
DEMAND DRIVEN NETWORK MONITORING
INFRASTRUCTURE: A PROTOTYPE∗

Augusto Ciuffoletti
INFN/CNAF
Via B. Pichat 6a
Bologna - Italy
augusto@di.unipi.it

Yari Marchetti
Dept. of Computer Science of the University of Pisa
Largo Pontecorvo
Pisa - Italy
marchetti@cli.di.unipi.it

Antonis Papadogiannakis, Michalis Polychronakis
FORTH
Heraklion (Crete) - Greece
[mikepo,papadog]@ics.forth.gr

Abstract The capability of dynamically monitoring the perfomance of the communication
infrastructure is one of the emerging requirements for a Grid. We claim that
such a capability is in fact orthogonal to the more popular collection of data for
scheduling and diagnosis, which needs large storage and indexing capabilities,
but may disregard real-time performance issues. We discuss such claim analyz-
ing the gLite NPM architecture, and we describe a novel network monitoring
infrastructure specifically designed for demand driven monitoring, named gd2,
that can be potentially integrated in the gLite framework. We describe a Java
implementation of gd2 on a virtual testbed.

Keywords: Network Monitoring, gLite, Network Measurement, XML Schema Description,
Java, User Mode Linux.

∗This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UnipiEprints

https://core.ac.uk/display/11828634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1. Introduction
End-to-end network monitoring is a key issue in the management of pro-

duction Grids: with reference to a frequent situation in a replica management
scenario, it would be useful to monitor network performance both before and
during access to replicated data, in order to dynamically select a replica that
offers an acceptable accessibility. However, end-to-end network monitoring
introduces distinctive problems.

For one, its complexity potentially scales up with the square of the size of
the system, while other resource monitoring activities (for instance processing
power) scale linearly. To ensure its scalability, end-to-end network monitoring
must be selective in its targets: only a significantly small fraction of end-
to-end paths can be monitored at each time. As a consequence, whatever the
criteria to select which path is to be monitored, we need some sort of distributed
infrastructure in order to activate and deactivate network monitoring selectively.

Another problem comes from the accessibility of the resource. When we
monitor other kinds of resources, e.g. processing capabilities, the sensor has
direct access to the resource. In the case of network monitoring, we often
observe that the monitoring tool requires some sort of cooperation from the
resource itself: for instance, even the trivial ICMP ping requires that packets
are freely propagated, which is not always true. As a general rule, an end-to-
end network element must be treated as an opaque box, showing a performance
which is traffic specific. One way to overcome this problem is to use passive
measurement techniques, instead of active, thus analyzing existing traffic: such
solution is also the foundation of the IPFIX [11]protocol, currently discussed
within the IETF. In our approach, traffic analysis is delegated to specialized
units, located where it is possible to intercept traffic between end-points. The
result of such activity should be collected and published only after checking the
credentials of the requester: these data should be regarded as subject to security
restrictions.

Summarizing, we establish two cornerstones for an end-to-end network mon-
itoring architecture capable of managing the scalability challenge offered by a
Grid environment: i) demand driven, in the sense that its activity is not set by
default, or with static configurations, but controlled by external agents, and ii)
passive monitoring oriented, in the sense that only existing traffic is analyzed
in order to obtain the requested measurements.

The next section goes into the details of a novel architecture which is based
on the above foundations: it is the result of a joint activity of INFN-CNAF
(Italy) and FORTH (Greece), in the frame of the European CoreGRID project.



Demand Driven Network Monitoring Infrastructure: a prototype 3

S

S

A

A

E

E

E

E

E

BACKBONE

Figure 1. Deployment of gd2 components in a Domain: E units represent generic monitoring
endpoints, A labeled units represent Network Monitoring Agents, S units represent Network
Monitoring Sensors

2. The components of a demand driven network
monitoring architecture

Our architecture partitions Grid end-points into Domains (see figure 1). A
Network Monitoring Agent (Agent, in the rest of this paper) takes the respon-
sibility of managing a number of Network Monitoring Sensors (Sensors, in the
rest of the paper), and of agents enabled to submit network monitoring requests,
the Network Monitoring Clients (Clients, in the rest of the paper) that compose
the Domain. There are good reasons to introduce a partitioning, roughly the
same that motivate its introduction in many aspects of networking: reducing
complexity – one Agent concentrates the interface to the entities inside a domain;
security containment – security issues can be managed using local credentials
inside a domain; limiting global state access – only Agents have access to the
global state, thus simplifying its management and ensuring security.

