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Abstract –  The  transformation  of  (5R)-2,6-di-O-benzyl-5-C-methoxy-β-D-galactopyranosyl-(14)-2,3:5,6-di-O-
isopropylidene-aldehydo-D-glucose  dimethyl  acetal  (8)  into  partially  protected  derivatives  of  D-xylo-  and  L-lyxo-
aldohexos-5-ulose  has  been  reported,  applying  appropriate  epimerization  methods  to  its  3'-O-  and  4'-O-protected 
alcoholic derivatives. 
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1. Introduction

Lactose is the most abundant natural reducing disaccharide, obtained from whey, a by-product of 

the agro-industrial cheese production. Although its large worldwide availability, estimated in about 

500,000 tons/year,2a only a low percentage of recovered lactose is utilized, mainly in the food, feed 

and  pharmaceutical  fields.  The  chemical  valorisation  of  lactose  is  achieved  through  simple 

transformations  into  commercially  available  products  as  lactobionic  acid,2 a  component  of  the 

preservative solution for transplanting organs, lactitol,2 a suitable component of sugar-free, reduced 

calories and low glycaemic products, and lactulose and galacto-oligosaccharides (GOS),2 largely 

used in probiotic therapy.

Since lactose is cheap and there is a potential environmental risk connected with the uncontrolled 

dispersion of whey in freshwater, new synthetic channels are investigated in order to synthesise fine 

chemicals starting from this renewable raw material.
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Figure 1. Polyacetonides directly obtained by acetonation of lactose

1: R = H
2: R = C(OMe)Me2

Lactose acetonation
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Recently, we have planned a synthetic strategy to elaborate the not reducing unit and not to modify 

the reducing one, as commonly done. This useful approach takes advantage of the large availability3 

of  the  two  polyacetonides  1 and  2 (Figure  1),  which  could  be  considered  as  simple  β-D-

galactopyranosides, due to the complete protection of the  D-glucose unit. Aldohexos-5-uloses (3) 

represent  an  interesting,  although  yet  poorly  investigated  class  of  dicarbonyl  hexoses,4 useful 

synthetic intermediates for the preparation of high added value compounds such as azasugars5 and 

cyclitols, as inositols,6 or polyhydroxycyclopentanes.7

A general approach (Chart 1) to aldohexos-5-uloses (3) was developed8 using as key reaction the 

epoxidation-methanolysis  of  hex-4-enopyranosides  of  type  5,  in  turn  obtained  from  3,4-O-

isopropylidene-β-D-galactopyranosides (6). 
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Chart 1. General approach to aldohexos-5-uloses from β -D-galactopyranosides

P = H or protecting group

In this communication we present the synthesis of partially protected derivatives of  D-xylo and  L-

lyxo-aldohexos-5-uloses achieved here from the disaccharide 1',5'-bis-glycoside 8, analogous to 4, 

in turn easily obtained from lactose,9 following the same general approach outlined in Chart 1. The 

influence of the axial C-5'-OMe group on the chemo- and the stereoselectivity of some reactions 

performed on the bis-glycoside unit is also observed and discussed. 

2. Results and Discussion

Preliminary attempts to obtain 1,5-bis-glycopyranosides of the  D-xylo series through epoxidation-

methanolysis  of a  3'-O-protected  derivative  of the known disaccharide  hex-4'-enopyranoside  7,9 

following  the  method  previously  used  in  monosaccharide  series,8b  were  abandoned  due  to  the 

difficulties encountered in the separation of  the complex crude diastereoisomeric mixture. It was 

considered the alternative way based on the regioselective protection of 3'-OH of the known diol 8,9 

followed by stereoselective epimerization at C-4' (Scheme 1). The first step was easily achieved 

through the stannylidene acetal-mediated alkylation method, largely used to differentiate 1,2-cis-

diols of sugar,10 but until now, never reported on a 1,5-bis-glycopyranoside. As in the case of β-D-

galactopyranosides10 the alkylation took place with complete regioselectivity on 3'-OH leading in 

almost quantitative yield to the alcohol 9. 
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Scheme 1. Stereoselective synthesis of 2,3,6-tri-O-benzyl-D-xylo-hexos-5-ulose. Reagent and conditions: (a) Bu2SnO,
C6H5CH3, reflux, 12 h, then BnBr, Bu4NBr, reflux, 1.5 h  (94%); (b) Tf2O, 1:1 CH2Cl2-Py, room temp, 6 h (88%); (c)
Bu4NNO2, C6H5CH3, reflux, 8 h (70%); (d) TPAP, NMO, CH2Cl2, 4Å, room temp, 4 h; (e) NaBH4, MeOH, room
temp, 1.5 h, (64% from 9); (f) 90% aq CF3COOH, 4:1 CH3CN-H2O, 50 °C, 12 h (72%). 
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The  first  C-4'  epimerization  strategy was  attempted  via  a  SN2 displacement  on  the  triflate  10, 

obtained from 9 in high isolated yield (88%) by treatment with Tf2O in pyridine. Surprisingly, the 

treatment of  10 with Bu4NNO2 in toluene led to the formation of enol ether  11, isolated in 70% 

yield, instead to the desired inverted bis-glycoside 14. This result is quite unexpected in light of the 

high  yields  reported  for  nucleophilic  substitutions  of  structurally  related  4-O-triflates  of 

galactopyranosides11 and is evidently due to some interference between the axial 5'-OMe group and 

the nucleophile approaching the vicinal reacting centre. The complementary strategy based on an 

oxidation-reduction sequence of 9 was thus explored. Also in the oxidation of 9, the presence of the 

axial  C-5'  methoxyl  group  sensibly  influenced  the  reaction.  Swern  oxidation  attempts  failed 

completely, while the treatment with PCC showed a low conversion even after long reaction times. 

Better  results  were obtained with the TPAP-NMO system, employing however an unexpectedly 

high catalyst molar ratio (40%) with respect to that usually needed (5%).12 NMR analysis of the 

crude oxidation product showed a mixture of the 4'-ulosyl derivative  12 (C-4’  13C chemical shift: 

198.3  ppm)  and of  its  hydrate  13 (C-4’  13C chemical  shift:  97.1  ppm).  In  the  crude  oxidation 

mixture,  isolated  in  about  89%,  compounds  12 and  13  were  present  in  about  4:1  ratio,  as 

determined  on  the  basis  of  the  relative  intensity  of  the  13C  5'-OMe  signals.  Chromatographic 

purification led again to a mixture of 12 and 13 in the same 4:1 ratio, but with substantial loss of 

product, lowering the yield to a modest 56%. The reduction of the crude oxidation mixture with 

NaBH4 in MeOH led to 14 and 9 in 64 and 20% isolated yield, respectively, indirectly confirming 

the structures of 12 and 13 and the extensive loss of the uloside during the chromatography on silica 

gel. In the case of the hydride reduction, the presence of the axial 5'-OMe group was beneficial for 



the stereoselectivity, determining the prevalence, although not complete, of attack on the  β face. 

