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Abstract

We show that, in spatially periodic Hamiltonian systems driven by a time-periodic
coordinate-independent (AC) force, the upper energy of the chaotic layer grows
unlimitedly as the frequency of the force goes to zero. This remarkable effect is
absent in any other physically significant systems. It gives rise to the divergence of
the rate of the spatial chaotic transport. We also generalize this phenomenon for
the presence of a weak noise and weak dissipation. We demonstrate for the latter
case that the adiabatic AC force may greatly accelerate the spatial diffusion and
the reset rate at a given threshold.
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1 Introduction

The basic chaotic formation in perturbed Hamiltonian systems is [1–3] a
chaotic layer associated with a separatrix of the unperturbed (integrable)
Hamiltonian system. Even in the simplest case, when the unperturbed system
is one-dimensional while the perturbation is time-periodic, both the transport
within the layer [4,5] and its structure in the Poincaré section [3,5,6] possess
very complicated features related to the homoclinic tangle. At the same time,
the boundaries of the layer are well defined [3] as the last invariant curves
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which limit the layer (in the phase space) from above and below (in the en-
ergy scale), and can be found in numerical simulations [3]. For both theory and
applications, one of the most important characteristics of the layer is its width
in energy [1–3,7] or in related quantities [8–11]. It might be assumed that, if
the perturbation is very weak, then the layer should necessarily be narrow.
This natural assumption seemed to be supported by numerous examples (e.g.
[1–3,7–11]). However, we have shown[12] that the situation may drastically
differ in a rather general case, namely for any spatially periodic system driven
by a slow AC force (the number of dimensions may exceed 1). In this case,
the upper energy boundary of the layer diverges as the frequency of the force
goes to zero (Fig. 1). In Sec. 2, we explain this effect and present the theory,
both within the separatrix map approach (for moderately small frequencies)
and beyond this approach (for smaller frequencies). We also demonstrate that
the spatial transport may be very fast in the adiabatic case, being chaotic on
sufficiently long time-scales.

We briefly comment on the relation between our work and the study of the
conventional adiabatic case [10]. It was shown in [10] that, for a system with
adiabatically slowly pulsating parameters, the homoclinic tangle covers most of
the range swept by the instantaneous separatrix. If the pulsation of parameters
in [10] were weak, the range swept would be narrow in energy and, hence, the
chaotic layer would be narrow too. Our system essentially differs from that
considered in [10] (our perturbation is not parametric) so the result of [10]
cannot be directly applied to it. If nevertheless the result of [10] were formally
generalized to our system it would give that the homoclinic tangle in the
adiabatic limit covered the whole phase space, thus hinting at a divergence of
the chaotic layer width. It would still not describe the form of the divergence
however.

The above features of the Hamiltonian chaotic dynamics suggest that the
adiabatic AC-drive may strongly affect noise-induced phenomena in spatially
periodic systems subject to weak dissipation and noise. In Sec. 3, we discuss
this for the spatial diffusion and for the reset rate at a given threshold of the
kinetic energy.

2 Hamiltonian systems

An archetypal example [1] of an AC-driven spatially periodic system is a pen-
dulum (Fig. 2) driven by a weak single-harmonic AC force:

q̇ = p, ṗ = −dU0/dq − hω2
0 sin(ωf t) ≡ −dU/dq,

U0 ≡ U0(q) = −ω2
0 cos(q), (1)
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Fig. 1. (a). The trajectory in the stroboscopic (for t = n2π/ωf with n = 0, 1, 2, ...)
Poincaré section for the system (1) with ω0 = 1, h = 0.01, ωf = 0.01 and initial
conditions (p(0) = 0, q(0) = π). Number of points is 20000. We map all points
onto the interval [−π, π[: q → q − 2π[(q + π)/(2π)]. This mapping does not affect
the energy E ≡ p2/2 + U0(q) and, hence, neither the chaotic layer width. (b).
Spectral dependence of the maximum Emax of the energy E in the chaotic layer
(ω0 = 1, h = 0.01).
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Fig. 2. Potential (in (a)) and separatrix (in (b)) for the pendulum (1) with ω0 = 1.

U ≡ U(q, t) = U0(q) + qhω2
0 sin(ωf t), h ≪ 1.

2.1 Separatrix map

One of the conventional approaches for the treatment of Hamiltonian chaos is
the separatrix map [1–3]. For the system (1), the map reads as (cf. [1]):

Ei+1 = Ei + σiδ sin(ϕi), (2)

ϕi+1 = ϕi +
ωfπ(3 + sign(Ei+1 − Es))

2ω(Ei+1)
,

σi+1 = σi sign(Ei+1 − Es), |σi| = 1,

δ =
2πhω2

0

cosh
(

πωf

2ω0

) , Es = ω2
0,

where Es is the separatrix energy while ω(E) is the frequency of the eigenoscil-
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lation of the momentum for a given energy E.

