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Abstract

In adult organisms, stem cells are crucial to homeostasis and regeneration of damage of 

tissues. In planarians, adult stem cells (neoblasts) are endowed with an extraordinary 

replicative potential that guarantees unlimited replacement of all differentiated cell types and 

extraordinary regenerative ability. The molecular mechanisms by which neoblasts combine 

long-term stability and constant proliferative activity, overcoming the impact of time, remain 

by far unknown. Here we investigate the role of Djmot, a planarian orthologue that encodes a 

peculiar member of the HSP70 family, named Mortalin, on the dynamics of stem cells of 

Dugesia japonica. Planarian stem cells and progenitors constitutively express Djmot. 

Transient Djmot expression in differentiated tissues is only observed after X-ray irradiation. 

DjmotRNA interference causes inability to regenerate and death of the animals, as a result of 

permanent growth arrest of stem cells. These results provide the first evidence that an hsp-

related gene is essential for neoblast viability. Here we discuss the possibility that high levels 

of Djmot serve to keep a p53-like protein signaling under control, thus allowing neoblasts to 

escape cell death programs. Further studies are needed to unravel the molecular pathways 

involved in these processes.

keywords: Planarian; Dugesia japonica; Stem cells; Neoblasts; Regeneration; Heat Shock Proteins; 

HSPs; Mortalin; RNAi; Senescence.
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Introduction

Adult stem cells maintain homeostasis and regenerate injured tissues over the life span of an 

individual. The replicative potential of these cells is therefore ultimately responsible for the 

longevity of multicellular organisms. To prevent senescence and prolong proliferative capacity, 

stem cells evolved cytoprotective mechanisms to defend themselves against environmental and 

physiological stresses (Deng, 2008; Ho et al., 2005). However, how these cells adapt to stress in 

vivo remains largely unknown. In contrast to the limited ability of mammals to renew the missing 

tissues, some lower organisms show remarkable regenerative power and can rebuild complex body 

parts, based on the peculiar capability to activate endogenous stem cells and/or dedifferentiate 

specialized cell types (Sánchez Alvarado and Tsonis, 2006). Planarians (Platyhelminthes) are one of 

the foremost subjects in regeneration studies. In addition to amazing regenerative abilities, these 

organisms exhibit high body plasticity and continuous cell turnover throughout life. By constantly 

renewing the tissues of their body, planarians are thus capable of maintaining a functional body 

with no evidence of senescence (Pellettieri and Sánchez Alvarado, 2007). These properties are 

made possible by the presence of neoblasts, a population of somatic cells, that fulfil properties of 

pluripotent stem cells: i) undergo self-renewing cell divisions, as well as commitment and 

differentiation into multiple cell types (Handberg-Thorsager et al., 2008), ii) can rescue lethally 

irradiated worms (Baguñà et al., 1989). Although classically defined as small, undifferentiated cells 

with a high nucleus/cytoplasm ratio, the recent identification of specific stem cell markers and the 

ultrastructural analysis of FACS-sorted planarian cells consent now to distinguish neoblast 

subpopulations, including progenitors and lineage-restricted stem cells (Eisenhoffer et al., 2008; 

Hayashi et al., 2006; Higuchi et al., 2007; Rossi et al., 2008). These findings reveal that, like 

mammals, planarian worms possess a complex stem cell system, including progenitors and lineage-

restricted stem cells.

Deregulation of protein quality control with consequent accumulation of damaged proteins 

and an associated functional decline in the protein degradation system represent aging hallmarks in 

the cell. A remarkable event, which helps to maintain cellular homeostasis under stress, is the 

production of a highly conserved set of proteins, known as stress or heat shock proteins (HSPs) 

(Pfanner, 1999; Scheibel and Buchner, 1998). These proteins, broadly classified into different 

families on the basis of their molecular weight, structure and function, play protective activities 

involving both the direct maintenance of protein structure as intracellular chaperones and the 

regulation of death pathways. In addition it is becoming clear that their release into the extracellular 

microenvironment contributes to the generation of immune response in a number of contexts 
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(Calderwood et al., 2007; Schmitt et al., 2007). To study the endogenous controls that promote stem 

cell vitality in the experimentally accessible planarian model is a convenient choice for 

understanding how growth and aging of adult stem cells are regulated in vivo, rather than after they 

have changed their properties in culture, and will likely provide insight into the mechanisms that 

control adult stem cell dynamics in higher organisms. To investigate the potential role of hsp-

related genes on the dynamics of planarian stem cells, we have begun to identify representative hsp-

related genes from a planarian EST collection of Dugesia japonica (Mineta et al., 2003). Here we 

report the isolation and functional characterization of a gene (Djmot) that encodes an orthologue of 

a highly conserved, heat-uninducible member of the HSP70 family, also known as 

Mortalin/GRP75/mthsp70/PBP74 (called Mortalin hereafter) (Kaul et al., 2002). As the diversity of 

names suggests, this protein is implicated in a variety of functions including cell survival, stress 

response, intracellular trafficking, control of cell proliferation, mitochondrial biogenesis and cell 

fate determination (Deocaris et al., 2007; Kaul et al., 2007). Mortalin multifunctional properties 

correlate with its differential subcellular distributions in normal and immortal cells and with 

different interactions with multiple partners therein (Deocaris et al., 2007; Wadhwa et al., 2002b). 

