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Abstract

Inclusion between XML types is important but expensive, and is much more expen-
sive when unordered types are considered. We prove here that inclusion for XML
types with interleaving and counting can be decided in polynomial time in presence
of two important restrictions: no element appears twice in the same content model,
and Kleene star is only applied to disjunctions of single elements.

Our approach is based on the transformation of each such content model into a set
of constraints that completely characterizes the generated language. We then reduce
inclusion checking to constraint implication. We exhibit a quadratic algorithm to
perform inclusion checking on a RAM machine.
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1 Introduction

XML schemas are an essential tool for the robustness of applications that
involve XML data manipulation, transformation, integration, and, crucially,
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data exchange. To solve any static analysis problem that involves such types
one must first be able to reason about their inclusion and equivalence.

XML schema languages are designed to describe ordered data, but they usually
offer some (limited) support to deal with cases where the order among some el-
ements is not constrained. These “unordered” mechanisms bring the language
out of the well-understood realm of tree-grammars and tree-automata, and
have been subject to little foundational study, with the important exception
of a recent work by Gelade, Martens, and Neven [7]. Here, the authors study
a wide range of schema languages, and show that the addition of interleaving
(also called shuffle) and counting operators raises the complexity of inclusion
checking from PSPACE (or EXPTIME, for Extended DTDs) to EXPSPACE.
These are completeness results, hence this is really bad news.

A previous result by Mayer and Stockmeyer [11] had already shown that the
inclusion of Regular Expressions with interleaving alone is complete in EX-
PSPACE, hence showing that counting is not essential for the high cost. Gelade
et al.’s paper [7] concludes with: “It would therefore be desirable to find ro-
bust subclasses for which the basic decision problems are in PTIME”. Such
subclasses could be used either to design a new schema language, or to design
adaptive algorithms, that use the PTIME algorithm whenever is possible, and
resort to the full algorithm when needed. To this aim, it is important that (i)
the subclass covers large classes of XML types used in practice, (ii) it is easy
to verify whether a schema belongs to the subclass.

Our Contribution In this paper we define a class of Regular Expressions
(REs) with interleaving and numerical constraints whose inclusion can be
checked in polynomial time. Our class is based on the following two restric-
tions: each expression is conflict-free (or single occurrence) meaning that no
symbol appears twice, and Kleene star is only applied to symbols or to disjunc-
tions of symbols. We use the name “conflict-free types” for this class of REs
with interleaving and counting. These restrictions are severe, but, as shown
in [4] and [5], they are actually met by the vast majority of the schemas that
are used in practice. 1 Polynomiality of inclusion of conflict-free types implies
that XML types that use our conflict-free types as their content model can be
checked for inclusion in PTIME as well; this result is well-known [7].

Our approach is based on the transformation of each type (i.e., each RE)
into an equivalent set of constraints. Consider, for instance, the following type
T = (a [1..3] · b [2..2]) + c [1..2], and the following properties for a word w in
the language of T :

(1) lower-bound: at least one of a, b, and c appears in w;

1 “More that 99% of the REs occurring in practical schemas”, according to [5]
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(2) cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it appears
twice; if c is there, it appears once or twice;

(3) upper-bound: no symbol out of {a, b, c} is in w;
(4) exclusion: if one of a, b is in w, then c is not, and if c is in w then neither

of a, b is in w;
(5) co-occurrence: if a is in w, then b is in w, and vice versa; 2

(6) order: no occurrence of a may follow an occurrence of b.

It is easy to see that every w in T enjoys all of them. We will prove here
that the opposite implication is true as well: every word that satisfies the six
properties is indeed in T , i.e., that constraint set (1) – (6) is complete for T .

We will generalize this observation, and will associate a complete set of con-
straints, in the six categories above, to any conflict-free type (we will actually
encode exclusion constraints as order constraints); as a consequence, type in-
clusion will be reduced to constraint implication. We then prove that each
class of constraints can be checked independently, and provide an algorithm
to verify type inclusion T < U in time O(|T | ∗ |U |+ |U |2), through constraint
implication.

For those classes of regular expressions that are characterized by corresponding
classes of automata, the complexity of non-emptiness of binary intersection is
usually lower or equal to that of inclusion, since the first is typically reduced to
automata intersection, while the second is reduced to automata complement
plus intersection. We prove here that things go the opposite way with our
conflict-free types, since we prove intersection to be NP-complete. While the
membership algorithm we defined in [9] may be regarded as automata-based,
we have not been able to find a really natural class of automata for conflict-free
types. This result about intersection complexity seems to suggest that such
automata may be subject to surprising properties.

The ability to transform a type into a complete set of constraints expressed in
a limited variable-free logic is used here to design an efficient inclusion algo-
rithm. We used the same characterization to define a linear-time membership
algorithm for the same class of types in [9] (membership is NP-complete for
REs with interleaving). We also believe that the constraints approach could
be useful for other tasks, such as inclusion of general REs with interleaving
into conflict-free types, or path containment under a DTD based on our type
language, but we leave this for future work.

Complexity Model To study the complexity of our algorithms we base our
analysis on the RAM (Random Access Machine) model. As usual, we assume

2 The term co-occurrence constraint has an unrelated meaning in [1]; we use it as
in [12].
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that read/write operations on the RAM memory and on the input/output
device are performed in unit time, as well as comparisons and arithmetic
operations. Under these hypotheses, our algorithms, expressed in a Pascal-like
pseudocode, can be simulated by RAM programs with the same asymptotic
complexity.

Paper Outline The paper is structured as follows. Section 2 describes the
data model, the type language, and the constraint language we are using.
Section 3 shows how types can be characterized in terms of constraints, and
proves both correctness and completeness of this characterization. Section 4,
then, shows how the constraint characterization of Section 3 can be exploited
to derive a correct and complete inclusion-checking algorithm. In Section 5 we
show that intersection is NP-complete. In Sections 6 and 7, finally, we briefly
revise some related works and draw our conclusions.

2 Type Language and Constraint Language

2.1 The Type Language

Gelade, Martens, and Neven showed that, if inclusion for a given class of
regular expressions with interleaving and numerical constraints is in the com-
plexity class C, and C is closed under positive reductions (a property enjoyed by
PTIME), then the complexity of inclusion for DTDs and single-type EDTDs
that use the same class of regular expressions is in C too [10,7]. Hence, we can
focus our study on a class of regular expression over strings, and our PTIME
result will immediately imply the same complexity for the inclusion problem
of the corresponding classes of DTDs and single-type EDTDs. Single-type
EDTDs are the theoretical counterpart of XML Schema definitions (see [7]).

We adopt the usual definitions for string concatenation w1 · w2, and for the
concatenation of two languages L1 · L2. The shuffle, or interleaving, operator
w1&w2 is also standard, and is defined as follows.

Definition 1 (v&w, L1&L2) Given a finite alphabet Σ, the shuffle set of two
words v, w ∈ Σ∗, or two languages L1, L2 ⊆ Σ∗, is defined as follows; notice
that each vi or wi may be the empty string ε.

v&w =def {v1 · w1 · . . .· vn · wn
| v1 · . . .· vn = v, w1 · . . .· wn = w, vi ∈ Σ∗, wi ∈ Σ∗, n > 0}

L1&L2 =def
⋃
w1∈L1, w2∈L2

w1&w2
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Example 2 (ab)&(XY ) contains the permutations of abXY where a comes
before b and X comes before Y :

(ab)&(XY ) = {abXY, aXbY, aXY b,XabY,XaY b,XY ab}

When v ∈ w1&w2, we say that v is a shuffle of w1 and w2; for example, w1·w2

and w2 · w1 are shuffles of w1 and w2.

We define N∗ = N∪ {∗}, and extend the standard order among naturals with
n ≤ ∗ for each n ∈ N∗. We consider the following type language for strings
over an alphabet Σ:

T ::= ε | a [m..n] | T + T | T · T | T&T | T !

where: a ∈ Σ, m ∈ (N \{0}), n ∈ (N∗ \{0}), n ≥ m, and, for any T !, at least
one of the subterms of T has shape a [m..n].

Note that expressions like a [0..n] are not allowed due to the condition on m;
of course, the type a [0..n] can be equivalently represented by a [1..n] + ε. The
type T ! denotes JT K\{ε}. The presence of an a [m..n] subterm in T ! guarantees
that T contains at least one word that is different from ε, hence T ! is never
empty, hence no type in our language is empty (Lemma 4).