Conventional heuristic criteria [1–3] for the onset of chaos in the map (2) are
invalid for small frequencies, i.e. for ωf ≪ ω0. We analyze the onset of chaos
in the map in a different way.

First of all, we use the fact that any state at the separatrix (i.e. with E = Es)
belongs to the chaotic trajectory. Indeed, the angle ϕ in such a state is not
correlated with the angle at the previous iteration of the map since ω(Es) = 0.
The variable σ in the separatrix state is not correlated to that at the previous
iteration of the map either. Thus, we choose E0 = Es and an arbitrary ϕ0 6=
nπ. Being interested in the upper boundary of the chaotic layer, we choose
σ0 = sign(sin(ϕ0)), so that E1 − E0 > 0.

Let ωf be small, so that ϕn+1 − ϕn ≪ 2π. In the relevant asymptotic limit
h → 0, this condition is satisfied for

ωf ≪ ω0/ ln(1/h). (3)

Then, the map (2) reduces to the system of differential equations:

dE

dt
=

ω(E)

2π
sign(sin(ϕ0))δ sin(ϕ),

dϕ

dt
= ωf , (4)

E(0) = Es, ϕ(0) = ϕ0 6= nπ, n = 0,±1,±2, ...

The system (4) describes the chaotic trajectory only until E returns to the im-
mediate vicinity of Es. After that, the angle correlation is again lost [13,14]. In
between the passages near the separatrix, the trajectory E(ϕ) can be explicitly
found from (4) in terms of the action variable I:

I − Is ≡
E
∫

Es

dẼ
1

ω(Ẽ)
= sign(sin(ϕ0))

δ

2πωf
(cos(ϕ0) − cos(ϕ)), (5)

sign(sin(ϕ0))(cos(ϕ0) − cos(ϕ)) > 0.

The upper boundary of the chaotic layer in phase space, E
(u)
cl (ϕ), corresponds

to the value of ϕ0 for which I(ϕ) is larger than that for any other ϕ0. This

corresponds to ϕ0 → +0, so that E
(u)
cl (ϕ) and the maximum energy on the

boundary are given respectively as
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I(E
(u)
cl ) − Is =

δ

2πωf
(1 − cos(ϕ)), (6)

I(Emax) − Is =
δ

πωf
. (7)

For all spatially periodic systems driven by the AC force, the adiabatic limit
of δ is not equal to zero (see e.g. Eq. (2), relevant for the case (1)), unlike
other physically significant systems 1 (in particular, the archetypal model of
the pendulum driven by a wave [1–3,8–11]; cf. also the recent study [15] of the
width of the chaotic layer for the pendulum driven by two waves running in
opposite directions). Therefore Emax (7) diverges in the adiabatic limit. The
physical origin of this divergence is the accumulation of the energy gain during
many iterations of the map.

The separatrix map (2) is valid only if Emax − Es ≪ Es i.e. only for

ωf ≫ hω0, (8)

but, still, the adiabatic divergence of Emax for the separatrix map suggests
that there should be a divergence of Emax for the original Hamiltonian system
too. The latter divergence should be described differently however.

2.2 Hamiltonian dynamics

The separatrix map approach was generalized in [12] for the whole adiabatic

range (3), where Emax − Es may be
∼

> Es. We present here just the result
for Emax, which is described as the solution of the transcendental equation in
terms of the elliptic integral of the second order E(x):

E(x)√
x

= 1 +
πh

2

ω0

ωf
, x ≡

(

1 +
Emax − Es

2Es

)−1

, (9)

E(x) ≡
π/2
∫

0

dϕ
√

1 − x2 sin2(ϕ).

The agreement with the results of simulations is excellent (Fig. 3). Note also
that Emax (9) matches the separatrix map result (7) in the range of the validity
of the latter i.e. for hω0 ≪ ωf ≪ ω0/ ln(1/h).

1 There may be some other examples with non-zero adiabatic limit of δ but they
seem to be of a mathematical interest only.
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Fig. 3. Spectral dependence of the layer maximum energy for the system (1) with
ω0 = 1 and h = 0.01: circles, solid, dashed and dotted lines correspond respectively
to simulations, Eq. (9) and its asymptotes for small and large values of ωf/(hω0).
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Fig. 4. A typical trajectory of the system (1) with ω0 = 1, h = 0.01, ωf = 0.01 on a
large time-scale. The inset compares the trajectories for ωf = 0.01 and ωf = 0.005.