Many cancer and immortal mammalian cells show high levels of mortalin expression and its 

knockdown causes growth arrest (Wadhwa et al., 2004; Wadhwa et al., 2003). Control of cell 

proliferation has been attributed to a mechanism of Mortalin-dependent cytoplasmic sequestration 

of p53 tumor suppressor protein, thus preventing its entry in the nucleus (Wadhwa et al., 2002a). 

Mortalin also plays a critical role in the mechanism that ensures correct centrosome duplication by 

modulating centrosomal localization of p53 (Ma et al., 2006). Recently it has been reported that the 

increased expression of the Caenorhabditis elegans mortalin orthologue extends the life span of 

adult worms, while its knockdown causes early aging phenotypes (Kimura et al., 2007; Yokoyama 

et al., 2002). Mortalin-based cytoplasmic sequestration of a conserved homologue of p53 was also 

demonstrated in the soft shell clam Mya arenaria, a naturally-occurring cancer model (Walker et 

al., 2006). p53 is cytoplasmically sequestered in clam leukemic hemocytes, but de novo p53 

expression, induced by genotoxic stress, can promote its nuclear translocation and cause death of 

leukemic cells (Bottger et al., 2008). We show that the planarian mortalin-like gene Djmot is 

localized prominently in neoblasts and its functional ablation by RNA interference (RNAi) can 

permanently arrest the replicative activity and trigger cell death programs in these cells. 
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Materials And Methods

Animals and treatments

Asexual specimens of Dugesia japonica (GI strain) were maintained at 18°C in autoclaved stream 

water, fed weekly with chicken liver and used for experiments after 10 days of starvation. Thirty 

days-starved planarians were used for starvation analysis. Regenerating fragments were produced by 

transverse amputation at prepharyngeal level. Some intact worms were exposed to a lethal dose (30 

Gy) of hard X-rays (200 KeV, 1 Gy/min), using a Stabilipan 250/1 instrument (Siemens, Gorla-

Siama, Milan, Italy) equipped with a Radiation Monitor 9010 dosimeter (Radcal Corporation, 

Monrovia, CA, USA). The animals were sacrificed 4, 8, 10, 12 days post-irradiation for subsequent 

experiments. For heat shock treatment, intact planarians were maintained at 28°C o/n before being 

harvested for RNA extraction.

Isolation of Djmot 

An EST fragment annotated as a homolog of mammalian mortalin/GRP75 (Mineta et al., 2003) was

amplified in D. japonica with specific primers. 5’/3’ RACE was used to isolate the full-length 

cDNA (Accession number FM210759).

In situ hybridizations and immunohistochemistry

The riboprobes used in this study were as follows: Djmot (1607 to 2039 bp); Djmcm2 (168 to 761) 

(Salvetti et al., 2000); Djnos (85 to 585 bp) (Sato et al., 2006); DjPiwi-1 (1911 to 2379 bp) (Rossi et 

al., 2006). All digoxigenin-labelled riboprobes were prepared using digoxigenin-labelling kit 

(Roche), according to the manufacturer’s instructions. Whole mount in situ hybridization was 

performed in intact and regenerating animals according to Umesono et al., (Umesono et al., 1997) 

with minor modifications (Nogi and Levin, 2005). To prepare sections, animals were fixed in cold 

relaxant solution (Kobayashi et al., 1998). In situ hybridization on paraffin-embedded sections (6 

μm thickness) was performed as described by Kobayashi et al. (1998). The sections were then 

stained immunohistochemically with DjPCNA primary antibody (1:800) (Ito et al., 2001; Orii et al., 

2005). After washing, goat anti-rabbit conjugated to Alexa 488 (Molecular Probes) as a secondary 

antibody, diluted 1:1000. Immunohistochemistry on dissociated cells (Baguñà and Romero, 1981; 

Salvetti et al., 2000)  was performed using a polyclonal antibody raised against a 21-residue peptide 
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corresponding to the p53-binding domain of M. arenaria Mortalin (Mamot) (1:25) (Walker et al., 

2006) and visualized with goat anti-rabbit (1:1000) conjugated to Alexa 488 (Molecular Probes) 

secondary antibody. The specificity of Mamot primary antibody to planarians was assayed by 

Western blot analysis. Western blot was performed basically as described by Orii et al., (2005). 

After electrophoretic transfer, the membrane was incubated with anti-Mamot antibody, diluted 

1:1000. After incubation with 1:10,000 dilution of anti-rabbit Perossidase secondary antibody 

(Sigma), detection was performed using Lumi-Light Western blotting Substrate reagents (Roche). 

Real Time RT-PCR

Total RNA was extracted with the NucleoSpin RNAII kit (Macherey-Nagel). Each extraction was 

tested for the absence of genomic DNA by control RT-PCR reactions performed in the absence of 

reverse transcriptase. cDNA was generated from DNaseI-treated total RNA using Superscript First 

Strand Synthesis System (Invitrogen). Each cDNA samples was obtained from three intact or 

regenerating planarians. Real time RT-PCR was performed at least three times with independent 

RNA samples. Specific sense and antisense oligonucleotides (Supplementary Table I) were 

generated using LaunchNetPrimer software. SYBR Green chemistry-based RT-PCR was carried out 

on a Rotor-Gene 6000 Real time-PCR (Corbett Research). After an initial denaturation step (5 min 

at 95°C), 45 cycles of amplification were performed as follows: denaturation: 95°C, 15s, annealing: 

60°C, 20s, extension: 72°C, 40s. Melt analysis was performed at the end of the run using the 

RotorGene software.

