

Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN
Matematica e Informatica

CICLO XXIV

COORDINATORE Prof.ssa Ruggero Valeria

Intelligent monitoring and fault diagnosis
for ATLAS TDAQ:

a complex event processing solution

Settore Scientifico Disciplinare INF/01

 Dottorando Tutore
 Dott. Magnoni Luca Prof.ssa Luppi Eleonora

 Co-Tutore
 Dott. Lehmann Miotto Giovanna

Anni 2009/2011

Acknowledgements

I would like to thank all my colleagues at CERN for the collaboration and

discussion over the years. My deep and sincere gratitude goes to my super-

visor at CERN Dr. Lehmann Miotto Giovanna for her guidance, support

and trust.

I would also like to thank my supervisor at the University of Ferrara, Prof.

Luppi Eleonora for her advice and assistance.

My sincere thanks are due to the o�cial referees, Dr. Giacomini Francesco

and Dr. Gorini Benedetto for their detailed review and constructive criticism

during the preparation of this thesis.

I would also like to express my deepest gratitude to my parents, Deanna

and Daniele, and to all my family for their dedication and unconditional

support.

Finally, I owe my loving thanks to Tamara, her encouragement and under-

standing are what have made this dissertation possible.

Declaration

I herewith declare that I have produced this paper without the prohibited

assistance of third parties and without making use of aids other than those

speci�ed; notions taken over directly or indirectly from other sources have

been identi�ed as such. This paper has not previously been presented in

identical or similar form to any other examination board.

Abstract

E�ective monitoring and analysis tools are fundamental in modern IT infras-

tructures to get insights on the overall system behavior and to deal promptly

and e�ectively with failures. In recent years, Complex Event Processing

(CEP) technologies have emerged as e�ective solutions for information pro-

cessing from the most disparate �elds: from wireless sensor networks to

�nancial analysis. This thesis proposes an innovative approach to monitor

and operate complex and distributed computing systems, in particular refer-

ring to the ATLAS Trigger and Data Acquisition (TDAQ) system currently

in use at the European Organization for Nuclear Research (CERN). The re-

sult of this research, the AAL project, is currently used to provide ATLAS

data acquisition operators with automated error detection and intelligent

system analysis.

The thesis begins by describing the TDAQ system and the controlling archi-

tecture, with a focus on the monitoring infrastructure and the expert system

used for error detection and automated recovery. It then discusses the lim-

itations of the current approach and how it can be improved to maximize

the ATLAS TDAQ operational e�ciency.

Event processing methodologies are then laid out, with a focus on CEP

techniques for stream processing and pattern recognition. The open-source

Esper engine, the CEP solution adopted by the project is subsequently an-

alyzed and discussed.

Next, the AAL project is introduced as the automated and intelligent mon-

itoring solution developed as the result of this research. AAL requirements

and governing factors are listed, with a focus on how stream processing

functionalities can enhance the TDAQ monitoring experience. The AAL

processing model is then introduced and the architectural choices are justi-

�ed. Finally, real applications on TDAQ error detection are presented.

The main conclusion from this work is that CEP techniques can be success-

fully applied to detect error conditions and system misbehavior. Moreover,

the AAL project demonstrates a real application of CEP concepts for intelli-

gent monitoring in the demanding TDAQ scenario. The adoption of AAL by

several TDAQ communities shows that automation and intelligent system

analysis were not properly addressed in the previous infrastructure. The re-

sults of this thesis will bene�t researchers evaluating intelligent monitoring

techniques on large-scale distributed computing system.