To get an insight into the mechanisms of the transport in the chaotic layer, we
consider the frequency range corresponding to the most pronounced divergence
of the layer width,

ωf ≪ hω0. (10)

To that end, we use a different approach. In the range (10), Emax − Es ≫
Es ≡ ω2

0. Therefore, the term U0(q) in U(q) in (1) may be neglected for the
major part of the chaotic trajectory between subsequent passages near the
separatrix. Then the equations of motion reduce to those of a free particle
driven by a time-periodic force. Their solution reads
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q(t) = A +

(

B − hω2
0

ωf

)

t +
hω2

0

ω2
f

sin(ωf t),

p(t) ≡ q̇ = B − hω2
0

ωf

(1 − cos(ωf t)), (11)

where A = q(0) and B = p(0).

For the initial state (p(0) = 0, q(0) = π) (which corresponds to the saddle of
the original unperturbed system H0 = p2/2 + U0(q)), the integration constant
B is equal to 0 so that the velocity (11) oscillates from 0 to −2hω2

0/ωf while
the kinetic energy K ≡ p2/2 oscillates from 0 to

Kmax = 2h2ω4
0/ω

2
f . (12)

Of course, this result coincides with Emax − ω2
0 (9) taken in the asymptotic

limit of small ωf/(hω0).

The chaotization occurs when the system returns close to the separatrix. But,
unlike the range (8) where the chaotization occurs relatively quickly (just for
one iteration of the separatrix map), the chaotization in case (10) develops
very slowly through small random-like shifts of B occurring when the trajec-
tory passes near the separatrix. The rigorous treatment is complicated (cf.
the treatment of the chaotic layer and the chaotic diffusion for the conven-
tional adiabatic case [8–11]). Here we briefly review the qualitative analysis
developed in [12].

It is shown in [12] that the quantity B diffuses in the interval [Bmin, Bmax]
where the boundaries are approximated as

Bmin = 0, Bmax =
2hω0

ωf
. (13)

Chaotic trajectories generally spend most of the time close to the boundaries of
regions of regular motion [5]. In our case, it means that, for most of the time, B
is close to either Bmin or Bmax, i.e. the trajectory moves close to either the up-
per border of the chaotic layer, with average velocity v ≈ hω2

0/ωf , or the lower
border, with average velocity −v. We call such regimes acceleration-braking

flights, distinguishing them from the regime of a relatively fast diffusion across

the layer. The duration tf of the flight may be estimated from the analysis
of the diffusion of B near the boundary of the layer. The diffusion constant
for B may be roughly estimated as DB ∼ 〈(∆B)2〉/(2π/ωf) where 〈(∆B)2〉 is
the average squared change of B at the end of the first period of perturbation
(the first period is counted from an instant when B = 0). It can be shown to
be 〈(∆B)2〉 ∼ B2

max(ωf∆t1)
4 where ∆t1 is a typical small shift of the start of
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the second acceleration round with respect to the start of the second period
of perturbation: ∆t1 ∼ ω−1

0 ln(ω0/(hωf)) ≪ ω−1
f . Therefore,

tf ∼ B2
max

DB
∼ ω−1

0

(ω0/ωf)
5

ln4(ω0/(hωf))
. (14)

Basing on numerical studies, it has been suggested in [16] that the spatial
chaotic diffusion reduces in the adiabatic limit to the normal type, i.e. 〈(q(t)−
q(0))2〉 = Dt2. Assuming the validity of this, we estimate the diffusion constant
D as the ratio between the squared length of the flight l2f and its duration tf :

D ∼ l2f
tf

≡ v2tf ∼ ω0h
2 (ω0/ωf)

7

ln4(ω0/(hωf))
. (15)

Thus, our analysis provides for intuitive arguments in favor of a strong accel-
eration of the spatial chaotic transport as ωf → 0, and results of the numerical
integration support our semi-quantitative estimates (Fig. 4). It is a challeng-
ing problem however to study this issue rigorously (cf. for example [11] for the
study of the diffusion of the adiabatic invariant in the conventional case).

Note also that on a very coarse time scale t ≫ tf we observe a slow average
drift (cf. Fig. 4) the direction and absolute value of which depend on initial
conditions. Its explanation is a challenging problem for future.

Finally, we note that the action 2 I ≡ (2π)−1
∮

p dq conventionally [8–11]
chosen as the lowest-order adiabatic invariant, is not conserved for motion
above the barrier in our system: on the major part of a trajectory, K ≫ ω2

0

and hence I ≈ p while |p| varies in a wide range (from 0 to ∼ hω2
0/ωf , for

the chaotic trajectory). The correct lowest-order adiabatic invariant for our
system is

Ĩ = I +
hω2

0

ωf
(1 − cos(ωf t)). (16)

To the lowest order in (hω0/ωf), the quantity Ĩ coincides with the integration
constant B of (11) on the major part of the trajectory 3 . So, the chaotic layer
width in Ĩ is the same as in B, i.e. equal to Bmax ≡ 2hω2

0/ωf , diverging as
ωf → 0.