RNA interference

Double-stranded RNA (dsRNA) was synthesized according to Sánchez Alvarado and Newmark 

(1999). dsRNA was obtained from Djmot (1607 to 2039 bp) and the injection schedule was as 

described by Mannini et al. (Mannini et al., 2004). All amputated fragments were analyzed during 

the second round of regeneration. Intact animals were analyzed after 20 days from the first injection. 

The reduction of the endogenous transcripts after RNAi was assessed by real time RT-PCR. For 

mitotic index analysis, both intact planarians and fragments regenerating a head or a tail of Djmot

dsRNA-injected planarians and water-injected controls were incubated for 6 hours in 3‰ colchicine 

(w/v) (Sigma) and sacrificed 10 or 20 days. The animals were dissociated into single cells (Baguñà 

and Romero, 1981) and 20μl of the cell suspension was dropped onto glass slides, air-dried and 

stained with a 1μg/mL Hoechst 33342. The number of mitotic metaphases was monitored under a 
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fluorescence microscope. Three specimens were analyzed for each time; two slides for each sample 

were examined for a total of about 80,000 cells. The number of cells contained in the 20μl aliquot 

was counted by using a hemocytometer. 

Results

Characterization of a mortalin-like gene in planarians

A cDNA sequence (Djmot) with significant similarity to mammalian mortalin genes was identified 

in D. japonica. The predicted DjMot protein (680 amino acids) shows an amino-terminal 

presequence, a HSP70 motif with an ATPase domain and a peptide binding domain. Moreover, the 

p53-binding sequence, mapped in the ATPase domain of Mortalin (Kaul et al., 2001) appears well 

conserved in DjMot (amino acids 295-315) (Fig. 1A,B). Literature data demonstrate that Mortalin 

may sequester the tumor suppressor protein p53 in the cytoplasm, preventing its nuclear 

translocation (Kaul et al., 2005; Wadhwa et al., 2002a; Walker et al., 2006). As the sequence of 

p53-binding domain of DjMot and the corresponding domain of M. arenaria Mortalin differ only 

for three aminoacids (M. arenaria: CRLREAAEKAKIELSSSLQTD; D. japonica: 

QRVREAAEKAKIELSSALQTD), we used a polyclonal antibody raised against this specific 

region in M. arenaria (Mamot: Walker et al., 2006) to perform immunohistochemistry on planarian 

dissociated cells. The results, also confirmed by Western blot analysis (not shown), demonstrated 

Mamot cross-reaction in small neoblast-like cells (Fig. 1C). Although as indirect evidence, this 

finding supports the possibility of an evolutionary conserved role for DjMot in sequestering a p53-

like protein in the cytoplasm.

Whole mount in situ hybridization on intact and regenerating planarians provided a spatial analysis 

of Djmot expression. In intact animals, staining was observed in the mesenchymal tissue 

(parenchyma) (Fig. 2A), with a pattern that reflects the distribution of neoblasts (Rossi et al., 2008). 

Because parenchymal tissue contains a number of different cell types, in situ hybridization was also 

performed on sections (Fig. 2B,C). Djmot transcripts could be visualized in small neoblast-like cells 

(Fig. 2D). Double staining of Djmot mRNA and the neoblast-specific DjPCNA antibody (Fig. 2E) 

(Orii et al., 2005) revealed that DjPCNA-positive cells were also Djmot-positive (Fig. 2B,C,F). 

However, we observed that some Djmot-positive neoblast-like cells were DjPCNA-negative. In 

regenerating animals, strong Djmot expression was observed in the postblastema (Fig. 2G,H), the 

stump region beneath the wound comprised of actively proliferating neoblasts (Salvetti et al., 2000). 

Djmot expression, however, was also detected in the early blastemal tissue, a postmitotic area where 
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neoblast progeny undergoes differentiation (Fig. 2G,H). Such expression decreased as regeneration 

proceeded (not shown), suggesting that residual Djmot transcripts can be found in postmitotic 

progeny.

Implication of Djmot in the radio-adaptive response

As Djmot expression appears associated to neoblasts, we selectively killed them by a lethal dose (30 

Gy) of X-ray irradiation (Hayashi et al., 2006; Reddien et al., 2005; Rossi et al., 2008; Salvetti et 

al., 2000) and then evaluated the effects at different times from the treatment. At 4 days after 

irradiation the parenchymal expression of Djmot appeared strongly reduced. At the same time, a 

new expression profile was detected with respect to untreated controls, because specific Djmot

transcripts could be observed at the gastrodermal level. Djmot expression in the gastrodermis then 

declined at an undetectable level. Remarkably, after 8 days the level of Djmot mRNA became 

consistently elevated in the central nervous system. Finally, at 10 days after irradiation, no Djmot

expression could be detected (Fig. 3A-C). To further assess how the level of Djmot RNA could be 

modulated by different stress conditions, some planarians were sacrificed after a long period of 

starvation or exposed to heat shock. Starved planarians maintained an unaltered expression pattern, 

but a 3-fold increase in Djmot expression level was observed relative to controls (Fig. 3D,E), 

indicating that DjMot also plays a role in regulating body size according to the metabolic status. 

Djmot RNA level did not increase in heat-shocked animals, providing evidence that DjMot is a 

heat-uninducible member of the HSP70 family (Fig. 3F).

Effects of DjmotRNAi on intact and regenerating planarians

To assess the role of Djmot on neoblast biology we performed RNAi experiments (Sánchez 

Alvarado and Newmark, 1999) and evaluated the effects on intact animals and during regeneration. 