Definition 3 (S(w), S(T ),Atoms(T )) For any string w, S(w) is the set of
all symbols appearing in w. For any type T , Atoms(T ) is the set of all atoms
a [m..n] appearing in T , and S(T ) is the set of all symbols appearing in T .

The semantics of types is defined as follows (|w| denotes the length of w).

JεK= {ε}
Ja [m..n]K= {w | S(w) = {a}, m ≤ |w| ≤ n}
JT1 + T2K= JT1K ∪ JT2K
JT1 · T2K= JT1K· JT2K
JT1&T2K= JT1K&JT2K

JT !K= JT K \ {ε}

The following Lemma can be easily proved by structural induction.

Lemma 4 (Not empty) For any type T :

JT K 6= ∅ (1)

a [m..n] ∈ Atoms(T ) ⇒ ∃w ∈ JT K. a ∈ S(w) (2)
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It is worth noting that our type system lacks general repetition types T ∗ or
T+. Repetition types are here generalized by counting, which, is, however, re-
stricted to symbols, so that, for example, types like (a·b)∗ cannot be expressed.
However, it has been found that DTD and XSD (XML Schema Definition)
schemas use repetition almost exclusively as aop or as (a+ . . .+ z)op (see [5]),
which can be immediately translated to our system. For instance, (a+ . . .+z)∗

can be expressed as (a∗& . . .&z∗), where a∗ is a shortcut for a [1..∗]+ ε), while
(a+ . . .+ z)+ can be expressed as (a∗& . . .&z∗)!.

Restrictions on types, similar to those we consider here, have already been
considered in some previous works. Bex et al. [4] studied simple expressions
(introduced by Martens et al. in [10]), which are concatenation of factors
(a

op1
1 + . . . + aopn

n )op. Simple expressions can be trivially translated to our
systems, and the authors measured that a 97% fraction of content models
in XSD schemas consist of such expressions; however, they did not consider
conflict-freedom. Chain Regular Expressions, defined in [5], is a similar class of
expression, which satisfy conflict-freedom, hence all of them can be translated
to our system, and the authors report measuring that a 99% of content models
fall in this class.

We will use � to range over · and & when we need to specify common prop-
erties, such as, for example: JT � εK = Jε � T K = JT K. Some types contain
the empty string ε, and are characterized as follows (N(T ) is read as “T is
nullable”).

Definition 5 N(T ) is a predicate on types, defined as follows:

N(ε) = true

N(a [m..n]) = false

N(T !) = false

N(T + T ′) = N(T ) or N(T ′)

N(T � T ′) = N(T ) and N(T ′)

The following Lemma is immediate by structural induction in the definition
of N(T ).

Lemma 6 ε ∈ JT K iff N(T ).

We can now define the notion of conflict-free types.

Definition 7 (Conflict-free types) A type T is conflict-free iff for each
subexpression (U + V ) or (U � V ): S(U) ∩ S(V ) = ∅.

Equivalently, a type T is conflict-free if, for any two distinct subterms a [m..n]
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and a′ [m′..n′] that occur in T , a is different from a′.

Example 8 Consider the following type: (a [1..1] &b [1..1])+(a [1..1] &c [1..1]).
This type generates the language {ab, ba, ac, ca}. This type is not conflict-free,
since S(a [1..1] &b [1..1]) ∩ S(a [1..1] &c [1..1]) = {a} 6= ∅.

Consider now a [1..1] &(b [1..1] + c [1..1]); it generates the same language, but
is conflict-free since a [1..1] and (b [1..1] + c [1..1]) have no common symbols.

Conflict-free DTDs have been considered many times before, because of their
good properties and because of the high percentage of actual schemas that
satisfy this constraint (see Section 6).

Hereafter, we will silently assume that every type is conflict-free.

2.2 The Constraint Language

We verify inclusion between T and U by translating them into constraint
sets CT and CU and then by verifying that CT implies CU . Constraints are
expressed using the following logic, where a, b ∈ Σ andA,B ⊆ Σ,m ∈ (N\{0}),
n ∈ (N∗ \{0}), and n ≥ m:

F ::= A+ | A+ Z⇒ B+ | a?[m..n] | upper(A) | a ≺ b | F ∧ F ′ | true
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Satisfaction of a constraint F by a word w, written w |= F , is defined as
follows. 3

w |= A+ ⇔ S(w) ∩ A 6= ∅, i.e. some a ∈ A appears in w

w |= A+ Z⇒ B+ ⇔ w 6|= A+ or w |= B+

w |= a?[m..n] (n 6= ∗) ⇔ if a appears in w, then it appears
at least m times and at most n times

w |= a?[m..∗] ⇔ if a appears in w, then it appears
at least m times

w |= upper(A) ⇔ S(w) ⊆ A

w |= a ≺ b ⇔ there is no occurrence of a in w that follows
an occurrence of b in w

w |= F1 ∧ F2 ⇔ w |= F1 and w |= F2

w |= true ⇔ always

The following special cases of the above definition are worth noticing.

ε 6|= A+ ε |= upper(A) ε |= a?[m..n]

ε |= a ≺ b b |= a ≺ b aba 6|= a ≺ b

w 6|= ∅+ w |= ∅+ Z⇒ A+ w |= ∅+ Z⇒ ∅+

Observe that A+ is monotone, i.e., w |= A+ and w is a subword of w′ imply
that w′ |= A+, while upper(A) and a ≺ b are anti-monotone.

We use the following abbreviations:

a+ =def {a}+

a ≺� b =def (a ≺ b) ∧ (b ≺ a)

A ≺ B =def

∧
a∈A,b∈B

a ≺ b

A ≺� B =def

∧
a∈A,b∈B

a ≺� b

The next propositions specify that A ≺� B encodes mutual exclusion between
sets of symbols.

3 Notice that A+ Z⇒ b+ differs from the sibling constraint A ⇓ b of [13], since
A+ Z⇒ b+ means “if one symbol of A is in w then b is in w”, while A ⇓ b means “if
all symbols of A are in w then b is in w”.
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Proposition 9 w |= a ≺� b ⇔ a and b are not both in S(w)

Proposition 10 w |= A ≺� B ⇔ w 6|= A+ ∧B+

Proof. By Proposition 9, we observe that w |= A ≺� B holds if and only if,
for each a ∈ A, b ∈ B, {a, b} 6⊆ S(w). This means that either A ∩ S(w) = ∅
or B ∩ S(w) = ∅, that is, w 6|= A+ ∧B+. 2

We extend the S( ) notation to formulas.

Definition 11 a ∈ S(F ) if one of the following is a subterm of F : a?[m..n],
a ≺ b, A+, A+ Z⇒ B+, upper(A), where, in the last three cases, a ∈ A or
a ∈ B.

The atomic operators are all mutually independent: only A+ can force the
presence of a symbol independently of any other, only A+ Z⇒ B+ induces a
positive correlation between the presence of two symbols, only a?[m..n] can
count, only upper(A) is affected by the presence of a symbol that is not in
S(F ), and only a ≺ b is affected by order. However, combinations of the atomic
operators can be mutually related (see Proposition 10, for example).

3 Characterization of Types as Constraints

3.1 Constraint Extraction

We first extend satisfaction from words to types, as follows.

Definition 12 T |= F ⇔ ∀w ∈ JT K. w |= F

We associate to each type T a formula S+(T ) that tests for the presence of
one of its symbols, as follows.

Definition 13 S+(T ) = (S(T ))+

We also define If T (F ), which denotes either the formula F , or the formula
true, depending on whether N(T ) holds. We use it to express the lower-bound
and co-occurrence constraints, since they only hold for non-nullable types.

Definition 14 (If-non-nullable) If T (F ) denotes the formula true if N(T )
holds, and denotes the formula F otherwise.

We can now endow a type T with five sets of constraints. We divide them
in “nested constraints” (co-occurrence, order-and-exclusion), whose definition
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depends on the nesting structures of the type, and “flat constraints” (lower-
bound, cardinality, and upper-bound), whose definition only depends on the
leaves of the types, and on its nullability.

Definition 15 (Flat constraints)

Lower-bound: SIf (T ) =def If T (S+(T ))

Cardinality: ZeroMinMax(T ) =def
∧
a[m..n]∈Atoms(T ) a?[m..n]

Upper-bound: upperS(T ) =def upper(S(T ))

Flat constraints: FC(T ) =def SIf (T ) ∧ ZeroMinMax(T ) ∧ upperS(T )

Nested constraints are defined by induction over the type structure.