Contents

List of Figures i

List of Tables v

1 Introduction 3

1.1 CERN and the ATLAS experiment . 4

1.1.1 CERN (Organisation européenne pour la recherche nucléaire) . . 4

1.1.2 The Large Hadron Collider (LHC) 5

1.1.3 A Toroidal LHC Apparatus (ATLAS) 6

1.1.4 The ATLAS TDAQ system . 8

1.2 Problem introduction . 9

1.2.1 Information monitoring in enterprise systems 10

1.2.2 Limitation of traditional monitoring 10

1.2.3 Towards intelligence and automation 11

1.3 Thesis objectives . 12

1.3.1 The shifter assistant . 13

1.4 Summary . 13

2 ATLAS Trigger and Data Acquisition system 15

2.1 The TDAQ infrastructure . 15

2.1.1 Computing farms . 16

2.1.2 Network con�guration . 17

2.2 Software infrastructure . 18

2.2.1 Inter Process Communication (IPC) 18

2.2.2 Information Service (IS) . 19

2.2.3 Error Reporting Service (ERS) 20

v

CONTENTS

2.2.4 Message Reporting Service (MRS) 20

2.2.5 Message archiving (LogService) 21

2.2.6 Con�guration . 22

2.2.7 RunControl . 23

2.2.8 Process ManaGer (PMG) . 24

2.3 Conclusions . 25

3 Problem introduction 27

3.1 Operating the data acquisition system 27

3.1.1 Operational procedures . 28

3.1.2 Monitoring infrastructure . 29

3.1.2.1 TDAQ core-services . 31

3.1.2.2 Data Monitoring tools 32

3.1.2.3 Farm and network tools 33

3.1.3 Limitations of continuous monitoring 34

3.1.3.1 Dynamic system conditions 35

3.1.3.2 No static thresholds . 35

3.1.3.3 Re-use of expert knowledge and formalization 36

3.1.3.4 Repetitive checks and controls 36

3.2 Error management in TDAQ . 36

3.2.1 Error detection and recovery . 37

3.2.2 The expert system approach . 37

3.2.2.1 Rule based expert system 38

3.2.3 The TDAQ Error Management System (EMS) 38

3.2.3.1 The CLIPS framework 39

3.2.3.2 Knowledge base . 40

3.2.4 Limitations . 40

3.3 The ATLAS data taking e�ciency . 41

3.3.1 Ine�ciency governing factors . 42

3.3.1.1 Repartition of 2011 ine�ciency 44

3.3.2 Operational ine�ciency . 44

3.4 An automated and intelligent assistant for TDAQ operations 45

3.4.1 Aims . 45

vi

CONTENTS

3.4.2 Requirements . 46

3.4.2.1 Automatize check and controls in real-time 46

3.4.2.2 Detect complex system behavior 46

3.4.2.3 Knowledge-base of instructions 47

3.4.2.4 E�ective noti�cation . 47

3.5 Summary . 47

4 Complex event processing with Esper 49

4.1 Information processing technologies . 49

4.1.1 Active DBMS . 50

4.1.2 Data stream processing . 51

4.1.3 Event processing technologies . 52

4.2 Complex Event Processing: a theoretical introduction 52

4.2.1 What events are . 52

4.2.2 How events are created . 53

4.2.3 Time, Causality and Aggregation 54

4.2.3.1 Cause-Time Axiom . 55

4.2.3.2 Genetic parameters . 55

4.2.3.3 Augmenting time with causality 55

4.2.4 Event patterns . 56

4.2.4.1 Rules . 57

4.2.5 Processing model architecture . 58

4.2.5.1 FSM automata . 58

4.3 Event processing implementations . 59

4.3.1 Cloud-derived technologies . 59

4.3.1.1 Storm . 60

4.3.1.2 S4 - Yahoo! . 60

4.3.2 Pure CEP solutions . 60

4.3.2.1 StreamBase Event Processing Platform 61

4.3.2.2 Oracle-CEP . 61

4.4 A CEP engine for the TDAQ assistant: Esper 61

4.4.1 Esper engine . 62

4.4.2 An event in Esper . 63

vii

CONTENTS

4.4.2.1 Event properties . 63

4.4.2.2 Event example . 64

4.4.3 Event Processing Language (EPL) 64

4.4.4 Processing model . 65

4.4.4.1 Streams . 66

4.4.4.2 Filters . 67

4.4.4.3 Time windows . 68

4.4.4.4 Event aggregations . 70

4.4.5 Performance . 70

4.5 Summary . 71

5 The AAL project 73

5.1 The project architecture . 73

5.1.1 Information gathering . 74

5.1.2 Information processing . 75

5.1.3 Result distribution and visualization 75

5.2 Information providers and data types 76

5.2.1 Information streams . 76

5.2.1.1 Information Service (IS) 76

5.2.1.2 Application log messages 78

5.2.1.3 Java Message Service (JMS) stream 79

5.2.2 Static information providers . 80

5.2.2.1 Con�guration . 80

5.2.2.2 Nagios . 81

5.3 Knowledge engineering: directives . 82

5.3.1 Directive structure . 83

5.3.1.1 Pattern . 83

5.3.1.2 Listener . 83

5.3.2 Directive management . 84

5.4 Alerts . 85

5.4.1 Alert structure . 85

5.5 Conclusions . 86

viii

CONTENTS

6 The AAL design and implementation 87

6.1 The AAL architecture . 87

6.2 The AAL engine . 88

6.2.1 The AAL events processor . 89

6.2.2 Injectors . 90

6.2.2.1 Injector types . 90

6.2.2.2 Injector criteria and con�guration 91

6.2.2.3 Injector design . 91

6.2.3 Listeners . 91

6.2.3.1 Listener types . 91

6.2.3.2 Writers and output formats 93

6.2.4 Readers . 94

6.3 Threading and concurrency . 94

6.3.1 CORBA ORB . 94

6.3.2 Esper threading model . 96

6.3.3 AAL engine threading and concurrency 96

6.3.3.1 AAL con�guration . 97

6.4 Examples of TDAQ use cases . 98

6.4.1 Event streams . 98

6.4.2 Composite streams . 100

6.4.3 Pattern samples . 100

6.4.3.1 Error for the ATLAS partition 100

6.4.3.2 Continuous check on ROS loads 101

6.4.3.3 Connectivity problems on ROS 102

6.5 Alerts distribution and visualization . 103

6.5.1 Message queuing system . 103

6.5.2 The AAL web application . 104

6.5.2.1 Alert domain . 105

6.5.2.2 Per-domain view . 106

6.5.2.3 Other distribution strategies 107

6.6 Summary . 107

ix

CONTENTS

7 Conclusions and future work 109

7.1 Summary . 109

7.1.1 ATLAS operational e�ciency . 110

7.1.2 Complex Event Processing for TDAQ operations analysis 110

7.1.3 The AAL project . 111

7.2 Future research . 111

7.2.1 Combination of CEP with machine learning for problem classi�-

cation . 112

7.2.2 On-line problem classi�cations 112

7.3 Conclusions . 113

References 115

x

List of Figures

1.1 The LHC tunnel and the main experiments. 4

1.2 Map of the CERN accelerators. 5

1.3 ATLAS with composing sub-detectors. 7

1.4 View of the ATLAS underground areas and surface buildings. 7

1.5 High-level view of the ATLAS Trigger and Data Acquisition system with

event and data rates. 8

1.6 Typical layers in enterprise systems. 11

2.1 Outline of the ATLAS Trigger and Data Acquisition system with event

and data rates. 16

2.2 TDAQ routers layout. 18

2.3 Information Service (IS) . 19

2.4 Message displayed by the Message viewer application. 21

2.5 The LogService stores all messages in a database which can subsequently

be queried. 21

2.6 Log viewer: the Log service graphical interface. 22

2.7 High-level view on the con�guration database structure. 23

2.8 The Finite State Machine used to control the system. 24

3.1 The ATLAS control room. 28

3.2 Operators desk con�guration. 29

3.3 High-level view on operational procedures. 30

3.4 Data quality monitoring tool. 32

3.5 Information providers used by TDAQ operators and experts. 34

3.6 Key components of the EMS framework. 39

i

LIST OF FIGURES

3.7 ATLAS total integrated luminosity in 2011. 41

3.8 ATLAS data taking e�ciency in 2011. 41

3.9 Data-acquisition e�ciency and stable beam duration for the period 20

June 2011 to 30 June 2011. 42

3.10 Ine�ciency factors for ATLAS data taking in 2011 with focus on opera-

tional issues. 45

4.1 High-level view on enterprise system layers. 54

4.2 An event log of network protocol events ordered by time. 56

4.3 The same event log of network protocol with explicit causal-relationship

as DAG . 56

4.4 A CEP system interfaced with a target system. 58

4.5 Finale State Machine to express a simple pattern. 58

4.6 Esper processing model. 62

4.7 Output example for a simple statement. 66

4.8 Output example for a statement with data window. 67

4.9 Output example for a �ltering statement. 68

4.10 Output example for a statement with time window. 69

4.11 Output example for a statement with time batch window. 69

5.1 High-level view on the AAL project architecture and operational stages. 74

5.2 Information Service (IS) functional schema. 76

5.3 IS information as seen from IS viewer. 77

5.4 IS update rates during ATLAS data taking operations. 78

5.5 Spike in ERS messages generated in case of a network connectivity prob-

lem. 80

5.6 Information can be collected from a JMS provider. 81

5.7 Directive schema. 82

5.8 Directives are structured in XML documents. 84

5.9 A list of alerts presented by the AAL web interface. 86

6.1 AAL architecture overview. 88

6.2 AAL engine architecture. 89

6.3 An injector interfaces a TDAQ data source with the AAL domain. . . . 90

ii

LIST OF FIGURES

6.4 Injectors factory-based design. 92

6.5 Listeners and writers architecture. 93

6.6 CORBA ORBs threading architecture for an IS server. 94

6.7 Esper threading model in default con�guration. 95

6.8 Overview of AAL threading architecture. 97

6.9 High-level view on CEP functionalities applied on problem detection. . . 98

6.10 Alerts distribution is based on a message-driven architecture. 104

6.11 The layout of the AAL web interface. 106

iii

LIST OF FIGURES

iv

List of Tables

1.1 Abbreviation of the LHC related experiments. 6

2.1 ATLAS TDAQ farm composition. 17

3.1 Ine�ciency factors for ATLAS data taking in 2011. 44

4.1 Events types and underlying Java objects 62

4.2 Types of event properties . 63

5.1 ERS message schema . 79

6.1 IS stream properties. 99

6.2 MRS stream properties. 99

v

LIST OF TABLES

vi

Nomenclature

ACR ATLAS Control Room

Alice A Large Ion Collider Experiment

CMS Compact Muon Solenoid experiment

EF Event Filter

ERS Error Reporting Service

ES Expert System

HLT High Level Trigger

LHC Large Hadron Collider

LHCb The Large Hadron Collider beauty experiment

MRS Message Reporting Service

MRS Message Reporting System

ROD Read-Out Driver

RoI Region Of Interest

ROS Read-Out System

SFI Sub-Farm Input

SFO Sub-Farm Output

XPU Processing Unit

1

LIST OF TABLES

2

1

Introduction

This thesis proposes a new approach to monitor and operate complex and distributed

computing systems, in particular referring to the ATLAS Trigger and Data Acquisi-

tion (TDAQ) system currently in use at the European Laboratory for Particle Physics

(CERN). E�ective monitoring and analysis tools are fundamental in modern IT infras-

tructures to get insights on overall system behavior and to deal promptly and e�ectively

with failures. These systems have in common a layered architecture, with every layer

providing functionalities other layers and services rely on (such as network, middleware,

application, user interfaces, web portals, etc.). In this scenario, standard monitoring

techniques and tools have several limitations, such as being too focused on single as-

pects, the lack of �exibility with respect to the dynamic working conditions and the

timeliness of monitoring information provided. More generally, they do not covers all

the requirements the increasing complexity in businesses and infrastructures poses. The

objective of this thesis is to present a new monitoring solution o�ering a deep integration

across all infrastructure layers, pattern recognition to quickly spot problems, real-time

updates at high resolution and automatic adaptation to changing environments. This

project combines technologies coming from di�erent disciplines, in particular it lever-

ages an event-driven architecture to manage the �ow of information coming from the

ATLAS TDAQ infrastructure, together with a Complex Event Processing (CEP) engine

to provide intelligent systems analysis.

The di�erent problems and techniques concerning information analysis and intel-

ligent monitoring are investigated, the design and the technical choices made during

3

1. INTRODUCTION

Figure 1.1: The LHC tunnel and the main experiments.

the development of the project are then presented and discussed together with results

obtained during its usage in production for ATLAS data taking operations.

1.1 CERN and the ATLAS experiment

This section provides a very brief introduction to the CERN laboratory, the Large

Hadron Collider (LHC) and the ATLAS TDAQ system.

1.1.1 CERN (Organisation européenne pour la recherche nucléaire)

The European Organization for Nuclear Research, known as CERN, is an international

organization whose purpose is to operate the world largest particle physics laboratory,

which is situated in the northwest suburbs of Geneva on the Franco�Swiss border, as

shown in Figure 1.1. The main research topics shifted from the early days, when the

research was concentrated on nuclear physics, to modern particle physics, hence now it

is commonly referred to as the �European Laboratory for Particle Physics�. Today 20

European member states collaborate to run CERN, although contributions are made

from countries all around the world, including USA, Russia, Japan and China. In addi-

4

1.1 CERN and the ATLAS experiment

Figure 1.2: Map of the CERN accelerators.

tion to the approximately 2500 sta� permanently at CERN, more than 8000 scientists

visit and perform part of their work at CERN. Most of the activities at CERN are

currently directed towards operating and maintaining the new Large Hadron Collider

(LHC) , and the experiments installed on it.

1.1.2 The Large Hadron Collider (LHC)

CERN operates a network of six accelerators and a decelerator1. Each machine in the

chain increases the energy of particle beams before delivering them to experiments or

to the next more powerful accelerator. The last stage of this acceleration is the Large

Hadron Collider (LHC)(17), a 27 km circumference synchrotron that can accelerate

protons and lead ions to higher energies and will eventually collide particles every 25 ns

with a centre-of-mass energy of 14 TeV. After acceleration the beams are kept circulating

in the machine for a period of typically 10-20 hours and are brought into collision at

four interaction points.