A significant reduction in endogenous Djmot RNA level was observed in injected specimens with 

respect to water-injected controls (Supplementary Fig. 1A-C). The levels of Djhsp60 (Rossi et al., 

2007) and Djhsc70, (a gene coding for the constitutive HSP70 form of D. japonica) were not 

affected, indicating that the DjmotRNAi effect was specific (data not shown). We observed that 

DjmotRNAi strongly inhibited blastema formation. Most of the injected fragments (153/170) 

completely failed to regenerate new tails, and the wound region often appeared indented (Fig. 4A-

C), while 10% partially regenerated. The penetrance of tail fragments completely unable to 

regenerate a new head was 80% (136/170), while regeneration of a small head could be observed in 



9
Linking powered by eXtyles

20% (34/170) of the phenotypes. These small heads also showed an abnormal morphogenesis (Fig. 

4D-F), as visualized by the use of the eye specific marker, Djops (Mannini et al., 2004) (Fig. 4G-I). 

Furthermore, DjmotRNAi injected animals showed gradual head regression and/or lysis and died in 

5-7 weeks from the beginning of the treatment, while the survival of controls was not affected. 

These results suggest that Djmot is critical for neoblast activity during regeneration and tissue 

homeostasis. We further explored the possibility that the functional ablation of this gene had an 

effect on cell divisions by monitoring the percentage of mitoses in DjmotRNAi animals compared 

to controls. We observed that DjmotRNAi caused a dramatic reduction in the number of mitotic 

cells both in intact animals and amputated fragments (Fig. 4L,M).

Screen for molecular markers in DjmotRNAi planarians

In accordance with the finding that DjmotRNAi affects the mitotic activity of neoblasts, we 

observed a severe reduction in the expression level of the proliferation-related marker Djmcm2

(Salvetti et al., 2000) in injected animals (Fig. 5A-C). To evaluate whether Djmot knockdown 

affected differently the neoblast subpopulations identified in planarians, we characterized the 

expression of Djnos, a nanos-related gene specifically found in germline stem cells (Handberg-

Thorsager and Saló, 2007; Sato et al., 2006; Wang et al., 2007), and of DjPiwi-1, a homologue of 

Drosophila Piwi (Cox et al., 1998), preferentially localized in stem cells of the dorsal midline 

(Rossi et al., 2006). Djnos expression dramatically decreased in DjmotRNAi animals when 

compared to controls (Fig. 6A-C). A different situation was observed using DjPiwi-1 ( Fig. 7A-E). 

DjPiwi-1 expression level showed only a slight decrease after DjmotRNAi (Fig. 7A,C). In addition 

we noted that DjmotRNAi caused modification in DjPiwi-1 expression pattern in some injected 

animals. Two parallel rows of hybridization signal could be in fact detected near the posterior 

region of the brain (Fig. 7E). This pattern was never observed in control animals, that showed 

DjPiwi-1-positive cells only at the midline level (Fig. 7B,D).

As Djmot-expression was detected both in neoblasts and postmitotic descendants, we also 

investigated Djinx-11, a stem cell gap junction gene, whose expression may reflect the transition 

state from neoblasts to differentiating progeny (Gurley and Sánchez Alvarado, 2008; Nogi and 

Levin, 2005). Our data clearly demonstrate that Djinx-11 is strongly reduced after DjmotRNAi (Fig. 

8A). On the contrary, DjmotRNAi did not interfere with the expression of DjSyt (Tazaki et al., 

1999) and Djmhc-B (Kobayashi et al., 1998), that are specific markers for nerve and muscle cells, 

respectively (Fig. 8B,C). These findings indicate that, lacking the function of Djmot, both planarian 
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stem cells and their progeny do not survive much longer, while Djmot knockdown produce no or 

limited effects on differentiated cells. 

Discussion

Expression profile of Djmot

Planarians provide a unique experimental model for studying in vivo the molecules and processes 

that consent to these cells to combine long-term stability and constant proliferative activity, 

overcoming the impact of time without escaping normal regulatory control and generating tumors 

or aging. The molecular events that allow neoblasts to escape cellular senescence remain undefined 

so far. In this study we describe a planarian hsp70-related gene, Djmot, capable of regulating stem 

cell growth. High levels of Djmot transcripts were seen as being confined to proliferating neoblasts 

and their descendants, while no detectable expression could be found in differentiated cells of intact 

and regenerating planarians. Immunolocalization in dissociated cells also confirmed the presence of 

high levels of DjMot protein only in neoblast-like cells. As X-ray treatment causes rapid and 

selective death of neoblasts, we also compared the expression profile of Djmot before and after 

irradiation and observed that the parenchymal expression of Djmot became dramatically 

downregulated in irradiated worms. However, irradiation also elicited transient induction of Djmot

expression in intestine and nerve cells, suggesting that, under stress conditions, this gene is involved 

in activating compensatory mechanisms, e.g. unfolded protein response (UPR), to prolong the life 

of differentiated cells (Kim, 2008). These observations indicate that planarians may activate 

efficient mechanisms to reduce the effects of stress stimuli in compromised tissues, although this 

was not by itself sufficient to ensure planarian survival after X-ray treatment, because no stem cells 

were further available to sustain normal tissue replacement. 