This  result  is  at  variance  with respect  to  the hydride  reduction  of  analogous 4-keto-D-arabino-

hexopyranosides,  leading mainly to  D-galactopyranosides.13 Finally the target  2,6-di-O-benzyl-D-

xylo-aldohexos-5-ulose (15) was obtained from 14 (72% yield) by acid hydrolysis with CF3COOH 

in  CH3CN-water  (50  °C,  12  h)  and  separation  from  D-glucose  by  extraction  with  EtOAc.  As 

previously reported,8b 15 was present in CD3CN as a 55:45 α,β-1,4-furanose mixture, as confirmed 

by NMR analysis. 
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Scheme 2.  Synthesis  of  2,6-di-O-benzyl-  and  2,4,6-tri-O-benzyl-L-lyxo-aldohexos-5-ulose.  Reagents and conditions:
(a) CH3C(OEt)3, TsOH, C6H5CH3, 45 °C, 25 min, then 80% aq AcOH, room temp, 15 min  (quantitative); (b) TPAP,
NMO, CH2Cl2, 4Å, room temp, 45 min (17: 98%, 24: 76%); (c) NaBH4, MeOH, room temp, 20 min  (25: 88%); (d) 1:2
Ac2O-Py, room temp, 20 h; (e) NaH, BnBr (1 eq), DMF, 0 °C, 25 min  (22: 75% + 23: 15%); (f) 90% aq CF3COOH, 4:1
CH3CN-H2O, 50 °C, 4 h (26: 78%, 27:86%); (g) 0.1 M MeONa-MeOH, room temp, 2 h (quantitative).
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The preparation of L-lyxo derivatives was based on the same approach used in the monosaccharide 

series,8c  providing  an  oxidation-reduction  sequence  of  a  3-OH  free  1,5-bis-methyl  L-arabino-

hexopyranoside,  obtained  through  the  completely  regioselective  orthoester-mediated  4'-O-

acetylation of the diol 8 (Scheme 2). As expected, the treatment of 8 with CH3C(OEt)3 and TsOH in 

toluene followed by the opening of the orto-acetate ring with AcOH, afforded in almost quantitative 

yield the alcohol  16. The next oxidation step was achieved again using the TPAP-NMO system 

under milder reaction conditions with respect to those used before (TPAP 5%, 2 h, 98% yield). The 

reduction  of  17  (NaBH4,  MeOH) appeared  not  as  simple  as  for  the  analogous  1,5-bis-methyl-

glycopyranoside,  for  which  only  the  formation  of  the  two  5'-OMe  L-lyxo and  L-arabino 

diastereoisomers  in a 5:1 ratio was reported.8c In fact,  the reduction of the uloside  17 led to  a 

complex  product  mixture,  constituted  (TLC,  1:1  EtOAc-hexane)  of  at  least  four  components 

displaying  two well  differentiated  ranges  of  Rf values  on silica  gel.  The  flash chromatography 

permitted  only  a  partial  separation  of  the  two  faster  moving  components  (Rf 0.39  and  0.34, 



respectively),  surprisingly identified (NMR) as the two isomeric  L-lyxo monoacetates  18 and  19, 

accounting for a combined 52% yield. The structure of the above compounds was further confirmed 

through  conventional  acetylation  leading,  in  both  cases,  to  the  same  diacetate  20.  Two  other 

fractions  containing  the  lower  moving  components  (Rf  0.23  and  0.20)  were  collected,  one 

constituted by the pure L-lyxo diol 21 (13% yield) and the other by a mixture (about 1:1, combined 

yield 26%) of 18 and one other, yet unidentified,§ diastereoisomeric diol. While the presence of the 

4'-O-acetate  18 could be simply explained by a lower base-promoted  O-deacetylation  rate  with 

respect to the monosaccharide analogue,8c it is difficult to imagine the formation of the 3'-O-acetate 

19 directly from 18 through an acetyl shift taking place, after the reduction, from the axial OH-4' 

group to the axial anti 3'-OH one. A better hypothesis as why 19 is formed would be an acyl shift 

on an enolic intermediate such as  28, where the 3'-OH group and the 4'-OAc one are co-planar 

(Scheme 3). The enolization of 17 could explain both the migration of the acetyl group and the loss 

of stereochemical purity either at C-4’ and C-3’, giving rise to the isolation in low amount also of a 

unidentified diastereoisomeric diol.
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The O-deacetylation of 20 (MeONa-MeOH) afforded quantitatively 21, raising its overall yield to 

an acceptable 65%. Diol 21 was finally subjected to acid hydrolysis (CF3COOH-CH3CN-water) to 

give the previously reported 2,6-di-O-benzyl-L-lyxo-aldohexos-5-ulose (26).8c 

The problems encountered in the reduction of 17 could be avoided simplifying the chromatographic 

purifications,  by changing the  protection  of  the  4'-OH group from the  acetate  to  a  base-stable 

ethereal one. The direct monobenzylation of 8 was considered as the method of choice for the 4'-

regioselelective protection on the basis of the findings from Bernet and Vasella,14 which underlined, 

both in sugars and inositols, an enhanced acidity for axial hydroxy groups having a vicinal  anti

alkoxy group. The benzylation with BnBr (1 equiv) and NaH in DMF at 0°C pleasantly led to the 

4'-O-monobenzylated  derivative  22,  isolated  in  a  satisfactory  75%  yield,  after  an  easy  

chromatographic separation from the 3,4-di-O-benzyl derivative  23 (Scheme 2). No traces of the 

product of 3'-O-monobenzylation (14) were observed at any stage of the reaction. A specific role of 

§Unexpectedly,  this  second diastereoisomeric  diol  did not  correspond to  the  L-arabino derivative  8.  Owing to  the 
difficulties to obtain a pure sample of this compound, present in the crude reaction mixture in low yield (about 13%), 
we abandoned any effort to further elucidate its structure, a point that was out of the scope of the present work.



the  axial  5'-OMe  in  enhancing  the  acidity  of  4'-OH  is  outlined  by  comparing  the  lower 

regioselectivity in the mono-benzylation of methyl 2,6-di-O-benzyl-β-D-galactopyranoside where 3-

OH and 4-OH alkylation products were obtained in a 1:2 ratio.15 The alcohol 22 was then submitted 

to an oxidation reaction with TPAP-NMO and the desired 3'-ulosyl derivative 24 was obtained in 

76% yield. The reduction of 24 with NaBH4 in MeOH afforded 25 in a completely stereoselective 

way, owing to the negative 1,3-syn di-axial interaction between the 5'-OMe group and the hydride 

attacking  from  the  α face.  2,4,6-Tri-O-benzyl-L-lyxo aldohexos-5-ulose  27 was  obtained  after 

removal of the acetal groups by acid hydrolysis (CF3COOH, CH3CN-water) and its NMR data were 

identical to those of the sample previously reported,6b pointing to a complex tautomeric mixture, 

whose structure was indirectly confirmed by its transformation into the expected inosose.6b

In conclusion,  with this  work the understanding of lactose potentiality  as starting renewable 

material  for  the  synthesis  of  fine  chemicals  has  been  increased  preparing  aldohexos-5-ulose 

derivatives of the D-xylo and L-lyxo series. The crucial role of the axial anomeric 5'-OMe group of 

the 1',5'-bis-glycosides has also been pinpointed in both the synthetic routes. In the first one, which 

leads to the D-xylo derivative 15, it decreases the reactivity in the C-4' oxidation, and moreover turns 

completely the reactivity  of  the axial  4'-O-trifluoromethansulfonate  from the substitution  to  the 

elimination,  and,  for  steric  reasons,  inverts  the  outcome  of  the  4'-uloside  reduction 

diastereoselection from an about complete  galacto to a prevalent  gluco. In the second synthetic 

pathway,  leading to the  L-lyxo  hexos-5-ulose  27,  the presence of the axial C-5' methoxyl  group 

allows the regioselective alkylation of 4'-OH group and the completely stereoselective reduction of 

the intermediate 3'-uloside.

3. Experimental

3.1. General methods 

General  methods  are those reported in  Ref.  16. Compound  8 was prepared according to  the 

described procedure.9

3.2.  (5R)-2,3,6-Tri-O-benzyl-5-C-methoxy-α-L-arabino-hexopyranosyl-(14)-2,3:5,6-di-O-

isopropylidene-aldehydo-D-glucose dimethyl acetal (9)

A soln of  89 (3.94 g, 5.80 mmol) in toluene (90 mL) was treated with Bu2SnO (1.86 g, 7.44 

mmol),  heated  to  reflux  and  subjected  to  azeotropical  removal  of  water  with  a  Dean-Stark 

apparatus. The reaction mixture was stirred at reflux (12 h) and then treated with Bu4NBr (944 mg, 



2.90  mmol),  BnBr  (0.94  mL,  7.88  mmol)  and  further  stirred  until  the  starting  material  was 

disappeared (1.5 h, TLC, 7:3 hexane-EtOAc). The solvent was removed under diminished pressure 

and  the residue (9.02 g) was subjected to flash chromatography (first hexane 400 mL, then 7:3 

hexane-EtOAc) to give  9 (4.20 g, 94% yield) as a colourless syrup; [α]D +4.0 (c 1.2, CHCl3);  Rf 