This makes it possible to study physics phenomena that have previously never been

observed in a controlled experimental environment. Four main experiments are installed

and connected to the LHC ring: ATLAS, CMS, LHCb and ALICE. An overview of

1the CNGS sends neutrinos from CERN to the Gran Sasso National Laboratory (LNGS).

5

1. INTRODUCTION

Abbreviation Full name

ATLAS A Toroidal LHC ApparatuS

ISOLDE Isotope Separator on Line

AD Antiproton Decelerator

PS Proton Synchrotron

LEIR Low Energy Ion Ring

LINAC LINear ACcelerator

n-TOF neutron Time Of Flight

CNGS CERN Neutrinos to Gran Sasso

SPS Super Proton Synchrotron

ALICE A Large Ion Collider Experiment

CMS Compact Muon Solenoid experiment

LHCb The Large Hadron Collider beauty experiment

Table 1.1: Abbreviation of the LHC related experiments.

the LHC and the location of the four experiments is shown in Figure 1.2. Each of

the four experiments are designed to ful�ll speci�c goals. The Alice experiment is

concerned with studying lead-ion interactions while the LHCb experiment is concerned

with studying matter and anti-matter. The ATLAS and CMS are both general purpose

detectors designed to cover the widest possible range of physics phenomena. While the

two experiments have the same goal in mind, they are built using di�erent technical

solutions and design. LHC was �rst switched on the 10th of September 2008: after a

short time in operation complications arose and it was shut down for repairs. Since

spring 2010 LHC is back in operations, initially with a relatively low energy to ensure

the safe operation of the LHC. The collision energy will only later be increased to its

full potential of 14 TeV.

1.1.3 A Toroidal LHC Apparatus (ATLAS)

ATLAS (3) is the largest particle detector ever built and its scope is to determine

which particles are produced during proton-proton interactions at the LHC. The ATLAS

detector surrounds interaction point 1 of the LHC, about 100 m underground. It consists

of a large cylinder (43m length x 25m diameter) of detecting devices, as shown in Figure

1.3. The 8 large superconducting magnet coils, 25.3 m long, at the outside of the

6

1.1 CERN and the ATLAS experiment

Figure 1.3: ATLAS with composing sub-detectors.

Figure 1.4: View of the ATLAS underground areas and surface buildings.

7

1. INTRODUCTION

experiment, extending from a radius of 4.7 m to 10.1 m, are a unique feature of this

detector. The full name of the ATLAS experiment is �A Toroidal LHC ApparatuS� and

refers to the toroidal magnetic �eld. The view of the ATLAS underground and surface

areas is presented in Figure 1.4. The Trigger and DataAcQusition (TDAQ) system is

responsible of �ltering and collecting the experimental data from ATLAS detectors and

it is the case of study of this thesis.

1.1.4 The ATLAS TDAQ system

D
a
ta

 F
lo

w

D
e
te

c
to

r
R

e
a
d

o
u

t

Event filter

Level 1

Level 2

Custom hardware

Processing
 Units

Calorimeter/
Muon

FE

ROD

Other

FE

ROD

Other

FE

ROD
Level 1 Accept

Readout systemReadout systemReadout system

Data collection
 network

Readout systemReadout systemEvent builder

Readout systemData Logger

ROI data

L2 accept

Event rates
 design

 (2011 peaks)

40 MHz
(20 MHz)

75 kHz
(~65 kHz)

3 kHz
(~5.5 kHz)

200 Hz
(~600 Hz)

TRIGGER

DAQ

Data rates
 design

 (2011 peaks)

ATLAS event
1.5 MB/25 ns

(1.2 MB/50 ns)

~ 110 GB/s
(~80 GB/s)

~ 4.5 GB/s
(~ 6.5 GB/s)

300 MB/s
(~600 MB/s)

...

Processing
 Units

...

~ 6000 cores

Event filter
 network

5 cores

~ 150 cores

~ 100 cores

~ 6000 cores

Full events

EF accepts

CERN
permanent

storage

Regions of Interest (ROI)

Figure 1.5: High-level view of the ATLAS Trigger and Data Acquisition system with

event and data rates.

The ATLAS TDAQ system(2) is a large heterogeneous system based on a distributed

infrastructure of software and hardware components. The TDAQ system is responsible

for collecting and transporting data from the ATLAS detector devices to the mass

storage facility of the CERN computing center. In total the data is �ltered from 40

MHz collision rate at the detector level (which correspond to the 25 ns collisions period)

to 300 Hz at the output of the system. The amount of data is reduced from 10s of TB/s

to 100s of MB/s (the exact rate depends on a variety of factors such as the operational

8

1.2 Problem introduction

energy of the LHC and the con�guration of the TDAQ system). To select interesting

experimental data the TDAQ system is based on three levels of on-line �ltering of the

data; Level-1 trigger, Level-2 trigger and Event �lter. Each level will further re�ne the

results of the previous one only keeping those parts of the data which may be of interest

for further analysis. While the Level 1 trigger is mainly hardware based, the Level 2 and

Event �lter facilities, composing the so called High Level Trigger (HLT) are provided

via software components running in the TDAQ computing infrastructure.

To cope with the very high data rate produced by the detector a complex and

distributed infrastructure has been built. More than 200 switches and routers intercon-

nect about 2000 hosts, ranging from 12-core processing nodes to computers containing

custom-made hardware modules linked directly to the ATLAS detector. On top of the

hardware infrastructure, over 20.000 applications are responsible for analyzing, �ltering

and moving event data to permanent storage. A schematic overview of the di�erent

parts of the TDAQ system is shown in Figure 1.5.

A detailed description of the design and implementation of the TDAQ system can

be found in (2) and (44).

1.2 Problem introduction

The growing complexity of modern computing infrastructures is posing new challenges

for monitoring procedures and tools. In particular, today operations engineers are faced

with increasing di�culties in understanding overall system behaviors and investigating

problems and failures. This is mainly due to the limitations of the current genera-

tions of monitoring services, failing to cope with the distributed scale and complexity

of modern businesses and infrastructures. This situation is subject of multiple studies

and investigations and is driving the development of new technologies and disciplines, in

particular in the �eld of data analysis and even stream processing, as presented in(11).

Nevertheless, comprehensive monitoring solutions exist only as vendor-speci�c frame-

work customized for speci�c computing infrastructure and software environments, as

presented in 4.3. The peculiarity of the TDAQ software architecture and the demand-

ing monitoring and error detection requirements make these commercial solution not

suitable for the ATLAS TDAQ use case.

9

1. INTRODUCTION

The project subject of this thesis is an automated monitoring and error detection

solution which leverage open-source technologies for information processing and results

distribution. This project has been developed to satisfy the ATLAS data acquisition

requirements, but thanks to a generic design it can be easily adopted by di�erent com-

puting infrastructures.

1.2.1 Information monitoring in enterprise systems

The problems investigated in this thesis are not speci�c to data acquisition infrastruc-

tures but are common to a wider category of IT systems, commonly named as enterprise

systems. An enterprise system can be seen as a distributed system with thousands of

application programs communicating with each other by means of multiple IT layers.

Typical examples are systems that automate operations of commercial enterprises such

as bank and �nancial companies, or systems that o�er high level services backed on

distributed computing and storage facilities. From an architectural perspective they

are all layered systems, as shown in Figure 1.6, with every layer providing features upon

which other layers and services rely on.

An activity taking place in a certain level can be abstracted as an event, and the

information �ow inside the enterprise system can be represented as a �ow of events

across the di�erent layers. The monitoring of an enterprise systems requires operators

to get insights on events �owing through the di�erent IT layers. In particular, operators

have to analyze the relationships between events in order to understand the root causes

of problems and failures that may impact at di�erent levels.

The common problems of today enterprise systems is the lack of tools to enables

a global, e�ective view on system events in order to help operators and experts to

understand the overall system behavior. There are many monitoring tools acting at

every speci�c IT layers, such as networking, farm and applications monitoring, but

the events correlation have to be manually performed by the operators for every single

problems.

1.2.2 Limitation of traditional monitoring

In multi-tier environments, applications no longer operate in isolation e.g. a failure

on a database can cause applications executing on a an application server that uses

the database to fail as well. The interdependency between services poses interesting

10

1.2 Problem introduction

Figure 1.6: Typical layers in enterprise systems.

challenges for system management and monitoring. A single problem can propagate

across the entire IT infrastructure, resulting in every management tool reporting several

issues and generating many alarms. Traditional monitoring approaches are limited in

many ways:

� They provide an un�ltered, raw view on system events or messages for a speci�c

domain, bound to a single layer or component. The user must provide the intel-

ligence required to determine which report is relevant at any point in time for a

speci�c section.

� No cross-domain intelligence. Monitoring information does not propagate across

levels, there is no global view on system status.