Definition 16 (Nested constraints)

Co-occurrence:

CC(T1 + T2) =def CC(T1) ∧ CC(T2)

CC(T1 � T2) =def If T2
(S+(T1) Z⇒ S+(T2))

∧ If T1
(S+(T2) Z⇒ S+(T1))

∧ CC(T1) ∧ CC(T2)

CC(T !) =def CC(T )

CC(ε) =def CC(a [m..n]) =def true

Order and exclusion:

OC(T1 + T2) =def (S(T1) ≺� S(T2)) ∧ OC(T1) ∧ OC(T2)

OC(T1&T2) =def OC(T1) ∧ OC(T2)

OC(T1 · T2) =def (S(T1) ≺ S(T2)) ∧ OC(T1) ∧ OC(T2)

OC(T !) =def OC(T )

OC(ε) =def OC(a [m..n]) =def true

Nested constraints:

NC(T ) =def CC(T ) ∧ OC(T )

As a consequence of the above definition, nested constraints have the following
property.
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Proposition 17 (NC(T ))

NC(T1 + T2) = (S(T1) ≺� S(T2)) ∧NC(T1) ∧NC(T2)

NC(T1&T2) = (If T2
(S+(T1) Z⇒ S+(T2))) ∧ (If T1

(S+(T2) Z⇒ S+(T1))) ∧
NC(T1) ∧NC(T2)

NC(T1 · T2) = (S(T1) ≺ S(T2))

∧(If T2
(S+(T1) Z⇒ S+(T2))) ∧ (If T1

(S+(T2) Z⇒ S+(T1)))

∧ NC(T1) ∧NC(T2)

NC(T !) =NC(T )

NC(ε) = true

NC(a [m..n]) = true

3.2 Correctness and Completeness of Constraints

We plan to prove the following theorem, that specifies that the constraint
system completely captures the semantics of conflict-free types.

Theorem 18 Given a conflict-free type T , it holds that:

w ∈ JT K ⇔ w |= FC(T ) ∧NC(T )

We first prove that constraints are complete, i.e., whenever w satisfies all the
five groups of constraints associated with T , then w ∈ JT K.

Proposition 19 (ZeroMinMax(T ))

w |= ZeroMinMax(T1 + T2)⇒w |= ZeroMinMax(T1) ∧ ZeroMinMax(T2)

w |= ZeroMinMax(T1 � T2)⇒w |= ZeroMinMax(T1) ∧ ZeroMinMax(T2)

Proof. By definition of ZeroMinMax(T ). 2

Definition 20 (Word projection) We define the projection of a word w
onto A (w|A) as the string obtained from w by removing all the symbols that
are not in A.

Proposition 21

w |= S+(T1) ∧ w |= If T2
(S+(T1) Z⇒ S+(T2)) ⇒ w |= SIf (T2)

We can now prove the crucial completeness theorem.
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Theorem 22 (Completeness of constraints)

w |= (FC(T ) ∧NC(T )) ⇒ w ∈ JT K

Proof.

For the sake of convenience, we will use ZMM-SIf(T ) as a shortcut for ZeroMinMax(T )∧
SIf (T ), so that we can rewrite the thesis as

w |= (upperS(T ) ∧ ZMM-SIf(T ) ∧NC(T )) ⇒ w ∈ JT K

We prove the following fact, by case inspection and structural induction on T .

w |= (ZMM-SIf(T ) ∧NC(T )) ⇒ w|S(T ) ∈ JT K

The theorem follows because w |= upperS(T ) implies that w = w|S(T ).

We first observe that w|S(T ) = ε and w |= SIf (T ) imply the thesis w|S(T ) ∈ JT K.
Indeed, w|S(T ) = ε implies that w 6|= S+(T ), hence, the hypothesis w |= SIf (T )
implies that N(T ) is true, which in turn implies that ε ∈ JT K, i.e. w|S(T ) ∈ JT K.

Having dealt with the w|S(T ) = ε case, in the following we assume that w|S(T ) =
a1 · . . .· an, where n 6= 0 (where, for each i and j, the symbol ai may be either
equal or different from aj).

T = ε:

Trivial, as w|S(ε) = ε and ε ∈ JεK.

T = a [m..n]:

Since N(T ) is false, w |= ZMM-SIf(T ) implies that w |= ZeroMinMax(T ) ∧
S+(T ), i.e., w |= ZeroMinMax(a [m..n]) ∧ a+, i.e., w |= a?[m..n] ∧ a+, hence
w|S(a[m..n]) ∈ Ja [m..n]K.

T = T1 + T2:

Let w|S(T ) = a1 · . . .·an, and assume,without loss of generality, that a1 ∈ S(T1).

By hypothesis and Proposition 17 we have that w |= ZMM-SIf(T1 + T2) ∧
(S(T1) ≺� S(T2))∧NC(T1)∧NC(T2). As w|S(T ) = a1 · . . .·an with a1 ∈ S(T1),
we also have that w |= S+(T1).

This implies that w |= SIf (T1) (by definition of SIf ()) and that w 6|= S+(T2)
(by Proposition 10). This, in turn, implies w|S(T1+T2) = w|S(T1) (*). By Proposi-
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tion 19 and by w |= ZMM-SIf(T1 + T2) we obtain that w |= ZeroMinMax(T1).
Putting all together, w |= ZMM-SIf(T1) ∧NC(T1).

By induction we have that w|S(T1) ∈ JT1K; hence, by (*), we get w|S(T1+T2) ∈
JT1K, which, in turn, implies that w|S(T1+T2) ∈ JT1 + T2K.

T = T1 ·T2:

We have two possible cases:

(1) w|S(T ) = a1 · . . .· an and a1 ∈ S(T1);
(2) w|S(T ) = a1 · . . .· an and a1 ∈ S(T2).

In both cases, by hypothesis and Proposition 17 we have that (*):

w |= ZMM-SIf(T1 · T2) ∧ (If T2
(S+(T1) Z⇒ S+(T2)))

∧ (If T1
(S+(T2) Z⇒ S+(T1)))

∧ (S(T1) ≺ S(T2))

∧ NC(T1) ∧NC(T2)

Case 1 (w|S(T ) = a1 · . . .· an and a1 ∈ S(T1)).

By (*), since w|S(T ) = a1 · . . .· an and a1 ∈ S(T1), we have that w |= S+(T1),
which implies that w |= SIf (T1) (by definition of SIf ()) and that w |= SIf (T2)
(by hypothesis and by Proposition 21). By Proposition 19 we conclude that
w |= ZMM-SIf(T1) ∧ ZMM-SIf(T2).

Let us define w1 = w|S(T1) and w2 = w|S(T2). As w |= NC(T1) ∧ NC(T2), by
induction we obtain that w1 ∈ JT1K and w2 ∈ JT2K.

By conflict-freedom, w1 and w2 do not contain any common symbols, hence,
from the constraint S(T1) ≺ S(T2) we obtain that each symbol of w1 precedes
each symbol of w2 in w. As a consequence, w|S(T1·T2) = w|S(T1)·w|S(T2) = w1·w2.
Thus, w|S(T1·T2) ∈ JT1 · T2K.

Case 2 (w|S(T ) = a1 · . . .· an and a1 ∈ S(T2)).

By (*), since w|S(T ) = a1 · . . .· an and a1 ∈ S(T2), we obtain that w |= S+(T2),
which implies that w |= SIf (T1) (by Proposition 21) and that w |= SIf (T2)
(by definition). By Proposition 19 we conclude that w |= ZMM-SIf(T1) ∧
ZMM-SIf(T2). As w |= NC(T1)∧NC(T2), by induction we obtain that w|S(T1) ∈
JT1K and w|S(T2) ∈ JT2K.
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w |= (S(T1) ≺ S(T2)) and a1 ∈ S(T2) imply that w 6|= S+(T1), i.e., w|S(T1) = ε.
Hence, w|S(T1·T2) = w|S(T2) = ε· w|S(T2) = w|S(T1) · w|S(T2). Hence, by w|S(T1) ∈
JT1K and w|S(T2) ∈ JT2K, we conclude that w|S(T1·T2) ∈ JT1 · T2K.

T = T1&T2:

Let w|S(T ) = a1 · . . .·an and assume, without loss of generality, that a1 ∈ S(T1).

By hypothesis and Proposition 17 we have that:

w |= ZMM-SIf(T1&T2) ∧ (If T2
(S+(T1) Z⇒ S+(T2)))

∧ (If T1
(S+(T2) Z⇒ S+(T1)))

∧ NC(T1) ∧ NC(T2)

Since w|S(T ) = a1 · . . . · an, we have that w |= S+(T1), from which we obtain
that w |= SIf (T1) (by definition) and w |= SIf (T2).

