.

In this case it is appropriate to sample in a nonlinear way the confi-
dence region in the attributable space by using the LOV. This leads to a
new algorithm, in which the attribution penalty Ki is computed for each
of the VAs (indexed by the integer i) computed along the LOV. If at least
some of the Ki are low, then X1 may be attributed to the orbit giving the
prediction X2.

This algorithm is more effective than using the nominal prediction
only, and indeed it has been used to generate new attributions on top of
the ones already obtained with the single orbit method. However, unlike
the case of the orbit identifications, it is not easy to assess how significant
is the improvement. This for two reasons. First, we have obtained such
an improvement in the orbit identification procedure by using multiple
solutions that, after running the large scale test of Section 5.2, a large
fraction of the attributables correspond to designations with some least
squares orbits (including the constrained ones) and most identifications
have already been obtained. Therefore, it is difficult to separately measure
the improvement in the attribution algorithm. Second, the attributions
are often questionable when the attributable is computed only over a short
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observations time span. Hence, to confirm them it is essential to be able to
find a third discovery corresponding to the same object. The possibility
of doing this is critically dependent on the availability of enough short
arc data. Thus we plan to perform a more specific large scale test of the
attribution to multiple solutions by processing a much larger database of
independent short arc discoveries.

6 Application 4: Qualitative analysis

The sampling along the LOV is also useful to understand the situation
whenever the orbit determination is extremely nonlinear.

The problem of nonlinearity in orbit determination is too complex to
be discussed in full generality here. We would like to show the use of
the LOV sampling as a tool to understand the geometry of the nonlinear
confidence region in a single, difficult example, in which there are multiple
local minima of the cost function.

The asteroid 1998 XB was discovered on December 1, 1998, while it
was at an elongation of ≃ 93◦ from the Sun. The first orbit published
by the MPC, based on observations over a time span of 10 days, had a
semimajor axis a = 1.021 AU ([MPC 1998]). In the following days the
orbit was repeatedly revised by the MPC, with semimajor axis gradually
decreasing until 0.989 when the observation time span was 13 days. Then,
with the addition of observations extending the time span to 16 days, the
semimajor axis jumped to 0.906.
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Figure 11: The RMS of the residuals (in arcsec), as a function of the LOV parameter σ, for
different amounts of observational data. The lines are marked with plusses (arc time span of
9 days), crosses (10 days), stars (11 days), boxes (13 days), full boxes (14 days) and circles
(16 days).

To understand the bizarre behavior of this orbit determination we
can compute the LOV for different data, corresponding to observed time
spans of 9, 10, 11, 13, 14 and 16 days. As Figure 11 shows, the RMS of the
residuals along the LOV has a double minimum: the secondary minimum
moves, as the data increase, in direction of lower a, but not as far as
the location of the other minimum. The secondary disappears only with
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16 days of data, and then the differential corrections lead to the other
solution.

It is well know ([Marsden, 1985]) that Gauss’ method for determining
an orbit from three observations can have two distinct solutions when the
elongation is below 120◦. When applied with three observations selected
in the shorter time spans, it can provide preliminary orbits close to both
the primary and the secondary minimum.

As an example, with data over 10 days we can compute a preliminary
orbit by Väisälä’s version of Gauss method, with a = 0.900, and from this
a full least squares solution with a = 0.901 and RMS 0.47 arcsec. If we
use the Merton version of Gauss’ method we get a preliminary solution
with a = 1.046, and from this we can compute a “nominal” solution, that
is a local minimum, with a = 1.032 and RMS 0.58 arcsec.

This example confirms that the region with elongation around 90◦ is
especially difficult for orbit determination, but also shows that the LOV
can provide a very efficient tool to understand complex nonlinearities.

7 Conclusions

In this paper we have introduced a new definition of Line Of Variations,
rigorously applicable in all cases (including the strongly perturbed orbits)
and explicitly computable thanks to the algorithm of constrained differ-
ential corrections and to the continuation method.

This definition depends upon the metric, thus upon the coordinates
and scaling used. In practice the different LOVs give the same results
when enough observations are available. For objects observed only over
a very short arc, the LOV is strongly dependent upon the metric. When
the confidence region is essentially flat, two dimensional, the LOV cannot
be fully representative. This occurs for most objects observed only over a
single night; for two-nighters, sampling of the confidence region by using
the LOV is effective for some applications (such as orbit determination
and identification) but can be problematic for others (such as impact
monitoring).