2.1 The Network Monitoring Agent
The services offered by an Agent can be divided into two quite separate

interfaces: one towards the other Agents (back end), and another towards local
sensors and clients (front end). In figure 2 the triangular shapes indicate front
end interfaces. We examine the two faces, and next detail the internal structure
of the agent.

The back end interface is in charge of maintaining the membership of the
Agents in the system. Such membership is the repository of two relevant data:
1) the credentials of the Agents, needed to enforce security in communications
among the agents, and 2) the components of each domain.

As for the first point, we envision a public/private key scheme as adequate
for our purpose: we consider that security primarily avoids the intrusion of



4

OUT
Request

IN
Request

Stream
IN

Stream
OUT

Sensor IF

Data

Client IF

Data

Front end

Data Transport

Control

Sensor IF Client IF

Request
Front end

Request Routing

Back End

Session Soft State

Figure 2. Internal architecture of a Network Monitoring Agent. The Back End interfaces are
located in the innermost stripe

malicious entities disguised as Agents. Whenever the results of the monitoring
activity are considered confidential, Clients and Sensors will be in charge of
encrypting sensitive data according to agreed methods. In order to control
access to the membership, we assume the existence of an external entity in
charge of key creation and assignment. This Authority, upon admission of a new
agent, releases a certificate, which entrusts the use of the public key as authorized
by the Certification Authority. Each Agent has access to a repository containing
the certified public keys, and each communication within the membership is
accompanied by the signature of the sender (not encrypted, in principle), which
can be checked using the public key.

The reader understands that the implementation of the certificate repository
is a component whose implementation affects the scalability of the whole ar-
chitecture: we deal with such component in page 7.

The back end, upon receiving a request, submits its content to the front end
in order to assess its capability to take it up: it is possibile that the information
in the domain directory was insufficient to determine the appropriate Agent for
the task. Therefore we consider that the front end may fail to fulfill a request: in
such case, the back end will trap the failure, and resubmit the request to another
Agent. Such re-routing will be controlled either by alternate Agents whose
identity is indicated in the global directory (as a general rule several agents are
responsible for the monitoring of a given network element), or by information
available to the front end, obtained from inside the domain. We indicate the
capability of re-routing requests as a "Proxy" functionality.

An Agent offers another back end service for the transport of Network Mon-
itoring data to the Client that requested it: such transport service consists of a
stream from the Sensor to the Client, and is routed transparently through the
reverse of the path used to deliver the request. The content of the stream may
be encrypted, in case the network monitoring results are considered as confi-



Demand Driven Network Monitoring Infrastructure: a prototype 5

dential, but the client(s) must own the key to decrypt the data: here we assume
that such keys are negotiated when the network monitoring task is accepted for
execution.

The front end of the Agent is in charge of interacting with Clients and Sensors
inside the Domain: the Agent accepts requests for Network Monitoring from
the Clients, and drives the Sensors in order to perform the requested network
monitoring activity.

The network monitoring activity is organized into Network Monitoring Ses-
sions (or Sessions, in the rest of this paper). A session describes the endpoints
of the Network Monitoring activity, as well as the kind of activity required.
The request must determine, either implicitly or explicitly, the features of the
stream that will be produced to return observations to the Client. In [5]we give
an XML Schema Definition for such data structure, the Session Description.

The Clients submit their requests to the Agent as Session Descriptions. The
Agent is in charge of checking whether the request comes from an authorized
client: this functionality is supported by a trust supported internally to the
domain, independent from that used within the membership of the agents. This
allows the possibility of merging domains with distinct security policies and
support. The request is then passed to the back end.

The front end, upon receiving a request from the back end, analyzes its
content to assess its ability to configure a Sensor that performs the task: to
this purpose, the Agent must have access to a directory, internal to the domain,
containing the descriptions of the sensors.