0.29 (7:3 hexane-EtOAc); 1H NMR (600 MHz, CDCl3): see Table 1 and δ 7.35-7.26 (m, 15H, Ar-

H), 4.84, 4.68 (AB system, 2H,  JA,B 11.1 Hz,  CH2Ph), 4.72, 4.47 (AB system, 2H,  JA,B 12.3 Hz, 

CH2Ph), 4.68 (s, 2H, CH2Ph), 4.49 (dd, 1H, J1,2 6.5 Hz, J2,3 7.7 Hz, H-2), 4.31 (d, 1H, H-1), 4.26 

(bq, 1H, H-5), 4.14 (dd, 1H, J5,6b 5.5 Hz, J6a,6b 8.9 Hz, H-6b), 4.02 (dd, 1H, J3,4 1.0 Hz, H-3), 3.88 (m, 

1H, H-6a), 3.86 (dd, 1H, J4,5  5.8 Hz, H-4), 3.27, 3.26, 3.23 (3s, each 3H, 3 × OMe),  2.48 (d, 1H, 

J4',OH  1.9 Hz, OH-4'), 1.40, 1.38, 1.37, 1.36 (4s, each 3H, 2 × CMe2); 13C NMR (50 MHz, CDCl3): 

see Table 2 and δ 138.6, 138.0, 137.7 (3 × Ar-C), 128.4-127.4 (Ar-CH), 109.9, 108.5 (2 × CMe2), 

75.2, 73.5, 72.5 (3 × CH2Ph), 55.7, 52.5 (2 × OMe-1), 47.9 (OMe-5'), 27.3, 26.9, 26.5, 25.3 (2 × 

CMe2). Anal. Calcd for C42H56O13: C, 65.61; H, 7.34. Found: C, 65.70; H, 7.39.

3.3.  (5R)-2,3,6-Tri-O-benzyl-4-O-trifluomethansulfonyl-5-C-methoxy-α-L-arabino-

hexopyranosyl-(14)-2,3:5,6-di-O-isopropylidene-aldehydo-D-glucose dimethyl acetal (10)

To a soln of 9 (213 mg, 0.277 mmol) in dry 1:1 Py-CH2Cl2 (3 mL) cooled to –14 °C was added 

drop wise Tf2O (55 µL, 0.333 mmol) dissolved in dry CH2Cl2 (10 mL). The mixture was warmed to 

room temp and stirred until the starting material was disappeared (6 h, TLC, 6:4 hexane-EtOAc). 8 

mL of satd aq NaHCO3 were added and the mixture partitioned between water and CH2Cl2. The aq 

phase was extracted with CH2Cl2 (3  × 25 mL), the organic extracts collected, dried (MgSO4) and 

concentrated  under  diminished  pressure.  The  residue  (264  mg)  was  subjected  to  flash 

chromatography (3:1 hexane-EtOAc) to give  10 (0.221 g, 88% yield) as a colourless syrup; [α]D 

+15.7 (c 1.2, CHCl3); Rf 0.29 (7:3 hexane-EtOAc); 1H NMR (250 MHz, CD3CN): see Table 1 and δ 

7.59-7.27  (m,  15H,  Ar-H),  4.83,  4.59  (AB system,  2H,  JA,B 11.3 Hz,  CH2Ph),  4.79,  4.67 (AB 

system, 2H, JA,B 11.4 Hz, CH2Ph), 4.63, 4.49 (AB system, 2H, JA,B 11.5 Hz, CH2Ph), 4.36 (m, 2H, 

H-1, H-2), 4.24 (bq, 1H, H-5), 4.08 (dd, 1H, J5,6b  5.7 Hz, J6a,6b  8.6 Hz, H-6b), 4.03 (m, 1H, J3,4  1.7 

Hz, H-3), 3.88 (dd, 1H, J4,5 5.9 Hz, H-4), 3.87 (dd, 1H, J5,6a 5.4 Hz, H-6a), 3.32 (s, 6H, 2 x OMe-1), 

3.22  (s,  3H,  OMe-5'), 1.36,  1.35,  1.33,  1.26  (4s,  each  3H,  2  × CMe2);  13C NMR (62.9  MHz, 

CD3CN): see Table 2 and δ 139.2, 138.6, 138.4 (3 × Ar-C), 129.3-128.5 (Ar-CH), 110.3, 109.2 (2 × 

CMe2), 100.3 (C-1΄), 75.9, 73.8, 73.7 (3 × CH2Ph), 56.5, 53.6 (2 × OMe-1), 49.3 (OMe-5'), 27.4, 

26.9, 26.7, 25.3 (2  × CMe2).  Anal. Calcd for C42H53F3O14S: C, 57.92; H, 6.13; F, 6.54; S, 3.68. 

Found: C, 57.94; H, 6.14; F, 6.56; S, 3.69.



3.4.  (5R)-2,3,6-Tri-O-benzyl-4-deoxy-5-C-methoxy-β-D-glycero-hex-3-enopyranosyl-

(14)-2,3:5,6-di-O-isopropylidene-aldehydo-D-glucose dimethyl acetal (11)

A soln of  10 (102 mg,  0.113 mmol)  in dry toluene  (5 mL)  was treated  at  room temp with 

Bu4NNO2 (147 mg, 0.51 mmol) and warmed to reflux under stirring. After 8 h when the starting 

material  was disappeared (TLC, 3:2 hexane-EtOAc) the mixture  was cooled to  room temp and 

concentrated  under  diminished  pressure.  The  residue  (160  mg)  was  subjected  to  flash 

chromatography (4:1 hexane-EtOAc), to give  11 (60 mg, 70% yield) as a colourless syrup; [α]D 

-24.0 (c 1.36, CHCl3); Rf 0.29 (7:3 hexane-EtOAc); 1H NMR (250 MHz, CD3CN): see Table 1 and δ 

7.43-7.25 (m, 15H, Ar-H), 4.90, 4.84 (AB system, 2H, JA,B 11.9 Hz, CH2Ph), 4.74 (s, 2H, CH2Ph), 

4.55, 4.49 (AB system, 2H, JA,B 12.0 Hz, CH2Ph), 4.37 (d, 1H, J1,2 5.5 Hz, H-1), 4.34 (dd, 1H, J2,3 

6.4 Hz, H-2), 4.23 (m, 1H, H-5), 4.12 (dd, 1H, J5,6b 1.3 Hz, J6a,6b 8.5 Hz, H-6b), 4.06 (dd,1H, J3,4 1.6 

Hz, H-3), 4.03 (dd, 1H, J5,6a 6.1 Hz, H-6a), 3.88 (dd, 1H, J4,5 5.3 Hz, H-4), 3.34, 3.30, 3.25 (3s, each 

3H, 2  × OMe-1, OMe-5'),  1.33, 1.32, 1.30, 1.26 (4s, each 3H, 2  × CMe2);  13C NMR (62.9 MHz, 

CD3CN): see Table 2 and δ 139.5, 139.4, 137.8 (3 × Ar-C), 129.4-128.6 (Ar-CH), 110.5, 109.1 (2 × 

CMe2), 74.8, 74.1, 73.0 (3 × CH2Ph), 56.6, 53.5 (2 × OMe-1), 50.0 (OMe-5'), 27.5, 27.1, 26.8, 25.4 

(2 × CMe2). Anal. Calcd for C41H52O11: C, 68.31; H, 7.27. Found: C, 68.35; H, 7.29.