The concept of LOV and the algorithms to compute it14 have several
applications.

1. Impact monitoring: it is now possible for near Earth asteroids ob-
served for only a few days, although this may not be enough to detect
possible impacts after just one night of observations.

2. Orbit determination: by using LOV solutions as intermediary, and
also as replacement of the nominal solution, we have obtained a huge
increase of the size of asteroid orbit catalogs.

3. Orbit identification: two effects, larger input catalogs and the use of
multiple LOV solutions to mitigate nonlinearity, together account for
an increase in the number of identifications by an order of magnitude.

4. The LOV is a useful tool for qualitative analysis of difficult cases
with extreme nonlinearity.

14The LOV algorithms are available in the free software OrbFit at
http://newton.dm.unipi.it/orbfit/.
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A Comparison of LOV definitions

To obtain rigorous results, we need to use also the weak direction vector
field for Newton’s method

CN (X) V N
1 (X) = λN

1 (X) V N
1 (X)

with |V N
1 | = 1, λN

1 the lowest eigenvalue.

F N (X) = ± 1
√

λN
1 (X)

V N
1 (X)

Definition LOV1 The solution of the differential equation

dX

dσ
= F (X) (1)

with initial conditions X(0) = X∗ (a nominal solution).
Definition LOV2 The solution of the differential equation

dX

dσ
= F N (X) (2)

with initial conditions X(0) = X∗.
Definition LOV3 The set of points X such that

V1(X)||D (3)

Definition LOV4 The set of points X such that

V N
1 (X)||D (4)

Definition A solution of the differential equation

dX

dσ
= k(X)D(X) , (5)

with k(X) a (positive) scalar function, is called a curve of steepest descent.
Such curves have as limit for s → +∞ a nominal solution X∗ (almost
always; exceptional curves can have a saddle as limit).

LOV1 and LOV2 are not the same curve. The two curves are close
near X∗ (provided the residuals are small), they become very different for
large residuals and especially near a saddle. LOV3 and LOV4 are not the
same curve.

LOV3 and LOV4 do not imply that the curve contains a nominal
solution; indeed a minimum may not exist (it may be beyond some singu-
larity, such as e = 1 if the elements are Keplerian/Equinoctial). However,
if these curves pass in the neighborhood of a minimum, then they must
pass through it.

In a linear case Ξ = B(X −X∗) + Ξ∗, with B constant, all the defini-
tions LOV1-LOV2-LOV3-LOV4 are the same (and they all are curves of
steepest descent).

Theorem if a curve satisfies LOV4 and either LOV2 or it is of steepest
descent, then it is a straight line.
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Proof: If LOV4, then there is a scalar function h(X) such that
F N (X) = h(X) D, thus LOV2 and being of steepest descent are equiva-
lent. Let us select the particular steepest descent curve

dX

dσ
= D

and let us reparameterize the curve by arclength s, with

∣

∣

∣

dX

ds

∣

∣

∣
= 1 ⇐⇒ ds

dσ
= |D|

then
dX

ds
= D̂

the unit vector in the direction defined by D. Taking into account that

∂D

∂X
= −CN ;

dD

ds
=

∂D

∂X

dX

ds
= −CN D̂ ,

let us compute

d2X

ds2
=

d

ds

D

|D| =
1

|D|
dD

ds
− < D, dD

ds
>

|D|3 D =

=
−1

|D|
[

CN D̂− < D̂, CN D̂ > D̂
]

and if we use LOV2 (or even a weaker condition that D is parallel to some
eigenvector of CN )

CND̂ = λD̂ ⇒ d2X

ds2
=

−1

|D|
[

CN D̂− < D̂, λD̂ > D̂
]

= 0

thus the curve must be a straight line. QED
In conclusion we have adopted LOV3 as definition of the LOV, because

it is the one actually computable with standard tools, without computing
the second derivatives of the residuals and without incurring in the nu-
merical instabilities found in computing LOV1-LOV2. Definitions LOV2
and LOV4 are not equivalent, and they are indeed different curves apart
from very special cases, where they are straight lines. We have not been
able to prove that definitions LOV3 and LOV1 give different curves, but
given the proven result LOV2 6= LOV4 we expect that also LOV1 6= LOV3
apart from some very special cases.
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