By Proposition 19 it follows that w |= ZMM-SIf(T1) ∧ ZMM-SIf(T2).

As w |= NC(T1) ∧ NC(T2), by induction we obtain that w1 = w|S(T1) ∈ JT1K
and that w2 = w|S(T2) ∈ JT2K.

By the conflict freedom hypothesis, S(T1) ∩ S(T2) = ∅, hence w is a shuffle
of w1 · w2 · w3, where the symbols in w3 are not present in S(T1&T2). As a
consequence, w|S(T1&T2) ∈ w1&w2, which implies that w|S(T1&T2) ∈ JT1&T2K.

T = T1! : By the hypothesis w |= SIf (T ) and by the fact that T is not nullable
we deduce w 6= ε and w |= S+(T1!), hence w |= S+(T1). From w |= NC(T1!)
and w |= ZeroMinMax(T1!) we get w |= NC(T1) and w |= ZeroMinMax(T1).
Hence, by induction, w|S(T1) ∈ JT1K, and w|S(T1!) ∈ JT1!K follows from w 6=
ε. 2

In order to prove soundness, we use the following lemma specifying that the
value of any formula F over w does not change if any letter a that is not
in S(F ) is added or deleted from w, provided that F does not contain the
upper(A) operator. Recall that upper(A) is only used to express upper-bound
constraints.

Lemma 23 (Irrelevance) Assume that upper(A) does not appear in F , for
any A. Then, for any B ⊇ S(F ), and for any w:

w |= F ⇔ w|B |= F
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Proof.

By induction on the structure of F , and by case analysis.

F = A+: w |= A+ iff S(w)∩A 6= ∅: this condition is not affected by projecting
a word onto B ⊇ A, hence w |= F ⇔ w|B |= F .

F = A1
+ Z⇒ A2

+: w |= A1
+ Z⇒ A2

+ iff either S(w)∩A1 = ∅ or S(w)∩A2 6= ∅:
this condition is not affected by projecting a word onto B ⊇ (A1 ∪ A2).

F = a ≺ b: w |= a ≺ b iff there is no occurrence of a in w that precedes one
occurrence of b in w; this is not affected by projecting w onto B ⊇ {a, b}.

F = a?[m..n]: w |= a?[m..n] iff, if a appears in w, then it appears at least m
times and at most n times: this is not affected by projecting w onto B ⊇ {a}.

F = F1∧F2: let B ⊇ S(F ); then, B ⊇ S(F1) and B ⊇ S(F2), hence the thesis
follows by induction.

F = true: trivial. 2

The soundness of our constraints is stated by Theorem 24.

Theorem 24 (Soundness)

w ∈ JT K⇒w |= FC(T ) ∧NC(T )

Proof.

We first prove w ∈ JT K⇒ w |= FC(T ).

The implication w ∈ JT K ⇒ w |= upperS(T ) is immediate by structural
induction on the definition of types.

For w ∈ JT K ⇒ w |= SIf (T ), we have two cases. If w = ε, then w ∈ JT K
implies that N(T ), and therefore SIf (T ) = true, hence w |= SIf (T ). If w 6= ε,
then S(w) 6= ∅, hence, by w |= upperS(T ), w contains one symbol of S(T ),
hence w |= SIf (T ).

For w ∈ JT K ⇒ w |= ZeroMinMax(T ), we proceed by case inspection and
induction on T .

T = ε: w ∈ JT K implies w = ε, and, by definition, ε |= ZeroMinMax(T ).

T = a [m..n]: Immediate.

15



T = T1 + T2: Consider w ∈ JT K, and assume, without loss of generality, that
w ∈ JT1K. By induction we have w |= ZeroMinMax(T1). By S(T1)∩ S(T2) = ∅
and w |= upperS(T1), we also have that, for any a [m..n] ∈ Atoms(T2), a 6∈
S(w), hence w |= a?[m..n].

T = T1 �T2: Consider w ∈ JT1�T2K; by definition, there exist w1 ∈ JT1K and
w2 ∈ JT2K such that w ∈ w1&w2. By induction, w1 |= ZeroMinMax(T1), i.e.,
for any a [m..n] ∈ Atoms(T1) w1 |= a?[m..n]. From S(T1)∩S(T2) = ∅ and w2 |=
upperS(T2), we deduce that w|S(T1) = w1, hence, for any a [m..n] ∈ Atoms(T1),
w |= a?[m..n]. In the same way, we prove that, for any a [m..n] ∈ Atoms(T2),
w |= a?[m..n], hence w |= ZeroMinMax(T ).

T = T1!: If w ∈ JT K, then w ∈ JT1K and w 6= ε. By induction, w |= ZeroMinMax(T1),
hence w |= ZeroMinMax(T ).

We now prove w ∈ JT K⇒ w |= NC(T ).

We first observe that, for each T , ε |= NC(T ), because ε trivially satisfies any
order constraint, and it also satisfies any non-trivial co-occurrence constraint
If T2

(S+(T1) Z⇒ S+(T2)) by falsifying the hypothesis S+(T1). This observation
will be crucial in the T1 + T2 case.

We now proceed by case inspection and induction on T . The cases for ε and
a [m..n] are trivial.

T = T1&T2: NC(T1&T2) is defined as follows.

(If T2
(S+(T1) Z⇒ S+(T2))) ∧ (If T1

(S+(T2) Z⇒ S+(T1))) ∧NC(T1) ∧NC(T2)

Consider w ∈ JT K. We observe that, since S(T1) ∩ S(T2) = ∅, we have
w|S(T1) ∈ JT1K and w|S(T2) ∈ JT2K, and therefore w|S(T1) |= NC(T1) and
w|S(T2) |= NC(T2), by induction. Since S(NC(Ti)) ⊆ S(Ti), we have that
w|S(Ti) |= NC(Ti) implies w |= NC(Ti), for i = 1, 2, by Lemma 23. Simi-
larly, w|S(T2) |= SIf (T2), which holds by correctness of flat constraints, implies
that w |= SIf (T2), hence that w |= If T2

(S+(T1) Z⇒ S+(T2)). The constraint
w |= If T1

(S+(T2) Z⇒ S+(T1)) is similar.

T = T1 ·T2: This is similar to the previous case, but we also have to prove
that w |= S(T1) ≺ S(T2). Assume w ∈ JT K; then, there exist w1 ∈ JT1K and
w2 ∈ JT2K such that w = w1 · w2. Let a1 ∈ S(T1) and a2 ∈ S(T2); we must
prove that no occurrence of a1 is present in w after an occurrence of a2. This
follows immediately from the fact that every occurrence of a1 is in w1 and
every occurrence of a2 is in w2, because of wi |= upperS(Ti), and because of
S(T1) ∩ S(T2) = ∅.
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T = T1 + T2: We have:

NC(T1 + T2) = (S(T1) ≺� S(T2)) ∧NC(T1) ∧NC(T2)

Consider w ∈ JT1 + T2K. W.l.o.g., we can assume w ∈ JT1K. By induction we
have w |= NC(T1). Moreover, from S(T1)∩S(T2) = ∅, we have that w|S(T2) = ε,
hence w|S(T2) |= NC(T2), hence, by Lemma 23, w |= NC(T2).

To derive w |= S(T1) ≺� S(T2), we observe that by w ∈ JT1 + T2K and
S(T1) ∩ S(T2) = ∅ we have w 6|= S(T1)

+ ∧ S(T2)
+. Therefore, by Proposition

10 we obtain w |= S(T1) ≺� S(T2).

T = T1!: We have JT K ⊆ JT1K, hence w ∈ JT1K, hence, by induction, w |=
NC(T1), hence w |= NC(T ), by Proposition 17. 2

This completes the proof of the soundness and completeness of the constraint
characterization, i.e., Theorem 18.

4 Polynomial inclusion checking via constraint satisfaction

As shown in the previous section, type semantics can be characterized in
terms of constraint satisfaction. As a consequence, type inclusion can also be
characterized as constraint satisfaction, as follows.

Corollary 25

JT K ⊆ JUK ⇔ T |= CC(U) ∧ T |= OC(U) ∧ T |= FC(U)

In the next sections we will show how each of the three properties in the right
hand side can be verified in polynomial time.

4.1 Polynomial checking of T |= CC(U)

We present here an algorithm to check whether T |= CC(U) inO(|T |∗|U |+|U |2)
time.