Domain Database

Soft State

RequestManager

NMEManager

StreamProxy

SimpleHTTPServer

SOAP

S
e
n

s
o

r P
lu

g
in

s

IRequestListener

ConnectionState

NMEDispatcherIAgentRetriever

Figure 3. Modular view of a Network Monitoring Agent

The abstract functionalities described above have been implemented as a
multi-threaded daemon (see figure 3). The StreamProxy thread is in charge of
passing through the streams of data from sensors. It is composed of four threads
that implement a pipe composed of four tasks: to receive the packet, to verify
its signature, to generate the new signature, and to send the packet to the next
hop. These threads utilize the AgentRetriever API provided by the database



6

in order to have access to the Domain Directory, and the APIs used to access
the shared Soft State through the interface ConnectionState. It implements the
"Stream IN, Stream OUT" boxes in Figure 2.

The RequestManager is another thread in charge of routing network monitor-
ing requests, and implements the "Request IN, Request OUT" boxes in Figure 2.
As in the case of the StreamProxy, the ConnectionState and the AgentRetriever
interfaces grant access to the Soft State and to the Domain Directory.

Requests are acquired by a SimpleHTTPServer thread that offers a SOAP
interface to the Clients, and they are delivered to the RequestManager through
its IRequestInterface interface.

The RequestManager controls the Sensors through a set of plugins, each of
them specifically designed in order to drive a certain kind of sensor. Sensor
plugins offer an interface with a single dispatchRequest method.

2.2 A passive Sensor and its plugin
Passive monitoring sensors are usually located at selected vantage points

in the network that offer a broad view of the traffic of a domain, such as the
access link that connects a LAN with another, or an Autonomous System to the
Internet.

To support passive network measurements using the gd2 architecture, we
have developed a plugin within the Network Monitoring Agent which controls
the passive monitoring sensors. The passive monitoring plugin first receives
the configuration parameters for the passive network measurements from the
client’s request: available measurements are round-trip time [7], delay and
jitter, packet loss rate [8], available bandwidth, and per-application bandwidth
usage [1], based on the the Distributed Monitoring Application Programming
Interface (DiMAPI) [13]developed at FORTH. These parameters are derived
from the measurement specific part of the session description document, while
the MAPIOptions element provides the relevant parameters for the passive
monitoring tools.

When the starting time of a measurement comes, the passive monitoring
plugin invokes the execution of a DiMAPI program that coordinates the remote
monitoring sensors for the task. Dynamic configuration of the sensor includes
the specification of packet filters, the definition of the processing operations
that should be performed for each network packet, and the kind of results that
should be produced, using the suitable DiMAPI functions [13]. The measure-
ment results from each sensor are periodically sent to the DiMAPI program
for aggregation and then returned to the plugin in the NMA. Finally, the plu-
gin parses the results and sends them to the consumer through an encrypted
connection.



Demand Driven Network Monitoring Infrastructure: a prototype 7

Figure 4. Invoking a passive measurement for packet loss ratio in gd2: a plugin inside NMA
initiates a DiMAPI program which gathers results from two remote sensors

Figure 4 presents an example of a passive measurement session for the packet
loss ratio between two different domains: we emphasize that such a measure-
ment requires sophisticated techniques in order to be performed according with
a passive approach to network monitoring. Initially a client submits a request to
the local NMA (1), and the request is forwarded to a corresponding NMA (2) that
should perform the measurement. Then, the passive monitoring plugin parses
the request and initiates the execution of a DiMAPI program that computes the
packet loss ratio between the two domains using data from two corresponding
monitoring sensors. The program first configures the two sensors (3) and then
the results are streamed from the sensors to the DiMAPI program (4), which
computes the packet loss ratio and reports it to the passive monitoring plugin.
Finally, the results are streamed to the local NMA (5) and to the client (6).

We have currently implemented the passive monitoring plugin to support
appmon [1], a DiMAPI based tool that reports the accurate bandwidth usage
for individual protocols and applications, and packet loss [8]measurement
tools.