3.5.  (5R)-2,3,6-Tri-O-benzyl-5-C-methoxy-α-L-threo-hex-4-ulopyranosyl-(14)-2,3:5,6-di-O-

isopropylidene-aldehydo-D-glucose dimethyl acetal (12)

A soln of 9 (493 mg, 0.641 mmol) in dry CH2Cl2 (12 mL) and pre-dried 4-methylmorpholine-N-

oxide (NMO) (123 mg, 1.05 mmol) containing 4Å powdered molecular sieves (120 mg) was stirred 

under argon atmosphere for 30 min at room temp. Tetrapropylammonium perruthenate (TPAP) (90 

mg, 40%) was added and the resulting green mixture was stirred further 4 h at room temp. The 

reaction mixture was filtered through alternate paths of Celite and silica gel and extensively washed 

with CH2Cl2 and then EtOAc. The combined organic phases were concentrated  under diminished 

pressure to give a syrup (439 mg) constituted (13C NMR, CDCl3) by a mixture of  12 and 13 in a 

ratio  of  about  4:1  estimated  on  the  basis  of  the  relative  5’-OMe  signal  intensities.  Flash 

chromatographic  purification  of  the  crude  residue,  eluting  with  6:4  hexane-EtOAc,  gave  a  4:1 

mixture of 12 and 13 (276 mg combined yield about 56%) as a colourless syrup; [α]D +9.3 (c 1.1, 

CHCl3); Rf 0.92  (9:1  CH2Cl2-Me2CO);  selected 13C  NMR  (50  MHz,  CD3CN)  signals:  major 

component 12:  δ 198.3 (C-4΄),  139.7, 137.4, 137.3 (3  × Ar-C), 110.4, 109.2 (2  × CMe2), 106.6 

(C-1), 99.4 (C-5'), 99.1 (C-1΄), 84.7, 82.3 (C-2', C-3'), 78.4, 77.9 (C-3, C-5), 76.7, 75.9 (C-4, C-2), 



75.7, 75.7, 74.1 (3 × CH2Ph), 67.2, 66.0 (C-6, C-6'), 56.6, 53.9 (2 × OMe-1), 50.2 (OMe-5'); minor 

component 13: δ 139.8, 138.9, 138.2 (3 × Ar-C), 110.3, 109.2 (2 × CMe2), 106.4 (C-1), 99.4 (C-5'), 

99.4 (C-1'), 97.1 (C-4'), 82.5, 81.5 (C-2', C-3'), 81.4, 78.4 (C-3, C-5), 77.6, 77.5 (C-4, C-2), 76.4, 

75.7, 74.1 (3 × CH2Ph), 70.3, 66.0 (C-6, C-6΄), 56.4, 53.6 (2 × OMe-1), 48.8 (OMe-5'). Cluster of 

signals for both components: δ 129.4-127.5 (Ar-CH), 27.8-25.4 (CMe2).

3.6.  (5R)-2,3,6-Tri-O-benzyl-5-C-methoxy-β-D-xylo-hexopyranosyl-(14)-2,3:5,6-di-O-

isopropylidene-aldehydo-D-glucose dimethyl acetal (14)

A soln of the crude 12 and 13 mixture (912 mg) in dry MeOH (50 mL) was cooled at 0 °C and 

treated with NaBH4 (180 mg, 4.77 mmol). The reaction mixture was gently warmed to room temp 

and  left  under  stirring  until  the  TLC  analysis  (7:3  hexane-EtOAc)  showed  the  complete 

disappearance of the starting material (1.5 h). Water (15 mL) was added, the soln stirred for 30 min, 

concentrated under diminished pressure and the residue partitioned between water (40 mL) and 

CH2Cl2 (80 mL). The aq phase was extracted with CH2Cl2 (3 × 80 mL), the organic extracts were 

collected,  dried  (MgSO4),  concentrated  under  diminished  pressure  and  the  residue  (869  mg) 

subjected to flash chromatography over silica gel (7:3 hexane-EtOAc) to give  14 (583 mg, 64% 

yield) and 9 (187 mg, 20% yield). 

Compound  14: colourless syrup;  [α]D -15.9 (c 1.0,  CHCl3); Rf 0.12 (7:3 hexane-EtOAc);  1H 

NMR (200 MHz, CD3CN): see Table 1 and δ 7.39-7.26 (m, 15H, Ar-H), 4.84, 4.66 (AB system, 2H, 

JA,B 11.4 Hz, CH2Ph), 4.81, 4.75 (AB system, 2H, JA,B 11.3 Hz, CH2Ph), 4.62, 4.48 (AB system, 2H, 

JA,B 11.8 Hz, CH2Ph), 4.48 (dd, 1H, J1,2 6.3 Hz, J2,3 7.4 Hz, H-2), 4.33 (d, 1H, H-1), 4.21 (m, 1H, 

H-5), 4.09 (dd, 1H, J5,6b 5.7 Hz, J6a,6b 8.5 Hz, H-6b), 4.08 (dd, 1H, J3,4  1.6 Hz, H-3), 3.87 (dd, 1H, 

J5,6a 6.2 Hz, H-6a), 3.85 (bd, 1H, H-4), 3.36, 3.32, 3.30 (3s, each 3H, 2 × OMe-1, OMe-5'),  1.36, 

1.35, 1.34, 1.26 (4s, each 3H, 2 × CMe2);  13C NMR (50 MHz, CD3CN): see Table 2 and δ 140.2, 

139.7, 139.2 (3  × Ar-C), 129.3-128.2 (Ar-CH), 110.4, 109.2 (2  × CMe2),  75.7, 75.5, 74.3 (3  × 

CH2Ph), 56.6, 54.3 (2 × OMe-1), 49.0 (OMe-5'), 27.5, 27.1, 27.0, 25.5 (2 × CMe2). Anal. Calcd for 

C42H56O13: C, 65.61; H, 7.34. Found: C, 65.73; H, 7.38.

Compound 9: colourless syrup; NMR parameters were identical to those of the sample prepared 

above. 

3.7. 2,3,6-Tri-O-benzyl-D-xylo-hexos-5-ulose (15)

A soln of 14 (276 mg, 0.359 mmol) in 4:1 (v/v) CH3CN-water (7 mL) was treated with 90% aq 

CF3COOH (1.4 mL)  warmed to  50 °C and stirred until  the TLC analysis  (EtOAc)  showed the 



complete  disappearance  of  the  starting material  (12  h).  The  mixture  was  concentrated  under 

diminished  pressure and repeatedly  co-evaporated  with  toluene  (4  × 20 mL)  under  diminished 

pressure. The crude residue was partitioned between brine (20 mL) and EtOAc (30 mL) and the aq 

phase extracted  with EtOAc (3  × 30 mL).  The  organic  phases  were collected,  dried (MgSO4), 

concentrated under diminished pressure to give a residue (125 mg), that was directly filtered on 

silica gel eluting with 3:7 hexane-EtOAc, to give pure 15 (122 mg, 72% yield) as colourless syrup. 

NMR data were in full agreement with the reported ones.8b

3.8.  (5R)-4-O-Acetyl-2,6-di-O-benzyl-5-C-methoxy-α-L-arabino-hexopyranosyl-(14)-2,3:5,6-

di-O-isopropylidene-aldehydo-D-glucose dimethyl acetal (16)

To a soln of 89 (341 mg, 0.502 mmol) in dry toluene (10 mL) warmed to 45 °C, CH3C(OEt)3 (1.1 

mL, 6.02 mmol) and TsOH (9.5 mg, 0.05 mmol) were added. The soln was stirred for 2 h at 45 °C 

until  the  TLC analysis  (1:1 hexane-EtOAc)  showed the complete  disappearance  of  the starting 

material (Rf 0.38) and the formation a faster moving product (Rf 0.60). The mixture was allowed to 

obtain  room temp,  treated  with  Et3N  (0.1  mL)  and  further  stirred  for  10  min.  The  soln  was 

concentrated at diminished pressure and the residue (228 mg) was treated with 80% aq AcOH (3.0 

mL) and stirred at room temp until the product at Rf 0.60 was completely reacted (TLC, 1:1 hexane-

EtOAc, 15 min). The mixture was diluted with CH2Cl2 (20 mL) and carefully neutralized with 40% 

aq NaOH (4 mL).  The  reaction mixture  was diluted  with water  (7 mL)  and the aq phase was 

extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were dried (MgSO4), filtered, and 

concentrated under diminished pressure. The residue (356 mg) was constituted exclusively (NMR) 

of 16 (quantitative yield). An analytical sample of 16 was obtained through flash chromatography 

eluting with 3:2 hexane-EtOAc. Pure 16 (308 mg, 85% yield) was a white foam; [α]D -24.2 (c 0.95, 

CHCl3); Rf 0.51 (1:1 hexane-EtOAc); 1H NMR (200 MHz, CDCl3): see Table 1 and δ 7.35-7.26 (m, 