In [8], we observed that co-occurrence constraints are mutually related in the
same way as functional dependencies, if one switches the left sides with the
right sides. More precisely, one can define a notion of “backward closure” as
follows.
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Definition 26 For any B ⊆ Σ and type T , we indicate with BC(B)T the
backward closure of B with respect to T , and define it as:

BC(B)T = {a ∈ S(T ) | T |= a+ Z⇒ B+}

Knowledge of BC(B)T is sufficient to decide whether T |= A+ Z⇒ B+.

Lemma 27 For any A,B, T :

T |= A+ Z⇒ B+ (1)

⇔ ∀a ∈ (A ∩ S(T )). T |= a+ Z⇒ B+ (2)

⇔ (A ∩ S(T )) ⊆ BC(B)T (3)

Proof. (1)⇔ (2): T |= A+ Z⇒ B+

⇔ w ∈ JT K ∧ w |= A+ ⇒ w |= B+

⇔ ∀a ∈ A. w ∈ JT K ∧ w |= a+ ⇒ w |= B+

⇔ ∀a ∈ (A ∩ S(T )). w ∈ JT K ∧ w |= a+ ⇒ w |= B+

⇔ ∀a ∈ (A ∩ S(T )). T |= a+ Z⇒ B+.

(2)⇔ (3): by definition of BC(B)T .

2

For BC(B)T , the following properties hold, which are proved by Lemma 28,
but are anticipated here to to help the reader’s intuition:

• transitivity: for any type T = C[T1 � T2], CC(T1 � T2) = If T2
(S+(T1) Z⇒

S+(T2)) ∧ . . ., hence:

¬N(T2) ∧ S(T2) ⊆ BC(B)T ⇒ S(T1) ⊆ BC(B)T

• completeness: the repeated application of transitivity is a complete algo-
rithm for computing BC(B)T .

According to these properties, BC(B)T can be computed by the following
algorithm, which “marks” a subterm T ′ of T as soon as it can conclude that
S(T ′) ⊆ BC(B)T :

(1) mark all the leaves of the type whose symbol is in B, and visit the parse
tree analyzing the parent of each marked node;

(2) if the parent of a marked T2 with ¬N(T2) is T1 � T2 (or T2 � T1), then
mark it as well (thanks to transitivity) and continue the visit from its
parent;
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(3) when both children of a subterm T ′ are marked, then T ′ is marked too
and the visit continues from T ′.

Step (2) above does not mark T1 and its descendants, but just T1 � T2. As
a consequence, not every a [m..n] whose a is in BC(B)T is marked. Instead,
BC(B)T corresponds to the set of all a [m..n] with at least one ancestor that
is marked (Lemma 28).

Having presented the idea, we can now start the formal treatment. We first
define the set B↑T , that represents the subterms of T that are marked by the
above algorithm invoked with a B set of symbols. In this definition, T = C[T ′]
means that T ′ is a subterm of T .

(ε) for any B, T ε ∈ B↑T
(a [m..n]) T = C[a [m..n]], a ∈ B ⇒ a [m..n] ∈ B↑T

(+) T = C[T1 + T2], T1 ∈ B↑T , T2 ∈ B↑T ⇒ T1 + T2 ∈ B↑T
(�) T = C[T1 � T2], T1 ∈ B↑T , T2 ∈ B↑T ⇒ T1 � T2 ∈ B↑T

(� Z⇒) T = C[T1 � T2], ¬N(T2), T2 ∈ B↑T ⇒ T1 � T2 ∈ B↑T
(�⇐\) T = C[T1 � T2], ¬N(T1), T1 ∈ B↑T ⇒ T1 � T2 ∈ B↑T

(!) T = C[T1!], T1 ∈ B↑T ⇒ T1! ∈ B↑T

Observe that B↑T is closed by type contexts, that is, for any type context C[T ],
T ′ ∈ B↑T implies T ′ ∈ B↑C[T ].

We use S(B↑T ) to denote ∪T ′∈B↑TS(T ′); the following lemma proves that S(B↑T ) =

BC(B)T .

Lemma 28 For each type T :

(a ∈ S(T ) ∧ T |= a+ Z⇒ B+) ⇔ a ∈ S(B↑T )

Proof.

We first consider the ⇒ direction.

We prove the following property by induction on the structure of T and by
case analysis (the interesting case being T = T1 � T2):

(1) a ∈ S(T ) ∧ T |= a+ Z⇒ B+ ⇒ a ∈ S(B↑T )

(2) (JT K \ {ε}) |= B ⇒ T ∈ B↑T
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In line (2) we use the notation W |= B to denote ∀w ∈ W. w |= B.

T = ε:

1: Trivial, as a 6∈ S(ε).

2: Trivial, since ε ∈ B↑U for each U .

T = b [m..n]:

1: From a ∈ S(T ) we obtain that a = b. From T |= b+ Z⇒ B+ we have that
b ∈ B, hence b [m..n] ∈ B↑b[m..n].

2: From (JT K \ {ε}) |= B we deduce b ∈ B, hence b [m..n] ∈ B↑b[m..n].

T = T1 + T2:

Without loss of generality, we can assume that a ∈ S(T1).

1: From T |= a+ Z⇒ B+ we obtain that T1 |= a+ Z⇒ B+, which, by induction,
implies a ∈ S(B↑T1

), hence, by context closure, a ∈ S(B↑T ).

2: From (JT K\{ε}) |= B we obtain that (JT1K\{ε}) |= B and (JT2K\{ε}) |= B,
which, by induction, imply T1 ∈ B↑T1

and T2 ∈ B↑T2
, hence (T1 + T2) ∈ B↑T1+T2

.

T1 �T2:

Without loss of generality, we can assume that a ∈ S(T1).

1: We distinguish two cases:

1.1 T2 6|= B, i.e. ∃w2 ∈ JT2K such that w2 6|= B;
1.2 T2 |= B, i.e. ∀w2 ∈ JT2K w2 |= B.

Case 1.1: We know that ∃w2 ∈ JT2K such that w2 6|= B, i.e. w2 does not
contain any symbol in B. For each string w ∈ JT1K, w · w2 ∈ JT1 � T2K hence,
by hypothesis, w·w2 |= a+ Z⇒ B+. From w2 6|= B, we deduce that, for any such
w, w |= a+ Z⇒ B+, hence T1 |= a+ Z⇒ B+, hence a ∈ S(B↑T1

) (by induction),

hence a ∈ S(B↑T ) (by context closure).

Case 1.2: We know that T2 |= B, hence JT2K \ {ε} |= B, hence, by induction,
T2 ∈ B↑T2

, which entails T2 ∈ B↑T1�T2
by context closure. The hypothesis T2 |=

B also implies that N(T2) is false, hence, by definition of B↑T1�T2
, from T2 ∈

B↑T1�T2
we deduce (T1 � T2) ∈ B↑T1�T2

, hence S(T1 � T2) ⊆ S(B↑T1�T2
), hence

a ∈ S(B↑T1�T2
), since a ∈ S(T1 � T2) by hypothesis.
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2: We have three cases:

2.1 N(T1) and N(T2) both hold;
2.2 exactly one of ¬N(T1) and ¬N(T2) holds;
2.3 ¬N(T1) and ¬N(T2) both hold.

Case 2.1: ε ∈ JT1K implies that JT2K ⊆ JT1 � T2K, and ε ∈ JT2K implies that
JT1K ⊆ JT1 � T2K, hence we can reason as in the case for T1 + T2.

Case 2.2: assume that ¬N(T1) and N(T2). As in the previous case, ε ∈ JT2K
implies that JT1K ⊆ JT1�T2K, hence T1 ∈ B↑T1

by induction, hence, by ¬N(T1),

(T1 � T2) ∈ B↑T1�T2
.

Case 2.3: We prove that either (JT1K \ {ε}) |= B or (JT2K \ {ε}) |= B, and the
thesis follows as in case 2.2. Assume, for a contradiction, that both (JT1K \
{ε}) 6|= B and (JT2K \ {ε}) 6|= B hold, then we have two non-empty words
w1 and w2 such that w1 6|= B and w2 6|= B, and hence w1 · w2 6|= B, which
contradicts the hypothesis, since w1 · w2 ∈ JT1 � T2K \ {ε}.

T = T1!:

1: From T |= a+ Z⇒ B+ we obtain that T1 |= a+ Z⇒ B+, which, by induction,
implies a ∈ S(B↑T1

), hence a ∈ S(B↑T ).

2: From JT !K \ {ε} |= B we obtain that JT K \ {ε} |= B, which, by induction,
implies T1 ∈ B↑T1

hence (T1!) ∈ B↑T1!.