� They are not able to detect and react to complex patterns of events, often occurring

over a period of time.

1.2.3 Towards intelligence and automation

The technology to build and improve every layer of enterprise systems, to make them

capable of handling and routing larger amount of information, has developed with the

growth of Internet and distributed computing systems. From the beginning of the 2000s,

11

1. INTRODUCTION

with the consolidation of enterprise systems, a similar development of technology ap-

peared for monitoring and managing the information �ows, as discussed in the book in

�The Power of Events� by David C. Luckham (30) who formalized the concept of Com-

plex Event Processing (CEP). Driven by these progresses, monitoring and management

services can evolve mainly along two dimensions:

� Intelligence: to process data and provide advanced analysis capabilities, through

events correlations, pattern detection and time-series analysis.

� Automation: to automatically performs checks an controls, to provide the desired

information on demand to the operators and experts, to become a pro-active

facility for fault diagnosis and root cause analysis.

1.3 Thesis objectives

The ATLAS TDAQ system, like many modern IT systems, is a complex distributed

infrastructure made of networks, services and applications, each one working at di�erent

layer in a hierarchical con�guration. Due to the very critical operational task, both

economically and in terms of manpower, dealing fast and e�ectively with problems and

failures is fundamental to minimize system downtime, here meaning the time when the

system is not performing its main tasks at its full potential. Hence, the need to optimize

the way the TDAQ system is operated by shifters and experts has become increasingly

important.

The TDAQ system is equipped with an automated error recovery service, as pre-

sented in section 3.2, able to recover part of the TDAQ infrastructure from error sit-

uations. Nevertheless, only a minor fraction of the overall operational procedures can

be automated, and about the 50% of the TDAQ operational ine�ciency, as presented

in 3.4 , is coming from situations where human intervention is involved. In this re-

spect, a high level tools helping operators with diagnosis of problems and suggesting

the expected reaction is still a missing technology to improve the ATLAS data taking

e�ciency.

The goal of this thesis is to presents the study, the design and the development

of the AAL project (Automated Analysis and inteLligent monitoring), a new service

meant to improve the system monitoring and fault diagnosis for the ATLAS TDAQ

12

1.4 Summary

system, towards automation and intelligence as described in the previous sections. I

developed the AAL project as part of the Control and Con�guration (12) group of the

TDAQ system. The project has proven to be an e�ective solution and since spring 2011

it is used in production by shifters and experts running the ATLAS data acquisition

operations. Moreover, because of it simpli�es operational procedures and it allows for

a better use of experts knowledge, the AAL project fosters the reduction of TDAQ

operators while increasing the overall situation awareness for the TDAQ infrastructure.

1.3.1 The shifter assistant

The AAL project operates as an automated assistant for the data acquisition proce-

dures, so it is usually referred to as the shifter assistant. It gathers and analyzes data

from multiple data sources and it produces alerts for TDAQ experts and shifters to

improve problem detection and diagnosis. AAL is made by several components: core

functionalities are provided by a Java-coded engine leveraging the Esper open-source

technology for event processing. The engine is fully integrated in the TDAQ infrastruc-

ture via the CORBA based IPC facilities and APIs. Alerts are distributed in a loosely

coupled architecture based on a message broker (Apache ActiveMQ). For users interac-

tion and alerts visualization a real-time, dynamic and interactive web application has

been developed.

The key functionalities AAL o�ers are:

� Timeliness detection of complex error situations, performing time-based analysis

on system conditions.

� Formalize TDAQ experts know-how. The knowledge-base of AAL is fed by TDAQ

experts with instructions de�ning error situations to be detected and expected

reactions.

� Promptly error noti�cation. When a problem is detected, AAL promptly noti�es

TDAQ operators with error details and suggestion on how to react.

1.4 Summary

In the ATLAS data acquisition system, as in many modern IT enterprise system, the

faster a problem is detected and the better it is for the recovery and solving procedures.

13

1. INTRODUCTION

Given the complexity of a layered architecture, monitoring technologies have to the

move in the direction of pattern-based, problem-recognition strategies. IT events can

be captured by this intelligent tools to be processed, the streams of data can be analyzed

and the interesting situations can be promptly presented to operators and experts with

matching competencies.

In recent years, with the raise of distributed computing and cloud technologies,

solutions have appeared to handle and to monitor the stream of events produced by such

systems. But these monitoring solutions are all bounded to speci�c software platforms

and frameworks, such as for Oracle-CEP (25) and StreamBase (9). The AAL project

is an automated monitoring and error detection solution which leverage open-source

technologies for information processing and results distribution. A generic design that

decouple data gathering, processing and distribution allows AAL to be deeply integrated

with TDAQ control and monitoring infrastructure but as well to be easily adapted to

di�erent computing infrastructures.

14

2

ATLAS Trigger and Data

Acquisition system

This chapter presents the Trigger and Data Acquisition (TDAQ) system of the ATLAS

experiment. In particular, it focuses on applications and services of particular relevance

for system monitoring and fault analysis operations.

2.1 The TDAQ infrastructure

The ATLAS Trigger and Data Acquisition system is a vast heterogeneous system con-

sisting of a large number of both software and hardware components. The system is

connected to the ATLAS detector and its main purpose is to read the data from the

detector, �lter out the subset of data which may be of interest for further analysis and

ultimately store the data. This data is then later used for the so called �o�-line� anal-

ysis. The system gathers the data as it is produced by the detector and is therefore

subject to strict e�ciency requirements. The Figure 2.1 outlines the ATLAS TDAQ

system, stating the event and data rates speci�ed by the design and actually reached

during 2011. The trigger path is shown on the left, the data path on the right. The

LHC produces collisions every 25 ns (i.e. at a rate of 40MHz) the system is therefore

massively parallel in order to be able to perform both the gathering and �ltering of

the data at the required rate. At each stage of the �ltering the data rate is reduced

and more thorough event selection can be done. The �rst trigger level (Level-1, (?))

is implemented in custom built electronics which analyze the information coming from

15

2. ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

D
a
ta

 F
lo

w

D
e
te

c
to

r
R

e
a
d

o
u

t

Event filter

Level 1

Level 2

Custom hardware

Processing
 Units

Calorimeter/
Muon

FE

ROD

Other

FE

ROD

Other

FE

ROD
Level 1 Accept

Readout systemReadout systemReadout system

Data collection
 network

Readout systemReadout systemEvent builder

Readout systemData Logger

ROI data

L2 accept

Event rates
 design

 (2011 peaks)

40 MHz
(20 MHz)

75 kHz
(~65 kHz)

3 kHz
(~5.5 kHz)

200 Hz
(~600 Hz)

TRIGGER

DAQ

Data rates
 design

 (2011 peaks)

ATLAS event
1.5 MB/25 ns

(1.2 MB/50 ns)

~ 110 GB/s
(~80 GB/s)

~ 4.5 GB/s
(~ 6.5 GB/s)

300 MB/s
(~600 MB/s)

...

Processing
 Units

...

~ 6000 cores

Event filter
 network

5 cores

~ 150 cores

~ 100 cores

~ 6000 cores

Full events

EF accepts

CERN
permanent

storage

Regions of Interest (ROI)

Figure 2.1: Outline of the ATLAS Trigger and Data Acquisition system with event and

data rates.

the muon chambers and the calorimeters to produce a coarse event selection with a

maximum output event rate of 75 kHz. The other two levels are software-based, run on

commodity PCs and have access to the detector data at full granularity. The second

trigger level (Level-2) has tight timing constraints and thus accesses only a subset of

event data in the so-called �Regions of Interest� (RoIs), de�ned by the Level-1. After

the event selection provided by the Level-2, the maximum event rate is 5.5 kHz. The

last trigger level, called Event Filter, analyzes the full events selected by the Level-2

and sends the accepted ones to the data-logging system, with a peak event rate of 600

Hz.

2.1.1 Computing farms

The ATLAS TDAQ system requires the usage of a large computing farm, most of the

nodes being dedicated to the High Level Triggers (HLT), i.e. the Level-2 trigger and the

16

2.1 The TDAQ infrastructure

Component Nodes

Control and Con�guration 60 + 44 rack servers

ROS 150

RoI Builder, L2 servers 6

HLT (L2 + EF) 963 XPU + 434 EF (6300 L2 + 6400 EF applications)

Event Builder 48 (96 applications)

SFO 5 (headroom for high throughput (1.2 GB/s peak))

Table 2.1: ATLAS TDAQ farm composition.

Event Filter. Data �ows from the detector front-end devices to the Level-2 processors

and the event building nodes through a dedicated network; a second network connects

the Event Builder to the Event Filter and the output nodes. A third network (control

network) connects all the nodes and is used to send commands and share monitoring

information. Table 2.1shows the current farm composition. All the nodes and the

network equipment are installed and active in the system, with the exception of the

HLT nodes, which are added incrementally to the system to follow the evolution of

need due to increasing LHC luminosity. HLT nodes are installed in racks; each rack

contains a �le/boot server for computing units, a node dedicated to software services

(database caching, monitoring information service, etc.) and several computing units.