2.3 The Domain Database
In order to understand the role of the Domain Database, we illustrate the

decisions that the Agents take on the basis of its content.
The first decision step on this way is performed by the Agent once it receives

a request from a Client: it consists in determining the Source and Destination
domain of the network element under test. Such information is obtained by
way of a query to the Domain Directory. The request is then forwarded to an
Agent in such domains: the identity of such agents and their address is again
obtained from the Domain Directory. We exclude that a monitoring activity is



8

performed by an intermediate domain, since this would require the availability
of routing information for the overall system.

Each agent on the way of the Request will in turn check the signature as-
sociated to the request, and replace it with its own. A query to the Domain
Directory returns the public key needed to check the signature.

Each agent in turn will check the availability of the network monitoring
functionality within the domain. This step is performed without further access
to the Domain Directory, but browsing the capabilities available within the
domain. We emphasize that our perspective helps to simplify this task: the
adoption of passive tools helps us in limiting the number of potential producers
(the sensors) in our architecture. Therefore the search for a producer is restricted
within a limited number of sensors: such search can be either based on a local
directory, or simply carried out broadcasting the request template to the local
sensors.

The above discussion explains why the Domain Directory is to be considered
a critical component in the structure: it is a potential single point of failure, and
a performance bottleneck. A centralized implementation is therefore incom-
patible with the scalability of our architecture. However, the information stored
in the Domain Directory is seldom updated, and this opens the way to strongly
distributed solutions.

There are several options, that depend on the scale of the Grid of concern.
One is to apply to a LDAP or DNS based implementation. Such well known
tools are ready solutions for the maintenance of a distributed, that allow data
replication in order to improve performance and fault tolerance. Such solution
is probably adequate to most current scenarios.

Going beyond such scale, we indicate the implementation of a fully delocal-
ized solutions: in essence, all Agents cache a part of the database, and updates
are propagated according with a peer to peer protocol. Such approach may
significantly improve scalability, while reducing the footprint for the mainte-
nance of the Domain Directory. A theoretical investigation about the topic are
reported in [3], while experimental results are in [4].

3. Related works
The NPM architecture [9]is one of the most promising proposals for network

monitoring, and is presently embedded in the gLite infrastructure, designed
and implemented in the framework of the European Project EGEE. NPM is
designed to provide two types of information: measurement data, in the form
of data records conforming to OGF standards, and metadata, indicating what
kind of data are available for a given network element. Such information is
delivered to clients, whose role is to diagnose network performance problems.



Demand Driven Network Monitoring Infrastructure: a prototype 9

The client submits its request to intermediate entities, the mediators, through
a web service interface. Such request may either exhaustively describe a mea-
surement series, or ask for the retrieval of metadata about the measurements
available for a given network element. In the former case, the requested data
will be delivered to the client, while in the latter the client will be presented with
a list of available measurements to choose from. In either case the mediator will
use services offered by another kind of component, the discoverer, which is in
charge to either locate the requested data, or to produce the listing of available
sources. The source of the monitoring data is called framework, and it provides
access to the tools that extract network monitoring data. A detailed description
of the above services is in [10].

NPM strongly focuses on the accessibility of historical data: this makes
a relevant difference compared to our perspective. In fact, since we mainly
address data collected on demand, we necessarily exclude, for performance
reasons, a web service oriented architecture for the retrieval of measurements.
Instead we introduce a long lived communication entity, a stream. For the
same reason we need not to address a large database of collected data: data are
delivered to interested users, without being stored anywhere (unless a Client
wants to do so). This avoids the need of indexing data, one of the functionalities
associated to the discoverer. In our architecture the discovery activity focusses
on a far less complex task: determining where to fire the measurement session.

We conclude our discussion remarking that a direct comparison is in fact
inappropriate: the two frameworks, NPM and gd2 address two distinct prob-
lems, and each of them is a poor solution when applied to the problem for
which it has not been explicitely designed. A gd2 Agent is designed to di-
agnose network problems once they have been detected, but has no detection
tools: here we present a framework that helps detecting a network problem,
and possibly overcome its presence without diagnosing its source. The NPM
has an extremely heavy footprint when used to receive real time updates of the
performance of a network element, which is needed to detect problems; our
framework has no way to explore the past of an observation, tracking up to its
cause.