Djmot knockdown results in an inability of planarians to maintain vital neoblasts

The phenotypes associated with DjmotRNAi implicate an essential role for this gene in maintaining 

vital neoblasts. Inability to regenerate and successive death of the animals, as well as dramatic 

decline of proliferative capacity, were in fact observed as a consequence of Djmot knockdown. We 

asked whether Djmot was necessary to prevent growth arrest in cycling stem cells of planarians. To 

support this possibility, a variable number of cells showing a senescence-associated morphology, 
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i.e. flattened, enlarged cells with condensed chromatin, could be detected in dissociated cells of 

DjmotRNAi planarians (Fig. 9A-D). This type of cells was never observed in control animals. 

Unfortunately, no biomarkers for visualization and quantification of senescent cells are available for 

planarians. Moreover, in our hands TUNEL assay (Hwang et al., 2004) did not work well and did 

not provide clear evidence of the presence of apoptotic cells. We suggest that the relationship 

between the functional ablation of Djmot and accumulation of senescent cells could be related to 

conserved ability of Mortalin proteins to sequester the tumor suppressor protein p53 in the 

cytoplasm, thus promoting lifespan and cellular immortalization (Wadhwa et al., 2002a; Wadhwa et 

al., 1998; Walker et al., 2006). Our immunostaining data using Mamot – an antibody raised against 

the p53 binding sequence of M. arenaria (Walker et al., 2006), and conserved in DjMot –

demonstrate cross-reaction in neoblast cells, supporting the possibility that DjMot binds the 

cytoplasmic sequestration domain of a yet unknown planarian p53-like protein. Silencing Djmot by 

RNAi could prevent formation of the Mortalin-p53 complex, allowing p53 to enter the nucleus. As 

overexpression of p53 leads to permanent cell cycle arrest or apoptosis in other organisms, we are 

tempting to speculate that compromising this mechanism we permanently halt the cell division 

cycle in neoblasts, inducing a senescent state (Fig. 9A-D). Further studies, including 

characterization of p53-related genes in planarians, are needed to confirm this possibility and 

elucidate the molecular pathways implicated in growth control of planarian stem cells.

Djmot and dynamics of neoblast subpopulations

Both in situ and real time RT PCR analyses with specific markers allowed us to evaluate the 

relevance of Djmot function in different subpopulations of planarian stem cells. A general reduction 

in the expression level of all analyzed neoblast markers was observed as a consequence of the 

functional ablation of Djmot, with the exception of DjPiwi-1. We believe that the partial reduction 

of DjPiwi-1 mRNA level may depend on the heterogeneous composition of DjPiwi-1-positive cells 

(Rossi et al., 2006). Probably only a part of DjPiwi-1-positive cells express Djmot and therefore are 

sensible to DjmotRNAi. More difficult is to find an explanation for the variation in the expression 

pattern of DjPiwi-1 in DjmotRNAi animals. Bearing in mind that the posterior region of the brain 

expresses the wnt homolog DjwntA (Kobayashi, 2007), we can only speculate that the variation of 

DjPiwi-1 pattern is in some way related to Wnt signaling on DjPiwi-1 positive/Djmot negative cells, 

a possibility that deserves further investigation.

Interestingly, lineage-restricted stem cells, such as those identified by the expression of the 

planarian nanos homolog Djnos (Sato et al., 2006) in the presumptive ovary or testis-forming 
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regions, were also affected by DjmotRNAi. These cells are DjPCNA positive and BrdU negative 

cells, and have been considered in a transient state of cell cycle arrest in asexual planarians (Rossi et 

al., 2008; Sato et al., 2006). We believe that they constitute a short-lived X ray-sensitive progeny, 

constantly replaced by the proliferative action of cycling neoblasts, sensitive to Djmot function 

(Wang et al., 2007). Furthermore, Djinx-11, a neoblast-specific gap junction gene, whose 

expression probably reflects the transition state from neoblasts to differentiating progeny (Gurley 

and Sánchez Alvarado, 2008), became strongly downregulated after DjmotRNAi. On the contrary, 

markers of differentiated cell types appeared to be insensitive to functional inactivation of this gene. 

Taken together, our findings indicate DjMot as an essential component of the regulatory machinery 

that maintains neoblasts in a mitotically active condition to constantly supply progenitors, and, in 

turn, sustain the physiological turnover of all differentiated cells. Loss of neoblast progeny after 

DjmotRNAi might be only an indirect effect of a permanent growth arrest of stem cells. Further 

studies are needed for elucidate the precise mechanism of action of this gene and how such control 

is lifted by its loss. 
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Figure Legends

Fig. 1

Djmot is a predicted orthologue of mammalian Mortalin. A) Schematic representation of Djmot 

protein and B) amino acid sequence deduced from the open reading frame of Djmot cDNA. Like 

other members of the Hsp70 family, Djmot is composed of two highly conserved regions: an 

amino-terminal ATPase domain (orange: amino acid 45-422) and a peptide binding domain (purple: 

amino acid 423-649). The sequence showing high similarity with the p53 binding region of Mya 

arenaria mortalin is underlined in green. The major differences with Mortalin proteins of other 

organisms are found in the first 44 residues of the N-terminal region (blue: presequence; the 

conserved mitocondrial localization signal IRLYS is underlined in red), and in the carboxy-terminal 

segment (yellow). In particular the C-terminal domain does not contain the conserved PTIEEVD 

motif, found in the constitutive form of HSP70 identified in D. japonica (DjHSC70: accession 

number ABY83101). C) Mamot antibody immunostaining on a dissociated neoblast-like cell a)

Phase contrast image; b) Nucleus staining with ethidium homodimer (red). c) Expression of Mamot 

antibody (green). d) Merge of figures (c) and (d). Scale bar 10 μm.