10H, Ar-H), 4.92, 4.59 (AB system, 2H, JA,B 11.3 Hz, CH2Ph), 4.49 (dd, 1H, J1,2 6.7 Hz, J2,3 7.0 Hz, 

H-2), 4.46 (s, 2H, CH2Ph), 4.32 (d, 1H, H-1), 4.30-3.95 (m, 5H, H-3, H-4, H-5, H-6a, H-6b), 3.34, 

3.33 (2s, each 3H, 2 × OMe-1), 3.27 (s, 3H, OMe-5'), 2.22 (bs, 1H, OH-3'), 1.96 (s, 3H, MeCO), 

1.45, 1.32 (2s, each 3H, CMe2), 1.41 (s, 6H, CMe2); 13C NMR (50 MHz, CDCl3): δ see Table 2 and 

169.5 (MeCO), 137.8, 136.9 (2 × Ar-C), 129.4-127.4 (Ar-CH), 109.6, 108.1 (2 × CMe2), 74.3, 73.1 

(2  × CH2Ph),  55.6,  52.9 (2  × OMe-1),  47.8 (OMe-5'),  26.8,  26.1,  26.0,  24.7 (2  × CMe2),  20.4 

(MeCO). Anal. Calcd for C37H52O14: C, 61.65; H, 7.27. Found: C, 61.59; H, 7.23.

3.9.  Oxidation-reduction  of  (5R)-4-O-Acetyl-2,6-di-O-benzyl-5-C-methoxy-α-L-arabino-

hexopyranosyl-(14)-2,3:5,6-di-O-isopropylidene-aldehydo-D-glucose dimethyl acetal (16)



3.9.1. Oxidation of 16.  - A suspension of 16 (356 mg, 0.494 mmol) in dry CH2Cl2 (6 mL) and pre-

dried  4-methylmorpholine-N-oxide  (NMO)  (98  mg,  0.841  mmol)  containing  4Å  powdered 

molecular  sieves  (250  mg)  was  stirred  under  argon  atmosphere  for  30  min  at  room  temp. 

Tetrapropylammonium  perruthenate  (TPAP)  (35  mg,  20%)  was  added  and  the  resulting  green 

mixture was stirred until the TLC analysis (13:7 hexane-EtOAc) revealed the disappearance of the 

starting material  (45 min, Rf 0.25). The reaction mixture was filtered through alternate paths of 

Celite and silica gel and extensively washed first with CH2Cl2 and then with EtOAc. The combined 

organic phases were concentrated under diminished pressure to give a syrup (352 mg) constituted 

exclusively (NMR) by the uloside 17; Rf 0.17 (13:7 hexane-EtOAc); 1H NMR (200 MHz, CDCl3): 

see Table 1 and δ 7.30-7.22 (m, 10H, Ar-H), 4.80, 4.65 (AB system, 2H,  JA,B 11.9 Hz,  CH2Ph), 

4.52, 4.43 (AB system, 2H, JA,B 12.4 Hz, CH2Ph), 4.46 (dd, 1H, J1,2 6.6 Hz, J2,3 7.1 Hz, H-2), 4.32 

(d, 1H, H-1), 4.25 (m, 1H, H-5), 4.17-3.85 (m, 4H, H-3, H-4, H-6a, H-6b), 3.36 (s, 6H, 2 × OMe-1), 

3.29 (s, 3H, OMe-5'), 1.86 (s, 3H, MeCO), 1.41, 1.38, 1.35, 1.31 (4s, each 3H, 2 x CMe2); 13C NMR 

(50 MHz, CDCl3): see Table 2 and δ 168.5 (MeCO), 137.1, 136.8 (2 × Ar-C), 129.7-127.8 (Ar-CH), 

109.9, 108.6 (2 × CMe2), 73.2, 72.9 (2 × CH2Ph), 56.2, 53.6 (2 × OMe-1), 48.7 (OMe-5'),27.2, 26.5, 

26.3, 25.3 (2 × CMe2), 20.3 (MeCO). 

3.9.2. Reduction of 17. -  A soln of crude  17 (352 mg, 0.489 mmol) in dry MeOH (10 mL) was 

cooled  to  0  °C and  treated,  under  argon atmosphere,  with  NaBH4 (138 mg,  3.65  mmol).  The 

reaction mixture was gently warmed to room temp and left under stirring until the TLC analysis 

(1:1 hexane-EtOAc)  showed the complete disappearance of the starting material  (30 min).  Water 

(15 mL) was added, the soln was stirred for 4 h, concentrated under diminished pressure and the 

residue partitioned between water (20 mL) and CH2Cl2 (40 mL). The aq phase was extracted with 

CH2Cl2 (5 × 25 mL) and the organic extracts were collected, dried (MgSO4) and concentrated under 

diminished  pressure.  The  residue  (307  mg)  was  subjected  to  flash  chromatography  (first  11:9 

hexane-EtOAc, then 2:3 hexane-EtOAc) collecting four main fractions. The first two fractions were 

constituted by the monoacetates 18 (65 mg) and 19 (120 mg), each in mixture with about 10% of 

the other, accounting for an overall 52% yield, the third fraction contained pure diol  21 (43 mg, 

13%  yield),  and  the  fourth  one  an  about  1:1  mixture  of  21 and  another  yet  unidentified 

diastereoisomeric diol (86 mg, each about 13% yield). 

(5R)-4-O-Acetyl-2,6-di-O-benzyl-5-C-methoxy-α-L-xylo-hexopyranosyl-(14)-2,3:5,6-di-O-

isopro-pylidene-aldehydo-D-glucose dimethyl acetal  (18): Rf 0.39 (1:1 hexane-EtOAc);  1H NMR 

(200 MHz, CDCl3): see Table 1 and δ 7.34-7.18 (m, 10H, Ar-H), 4.71, 4.59 (AB system, 2H, JA,B 

12.0 Hz, CH2Ph), 4.56, 4.49 (AB system, 2H, JA,B 12.0 Hz, CH2Ph), 4.42 (dd, 1H, J1,2 6.4 Hz, J2,3 

7.0 Hz, H-2), 4.32 (d, 1H, H-1), 4.25 (m, 2H, H-5, H-6a), 4.05-3.90 (m, 3H, H-3, H-4, H-6b), 3.32, 



3.30.  3.29 (3s, each 3H, 2  × OMe-1, OMe-5'),  2.69 (d,  1H,  J4’,OH 5.3 Hz, OH-4'),  2.02 (s,  3H, 

MeCO), 1.41, 1.32 (2s, each 3H, CMe2); 1.40 (s, 6H, CMe2); 13C NMR (50 MHz, CDCl3): see Table 

2 and δ 170.5 (MeCO), 138.2, 137.4 (2 × Ar-C), 128.5-126.9 (Ar-CH), 110.0, 108.4 (2 × CMe2), 

73.4, 72.6 (2 × CH2Ph), 55.8, 52.8 (2 × OMe-1), 48.1 (OMe-5'), 27.3, 26.6, 26.3, 25.4 (2 × CMe2), 

20.9 (MeCO). Anal. Calcd for C37H52O14: C, 61.65; H, 7.27. Found: C, 61.58; H, 7.25.

(5R)-3-O-Acetyl-2,6-di-O-benzyl-5-C-methoxy-α-L-xylo-hexopyranosyl-(14)-2,3:5,6-di-O-

isopro-pylidene-aldehydo-D-glucose dimethyl acetal  (19): Rf 0.34 (1:1 hexane-EtOAc);  1H NMR 

(200 MHz, CDCl3): see Table 1 and δ 7.33-7.26 (m, 10H, Ar-H), 4.81, 4.63 (AB system, 2H, JA,B 

12.1 Hz, CH2Ph), 4.47, 4.40 (AB system, 2H, JA,B 11.7 Hz, CH2Ph), 4.47 (dd, 1H, J1,2 6.4 Hz, J2,3 

7.6 Hz, H-2), 4.28-3.94 (m, 3H, H-5, H-6a, H-6b), 4.32 (d, 1H, H-1), 4.06 (dd, 1H, J3,4 1.2 Hz, H-3), 

3.92 (dd, 1H,  J4,5 5.0 Hz, H-4), 3.37, 3.36, 3.35 (3s, each 3H, 2  × OMe-1, OMe-5'), 3.14 (d, 1H, 

J3’,OH 8.0 Hz, OH-3'), 1.78 (s, 3H, MeCO), 1.43 (s, 6H, CMe2); 1.42, 1.32 (2s, each 3H, CMe2); 13C 

NMR (50 MHz, CDCl3): see Table 2 and δ 168.5 (MeCO), 137.9, 137.3 (2 × Ar-C), 128.3-127.6 

(Ar-CH), 109.9, 108.5 (2 × CMe2), 73.3, 72.5 (2 × CH2Ph), 56.1, 53.7 (2 × OMe-1), 48.4 (OMe-5'), 

27.2, 26.5, 26.4, 25.3 (2  × CMe2), 20.5 (MeCO).  Anal.  Calcd for C37H52O14:  C, 61.65; H, 7.27. 