Since their application domains are different, one may guess that they may
live side-to-side in the same infrastructure. We believe that this is possible, at
least in perspective. For instance, a client in our framework might be embedded
in a NPM framework: its request might consists of a long-lived, continuous
monitoring activity, and the flow of observations might be recorded for future
use of NPM diagnostic tools. However, such a publication modality cannot
replace the stream introduced in gd2 when the client is an entity in charge of
monitoring the real time performance of an end-to-end path.

The approach presented in this paper is also complementary with the IPFIX
project [11]: the purpose of the IETF initiative is to design a protocol for



10

flow metering data exchange between IPFIX Devices (corresponding to sensors
in out framework) and IPFIX Collectors (Clients in our framework). Such a
protocol roughly corresponds to the payload of the Sensor to Client stream, and
can be used whenever netwrok utiliziation has the characteristics of a flow. We
plan to converge to an IPFIX compliant architecture, and an IPFIX interface for
MAPI is under work.

A monitoring infrastructure which inspired our work is CoMo [6], a passive
monitoring infrastructure ideated by Intel. A branch of such project covers
the placement of passive sensors [2], a relevant issue that is not considered in
our paper. The CoMo research stream explores many relevant aspects of net-
work monitoring, but fails to give an exhaustive description of the conversation
between the Sensor and the Client, which is the main purpose fo our work.

4. Prototype layout and operation
The purpose of our prototype was to assess the feasibility of the whole gd2 ar-

chitecture, focussing on the communication infrastructure: therefore we tried to
concentrate our efforts in order to produce a real scale support for a community
of Agents, leaving behind other aspects of our architecture.

We implemented a fully functional request delivery infrastructure, as well
as the streaming in charge of returning the data to the requester. We took into
account the security issues mentioned above, using signed communications
among the Agents, taking care of the organization of the content of the database.

One of the aspects that are considered to a limited extent is the implementation
of the database: we have implemented a solution based on an LDAP directory,
whose scalability is similar to other solutions based on this technology. Al-
though we are actively working to design a solution with better scalability, we
have evidence that the pragmatic solution given by LDAP is satisfactory at the
current scale of real Grids.

In order to debug and demonstrate the functionality of the prototype, we
have implememented a virtual testbed using the NETKIT toolset [12], based
on the User Mode Linux technology, which allows to virtualize several dis-
tinct hosts using a single computer. The virtual hosts appear as complete PCs,
with independent storage, computing and networking facilities. They can be
interconnected, using ordinary interconnection tools, into a virtual network.
Aside from the limited amount of resources needed to synthesize the testbed,
the major advantage of such an approach is that the experiments can be easely
replicated on distant sites, thus allowing a collaborative development of the
software without need of sharing hardware facilities, and always run under
extremely controlled conditions. Demonstrations can be produced using any



Demand Driven Network Monitoring Infrastructure: a prototype 11

available Linux machine, and without installing experimental software on the
real computer1.

Zeus Ares

r1

r2

HOST

Apollo

192.168.66.2

10.255.1.1

10.0.0.1

10.255.1.2

10.0.0.2

10.1.0.110.2.0.1

10.1.0.2

192.168.66.1

10.2.0.2

Figure 5. Development testbed

In our testbed we synthesize a network composed of three Agents and two
routers (see figure 5): each of the Agents lives in a distinct domain. One of the
Agents was equipped of a Client interface able to generate Network Monitoring
Requests. We observed the delivery of the Request to the Sensor, with one or
more hops within the Agents membership, and the flow of observations from
the Sensor to the Client.

5. Conclusions
Our investigation, which attained the detail of a real scale implementation,

lead to a clear view of the problems related to on demand network monitoring,
and to the change of attitude needed with respect to the, so to say, diagnosis-
oriented network monitoring. A demand driven architecture is not data-centric,
in the sense that storage and indexing of measurements are not relevant, but
more capability-centric, in the sense that operational network monitoring capa-
bilities must be indexed, and protected against misuse. Therefore we need an
architecture that is able to give a structure to the membership of the components
that have monitoring capabilities, so to provide a capability based addressing
of the monitoring resources.