The⇐ direction is easy, and is proved by induction on the structure of T and
by case analysis.

2

In Figure 1 we present the algorithm BackwardClose(Type T, Set A) that
marks any term in A↑T . The algorithm works on a type T that has been ε-
normalized, meaning that every subterm ε�T or T � ε is rewritten as T , and
every ε + ε is rewritten as ε, until no such terms remain; this can be done
in linear time, and allows ε terms not to be marked. A type T is encoded
by the arrays NodeOfSymbol[], Parent[], Oper[], LeftChild[], RightChild[]. For
each symbol a ∈ S(T ), NodeOfSymbol[a] is the only node nd associated with
a type a [m..n], for some m and n, and is null if no such node exists 4 ; for each
node n in T , Parent[n] is either null or a pair (np,pos); np is the parent of n,
while pos is left if n is the left child of np, and is right if it is the right child.
The Oper[] array associates true2 to any + node where no child is ε, true1

4 Recall that a symbol appears at most once in each conflict-free type.
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to a + node where one child is ε. We use true to indicate that no constraint
is associated with the node, while the pedices 2 and 1 refer to the number of
children that have yet to be inserted into A↑T before the node can be inserted
as well. An � node is associated with ⇔ when no child is nullable, with ⇐\
when the right child only is nullable, Z⇒ when the left child only is nullable,
with true2 when both children are nullable. LeftChild[] and RightChild[] are
defined in the obvious way.

The algorithm differs from ↑
T in that it explicitly marks every subterm of each

term in B↑T ; this is performed by the MarkDown routine, which propagates
the mark down until it meets a node that is marked already. In this way, all
the children of any node in ToDo are marked, hence, thanks to the test in line
9, no node enters ToDo twice.

BackwardClose first instantiates the above mentioned arrays in timeO(|T |).
Then, the algorithm populates the ToDo list in time O(|A|); ToDo contains
all the nodes that must be visited. The body of the main loop (line 7 to line
23) needs constant time, apart from the calls to MarkDown which, col-
lectively, mark less then O(|T |) nodes. No node enters the ToDo list twice,
hence the main loop takes time O(|T |), hence the complexity of the algorithm
is O(|A|+ |T |).

The algorithm immediately satisfies the invariant that, whenever a node enters
ToDo, then the corresponding T ′ is in A↑T , and that, whenever a node is
marked, then one of its ancestors is in A↑T . To prove that every node in A↑T
is eventually inserted in ToDo, we proceed by induction on the size of the
corresponding subtree T ′, assuming that all the subtrees of T ′ that are in A↑T
are eventually inserted in ToDo.

We can now define the algorithm CoImplies (Figure 2) to check whether T |=
CC(U). The algorithm invokes BackwardClose once for each constraints
A+ Z⇒ B+ in CC(U), and verifies whether each a in A ∩ S(T ) belongs to
BC(B)T . Each invocation of BackwardClose(Type T, Set B) is in O(|T |+
|U |), and the test for (A∩S(T )) ⊆ BC(B)T is in O(|U |), hence in O(|T |+ |U |).
Since CC(U) contains at most 2∗|U | constraints, the complexity of CoImplies
is O(|T | ∗ |U |+ |U |2).

4.2 Polynomial checking of T |= OC(U)

In the previous section we have shown how to deduce all the co-occurrence con-
straints that are satisfied by a type T , by computing a sort of backward tran-
sitive closure on CC(T ). Order constraints are much simpler, since T does not
satisfy any other order constraint apart from those that are actually present
in OC(T ); this is proved by the following theorem.
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BackwardClose(Type T, Set A)

1 (NodeOfSymbol [],Parent [],Oper [],LeftChild [],RightChild []) := ReadType(T)
2 Marked [∗] := false
3 ToDo := ∅
4 for a in A
5 do ToDo := ToDo ++ NodeOfSymbol [a]
6 while ToDo 6= ∅
7 do pick n from ToDo
8 (parent ,pos) := Parent [n]
9 if (Marked [n])

10 then break
11 else Marked [n] := true
12 if (parent = null)
13 then break
14 case(Oper [parent ],pos)
15 when (true2, ) then Oper [parent ] := true1

16 when (true1, ) then ToDo := ToDo ++ parent
17 when (Z⇒,’left’) or (⇔,’left’)
18 ToDo := ToDo ++ parent
19 MarkDown(RightChild[parent])
20 when (⇐\,’right’) or (⇔,’right’)
21 ToDo := ToDo ++ parent
22 MarkDown(LeftChild[parent])
23 esac

Fig. 1. Backward closure algorithm.

CoImplies(Type T, Type U)

1 for A+ Z⇒ B+ in CC(U),
2 do BackwardClose(T, B)
3 if exists a in A ∩ S(T ) with Marked [NodeOfSymbol [a]]=false
4 then return false
5 return true

Fig. 2. Algorithm for implication of cooccurrence constraints.

Theorem 29 If a 6= b, then

T |= a ≺ b ⇔ (a ≺ b ∈ OC(T ) ∨ {a, b} 6⊆ S(T ))

Proof.

The ⇐ direction easily follows from the following facts:

• If {a, b} 6⊆ S(T ), then each word w in T does not contain both a and b; this
means that w |= a ≺ b;
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• If a ≺ b ∈ OC(T ), then T |= a ≺ b follows from the fact that T |= OC(T )
(Theorem 18).

We focus now on the ⇒ direction. We proceed by induction on the structure
of T .

T = ε:

Trivial, as S(T ) = ∅ entails {a, b} 6⊆ S(T ).

T = c [m..n]:

Trivial, we immediately have {a, b} 6⊆ S(T ) since a 6= b.

T = T1 + T2:

We suppose {a, b} ⊆ S(T ); the other case is trivial.

We have the following subcases:

Case 1. {a, b} ⊆ S(T1) or {a, b} ⊆ S(T2).

Case 2. a ∈ S(T1) and b ∈ S(T2), or vice versa.

For case 1 we only consider {a, b} ⊆ S(T1), the other one is similar. In this
case we have T1 |= a ≺ b. By induction we have (a ≺ b ∈ OC(T1) ∨ {a, b} 6⊆
S(T1)), and, therefore a ≺ b ∈ OC(T1) (as {a, b} ⊆ S(T1)), which entails that
a ≺ b ∈ OC(T ), since OC(T ) = F ∧ OC(T1).

For case 2, we only consider a ∈ S(T1) and b ∈ S(T2), the other one being
identical. In this case we have that a ≺� b = (a ≺ b ∧ b ≺ a) ∈ OC(T ).

T1&T2:

We can have the following subcases:

Case 1. {a, b} ⊆ S(T1) or {a, b} ⊆ S(T2).

Case 2. a ∈ S(T1) and b ∈ S(T2), or vice versa.

Case 1 is similar to the corresponding one for case T = T1 + T2, while we can
exclude case 2 because of the hypothesis T |= a ≺ b and of Lemma 4(2).

T1 ·T2:

We can have the following subcases:

Case 1. {a, b} ⊆ S(T1) or {a, b} ⊆ S(T2).
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Case 2. a ∈ S(T1) and b ∈ S(T2), or vice versa.

Case 1 is similar to the corresponding one for case T = T1 + T2.

For case 2 we can only have a ∈ S(T1) and b ∈ S(T2) (since the contrary would
contradict T |= a ≺ b). For this case, we have a ≺ b ∈ OC(T ) by definition of
OC(T ).

T!:

This case easily follows by induction once we recall that JT !K = JT K \ {ε},
S(T !) = S(T ), and OC(T !) = OC(T ).

2

The previous theorem tells us that we can check T |= OC(U) in O(|OC(T )|·
|OC(U)|) time, by checking whether each a ≺ b in OC(U) is also in OC(T ),
which gives us an upper bound O(|T |2 · |U |2), but we can actually do much
better. Indeed, we can perform the checking in O(|T | + |U |2) time. Before
defining the algorithm, we make some preliminary observations.

For each pair of leaves a [m..n] and b [m′..n′] in the parse tree of T , let LCAT [a, b]
be their common ancestor that is farthest from the root (the Lowest Common
Ancestor). Order constraints correspond to the concatenation and union type
operators:

• for each a and b in S(T ), a ≺� b ∈ OC(T ) iff LCAT [a, b] is labeled by +;
• for each a and b in S(T ), a ≺ b ∈ OC(T ) iff LCAT [a, b] = + or a precedes b

in T and LCAT [a, b] = ·.