Fig. 2

Analysis of Djmot expression in D. japonica. A) Whole mount in situ hybridization in an intact 

planarian. B) Schematic of the figure depicted in (C) (ep: epidermis; g: gut). C) In situ hybridization 

and DjPCNA antibody immunostaining on a transverse wax section: Djmot expression in purple 

and DjPCNA immunolocalization in green. D) Enlarged view of a neoblast-like cell expressing 

Djmot mRNA. E) The same cell after DjPCNA antibody immunostaining. F) Merge of D and E. G) 

Schematic of a planarian regenerating a head (bl: blastema). The region depicted in H is boxed. H)

Djmot expression during head regeneration (2 days after amputation). The dashed yellow line 

indicates the border between the regenerating area and the stump. Anterior is on the top. Scale bars: 

500 μm in A, 20 μm in C, 10 μm in D-F, 50 μm in H.

Fig. 3

Djmot expression in different stress conditions. A-C) Whole mount in situ hybridization analysis 

after X-ray irradiation (30Gy). A) 4d: 4 days after irradiation, B) 8d: 8 days after irradiation, C) 

10d: 10 days after irradiation. D,E) Djmot expression analysis after starvation (30 days). D) Whole 

mount in situ hybrididazion. E) Real time RT-PCR. C: control, S: starved animals. Each value is the 

mean ± s.d. of three independent samples, analysed in triplicate. Samples were compared using the 
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unpaired t-test.**P<0.001. F) Real time RT-PCR after heat shock (28°C for 20 hours) (C: control, 

HS heat shocked animals). Expression levels in E and F are indicated in relative units assuming as 

unitary the value of untreated specimens. Scale bars: 500 μm in A-C, 200 μm in D.

Fig. 4

Analysis of DjmotRNAi phenotypes. A) Schematic of regenerating planarian fragments. bl: 

blastema. B,C) Bright-field images of head fragments, 20 days after amputation. B) A water-injected 

control regenerating a tail. The dashed yellow line indicates the border between the regenerating area 

and the stump. C) A DjmotRNAi phenotype. The wound region appears indented and does not form 

blastema (arrow). D-F) Bright-field images of tail fragments, 20 days after amputation. D)

Visualization of a regenerated head of a water-injected control. E) A small, abnormal head is 

regenerated after Djmot RNAi. F) A phenotype unable to regenerate after Djmot RNAi. The dashed 

yellow line indicates the border between the regenerating area and the stump. Anterior is on the top.

G-I) Whole mount in situ hybridization with Djops of the planarian fragments depicted in D-F. G)

Djops hybridization signal is clearly detected at the eye level in the water-injected control. H) Djops 

expression is detected in the small cyclopic eye of the small, abnormal head regenerated after Djmot

RNAi. I) No Djops hybridization signal can be detected in the phenotype unable to regenerate after 

Djmot RNAi. L) Analysis of the percentage of mitoses in intact animals (dark gray) and M) during 

regeneration (light gray), (c: control). The number of mitotic metaphases was normalized to the 

number of total cells and the values indicated in the graphs are average ± s. d. of three independent 

samples. Samples were compared using the unpaired t-test. **P<0.001, ***P<0.0001. Scale bar 500 

μm in B,C and 40μm in D-I.

Fig. 5:

Expression of Djmcm2 after Djmot RNAi. A) Expression level analyzed by real time RT-PCR in 

water-injected controls (c) and in Djmot RNAi animals. B) Expression in a regenerating head of a 

water-injected control. C) Expression in a tail fragment unable to regenerate after DjmotRNAi. 

Expression analyses were performed on fragments 20 days after amputation. In the real time RT-

PCR experiment the expression level is indicated in relative units, assuming as unitary the value of 

the control. Samples were compared using the un-paired t-test. **P<0.001. The dashed yellow lines 

indicate the border between the regenerating area and the stump. Anterior is on the top. Scale bar 

200 μm.
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Fig.6:

Expression of Djnos after Djmot RNAi. A) Expression level analyzed by real time RT-PCR in 

water-injected controls (c) and in Djmot RNAi animals. B) Expression in a regenerating head of a 

water-injected control. C) Expression in a tail fragment unable to regenerate after DjmotRNAi. 

Expression analyses were performed on fragments 20 days after amputation. In the real time RT-

PCR experiment the expression level is indicated in relative units, assuming as unitary the value of 

the control. Samples were compared using the un-paired t-test. **P<0.001. The dashed yellow lines 

indicate the border between the regenerating area and the stump. Scale bar 200 μm.

Fig.7

Expression of Djpiwi-1 after Djmot RNAi. A) Expression level analyzed by real time RT-PCR in 

water-injected (c) and in Djmot RNAi animals. B-C) Whole mount in situ hybridization in head 

fragments, 20 days after amputation. B) Water-injected control. C) A Djmot RNAi phenotype 

unable to regenerate, showing an indented wound region. The amputation level is represented by the 

yellow dashed line. D) A water-injected intact planarian. E) two Djmot RNAi phenotypes showing 

modification in the expression pattern near the posterior region of the brain. In real time RT-PCR 

experiment the expression levels are indicated in relative units, assuming as unitary the value of the 

control. Samples were compared using the un-paired t-test. *P<0.05. Scale bar 200 μm in B-C, 300 

μm in D,E.