We have identified such structure in a topology-bound partitioning: such
structure must be sufficiently stable, in order to allow a distributed management
of the directory that describes such partioning. In order to effectively abstract
from the internal structure of a domain, we introduce components that manage
the monitoring capabilities within a domain.

1The package with the virtual testbed (designed for Ubuntu Linux) is available at
http://network-monitoring-rp.di.unipi.it/, with instruction for its installation



12

The primary security need is to avoid unauthorized access to network mon-
itoring capabilities: to this purpose we need a robust authentication scheme,
which is again based on information contained inside the distributed directory.

Data transfer must focus on long lived, low bandwidth data transfers: a less
than best effort paradigm seems appropriate for their definition. This seems to
match with a stream oriented protocol, that uses routing information obtained
during the delivery of the network monitoring request.

In such scenario, passive monitoring is not only an option motivated by a low
footprint. Passive end-to-end monitoring capabilities can be concentrated in a
few locations within a domain, thus simplifying the indexing of available capa-
bilities, instead of scattered on each possible endpoint: which comes as a crucial
advantage also in the deployment of the network monitoring infrastructure.

References
[1] Demetres Antoniades, Michalis Polychronakis, Spiros Antonatos, Evangelos P. Markatos,

Sven Ubik, and Arne Øslebø. Appmon: An application for accurate per application net-
work traffic characterization. In In IST Broadband Europe 2006 Conference, 2006.

[2] Gion Reto Cantieni, Gianluca Iannaccone, Christophe Barakat, Chadi Diot, and Patrick
Thiran. Reformulating the monitor placement problem: Optimal network-wide sampling.
Technical report, Intel Research, 2005.

[3] A. Ciuffoletti. The wandering token: Congestion avoidance of a shared resource. In
Austrian-Hungarian Workshop on Distributed and Parallel Systems, page 10, Innsbruck
(Austria), September 2006.

[4] Augusto Ciuffoletti. Secure token passing at application level. In 1st International Work-
shop on Security Trust and Privacy in Grid Systems, page 6, Nice, September 2007.
submitted to FGCS through GRID-STP.

[5] Augusto Ciuffoletti, Papadogiannakis Antonis, and Michalis Polychronakis. Network
monitoring session description. Technical Report TR-0087, CoreGRID Project, July 2007.

[6] Gianluca Iannaccone, Christophe Diot, Derek McAuley, Andrew Moore, Ian Pratt, and
Luigi Rizzo. The CoMo white paper. Technical Report IRC-TR-04-17, Intel Research,
2004.

[7] Hao Jiang and Constantinos Dovrolis. Passive estimation of tcp round-trip times. SIG-
COMM Comput. Commun. Rev., 32(3):75–88, 2002.

[8] Antonis Papadogiannakis, Alexandros Kapravelos, Michalis Polychronakis, Evangelos P.
Markatos, and Augusto Ciuffoletti. Passive end-to-end packet loss estimation for grid
traffic monitoring. In Proceedings of the CoreGRID Integration Workshop, 2006.

[9] Alistair Phipps. Network performance monitoring architecture. Technical Report EGEE-
JRA4-TEC-606702-NPM NMWG Model Design, JRA4 Design Team, September 2005.

[10] Alistair Phipps. NPM services functional specification. Technical Report EGEE-JRA4-
TEC-593401-NPM Services Func Spec-1.2, JRA4 Design Team, October 2005.

[11] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for IP Flow Information
Export (IPFIX). RFC 3917 (Informational), October 2004.

[12] Massimo Rimondini. Emulation of computer networks with Netkit. Technical Report
RT-DIA-113-2007, Roma Tre University, January 2007.



Demand Driven Network Monitoring Infrastructure: a prototype 13

[13] Panos Trimintzios, Michalis Polychronakis, Antonis Papadogiannakis, Michalis
Foukarakis, Evangelos P. Markatos, and Arne Øslebø. DiMAPI: An application program-
ming interface for distributed network monitoring. In Proceedings of the 10th IEEE/IFIP
Network Operations and Management Symposium (NOMS), April 2006.