As a consequence, by Theorem 29, T |= OC(U) iff for each a and b in S(U),
such that a precedes b in U :

• if LCAU [a, b] = + then either a 6∈ S(T ) or b 6∈ S(T ) or LCAT [a, b] = +;
• if LCAU [a, b] = · then either a 6∈ S(T ) or b 6∈ S(T ) or LCAT [a, b] = + or

(LCAT [a, b] = · and a precedes b in T ).

Hence, we can verify whether T |= OC(U) via the following algorithm. We
first build an array LCAT [a, b], which associates each a and b in S(T ) with
the operator that labels the LCA of a and b in T , and similarly for U ; this
can be done in linear time O(|T | + |U |) [3]. We then scan all the ordered
pairs a, b of S(U), checking the condition above, which can be done with
O(|U |2) constant-time accesses to LCAT [ , ] and LCAU [ , ], which gives a
O(|T |+ |U |2) algorithm. The resulting algorithm is defined in Figure 3.
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OrderImplies(Type T, Type U)

1 build LCAT [ , ] and LCAU [ , ]
2 for each leaf a in U , leaf b following a in U
3 do if LCAU [a, b] = + ∧ a∈ S(T ) ∧ b∈ S(T ) ∧ LCAT [a, b] 6= +
4 then return false
5 if LCAU [a, b] = · ∧ a∈ S(T ) ∧ b∈ S(T ) ∧ LCAT [a, b] 6= +

∧ (LCAT [a, b] 6= · ∨ a follows b in T )
6 then return false
7 return true

Fig. 3. Algorithm for implication of order constraints.

4.3 Polynomial checking of T |= FC(U)

A systematic way to check flat constraint implication T |= FC(U) in poly-
nomial time is directly illustrated by the following theorem, stating that, as
expected, T |= FC(U) holds if and only if i) all cardinality constraints a?[m..n]
of T appear in U as well, possibly in a relaxed form, and ii) if N(T1) holds,
then N(T2) is true as well.

Theorem 30

T |= FC(U) ⇔ T ⊆flat U
where T ⊆flat U is defined as :

(a?[m..n] ∈ Atoms(T ) ⇒ ∃m′ ≤ m,n′ ≥ n. a [m′..n′] ∈ Atoms(U))

∧ (N(T ) ⇒ N(U))

Proof.

Recall that FC(U) = SIf (U) ∧ upperS(U) ∧ ZeroMinMax(U).

Case T |= FC(U) ⇐ T ⊆flat U .

We first observe that T ⊆flat U implies S(T ) ⊆ S(U). Recall that, by Theo-
rem 24, T |= upperS(T ) ∧ ZMM-SIf(T ).

(1) T |= SIf (U): if N(U), then SIf (U) = true, hence the statement is trivial.
Assume that N(T ) is false. We have that T |= SIf (T ) and w ∈ JT K imply
w |= S+(T ), hence w |= S+(U) by S(T ) ⊆ S(U).

(2) T |= upperS(U): we must prove that w ∈ JT K and w |= a+ imply that
a ∈ S(U); T |= upperS(T ), w ∈ JT K and w |= a+ imply that a ∈ S(T ),
and a ∈ S(U) follows from S(T ) ⊆ S(U).

(3) T |= ZeroMinMax(U): we must prove that, for any w ∈ JT K and a [m..n] ∈
Atoms(U), w |= a?[m..n]. If w |= a+, then, by T |= upperS(T )∧ZeroMinMax(T ),
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∃m′, n′ such that a [m′..n′] ∈ Atoms(T ) and w |= a?[m′..n′]. By hypoth-
esis, ∃m′′ ≤ m′, n′′ ≥ n′ such that a [m′′..n′′] ∈ Atoms(U) hence, since U
is conflict-free, we have that m′′ = m and n′′ = n. Hence, w |= a?[m′..n′]
and m ≤ m′, n′ ≤ n imply w |= a?[m..n].

Case T |= FC(U) ⇒ T ⊆flat U .

We have that T |= SIf (U) ∧ upperS(U) ∧ ZeroMinMax(U). In particular,
T |= upperS(U) means that, for each w ∈ JT K, we have w |= upperS(U); this
entails S(T ) ⊆ S(U), so

∀a?[m..n] ∈ Atoms(T ). ∃a?[m′..n′] ∈ Atoms(U)

hence it remains to prove that it is always the case that m′ ≤ m and n′ ≥ n.
This follows by observing that, if we assume n′ < n or m′ > m, then the
hypothesis T |= FC(U) is contradicted. This is due to the following fact: if
a?[m..n] ∈ Atoms(T ) and n 6= ∗, then we have two words wm and wn in JT K
such that they contain m and n occurrences of a respectively; if n = ∗ and
n′ 6= ∗ (the remaining cases are trivial), then there exists wn in JT K, such that it
contains more than n′ occurrences of a. For these two words wn and wm we have
that, under the hypothesis (n′ < n or m′ > m), either wm |= ZeroMinMax(U)
or wn |= ZeroMinMax(U) does not hold, and so T |= ZeroMinMax(U) would
be contradicted.

It remains to prove that N(T ) ⇒ N(U). Assume that N(T ) holds (the other
case is trivial). This means that ε ∈ JT K and ε |= SIf (U), by hypothesis.

If S(U) = ∅ (that is U is equivalent to ε), then N(U) holds and the thesis
is proved. If S(U) 6= ∅, then it must be SIf (U) = true, because otherwise
ε |= SIf (U) would not hold, thus contradicting the hypothesis T |= FC(U)

2

4.4 Wrapping up: the inclusion checking algorithm

We have provided algorithms to check T |= CC(U), T |= OC(U) and T |=
FC(U). They can be used to build the inclusion checking algorithm illustrated
in Figure 4. It first verifies whether T |= FC(U), in time O(|T | + |U |) in the
size of T and U , as illustrated in Section 4.3. Then the algorithm invokes
CoImplies and OrderImplies; the O(|T | ∗ |U | + |U |2) time complexity of
the first dominates the O(|T | + |U |2) complexity of the second, hence this is
the cost of the whole algorithm.
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Sub(T, U)

1 (MinU [],MaxU []) = BuildMinMaxArrays(U)
2 flat = (every a?[m..n] ∈ Atoms(T )

satisfies (MinU [a] ≤ m) ∧ (MaxU [a] ≥ n)) ∧ (¬N(T ) ∨ N(U))
3 return flat ∧CoImplies(T, U) ∧OrderImplies(T, U)

Fig. 4. Inclusion checking algorithm.

5 Complexity of Binary Intersection

Checking the non-emptiness of binary intersection of REs is typically cheaper
than inclusion checking, since intersection 5 is checked through automata prod-
uct, while inclusion corresponds to automata complement plus product.

The situation is different for conflict-free types: while inclusion is in PTIME,
intersection of two conflict-free expressions is NP-complete. This result is quite
surprising, and it suggests that it makes sense to study such types with an
approach that is not based on automata.

Interestingly, as shown by our proof, the & operator alone makes binary in-
tersection NP-hard, even without counting or Kleene star.

We first prove that non-emptiness is in NP, which is simple, since one has
just to guess a word and check whether it is in both types; we have still to
show that the word to guess is not big. To this aim, we show that any word
w ∈ (JT K∩ JUK) can be cut down to a word that is smaller than |T |+ |U | and
is still in JT K ∩ JUK. To achieve this bound, we represent each word abbbcc as
a1b3c2, as specified by the following definition.

Definition 31 (Binary word representation) A binary word representa-
tion is a sequence of symbol-integer pairs, written am1

1 . . . amk
k , where each

mi > 0, and each pair ami
i represents a sequence of mi copies of ai.

We now show how to reduce w ∈ JT K into a short form that is still in JT K.
We consider a set f of pairs (a,m), that defines a partial function from Σ to
N. We define a function Stem(w, f) that deletes from w the symbols that are
not in f , and keeps just one repeated occurrence af(a) for the others, so that
|Stem(w, f)| < |f |.

Definition 32 (Stem(w, f)) For any word w and set of pairs
f = {(a1,m1), . . . , (ak,mk)}, Stem(w, f) is defined as follows, where, in the

5 In this section we use intersection as an abbreviation for “non-emptiness of binary
intersection”
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second line, af(a) is defined as ε if a is not in f .

Stem(ε, f) =def ε

Stem(an · w, f) =def a
f(a) · Stem(w, f \ (a, f(a)))

Lemma 33 specifies that w ∈ JT K implies Stem(w, f) ∈ JT K, when f leaves
one copy of each character, and assigns acceptable exponents.