Found: C, 61.60; H, 7.22.

(5R)-2,6-di-O-benzyl-5-C-methoxy-α-L-xylo-hexopyranosyl-(14)-2,3:5,6-di-O-isopropylidene-

aldehydo-D-glucose  dimethyl  acetal  (21):  white  foam;  [α]D -27.2 (c 0.99,  CHCl3); Rf 0.32 (2:3 

hexane-EtOAc); 1H NMR (250 MHz, CDCl3): δ 7.31-7.22 (m, 10H, Ar-H), 5.18 (d, 1H, J1΄,2΄ 7.8 Hz, 

H-1΄), 4.81, 4.65 (AB system, 2H, JA,B 12.2 Hz, CH2Ph), 4.57, 4.50 (AB system, 2H, JA,B 12.3 Hz, 

CH2Ph), 4.47 (dd, 1H,  J1,2 6.7 Hz,  J2,3 7.1 Hz, H-2), 4.31 (d, 1H, H-1), 4.30-4.17 (m, 2H, H-5, 

H-6b), 4.05-3.98 (m, 5H, H-3', H-4', H-3, H-4, H-6a), 3.60-3.50 (m, 3H, H-2', H-6'a, H-6'b), 3.31 (s, 

9H, 2 × OMe-1, OMe-5'), 3.13 (d, 1H, J3’,OH 7.5 Hz, OH-3'), 2.60 (d, 1H, J4’,OH 5.2 Hz, OH-4'), 1.41 

(s, 9H, CMe2); 1.32 (s, 3H, CMe2); 13C NMR (62.9 MHz, CDCl3): see Table 2 and δ 138.1, 137.2 (2 

× Ar-C), 128.5-127.5 (Ar-CH), 109.9, 108.5 (2 × CMe2), 73.3, 72.6 (2 × CH2Ph), 56.0, 53.1 (2 × 

OMe-1), 48.4 (OMe-5'), 27.2, 26.6, 26.5, 25.3 (2 × CMe2). Anal. Calcd for C35H50O13: C, 61.93; H, 

7.42. Found: C, 61.90; H, 7.39.

Selected  13C NMR  (50 MHz, CDCl3)  data for the unidentified diastereoisomeric diol isolated in 

mixture with  21: δ 106.0 (C-1), 98.6 (C-5'), 98.2 (C-1'), 81.2 (C-2'), 77.8, 77.6, 77.3 (C-3, C-4, 

C-5), 75.5, 74.8, 71.6 (C-2, C-3', C-4'), 73.7, 73.74 (2 × CH2Ph), 69.9 (C-6'), 65.2 (C-6), 56.0, 53.6 

(2 × OMe-1), 48.5 (OMe-5'). 

3.10.  (5R)-3,4-di-O-Acetyl-2,6-di-O-benzyl-5-C-methoxy-α-L-lyxo-hexopyranosyl-

(14)-2,3:5,6-di-O-isopropylidene-aldehydo-D-glucose dimethyl acetal (20)



Compound 21 (40 mg, 0.059 mmol) was acetylated with a 1:2 mixture of Ac2O and pyridine (3 

mL) and stirred at room temp. After 20 h the reaction mixture was repeatedly co-evaporated with 

toluene  (4  x  10  mL)  at  diminished pressure.  Flash chromatographic  purification  (13:7 hexane-

EtOAc) of the residue (52 mg) gave 20 (44 mg, 97% yield) as a syrup; [α]D -46.9 (c 0.9, CHCl3); Rf 

0.38 (3:2 hexane-EtOAc); 1H NMR (200 MHz, CDCl3): see Table 1 and δ 7.35-7.23 (m, 10H, Ar-

H), 4.68, 4.58 (AB system, 2H, JA,B 11.9 Hz, CH2Ph), 4.43, 4.40 (s, 2H, CH2Ph), 4.46 (dd, 1H, J1,2 

6.5 Hz, J2,3 7.3 Hz, H-2), 4.33 (d, 1H, H-1), 4.26 (m, 1H, H-5), 4.03 (dd, 1H, J3,4 1.3 Hz, H-3), 4.16 

(dd, 1H, J5,6b 6.2 Hz, J6a,6b 8.5 Hz, H-6b), 3.98 (m, 2H, H-4, H-6a), 3.34, 3.33, 3.32 (3s, each 3H, 2 × 

OMe-1, OMe-5'), 2.00, 1.85 (2s, each 3H, 2 x MeCO), 1.41 (s, 6H, CMe2); 1.40, 1.32 (2s, each 3H, 

CMe2); 13C NMR (50 MHz, CDCl3): see Table 2 and δ 169.5, 168.1 (2 x MeCO), 137.8, 137.3 (2 × 

Ar-C), 128.4-127.5 (Ar-CH), 110.1, 108.4 (2  × CMe2), 73.4, 72.6 (2  × CH2Ph), 55.8, 53.4 (2  × 

OMe-1), 48.1 (OMe-5'), 27.2, 26.6, 26.2, 25.4 (2 × CMe2), 20.8, 20.6 (2 x MeCO). Anal. Calcd for 

C39H54O15: C, 61.41; H, 7.14. Found: C, 61.38; H, 7.12.

The acetylation of either the fractions containing 19 (115 mg, 0.160 mmol) or 18 (65 mg, 0.090 

mmol) as reported above gave, after chromatographic purification (13:7 hexane-EtOAc),  21 (183 

mg, 96% yield) having NMR parameters identical to those of the sample prepared above. 

3.11.  (5R)-2,6-di-O-benzyl-5-C-methoxy-α-L-lyxo-hexopyranosyl-(14)-2,3:5,6-di-O-

isopropylidene-aldehydo-D-glucose dimethyl acetal (21)

To a soln of 20 (183 mg, 0.240 mmol) in dry MeOH (5 mL) was added at room temp a 0.1 M 

methanolic soln of MeONa (0.2 mL).  The reaction mixture was stirred until  TLC analysis  (3:2 

hexane-EtOAc) showed the complete disappearance of the starting material (2 h) and the formation 

of a lower moving product. The solution was neutralized with resin acid (Amberlyst 15) and the 

suspension was filtered and concentrated to give a foam residue constituted by pure (NMR)  21 

(162.5 mg, quantitative yield), identical to the sample obtained above. The combined overall yield 

of 21, obtained by adding the sample directly isolated in the oxidation-reduction of 16, was 65%.  

3.12. 2,6-Di-O-benzyl-L-lyxo-hexos-5-ulose (26)

A soln of 21 (185 mg, 0.272 mmol) in 4:1 (v/v) CH3CN-water (6 mL) was treated with 90% aq 

CF3COOH (1.2 mL) warmed to 50 °C and stirred until TLC analysis (EtOAc) showed the complete 

disappearance  of  the  starting material  (5  h).  The  mixture  was  concentrated  under  diminished 

pressure  and repeatedly  co-evaporated  with  toluene  (5  × 20  mL).  The  residue  was  partitioned 



between brine (20 mL) and EtOAc (40 mL) and the aq phase extracted with EtOAc (3 × 40 mL). 