Fig. 8

Expression of Djinx11, Djsyt and Djmhc-B after Djmot RNAi, visualized by real time RT-PCR.

A-C) expression level in water-injected (c) and in Djmot RNAi animals A) Djinx11 B) Djsyt C) 

Djmhc-B. In real time RT-PCR experiments the expression levels are indicated in relative units, 

assuming as unitary the value of the control. Samples in (A) were compared using the un-paired t-

test. *P<0.05.

Fig. 9

Hypothetical model for DjMot function in neoblasts. A) DjMot prevents nuclear translocation of 

p53–like protein. B) Phase contrast image of a neoblast. C) DjmotRNAi disrupts DjMot-p53 

interaction and allows nuclear translocation of p53. D) Phase contrast image of a senescent cell, as 

detected after DjmotRNAi. Scale bar: 5μm.
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Supplementary Fig.1

RNAi-mediated downregulation of Djmot in intact and regenerating animals, as visualized by 

real time RT-PCR. A) Expression level in water-injected (c: control) and DjmotRNAi intact 

animals. B) Expression level in water-injected (c: control) and DjmotRNAi planarians regenerating 

a tail. C) Expression level in water-injected (c: control) and DjmotRNAi planarians regenerating a 

head. In all experiments, the expression levels are indicated in relative units, assuming as unitary 

the value of water-injected controls. Each value is the mean ± standard deviation of 3 independent 

RNAi experiments, performed in triplicate.



 
Fig.1: Djmot is a predicted orthologue of mammalian Mortalin. A) Schematic representation of Djmot 
protein and B) amino acid sequence deduced from the open reading frame of Djmot cDNA. Like other 
members of the Hsp70 family, Djmot is composed of two highly conserved regions: an amino-terminal 
ATPase domain (orange: amino acid 45-422) and a peptide binding domain (purple: amino acid 423-649). 
The sequence showing high similarity with the p53 binding region of Mya arenaria mortalin is underlined in 
green. The major differences with Mortalin proteins of other organisms are found in the first 44 residues of 
the N-terminal region (blue: presequence; the conserved mitocondrial localization signal IRLYS is 
underlined in red), and in the carboxy-terminal segment (yellow). In particular the C-terminal domain does 
not contain the conserved PTIEEVD motif, found in the constitutive form of HSP70 identified in D. japonica 
(DjHSC70: accession number ABY83101). C) Mamot antibody immunostaining on a dissociated neoblast-
like cell a) Phase contrast image; b) Nucleus staining with ethidium homodimer (red). c) Expression of 
Mamot antibody (green). d) Merge of figures (c) and (d). Scale bar 10 μm. 
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Fig.2: Analysis of Djmot expression in D. japonica. A) Whole mount in situ hybridization in an intact 
planarian. B) Schematic of the figure depicted in (C) (ep: epidermis; g: gut). C) In situ hybridization and 
DjPCNA antibody immunostaining on a transverse wax section: Djmot expression in purple and DjPCNA 
immunolocalization in green. D) Enlarged view of a neoblast-like cell expressing Djmot mRNA. E) The 
same cell after DjPCNA antibody immunostaining. F) Merge of D and E. G) Schematic of a planarian 
regenerating a head (bl: blastema). The region depicted in H is boxed. H) Djmot expression during head 
regeneration (2 days after amputation). The dashed yellow line indicates the border between the regenerating 
area and the stump. Anterior is on the top. Scale bars: 500 μm in A, 20 μm in C, 10 μm in D-F, 50 μm in H. 



 
 

 
 

Fig.3 : Djmot expression in different stress conditions. A-C) Whole mount in situ hybridization analysis 
after X-ray irradiation (30Gy). A) 4d: 4 days after irradiation, B) 8d: 8 days after irradiation, C) 10d: 10 days 
after irradiation. D,E) Djmot expression analysis after starvation (30 days). D) Whole mount in situ 
hybrididazion. E) Real time RT-PCR. C: control, S: starved animals. Each value is the mean ± s.d. of three 
independent samples, analysed in triplicate. Samples were compared using the unpaired t-test.**P<0.001. F) 
Real time RT-PCR after heat shock (28°C for 20 hours) (C: control, HS heat shocked animals). Expression 
levels in E and F are indicated in relative units assuming as unitary the value of untreated specimens. Scale 
bars: 500 μm in A-C, 200 μm in D. 
 
 



 
 

Fig.4: Analysis of DjmotRNAi phenotypes. A) Schematic of regenerating planarian fragments. bl: blastema. 
B,C) Bright-field images of head fragments, 20 days after amputation. B) A water-injected control 
regenerating a tail. The dashed yellow line indicates the border between the regenerating area and the stump. 
C) A DjmotRNAi phenotype. The wound region appears indented and does not form blastema (arrow). D-F) 
Bright-field images of tail fragments, 20 days after amputation. D) Visualization of a regenerated head of a 
water-injected control. E) A small, abnormal head is regenerated after Djmot RNAi. F) A phenotype unable to 
regenerate after Djmot RNAi. The dashed yellow line indicates the border between the regenerating area and 



the stump. Anterior is on the top. G-I) Whole mount in situ hybridization with Djops of the planarian 
fragments depicted in D-F. G) Djops hybridization signal is clearly detected at the eye level in the water-
injected control. H) Djops expression is detected in the small cyclopic eye of the small, abnormal head 
regenerated after Djmot RNAi. I) No Djops hybridization signal can be detected in the phenotype unable to 
regenerate after Djmot RNAi. L) Analysis of the percentage of mitoses in intact animals (dark gray) and M) 
during regeneration (light gray), (c: control). The number of mitotic metaphases was normalized to the 
number of total cells and the values indicated in the graphs are average ± s. d. of three independent samples. 
Samples were compared using the unpaired t-test. **P<0.001, ***P<0.0001. Scale bar 500 μm in B,C and 
40μm in D-I. 
 