HLT racks contain either nodes dedicated to EF processes, connected to EF network

only, or nodes (called Processin Unit, or XPU) connected to both the Level-2 and the

EF network. The latter can be con�gured as either Level-2 or EF processing units,

improving �exibility in assigning resources.

Globally the system involved in 2011 data taking operations comprises approxi-

mately 2000 heterogeneous nodes for an overall number of deployed cored around 13000.

At such a size errors must be expected and they do indeed frequently occur in the system.

It is therefore of great importance that the system is able to deal with and recover from

these errors, when they occur. When the TDAQ system will be completely deployed,

there will be more than 20000 applicaitons involved in data taking operations.

2.1.2 Network con�guration

The network infrastructure, made by more than 200 switches and routers, comprises a

control network, which provides infrastructure and operational services, as well as two

17

2. ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

Figure 2.2: TDAQ routers layout.

dedicated data networks, used exclusively for transferring the experimental data. All

these networks rely on the IP (Internet Protocol) protocol and are implemented using

Ethernet technology. Figure 2.2 shows the three HLT networks and their interface with

ATCN (Atlas Technical and Control Network, the general purpose network from the

ATLAS experimental site).

2.2 Software infrastructure

This section introduces the main software components and services composing the data

acquisition system, with particular focus on the ones involved in operational procedures

and error diagnosis processes. In addition to the processes directly taking part in the

�ow of data there are also a number of services providing functionality in order to moni-

tor the system, store application errors and warnings, provide means of communication,

enabling data quality monitoring, etc. These services are referred as the core-services

of the TDAQ system, composing the framework to control, command and synchronize

of all the processes involved in data taking.

2.2.1 Inter Process Communication (IPC)

Given the size and the distributed and heterogeneous nature of the ATLAS TDAQ

system support for inter process communication by highly scalable distributed middle-

ware with excellent performance is required. Due to the long life time of the ATLAS

18

2.2 Software infrastructure

Figure 2.3: Information Service (IS)

experiment this software has to be easily extensible and maintainable. The require-

ments are met by the OMG CORBA standard (36), which has been chosen as inter

process communication layer. The IPC package is built on top of third party solutions,

OmniOrb (C++) and JacOrb (27)(JAVA), which are implementations of the CORBA

standard. The IPC allows heterogeneous applications to make themselves available as

named services in the system and makes it possible for processes to communicate with-

out taking into account �low-level� issues such as machine names, network protocols,

port numbers, sockets. Hence, applications of di�erent nature can communicate with

each other relying on the IPC API.

2.2.2 Information Service (IS)

The Information Service (IS) is a general way of sharing information in the system

without using any direct communication between the sender and the receiver. The IS

allows applications, referred to as providers in the context of the IS, to publish infor-

mation which will be stored on a server. Other applications, called receivers, can then

actively retrieve the data they are interested in, or subscribe to changes of a particular

information set. The information made available (i.e. published) by a provider can be

updated or deleted and receivers can retrieve the latest copy or be noti�ed that it no

longer exists.

The IS is modeled as a key/value store, with support for a number of basic types

plus user-de�ned information types. The IS also supports meta-information which can

be used to describe the information that is published.

19

2. ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

Any TDAQ application can act as a client to one or several IS servers by using one

of the public interfaces provided by the IS, as in Figure 2.3:

� an information provider can publish its own information to an IS server via the

Publish interface and inform it about changes in the published information via

the Update interface,

� an information consumer can either access the information of an IS server on

request, via the GetInfo interface, or can be noti�ed, via a call-back mechanism

when new or updated information are available.

Many of the applications publish statistics about their own performance using this

service, and it is therefore of interest when doing error detection. For example, a

reduction in the processing rate for a number of applications may be an indication that

something has gone wrong in the system. Being one of the main information sources

for the AAL project, the IS structure and details are discussed in 5.2.

2.2.3 Error Reporting Service (ERS)

Every software component of the TDAQ system uses the Error Reporting Service (ERS)

to report issues, i.e. events that need attention, either to the software component calling

it or to the external environment, like e.g. a human operator or an expert system.

The ERS provides several services, including a common format and a �xed range of

severity levels for all errors reported in the TDAQ system. It is possible to con�gure

global settings that de�ne the behavior of error reporting, such as where errors are

sent, amount of information for each error, etc. This common framework also makes

it possible to collect errors into classes/groups to be reused by other applications. The

ERS relies on the MRS package in order to distribute error messages between di�erent

applications and also to allow for subscriptions to di�erent messages.

2.2.4 Message Reporting Service (MRS)

The Message Reporting Service (MRS) (18) is the service used for distributing messages

between di�erent TDAQ applications using a publish/subscribe model. It provides a

means of sending messages between the applications in the system and is designed to be

scalable in order to sustain any needed message rate. The publish/subscribe approach

20

2.2 Software infrastructure

Figure 2.4: Message displayed by the Message viewer application.

decouples the message producer from the multiple consumers that may be interested in

receiving it. The �ow of messages can be seen online by the TDAQ shift operators in

the MRS monitor application (see Figure 2.4).

2.2.5 Message archiving (LogService)

App

App

App

App

MRS logger

ORACLE

Log viewer

subcribe

forward
archive

query

Figure 2.5: The LogService stores all messages in a database which can subsequently be

queried.

The LogService allows to archive all the messages reported through MRS for o�ine

retrieval, as shown in Figure 2.5. The package provides the Logger application, an MRS

client that collects and archives in an Oracle database all the ERS messages �owing in

the system. As all the messages are stored in a single database this makes it easy to

browse them and retrieve parts of it based on any combination of parameters such as the

level of severity, application type, application name, time, host and message contents. A

GUI-based viewer, as in Figure 2.6, is also available to display and browse logs history.

A detailed description of the Log Service is available in (21).

21

2. ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

Figure 2.6: Log viewer: the Log service graphical interface.

2.2.6 Con�guration

The con�guration of the TDAQ system is based on an object-oriented database con-

taining a description of the TDAQ system. These descriptions cover the con�guration

of all ATLAS applications which can be running during data taking. It includes all the

information needed to con�gure the system, such as:

� Which parts of the ATLAS systems and which detectors are participating in a

given data taking session.

� Where processes shall be started and when. It also contains information about

which run-time environment is to be created for each of the processes.

� How to check the status of running processes and to recover run-time errors.

� When and in what order to shut down running processes.

The con�guration database contains one or more partition objects which includes the

complete description of the system from a control point of view. A partition contains all

22

2.2 Software infrastructure

Applications

ATLAS
Partition

Segment 1 Segment 2 ...

Process
environement

Overall
Configuration

Resources/
HW configuration

Applications

Controller

Figure 2.7: High-level view on the con�guration database structure.

information needed to con�gure the TDAQ system for a data taking session. A partition

object is structured in a set of segment objects, typically representing a subsystem or a

collection of applications with similar functionality, e.g. a set of Readout modules or a

sub-Detectors. Each segment contains a set of applications and resources. Each of the

segments is associated to a controller application which is responsible for all applications

contained in that segment. The Figure 2.7 presents the hierarchical structure of the

con�guration database.

2.2.7 RunControl

The RunControl framework provides a general facility for the supervision of the TDAQ

system. It aims at controlling heterogeneous items such as data taking applications,

hardware modules and control infrastructures in a common fashion. The RunControl

framework is responsible for distributing commands from the operator(s) throughout the

system. It starts, stops and monitors all applications involved in data taking operations

and it ensures the system is in a coherent state. In order to synchronize operations

throughout the system, Finite State Machine (FSM) principles are used. Figure 2.8

shows the FSM used for the TDAQ system.

23

2. ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

NONE

INITIAL

CONFIGURED

CONNECTED

RUNNING

ROIBSTOPPED

L2SVSTOPPED

L2STOPPED

EBSTOPPED

EFSTOPPED

SHUTDOWNBOOT

UNCONFIGURE

STOPL2SV

CONFIGURE

CONNECT

START

STOP

STOPL2

STOPEB

STOPEF

STOP-RECORDING

Figure 2.8: The Finite State Machine used to control the system.

The system comprises of a number of �controller� applications organized in a tree

structure. The RunControl is constructed using the con�guration database with con-

trollers arranged in a tree structure in which each controller is responsible for a segment.

Normally, commands are only sent to the topmost controller and are then propagated

throughout the control tree. Interaction with the RunControl is performed through a

graphical interface which among other things displays the RunControl tree, including

the current state and any errors.