The organic phases were collected, dried (MgSO4), concentrated under diminished pressure to give 

a residue (96 mg), that was directly subjected to a flash chromatographic purification, eluting with 

1:3 hexane-EtOAc, to give pure  26 (75 mg, 78% yield) as colourless syrup.  NMR data were in 

agreement with the reported ones.8b

3.13.  (5R)-2,4,6-Tri-O-benzyl-5-C-methoxy-α-L-arabino-hexopyranosyl-(14)-2,3:5,6-di-O-

isopropylidene-aldehydo-D-glucose  dimethyl  acetal  (22)  and  (5R)-2,3,4,6-tetra-O-benzyl-5-C-

methoxy-α-L-arabino-hexopyranosyl-(14)-2,3:5,6-di-O-isopropylidene-aldehydo-D-glucose 

dimethyl acetal (23)

A suspension of pre-washed (hexane) 60% NaH in mineral oil (1.29 g, 53.7 mmol) in dry DMF 

(25.0 mL) was cooled to 0 °C and treated, under argon atmosphere, with a soln of 8 (3.62 g, 5.34 

mmol) in dry DMF (100 mL).  The mixture was warmed to room temp and stirred for 30 min, 

cooled again to 0 °C and treated with BnBr (0.63 mL, 5.34 mmol) and further stirred until  the 

starting material was consumed (25 min, TLC, 7:3 hexane-EtOAc). MeOH (12 mL) and water (100 

mL)  were  slowly  added  and the  reaction  mixture  was  extracted  with  Et2O (4  × 50  mL).  The 

combined extracts were collected, dried (MgSO4), concentrated under diminished pressure and the 

residue (4.68 g) subjected to flash chromatography (first hexane 600 mL, then 4:1 hexane-EtOAc) 

to give 22 (3.09 g, 75% yield) and 23 (684 mg, 15% yield). 

Compound 22 was a colourless syrup; [α]D +16.8 (c 1.07, CHCl3); Rf 0.24 (7:3 hexane-EtOAc); 
1H NMR (600 MHz, CDCl3): see Table 1 and δ 7.36-7.22 (m, 15H, Ar-H), 4.76, 4.60 (AB system, 

2H, JA,B 11.6 Hz, CH2Ph), 4.62, 4.58 (AB system, 2H, JA,B 11.3 Hz, CH2Ph), 4.58, 4.34 (AB system, 

2H, JA,B 12.1 Hz, CH2Ph), 4.49 (dd, 1H, J1,2 6.5 Hz, J2,3 7.6 Hz, H-2), 4.31 (d, 1H, H-1), 4.27 (bq, 

1H, H-5), 4.16 (dd, 1H, J5,6b  5.6 Hz, J6a,6b 8.7 Hz, H-6b), 4.00 (m, 1H, H-4), 3.95 (dd, 1H, J5,6a 6.2 

Hz, H-6a), 3.92 (dd, 1H, J3,4 0.8 Hz, H-3), 3.27, 3.25, 3.22 (3s, each 3H, 2 × OMe-1, OMe-5'), 1.43, 

1.41, 1.38, 1.31 (4s, each 3H, 2  × CMe2);  13C NMR (50 MHz, CDCl3):  see Table 2 and δ 138.6, 

138.3, 137.2 (3  × Ar-C), 128.3-127.2 (Ar-CH), 109.8, 108.4 (2  × CMe2),  74.9, 74.5, 73.2 (3  × 

CH2Ph), 55.6, 52.3 (2 × OMe-1), 47.9 (OMe-5'), 27.2, 26.5, 26.4, 25.0 (2 × CMe2). Anal. Calcd for 

C42H56O13: C, 65.61; H, 7.34. Found: C, 65.73; H, 7.44.

Compound 23 was a colourless syrup; [α]D +17.6 (c 1.2, CHCl3); Rf 0.38 (7:3 hexane-EtOAc); 
1H NMR (200 MHz, CDCl3): see Table 1 and δ 7.33-7.23 (m, 20H, Ar-H), 4.95, 4.57 (AB system, 

2H, JA,B 11.5 Hz, CH2Ph), 4.83, 4.73 (AB system, 2H, JA,B 10.7 Hz, CH2Ph), 4.70 (s, 2H,CH2Ph), 

4.56, 4.28 (AB system, 2H, JA,B 12.1 Hz, CH2Ph), 4.54 (dd, 1H, J1,2 6.7 Hz, J2,3 9.7 Hz, H-2), 4.31 

(d, 1H, H-1), 4.18 (m, 1H, H-5), 4.05 (m, 2H, H-4, H-6b), 3.98 (dd, 1H, J3,4 2.9 Hz, H-3), 3.87 (dd, 



1H, J5,6a 5.8 Hz, J6a,6b 8.9 Hz, H-6a), 3.25, 3.22, 3.21 (3s, each 3H, 2 × OMe-1, OMe-5'), 1.42, 1.41, 

1.37, 1.30 (4s, each 3H, 2 × CMe2); 13C NMR (50 MHz, CDCl3): see Table 2 and δ 138.7, 138.5, 

138.4, 137.2 (4 × Ar-C), 128.1-127.1 (Ar-CH), 109.6, 108.3 (2 × CMe2), 74.8, 74.5, 73.1, 72.6 (4 × 

CH2Ph), 55.4, 52.0 (2 × OMe-1), 47.8 (OMe-5'), 27.2, 26.6, 26.1, 25.1 (2 × CMe2). Anal. Calcd for 

C49H62O13: C, 68.51; H, 7.27. Found: C, 68.63; H, 7.34.

3.14.  (5R)-2,4,6-Tri-O-benzyl-5-C-methoxy-α-L-threo-hex-3-ulopyranosyl-(14)-2,3:5,6-di-O-

isopropylidene-aldehydo-D-glucose dimethyl acetal (24)

A suspension of 22 (1.03 g, 1.34 mmol) in dry CH2Cl2 (27 mL), pre-dried 4-methylmorpholine-

N-oxide (NMO) (275 mg, 2.34 mmol) and 4 Å powdered molecular sieves (400 mg) was stirred 

under argon atmosphere for 30 min at room temp. Tetrapropylammonium perruthenate (TPAP) (47 

mg, 10%) was added and the resulting green mixture was stirred for 4 h at room temp until the TLC 

(9:1  CH2Cl2-Me2CO) showed the  complete  disappearance  of  the starting  material.  The  reaction 

mixture was filtered through alternate paths of Celite and silica gel and extensively washed with 

CH2Cl2 and EtOAc. The soln and washings were combined and concentrated  under  diminished 

pressure  to  give  almost  pure  24 (NMR).  A  sample  of  the  residue  was  subjected  to  flash 

chromatography (7:3 hexane-EtOAc) to give  24 (76% yield) as a colourless syrup; [α]D -37.4 (c 

1.16,  CHCl3); Rf 0.73 (9:1  CH2Cl2-Me2CO);  1H NMR (200 MHz,  CD3CN):  see Table  1  and δ 

7.38-7.13  (m,  15H,  Ar-H),  4.70,  4.64  (AB system,  2H,  JA,B 12.5 Hz,  CH2Ph),  4.53,  4.47 (AB 

system, 2H,  JA,B 12.4 Hz,  CH2Ph), 4.40-4.32 (m, 4H, H-1, H-2,  CH2Ph), 4.21 (m, 1H, H-5), 4.07 

(dd, 1H, J5,6b  6.0 Hz, J6a,6b 8.5 Hz, H-6b), 4.03 (dd, 1H, J2,3 6.9 Hz, J3,4  1.1 Hz, H-3), 3.93 (dd, 1H, 

J5,6a 6.3 Hz, H-6a),  3.87 (dd, 1H,  J4,5  5.5 Hz, H-4),  3.31,  3.25,  3.23 (3s,  each 3H, 2  × OMe-1, 

OMe-5'), 1.34, 1.33, 1.32, 1.27 (4s, each 3H, 2 × CMe2); 13C NMR (50 MHz, CD3CN): see Table 2 

and δ 138.8, 138.6, 137.8 (3 × Ar-C), 129.3-128.8 (Ar-CH), 110.4, 109.2 (2 × CMe2), 74.0, 73.9, 

73.0 (3 × CH2Ph), 56.5, 53.8 (2 × OMe-1), 49.1 (OMe-5'), 27.4, 26.9, 26.8, 25.5 (2 × CMe2). Anal. 