 
 
 
 
 
 

 
Fig.5 : Expression of Djmcm2 after Djmot RNAi. A) Expression level analyzed by real time RT-PCR in 
water-injected controls (c) and in Djmot RNAi animals. B) Expression in a regenerating head of a water-
injected control. C) Expression in a tail fragment unable to regenerate after DjmotRNAi. Expression 
analyses were performed on fragments 20 days after amputation. In the real time RT-PCR experiment the 
expression level is indicated in relative units, assuming as unitary the value of the control. Samples were 
compared using the un-paired t-test. **P<0.001. The dashed yellow lines indicate the border between the 
regenerating area and the stump. Anterior is on the top. Scale bar 200 μm. 
 
 



 
Fig.6 : Expression of Djnos after Djmot RNAi. A) Expression level analyzed by real time RT-PCR in 
water-injected controls (c) and in Djmot RNAi animals. B) Expression in a regenerating head of a water-
injected control. C) Expression in a tail fragment unable to regenerate after DjmotRNAi. Expression 
analyses were performed on fragments 20 days after amputation. In the real time RT-PCR experiment the 
expression level is indicated in relative units, assuming as unitary the value of the control. Samples were 
compared using the un-paired t-test. **P<0.001. The dashed yellow lines indicate the border between the 
regenerating area and the stump. Scale bar 200 μm. 
 
 
 



 
Fig.7 : Expression of Djpiwi-1 after Djmot RNAi. A) Expression level analyzed by real time RT-PCR in 
water-injected (c) and in Djmot RNAi animals. B-C) Whole mount in situ hybridization in head fragments, 
20 days after amputation. B) Water-injected control. C) A Djmot RNAi phenotype unable to regenerate, 
showing an indented wound region. The amputation level is represented by the yellow dashed line. D) A 
water-injected intact planarian. E) two Djmot RNAi phenotypes showing modification in the expression 
pattern near the posterior region of the brain. In real time RT-PCR experiment the expression levels are 
indicated in relative units, assuming as unitary the value of the control. Samples were compared using the 
un-paired t-test. *P<0.05. Scale bar 200 μm in B-C, 300 μm in D,E. 
 



 
 

 
Fig.8 : Expression of Djinx11, Djsyt and Djmhc-B after Djmot RNAi, visualized by real time RT-PCR. 
A-C) Expression level in water-injected (c) and in Djmot RNAi animals A) Djinx11 B) Djsyt C) Djmhc-B.  
In real time RT-PCR experiments the expression levels are indicated in relative units, assuming as unitary 
the value of the control. Samples in (A) were compared using the un-paired t-test. *P<0.05. 
 
 

 
Fig.9 : Hypothetical model for DjMot function in neoblasts. A) DjMot prevents nuclear translocation of 
p53–like protein. B) Phase contrast image of a neoblast. C) DjmotRNAi disrupts DjMot-p53 interaction and 
allows nuclear translocation of p53. D) Phase contrast image of a senescent cell, as detected after 
DjmotRNAi. Scale bar: 5μm. 
 
 



 
 

 
Suppl. Fig.1 : RNAi-mediated downregulation of Djmot in intact and regenerating animals, as 
visualized by real time RT-PCR. A) Expression level in water-injected (c: control) and DjmotRNAi intact 
animals. B) Expression level in water-injected (c: control) and DjmotRNAi planarians regenerating a tail. C) 
Expression level in water-injected (c: control) and DjmotRNAi planarians regenerating a head. In all 
experiments, the expression levels are indicated in relative units, assuming as unitary the value of water-
injected controls. Each value is the mean ± standard deviation of 3 independent RNAi experiments, 
performed in triplicate. 
 
 
 

Supplementary Table I. 

Sense and antisense oligonucleotides used for real time RT-PCR 
Gene name Forward primer Reverse primer 

Djef2 5’-CAATCGAAGACGTTCCATGTG-3’ 5’-AACACGAACAACAGGACTAACACT-3’ 

Djinx-11 5’-GTTGCTCAATGTGTGCTTCCTATC-3’ 5’-GGTGGTTGACAACAAATAATATGAATC-3’ 

Djmhc-B 5’-CAACATCA TCAACGTGAATTGG-3’ 5’-CCGTTGATAA ACTTAATGAGCT-3’ 

Djmcm2 5’-GATTACAGGCGAATTCCAGAACTT-3’ 5’-GTCAGCCTGCGTTGTCGTC-3’ 

Djmot 5’-GCATTCCACCAGCACCTC-3’ 5’-CATATTTTCAATTTCATCTTTACTCAA-3’ 

Djnos 5’-AGGAGTGATGTAAAATTATCCAAGG-3’ 5’-GCTGACATACATTTCAAAAGGTTC-3’ 

Djpiwi-1 5’-GTTATGACGGACGACGACTATTTAC-3’ 5’-CCTTTCCCTATTTTCTCTTGACC-3’ 

Djsyt 5’-TGGGAGCTATTGATTTGGGTC-3’ 5’-ATGTGTATTTTTTTATCGTGGTCTTCT-3’ 
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