2.2.8 Process ManaGer (PMG)

The Process Manager allows TDAQ applications to start and monitor processes on any

machine without dealing with low-level calls or operating system interfaces. The PMG

provides call-back mechanisms for notifying clients of any changes in other processes,

such as inform a controller whenever a child application is terminated and also what

was the cause of the termination. Applications are identi�ed using a unique handle

constructed based on the con�guration information. This handle is therefore identical

between di�erent executions of the same application, as opposed to for example an

operating system process identi�er. The ability to construct application identi�er from

con�guration information o�ers multiple advantages. For example, in case a controller

24

2.3 Conclusions

has been restarted it is able to �nd out which of its child processes are still running

and regain complete control of them. It can then start applications that are missing or

otherwise bring its part of the system back to the state in which it should be.

The PMG provides also the functionalities to query the status of the system, for

example to �nd out whether an application is indeed running and not responding or

whether it is actually not running at all, making it a precious tool for system debugging

and error diagnosis.

2.3 Conclusions

This chapter has provided an introduction of the ATLAS TDAQ system and its main

components. It introduces the TDAQ architecture, it gives a brief overview of the

TDAQ computing and networking infrastructure and thus it focuses on applications

and services of particular relevance for system monitoring and fault analysis operations.

For a more complete description please refer to (8).

25

2. ATLAS TRIGGER AND DATA ACQUISITION SYSTEM

26

Chapter 3

Problem introduction

The TDAQ system is operated by a non-expert shift crew, assisted by a set of experts

providing knowledge for speci�c components. The daily work of operators is made

of procedures to run the system, periodic checks and controls on system status, well

de�ned reaction in case of known problems and interaction with experts in case of non

standard issues. The evaluation of the correctness of running operations requires strong

competence and experience in understanding log messages and monitoring information,

and often the meaningful information is not in the single event but in the aggregated

behaviour in a certain time-line. As presented in this chapter, the 50% of the TDAQ

data taking ine�ciency (i.e. the loss of experimental data) is coming from situations

where a human intervention is involved. Due to the very critical operational task, both

economically and in terms of manpower, dealing fast and e�ectively with problems and

failures is fundamental to minimize operational ine�ciency. In this respect, a high-level

monitoring tool helping operators with automated diagnosis of problems and suggesting

the appropriate reaction could reduce the time for error management and minimize the

loss of experimental data. This is the objective of the AAL project: to be an automated

and intelligent assistant for TDAQ operators.

3.1 Operating the data acquisition system

The ATLAS data taking operations are executed from the so-called �ATLAS Control

Room� (ACR), shown in Figure 3.1, by a team of operators each of them with speci�c

27

3. PROBLEM INTRODUCTION

Figure 3.1: The ATLAS control room.

responsibility on a experiment's1 aspect, ranging from safety to data quality monitoring.

The control room hosts a number of desks from which the various operations are per-

formed, as presented in Figure 3.2. There are a total of 12 operators, so called shifters,

supervised by a shift leader in charge of all activity in the ACR. A smaller team (about

10 people) of on-call experts is always available by phone to solve problems requiring

a deeper level of knowledge, as well as on-call experts from the system and network

administration team to solve problems on the infrastructure.

In order to establish the correctness of the data taking operations shifters and experts

have to collect information on problems and failures to promptly detect the root cause

and react accordingly.

3.1.1 Operational procedures

The system is operated 24 hours a day, for 7 days a week. The preparations for being able

to take care of a desk shift are composed of a training (about 4 hours of lectures for each

desk and an exercise that can be completed online) and of shadow shifts: a few shifts

that are performed under the supervision of a more experienced shifter. During a run

shifters are expected to interact with each other and with experts to solve the problems

encountered. For example, if a node becomes unavailable the RunControl (RC) shifter,

1In this context experiment is a global name for site, detector and operations of an experimental

physics device.

28

3.1 Operating the data acquisition system

Figure 3.2: Operators desk con�guration.

responsible for controlling the infrastructure, disables that node and informs the system

administrators as well as the data �ow (DAQ/HLT) shifter, responsible for the data

�ow operations, who knows the details of the farms. If the level of knowledge in the

ACR is not su�cient, the shifters refer to the on-call experts who are available for

solving problems requiring a deeper level of knowledge. The on-call phones also have a

certain hierarchy: if the primary TDAQ on-call phone holder can not solve the actual

problem, this person forwards the problem to the secondary on-call experts with speci�c

competency: front-end electronics; events selection; event building and control and

con�guration. The system and network administration phones are also active 24/7 to

intervene on problems which go beyond the TDAQ software and hardware. Accumulated

experience in 2010 and 2011 shows that the primary on-call person is called on the

average about 4-5 times a week and in very few occasions the call is forwarded to the

secondary experts (22).

3.1.2 Monitoring infrastructure

The evaluation of correctness of running operations requires shifters and experts to

gather and correlate information from multiple data sources, often to be aggregated in

a certain time-line. Given the layered nature of the TDAQ infrastructure, as presented

in Section 1.2.1, information sources are spread among the di�erent levels and provide

views on multiple aspects of the data acquisition system. The monitoring infrastructure

is composed of data providers at di�erent levels that can be grouped in three main

29

3. PROBLEM INTRODUCTION

Figure 3.3: High-level view on operational procedures.

categories:

� TDAQ core-services: which provide access to low-level, un�ltered data about

the basic activities in the system, for example application logs, process communi-

cation and system con�guration.

� Data Monitoring tools: a set of high-level monitoring tools that provides views

at di�erent levels of the data-�ow chain. They may collect and aggregate infor-

mation from other providers to compute new information, such as displaying the

overall data �ltering and archiving rates during runs.

� Farm tools: a set of speci�c tools managed by system and network administra-

tor to provide information about the status of the farm and of the networking

infrastructure.

From a functional perspective, information is made available via several GUI interfaces

or web pages. Operators and experts have to know which tool to use to retrieve the

information they need. In the next sections the di�erent categories are detailed.

30

3.1 Operating the data acquisition system

3.1.2.1 TDAQ core-services

This section presents the TDAQ core-services that are relevant for monitoring opera-

tions:

� The Information Service (IS) provides generic means for sharing information be-

tween distributed TDAQ applications, in a publish/subscribe fashion. Information

is stored in memory by so called IS servers and it is modelled as generic key-value

pairs with support for user-de�ned types. IS is the most common approach to

store functional and operational data used by TDAQ applications, so it plays a

key role in checking the correctness of system behaviour. The generic key-value

approach allows for high �exibility on the types of information managed, but it

also requires the user to know exactly the key corresponding to the desired data.

IS manages thousands of di�erent pieces of information and it handles a very high

update rate (sustained 5 kHz in running condition, with peaks of 100 kHz). In

this way, it re�ects with great precision the status of data acquisition applications.

However, since IS is mainly designed for information sharing, it o�ers a view only

on the last snapshot of the published information, without any historical data.

� Error and message reporting : every software component of the TDAQ system uses

the Error Reporting Service (ERS) to report issues, i.e. events that need atten-

tion, either to the software component calling it or to the external environment,

like e.g. a human operator or an expert system. The inter-process transport mech-

anism for messages is called Message Reporting System (MRS). The Log Service

package allows to archive messages for o�ine retrieval. This is the main source of

information for operators and experts to investigate data acquisition operations

over time. Although the message viewer GUI allows users to �lter log messages

on several criteria, the process of extracting meaningful information is not trivial.

The �ow of messages generated by the thousands of TDAQ applications can be

easily in the order of 100/hour in normal condition but it can fast grow with spike

of 1000/minute in case of error situations.

� Con�guration database: stores a large number of parameters describing the data

acquisition system architecture, the hardware and the software components and

run conditions. It contains for example information about the system topology,

31

3. PROBLEM INTRODUCTION

Figure 3.4: Data quality monitoring tool.

i.e. which machines are actually part of the data acquisition infrastructure, which

applications run on which machine, application parameters, etc.

The Integrated Graphical User Interface (IGUI), that is the graphical interface used by

shifters to operate the TDAQ system, is not properly a monitoring tool but it is the

�rst place where operators get noti�ed if something is not running properly. The IGUI

provides a tree-like representation of TDAQ computers and process retrieving the system

topology from the con�guration database. Every node represents a TDAQ application,

for which the corresponding operational data is read from IS. If an application is not

running correctly the problem is represented on the tree.

3.1.2.2 Data Monitoring tools

A set of higher-level monitoring tools has been developed to satisfy requirements com-

ing from di�erent ATLAS sub-detectors and to monitor di�erent levels of the data-�ow

chain. These tools aggregate information from the TDAQ core-services or from sampling

experimental data. The monitoring system is organised as a distributed framework. It

32

3.1 Operating the data acquisition system

includes core software applications for information-sharing, dedicated monitoring facil-

ities and graphical monitoring displays. The ATLAS TDAQ and sub-detector systems

are monitored in two di�erent ways:

� Operational Monitoring: from the hardware and software components func-

tional parameters are collected and published to the monitoring applications.

� Event Monitoring: sampled event data are analysed and the results are pub-

lished as monitoring information.