Calcd for C42H54O13: C, 65.78; H, 7.10. Found: C, 65.88; H, 7.38.

3.15.  (5R)-2,4,6-Tri-O-benzyl-5-C-methoxy-α-L-lyxo-hexopyranosyl-(14)-2,3:5,6-di-O-

isopropylidene-aldehydo-D-glucose dimethyl acetal (25)

A soln of 24 (760 mg, 0.99 mmol) in dry MeOH (22 mL) was cooled to 0 °C and treated, under 

argon atmosphere, with NaBH4 (113 mg, 2.98 mmol). After 5 min the reaction mixture was gently 

warmed to room temp and left  under stirring until  24 was consumed (1.5 h, TLC, 9:1 CH2Cl2-

Me2CO).  Water (15 mL) was added, the soln stirred for 30 min, concentrated under diminished 



pressure and the residue partitioned between water (60 mL) and CH2Cl2 (150 mL). The aq phase 

was  extracted  with  CH2Cl2 (2  × 150  mL),  the  organic  extracts  collected,  dried  (MgSO4)  and 

concentrated  under  diminished  pressure.  The  residue  (784  mg)  was  subjected  to  flash 

chromatography (6:4 hexane-EtOAc) to give  25 as a colourless syrup (668 mg, 88% yield); [α]D 

+2.20 (c 0.7, CHCl3); Rf 0.38 (9:1 CH2Cl2-Me2CO); 1H NMR (200 MHz, CDCl3): see Table 1 and δ 

7.38-7.05  (m,  15H,  Ar-H),  4.81,  4.63  (AB system,  2H,  JA,B 12.2 Hz,  CH2Ph),  4.58,  4.36 (AB 

system, 2 H,  JA,B 12.1 Hz,  CH2Ph), 4.48 (dd, 1 H,  J1,2 6.7 Hz,  J2,3 7.6 Hz, H-2), 4.47, 4.39 (AB 

system, 2H, JA,B 11.4 Hz, CH2Ph), 4.31 (d, 1H, H-1), 4.24 (m, 1H, H-5), 4.03 (dd, 1H, J3,4  1.0 Hz, 

H-3), 4.00 (m, 2H, H-6a, H-6b), 3.88 (dd, 1H, J4,5 5.2 Hz, H-4), 3.28, 3.25, 3.15 (3s, each 3H, 2 × 

OMe-1, OMe-5'), 1.44, 1.43, 1.42, 1.33 (4s, each 3H, 2 × CMe2); 13C NMR (50 MHz, CDCl3): see 

Table 2 and δ 138.9, 138.3, 138.1 (3 × Ar-C), 128.9-128.3 (Ar-CH), 110.5, 109.2 (2 × CMe2), 73.9, 

73.7, 73.2 (3 × CH2Ph), 56.5, 53.4 (2 × OMe-1), 48.9 (OMe-5'), 27.9, 27.2, 27.1, 26.0 (2 × CMe2). 

Anal. Calcd for C42H56O13: C, 65.61; H, 7.34. Found: C, 65.68; H, 7.41.

3.16. 2,4,6-Tri-O-benzyl-L-lyxo-hexos-5-ulose (27)

A soln of 25 (456 mg, 0.594 mmol) in 4:1 (v/v) CH3CN-water (11 mL) was treated with 90% 

aq CF3COOH (2.3 mL) warmed to 50 °C and stirred until  the TLC analysis (EtOAc)  showed the 

complete  disappearance  of  the  starting material  (4  h).  The  mixture  was  concentrated  under 

diminished  pressure and repeatedly  co-evaporated  with  toluene  (5  × 20  mL).  The  residue  was 

partitioned between brine (20 mL) and EtOAc (40 mL) and the aq phase extracted with EtOAc (3 × 

40 mL). The organic phases were collected, dried (MgSO4), concentrated under diminished pressure 

to give a residue (285 mg),  that  was directly subjected to a flash chromatographic purification, 

eluting with 4:6 hexane-EtOAc, to give 27 (228 mg, 86% yield) as a colourless syrup.  NMR data 

were in agreement with those of the sample previously prepared by us.6b
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Table 1: 1H NMR parameters (δ, ppm; J, Hz) of the non-reducing unit of 9-11, 14, 16-20 and 22-25

Compound Solvent H-1' H-2' H-3' H-4' H-6'a H-6'b J1',2' J2',3' J3',4' J6'a,6'b

9 CDCl3 4.86 3.61 3.89 4.11 3.59 3.50 7.9 9.4 3.7 10.4
10 CD3CN 4.92 3.51 4.02 5.33 3.70 3.38 7.9 9.8 2.4 11.0
11 CD3CN 5.15 3.91 -- 5.06 3.65 3.31 6.2 -- -- 10.2
14 CD3CN 4.86 3.38 3.60 3.79 3.72 3.58 8.0 9.1 9.1 10.1
16 CDCl3 4.93 3.42 3.97 5.41 3.42 3.25 7.9 10.0 3.4 10.8
17 CDCl3 5.04 4.04 -- 5.09 3.57 3.34 7.3 -- -- 10.6
18 CDCl3 5.24 3.45 3.45 5.10 3.33 3.27 8.2 3.3 n.d. 10.3
19 CDCl3 5.31 3.63 5.24 3.42 3.52 3.46 8.2 3.6 3.3 10.6
20 CDCl3 5.31 3.42 5.21 5.08 3.42 3.24 8.3 3.4 3.0 10.5
22 CDCl3 4.86 3.52 4.00 3.87 3.53 3.45 7.9 9.9 3.4 10.3
23 CDCl3 4.82 3.82 3.82 4.05 3.57 3.41 7.6 n.d. n.d. 10.1
24 CD3CN 4.91 4.31 -- 3.74 3.61 3.55 7.5 -- -- 10.6
25 CDCl3 5.17 3.51 3.99 3.73 3.55 3.42 8.4 3.4 3.2 10.2



Table 2: Selected 13C NMR signals (δ, ppm) of the disaccharide derivatives 9-11, 14 and 16-25.

Compound Solvent C-1 C-2 C-3 C-4 C-5 C-6 C-1' C-2' C-3' C-4' C-5' C-6'

9 CDCl3 105.5 74.4 77.8 75.0 77.2 65.5 98.9 78.8 78.6 67.2 100.3 64.7
10 CD3CN 106.4 75.7 76.6 76.5 77.7 66.1 100.3 79.2 78.3 82.7 99.8 65.3
11 CD3CN 106.6 76.0 78.8 76.5 77.9 66.2 99.6 76.5 155.3 99.4 99.5 70.3
14 CD3CN 106.9 76.2 78.4 76.9 77.8 66.2 99.7 82.8* 82.0a* 74.1 99.9 74.4
16 CDCl3 105.5 74.5* 77.8* 76.4 77.6* 64.8 98.4 74.3* 69.6* 68.8* 99.5 64.1
17 CDCl3 106.1 75.0* 77.6 75.1* 76.9 65.3 100.0 80.2 197.2 74.9* 99.9 64.2
18 CDCl3 106.2 75.5 77.7 75.2 77.3 65.4 96.4 74.3 69.3* 69.2* 101.6 64.9
19 CDCl3 105.6 74.8* 78.0 74.7* 77.7 65.3 96.2 73.8* 71.6 68.4 101.4 66.2
20 CDCl3 105.8 74.8 77.9* 75.1 77.8* 65.2 95.9 73.1 68.5* 68.4* 100.5 65.2
21 CDCl3 105.9 74.7 77.8 75.4 77.5 65.4 96.1 74.7 71.6 69.6 102.3 65.9
22 CDCl3 105.4 74.3 77.8 74.6 77.3 65.2 99.1 79.6 70.7 77.5 100.8 64.7
23 CDCl3 105.2 74.0 77.6 74.8 76.9 65.4 99.1 79.4 79.2 75.1 100.6 64.5
24 CD3CN 106.5 75.8 78.4 77.4 77.7 66.2 100.9 82.0 202.3 82.0 101.6 64.9
25 CDCl3 106.4 74.9 77.9 75.2 76.3 65.7 97.3 78.5* 70.1 78.3* 103.5 66.2

* Assignments may have to be interchanged
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