2 For the motion above the barrier,
∮

means the integration over a relevant 2π
range of q.
3 Small changes of Ĩ occur only when the separatrix is approached (cf. the conven-
tional case [8–11]).
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3 Noise-driven underdamped systems

A strong acceleration of chaotic transport in the adiabatic limit suggests that
similar mechanisms may be relevant in the presence of weak noise and dissi-
pation. Consider the following equations of motion

q̇ = p, ṗ = −dU0/dq − Γp − hω2
0 sin(ωf t) + fn(t), (17)

〈fn(t)〉 = 0, 〈fn(t)fn(0)〉 = 2ΓTδ(t),

Γ ≪ ω0, h ≪ 1, T ≪ ∆U ≡ 2ω2
0.

There is a broad literature devoted to studies of models like (17) (see e.g.
[17,18,7] and references therein). However, to the best of our knowledge, there
were only two papers [19,20] devoted to the acceleration of the noise-induced
spatial diffusion in underdamped spatially periodic systems by means of the
adiabatic ac-drive while the operation of threshold devices linked to a model
like (17) was studied only in our recent paper [20]. We briefly review these
issues below.

3.1 Spatial diffusion

First, let us discuss the diffusion in the case without ac-drive (h = 0). The
characteristic time-scale is the mean escape time from the well [17],

tesc ∼ Γ−1 T

∆U
exp(∆U/T ). (18)

On larger time-scales, the spatial diffusion is well developed [17,21] i.e. nearly
all systems have escaped from the initially populated well and are distributed
over many wells. The diffusion rate is characterized by the diffusion constant
D. The latter may be estimated as [21]

D ∼ 〈l2〉
tesc

, (19)

where 〈l2〉 is the mean-square jump length.

In the two-dimensional case, diffusion analogous to the aforementioned type 4

is used in some technological processes [18], and it may be important to accel-

4 It is called [18] the surface diffusion in this case.
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erate it by a weak 5 perturbation. It was suggested in [19] (and more recently in
[12,20]) to use a low-frequency ac-drive for this aim. We have demonstrated the
validity of this idea by means of computer simulations for the one-dimensional
underdamped case (cf. also [19]). The diffusion greatly accelerates as the fre-
quency of the AC force decreases provided it is not too small: if it becomes
smaller than some optimal frequency ω

(opt)
f ∼ t−1

esc, then the diffusion slows
down. The existence of the optimal frequency was noticed in [19] too but its
theoretical estimate was incorrect.

3.2 Threshold devices

Threshold devices are devices which are reset to an initial state if a given dy-
namical variable becomes larger than a preset threshold. Such devices, linked
to various stochastic systems, were considered in the context of stochastic res-
onance (see e.g. [22]). We suggest to use such devices in a different context:
the adiabatic ac-drive in spatially periodic systems may strongly affect the
mean rate of resets.

Consider e.g. a threshold in the kinetic energy Kth. Let it be higher than the
barrier height ∆U and let the temperature T be smaller than both ∆U and
Kth − ∆U . In the absence of the ac-drive, the mean rate of resets has the
following activation-like dependence on T :

R ∝ exp
(

−Kth

T

)

, h = 0, T ≪ Kth. (20)

If the ac-drive is on, then the system starting from the top of the barrier may
follow the deterministic trajectory along which it may reach a high kinetic
energy. Though chaos is irrelevant in this case, the deterministic trajectories
coincide with the regular-like trajectories described above in the context of
chaos. This leads to a significant decrease of the activation energy. For exam-
ple, if Kth < Kmax ≡ Emax + ω2

0, then the activation energy reduces just to
∆U :

R ∝ exp
(

−∆U

T

)

,
ωf

ω0

∼

< h ≪ 1, (21)

∆U < Kth < Kmax ≡ Emax + ω2
0, T ≪ ∆U, Kth − ∆U.

Thus, even a rather weak adiabatic ac-drive drastically increases the rate. Such
a strong sensitivity of the reset rate to the presence of the adiabatic ac-drive

5 A strong perturbation should be avoided as it may destroy the surface itself.
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may be used for control or as a new kind of sensors. The relevant circuit may
be based e.g. on an underdamped Josephson junction [23].

4 Conclusions

It has been shown that the class of Hamiltonian systems defined as spatially
periodic systems subject to coordinate-independent time-periodic force, pos-
sesses a unique property. In such a system, the width of the chaotic layer and
the transport rate within the layer diverge as the frequency of the force goes
to zero. This occurs due to the presence in the chaotic trajectory of long accel-
eration periods followed by braking periods after which the trajectory returns
close to the separatrix where small irregular changes of the adiabatic invariant
occur.

If a spatially periodic system is subject to a weak noise and a weak dissipa-
tion, then a coordinate-independent adiabatic time-periodic force may greatly
accelerate the noise-induced spatial diffusion and increase the reset rate in
threshold devices.
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