A set of visualization tools is available to presents the results produced by the monitoring

framework. These tools allow for a remote access to monitoring information, that is

an indispensable feature of the experiment operational model. This includes the access

to monitoring histograms, to the detector state and to the data quality status either

via web-based services or via direct export of monitoring displays. Figure 3.4 presents

an example of a high-level graphical user interface that shows results produced by the

Data Quality Monitoring (DQM) framework.

3.1.2.3 Farm and network tools

The trigger and data acquisition computing cluster contains about 2400 commissioned

computers (220 racks situated underground and about 100 racks on the surface). The

TDAQ computing system is being constantly monitored using the Nagios monitoring

software (34). For most of the ATCN nodes only low�level monitoring has been im-

plemented: basic OS warnings and errors are reported, network connections are being

regularly polled and hardware state is monitored. For some of the nodes (�le servers,

gateways, web servers) speci�c services are also monitored such as NTP, NFS and

DHCP.

The TDAQ network con�guration, as presented in (33), is composed by a control

network, which provides infrastructure and operational services, and by two dedicated

data networks, used exclusively for transferring the event data. The network is moni-

tored via dedicated tools:

� SNMP (Simple Network Management Protocol) polling engine that e�ciently

gathers statistics from all the network ports into RRD �les, with a polling in-

terval of at most 30 seconds;

33

3. PROBLEM INTRODUCTION

Networks metrics Farm metrics

TDAQ Core Services

Data
Monitoring

Tools

Farm layer

Middleware layer

Applications layer

...

operators

experts

admin

Figure 3.5: Information providers used by TDAQ operators and experts.

� a �ow analysis engine, which stores samples of network tra�c for a-posteriori

troubleshooting.

Several �avours of presentation clients have been designed. The most complete of them

is Net-IS (the Integrated System for Performance Monitoring of the ATLAS TDAQ net-

work (38)): a powerful interface which provides convenient access to all the networking

monitor information.

3.1.3 Limitations of continuous monitoring

The complexity of the TDAQ architecture poses many challenges for operators and

experts who must constantly monitor the infrastructure to maximize data taking e�-

ciency. As discussed in the previous section, the TDAQ system o�ers a complete set of

monitoring facilities used by experts and shifters to get insights on system behaviour.

The use of the monitoring infrastructure is sketched in Figure 3.5. Nevertheless, it is

still very di�cult to e�ectively perform fault diagnosis and root cause analysis.

Firstly, each monitoring tool is naturally focusing on a speci�c data acquisition

aspect, but in a multi-tier environment, such as the TDAQ infrastructure, applications

no longer operate in isolation, e.g. a failure on a backend service can cause applications

running at a higher level to fail as well. A single problem can propagate across the

entire infrastructure, resulting in every tool showing a di�erent manifestation of the

same underlying issue.

34

3.1 Operating the data acquisition system

Secondly, fault diagnosis requires strong competence and experience. Operators

and experts have to know exactly where to look for the information they need, which

tool to use, via GUI, command line tools or web pages. In most cases the meaningful

information is not in the single data or message, but it requires to manually perform

correlation of events, often over a speci�c time line.

And lastly, high-level tools are not able to provide access to detailed monitoring

information. They aggregate monitoring data to provide a global view on the system,

but with a signi�cant loss of details. For debugging purposes operators have to rely

mainly on core services where the information is complete but more di�cult to handle.

Together with these limitations, which are related to the layered architecture of

the TDAQ system, there are a set of constraints speci�c to the TDAQ operational

procedure, detailed in the next paragraphs.

3.1.3.1 Dynamic system conditions

The complexity of the TDAQ architecture and the dynamics of system con�gurations

make it extremely di�cult to de�ne with absolute precision what has to be considered a

problem during data taking operation. A typical example is the analysis of log messages

reported by applications. There are situations when a fatal error message can be safely

ignored by the shifter because of known issues or temporary conditions. But the same

error has to be handled promptly and correctly when the temporary condition disap-

pears. As an example, issues reported from farm monitoring tools have to be handled

di�erently depending on the role of the involved machine in the data acquisition.

Instructions about known issues and temporary problems are collected by TDAQ

experts in wikis and web pages (5). Shifters are supposed to check them before taking

any action. This is a non-optimal and error-prone solution, experts have to be extremely

careful in keeping the pages up to date and shifters have to check the pages in case of

any problems.

3.1.3.2 No static thresholds

TDAQ farm monitoring tools already include systems, such as Ganglia (15) and Nagios(34),

capable of automatically detecting problems and sending noti�cations. These systems,

mainly focusing on system architecture issues, are primarily driven by threshold-based

35

3. PROBLEM INTRODUCTION

checks. As long as the result of a test or check lies within a prede�ned range, the

monitored service is considered to be operating normally.

This static threshold approach works well for low-level infrastructure monitoring

but is not appropriate for monitoring the correctness of data taking operations. The

dynamic TDAQ con�gurations make it extremely di�cult to de�ne the expected working

conditions. For example, the load on a machine is strongly dependent on its role in

TDAQ infrastructure and on the run conditions, such as event �ltering rates. This

makes static threshold only useful to detect hardware problem or boundary situations

(e.g. a disk full), but of poor utility to detect more complex scenarios.

3.1.3.3 Re-use of expert knowledge and formalization

Section 3.1.1 described how shifters interact with experts for most of the fault diagnosis

operations. Now that the TDAQ system is into the full operational phase, shifts are

often covered by new operators with limited experience. In case of problems the experts

have the knowledge and experience to investigate the issue and suggest the appropriate

reaction. But this information is given through a direct communication between the

shifter and the expert and it is not formally represented and maintained. Often, if the

problem appears again then the next operator will contact the expert posing the same

question. This is not optimal and is a clear ine�cient use of experts know-how.

3.1.3.4 Repetitive checks and controls

Operators duties include periodic checks and controls on system conditions and data

taking parameters, such as the veri�cation that all services are up and running correctly

and that no errors exist. Hourly reports have to be compiled with the results of a set of

test procedures. Often, the checked conditions correspond to rare situations that may

not have direct impact on data taking operations, but are still valuable for o�ine anal-

ysis. The repetitiveness of tasks and the low probability of problems occurrence lower

the attention threshold of operators, so that failures may not be promptly detected.

3.2 Error management in TDAQ

Given the size and complexity of the TDAQ system, errors and failures are bound

to happen and must be dealt with. The data acquisition system has to recover from

36

3.2 Error management in TDAQ

these errors promptly and e�ectively, possibly without the need to stop data taking

operations. This section introduces the Error Management System (EMS) that has

been implemented and is currently in use in TDAQ (?). This EMS proved to be

very e�ective for automated recovery for well-de�ned situations. Nevertheless, only

a minor fraction of the overall operational procedures can be automated, and about

50% of the TDAQ operational ine�ciency, as presented in Section 3.4, is coming from

situations where human intervention is still required. In this respect, a high level tool

helping operators with diagnosis of problems and suggesting appropriate reaction is still

a missing technology. The design and implementation of such a system is the subject

of this thesis work and is presented in Chapters 5 and 6.

3.2.1 Error detection and recovery

Due to the very high costs of operation of the ATLAS experiment, both economically

and in terms of manpower, reducing the amount of downtime, here meaning the time

when the system is not performing its main tasks at its full potential, is very important.

The downtime consists of two periods of time:

� Time-to-detection: The time from when an error occurred in the system until the

error is detected. This clearly depends on the e�ectiveness of the error detection

system available, the skill of the human operator involved or a combination of the

two.

� Time-to-recovery : The time from when the error is detected until appropriate

actions have been performed and the system has been restored to a functional

state. The main contributions for this period are from two activities:

� problem investigation: the time from when the error is detected until the

cause is recognized;

� recovery action: the time spent in restoring the normal data taking opera-

tions.

3.2.2 The expert system approach

Expert systems (ESs) are a sub-�eld of Arti�cial Intelligence which deals with complex

problems within a well de�ned specialised �eld or domain. An ES is usually realised by

37

3. PROBLEM INTRODUCTION

encoding the knowledge of an expert in the �eld/domain in question in such a way that

this knowledge can be reproduced by an automated system.

3.2.2.1 Rule based expert system

In a rule based expert system the encoded expert knowledge is usually referred to as

the knowledge base and consists of rules in an IF-THEN form. Rules consist of two

parts, namely:

� Antecedents: One or more conditions that must be ful�lled for a proposition/rule

to be true. Hence, in a rule in the IF-THEN form it is the part that follows the

IF statement and precedes the THEN statement.

� Consequents: is the second half of a proposition. In a rule in the IF-THEN form,

the consequent is the part that follows the THEN statement.

The rule based system then relies on an inference engine in order to drive the system

and automatically activate rules that are relevant to the current situation. Inference

engines usually follow one of two approaches:

� Forward chaining : This is an approach where the working memory is matched with

the available rules so that if all the antecedents of a rule are ful�lled the consequent

part is added to the working memory. The CLIPS framework presented in 3.2.3.1

is using forward chaining.