Lemma 33 (Stem(w, f) ∈ JT K)

w ∈ JT K

∧ S(f) ⊇ S(w)

∧ ((a, f(a)) ∈ f ⇒ af(a) |= ZeroMinMax(T ))

⇒ Stem(w, f) ∈ JT K.

Proof. We prove that Stem(w, f) satisfies SIf (T ), ZeroMinMax(T ), upperS(T ),
CC(T ), OC(T ), and we conclude by Theorem 18. By S(f) ⊇ S(w), we de-
duce that no symbol is removed from w, hence w |= SIf (T ) implies that
Stem(w, f) |= SIf (T ); for the same reason, w |= CC(T ) implies that Stem(w, f) |=
CC(T ). From af(a) |= ZeroMinMax(T ) we deduce that Stem(w, f) |= ZeroMinMax(T ).
From S(Stem(w, f)) ⊆ S(w) we deduce that Stem(w, f) |= upperS(T ). Finally,
if a pair of symbols a and b appear in Stem(w, f) in this order, then the first
occurrence of a precedes the first occurrence of b in w; hence, w |= OC(T )
implies that Stem(w, f) |= OC(T ). 2

Theorem 34 (Upper bound) Non emptiness of the intersection of two conflict-
free types is in NP.

Proof. We prove that, if a word w is in JT K ∩ JUK, then a word w′ whose
binary representation is shorter than |T | + |U | is in JT K ∩ JUK as well. The
result follows, since non-emptiness can be checked by guessing a word shorter
than |T | + |U | and checking that this word satisfies all the constraints of T
and U , which is clearly in PTIME.

Define f as follows:

f = {(a,max(m,m′)) | a [m..n] ∈ Atoms(T ), a [m′..n′] ∈ Atoms(U),

max(m,m′) ≤ min(n, n′)}

We show that f satisfies the conditions of Lemma 33 for both T and U . Let
a ∈ S(w); from w |= upperS(T ) and w |= upperS(U) we deduce that a [m..n] ∈
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Atoms(T ) and a [m′..n′] ∈ Atoms(U). From a ∈ S(w), w |= ZeroMinMax(T )
and w |= ZeroMinMax(U), we deduce that max(m,m′) ≤ k ≤ min(n, n′),
where k = |w|S({a})|, hence S(f) ⊇ S(w). The conditions (a, f(a)) ∈ f ⇒
af(a) |= ZeroMinMax(T ) and (a, f(a)) ∈ f ⇒ af(a) |= ZeroMinMax(U) hold
by construction. By Lemma 33, we conclude that Stem(w, f) ∈ JT K∩ JUK. By
construction, |Stem(w, f)| ≤ |f | ≤ (|T |+ |U |). 2

We can now prove that the problem is NP-hard, by reduction to 3-SAT.

Theorem 35 (Lower bound) Emptiness of the intersection of two conflict-
free types is NP-hard, even if the types do not use counting and concatenation.

Proof. Consider m boolean variables x1, . . . , xm and a formula φ = (a1,1 ∨
a2,1 ∨ a3,1) ∧ . . . ∧ (an,1 ∨ an,2 ∨ an,3) where each literal ai,j is either a variable
xl or a negated variable ¬xl; 3SAT is the problem of deciding, for such a φ,
whether an assignment of boolean values to x1, . . . , xm exists that satisfies the
formula. Satisfiability of φ can be encoded as the intersection of two conflict-
free types T1 and T2 as exemplified below. Both types have one symbol for
each occurrence of a literal in φ, hence their size is linear in |φ|. Observe that
each line in T2 sums the positive occurrences of one variable with the negative
ones, hence making the two mutually incompatible.

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3 ∨ x4)

T1 = (a1,1 + a1,2 + a1,3) & (a2,1 + a2,2 + a2,3) & (a3,1 + a3,2 + a3,3) & (a4,1 + a4,2 + a4,3)

T2 = ((a1,1?) + (a2,1? & a4,1?))

& ((a1,2?) + (a3,1?))

& ((a1,3? & a2,2?) + ( a3,2? & a4,2?))

& ((a2,3? & a4,3?) + (a3,3?))

A formal definition of the translation can be easily produced.

The formula φ is satisfiable iff it has a witness, i.e. a choice of literal instances,
one from each factor, such that not two instances are contradictory, i.e. if xi
is chosen in a factor then ¬xi is not chosen in any other factor.

Any element of T1 corresponds to a choice of literal instances, one from each
factor. If the same list also belongs to T2, then the choice is not contradictory:
if the word contained both a true and a false instance of the same variable, it
should contain two symbols that come from the left and from the right side of
a + operator in the line of T2 that corresponds to that variable. Hence, words
in JT1K ∩ JT2K correspond to witnesses for φ. 2
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6 Related Work

This paper is an extended and revised version of [8]; in particular, while [8]
provided a cubic inclusion algorithm, we provide here an algorithm that is
quadratic, and whose crucial component (co-occurrence constraint implica-
tion) is simpler.

The properties of unordered XML types have been studied in several recent
papers. In [6], the authors discuss the techniques and heuristics they used
in implementing a type-checker, based on sheaves automata with Presburger
arithmetic, for unordered XML types. The type language is an extension of
the language we are considering here, and shares a similar restriction on the
use of repetition types. The main purpose of the paper is to address scalability
problems that naturally arise when working on XML types; as a consequence,
they describe effective heuristics that improve scalability, but do not affect
computational complexity.

Restrictions to regular expression languages that are similar to ours have been
proposed many times. For example, conflict-free REs appear as “conflict-free
DTDs” in the context of well-typed XML updates in [2], as “duplicate-free
DTDs” in the context of path inclusion in [13], and as “single occurrence
REs” in the context of DTD inference in [5]. The same restriction that we pose
on Kleene-star can be found, for example, in [6]. Chain Regular Expressions
(CHARE’s) [5,7] are also strictly related. They are defined as concatenations
of factors, where each factor has a shape (a1 + . . . + an), (a1 + . . . + an)?,
(a1 + . . . + an)∗ or (a1 + . . . + an)+. As we discussed in Section 2.1, we can
express in our language each of these classes of factors. Simple expressions [4]
have a more general syntax than CHAREs but the same expressive power,
hence can still be managed through our approach.

We have cited paper [7] many times, where the complexity of type inclusion is
studied for many different dialects of REs with interleaving and/or counting,
showing that inclusion complexity is almost invariably EXPSPACE-complete.
In particular, this is shown to hold for chain-REs with counting, which are
concatenations of CHARE factors, as defined above, and counting factors (a1+
. . . + ak)[m..n] (with n 6= ∗ and m ≥ 0), with no interleaving operator. In a
sense, this hints that the conflict-free restriction, rather than the Kleene-star
restriction, is crucial for our PTIME result. In the same paper, the authors
introduce a sublanguage of CHAREs with PTIME inclusion, but that fragment
is quite trivial, since it only includes counting factors (a1+. . .+ak)[m..n], with
the further restriction that m > 0 and n 6= ∗, hence cannot express neither
optionality nor unbounded repetition (neither ∗ nor +).
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7 Conclusions

Inclusion for REs with interleaving, counting, or both, is EXPSPACE-complete,
even if we consider the restricted subclass of CHAREs (with counting) [11,7].
This result easily extends to XML types featuring these operators. We have
introduced here a restricted class of REs with interleaving and counting. Our
restriction is severe, but it seems to match reasonably well the measured fea-
tures of actual DTDs and XSDs found on the web, and is extremely easy to
define and verify. For this class of REs, we have proved that inclusion can
be decided in quadratic time, a complexity that is surprising low, and triv-
ially extends to DTDs and XSDs that use REs of this class for their content
models. In particular, we exhibited a quadratic algorithm for content-model
inclusion. We also proved that intersection of two conflict-free types has not
the same complexity as inclusion (unless P=NP) but is, quite surprisingly,
NP-complete.

Our result is based on the transformation of our REs into sets of constraints
which completely characterize the expressions and are easy to manipulate. We
believe that this constraint-based approach could be fruitfully used for other
analysis tasks, such as, for example, type normalization or path minimization
under a DTD.

As a proof of concept of our approach, we implemented our algorithm and
tested it against a set of randomly generated regular expression types. Our
preliminary experimental evaluation showed that inclusion checking is very
fast and is always performed in less than a second, even on very large types
(e.g., more than 1000 terms). More information about our implementation can
be found at http://www.di.unipi.it/∼sartiani/projects/xelf.html.
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