� Backward chaining : As opposed to forward chaining this approach starts with a

consequent and attempts to and antecedents that followed that rule. An example

of a system using backward chaining is the logic programming language Prolog

(40).

3.2.3 The TDAQ Error Management System (EMS)

The Error Management System (EMS), presented below, aims at detecting failures and

performing recovery procedures during data taking operations without the need for

human intervention (?). The main functionalities are:

� Gather the knowledge on system condition and errors, connecting to the core-

services such as IS and ERS.

38

3.2 Error management in TDAQ

Figure 3.6: Key components of the EMS framework.

� Detect problems and react appropriately.

The EMS is tightly coupled with the control system (as presented in Figure 3.6) in order

to perform recovery actions. A rule based expert system is used at the core of the EMS

and is described in the next section.

3.2.3.1 The CLIPS framework

The EMS is implemented on top of CLIPS (C Language Integrated Production System)

(10). CLIPS is an open-source expert system framework. Some of the main features of

the CLIPS framework are:

� An inference engine supporting forward chaining.

� Supports both procedural and object oriented programming in addition to the

declarative rule programming.

� Represents expert knowledge in an IF-THEN form which is human readable.

� It is easy to extend using the C++ programming language.

CLIPS uses the Rete algorithm (19) for driving the inference engine. The Rete algorithm

is best used in situations with many rules/many objects and is therefore well suited for

representing the complexity of the TDAQ system.

39

3. PROBLEM INTRODUCTION

3.2.3.2 Knowledge base

At the core of the expert system is naturally the knowledge base containing the neces-

sary rules to e�ect the EMS. Information about the di�erent applications, computers

and other hardware is represented in the expert system using proxy objects. Whenever

the ES is started it is populated with relevant information such as class instances rep-

resenting all the applications in the controllers segment (in the case of the local unit).

This information can then trigger rules in the expert system. The matching of facts

and objects to the rule base is performed by the inference engine.

3.2.4 Limitations

Although the rule-based expert system approach suits well for the error recovery func-

tionalities provided by the EMS, there are limitations preventing its adoption as intel-

ligent engine in the scope of this thesis:

� Forward chaining is not appropriate for root cause analysis of problem. It adopts

a data-driven approach, i.e. the engine starts rules evaluation with the available

data and uses inference rules to extract more data until a goal is reached. It can

be used to detects error conditions but it is not meant to deduce how a particular

goal was achieved.

� The ability of the system to perform reasoning about time is very limited. While

it can react to and deal with a large number of facts, the IF-THEN approach is

not meant to detect complex patterns over time.

� System complexity. An expert system approach with a broader requirements set

was �rstly attempted more than 8 years ago for controlling the TDAQ system

(13). The size and the complexity of the knowledge base became very hard to

maintain it eventually required a redesign to deal only with error-management

functionalities (?).

40

3.3 The ATLAS data taking e�ciency

Day in 2011

28/02 30/04 30/06 30/08 31/10

]
1

T
o

ta
l
In

te
g
ra

te
d
 L

u
m

in
o
s
it
y
 [
fb

0

1

2

3

4

5

6

7 = 7 TeVs ATLAS Online Luminosity

LHC Delivered

ATLAS Recorded

1Total Delivered: 5.61 fb
1Total Recorded: 5.25 fb

Figure 3.7: ATLAS total integrated luminosity in 2011.

Date in 2011

21/02 25/04 27/06 29/08 31/10

R
e
c
o
rd

in
g
 E

ff
ic

ie
n

c
y
 [
p
e
rc

e
n
t]

60

70

80

90

100

110

120
 = 7 TeVs ATLAS Online

Total Efficiency: 93.5%

Figure 3.8: ATLAS data taking e�ciency in 2011.

3.3 The ATLAS data taking e�ciency

The data taking e�ciency of the ATLAS experiment is measured as the ratio of the data

produced by LHC-delivered collisions with the data the ATLAS detector is able to reg-

ister. Ine�ciency accounts both for infrastructure limits and individual problems that

prevent the data taking to proceed. Given the critical value of experimental data, the

aim is to operate the ATLAS TDAQ system to maximize the overall ATLAS e�ciency.

The plot in Figure 3.7 shows the total integrated luminosity delivered to (LHC

41

3. PROBLEM INTRODUCTION

delivered) and recorded by (ATLAS Recorded) ATLAS in 2011 (4). The luminosity is

a measurement of the number of particles colliding in a time unit.

The plot in Figure 3.8 shows the ATLAS data taking e�ciency in 2011 (4). The

denominator is the luminosity delivered by LHC and the numerator is the luminosity

recorded by ATLAS. Each bin represents a week and the empty bins are due to weeks

in which no stable beams were delivered by the LHC.

The ATLAS experiment was able to achieve the high e�ciency of 93.5% for the 2011

runs.

3.3.1 Ine�ciency governing factors

Factors contributing to the loss of data taking e�ciency are both infrastructure limits

and individual problems that prevent the data taking to proceed.

Figure 3.9: Data-acquisition e�ciency and stable beam duration for the period 20 June

2011 to 30 June 2011.

Firstly, for safety reasons, several sub-detectors of ATLAS can be fully powered only

when LHC delivers colliding beams (i.e in stable-beam condition). When stable-beam

is declared an automated procedure (i.e. warm-start) handles the insertion of these

sub-detectors to begin the proper data taking. This overhead is an inevitable source of

ine�ciency.

42

3.3 The ATLAS data taking e�ciency

Secondly, the system dead-time is another source of ine�ciency. It is the time when

the TDAQ system is running but the data is not collected (i.e the trigger is on-hold).

This can be due both to limitations on detector electronics or to problems in the data-

�ow chain.

Finally, there are many di�erent problems concerning the system con�guration and

operations that need to be handled promptly by operators to limit the loss of experi-

mental data.

The Figure 3.9 shows the data acquisition e�ciency for a sequence of LHC physics

�lls (i.e. identi�er for colliding time periods). For each LHC �ll, the top plot shows

three di�erent e�ciency values, respectively de�ned by (left to right):

� Overall e�ciency (blue) Ratio of data-taking time, excluding the dead-time, and

beam time.

� E�ciency with stable beams (red) Ratio of data-taking time with the detector in

full physics-mode (after the warm start), excluding the dead-time, and the time

with stable beams.

� E�ciency with stable beams excluding LHC dump handshake (orange). As the

previous one, but excluding the stable beam time lost due to the beam dump

handshake. This procedure is in fact known to arti�cially introduce ine�ciency

since the detector must be switched o� before the actual beam dump for safety.

The bottom plot instead presents the stable beam duration for each store. It can be

clearly observed that, for �lls lasting more than a few hours, normally the achieved

physics e�ciency is 95% or more. For shorter �lls, the time necessary to switch on the

detector after the beams are declared stable is not negligible.

43

3. PROBLEM INTRODUCTION

3.3.1.1 Repartition of 2011 ine�ciency

Ine�ciency w.r.t. total w.r.t. ine�ciency

Holding trigger 0.6% 10%

Holding trigger (by operator) 0.7% 11%

Normal warm-start 1.2% 19%

Problematic warm-start 0.7% 11%

ROS problems 1.1% 17%

Other problems 1.0% 15%

Simple dead-time 1.0% 15%

Lumi-block change 0.2% 2%

SUM 6.5% 100%

Table 3.1: Ine�ciency factors for ATLAS data taking in 2011.

The overall data taking e�ciency for the 2011 data was of 93.5%. The table in 3.1

details the sources contributing to the 6.5% of ine�ciency (22). In order to give an idea

of time periods: the average time for a normal warm start procedure is 3 minutes and

45 seconds; while a problematic warm start can be around 10 minutes.

3.3.2 Operational ine�ciency

As introduced in previous sections, during ATLAS data taking operations in 2011 the

6.5% of the LHC-delivered data was lost. This is due both to infrastructure limits

and unavoidable overhead, but also to several problems involving human intervention

in operating the TDAQ system (i.e. operational ine�ciency). The Figure in 3.10

represents the ine�ciency sources with focus on these categories. About the 50% of the

overall ine�ciency (i.e. from Problematic warm-start, ROS problems, Other problems,

and the part of the Holding Trigger section due to operators interventions), contributing

for more than the 3% ATLAS e�ciency loss, is coming from operational problems.

In these situations TDAQ shifters and experts have to detect the errors, identify the

problem root cause and perform the appropriate actions to recover the data taking

operations. In this respect, the AAL project aims at reducing the time spent for dealing

with operational ine�ciency, to minimize the loss of experimental data.

44

3.4 An automated and intelligent assistant for TDAQ operations

��������	AB�CD

E��F������������B���D

���������������B���D

������������������F�������
��D

��E�F�������B�� D

!������"����������B��#D

$���������	�"����������
��D

��%���F�������B���D

����������	A�BACDEEAF	�BB����	����A

Figure 3.10: Ine�ciency factors for ATLAS data taking in 2011 with focus on operational

issues.

3.4 An automated and intelligent assistant for TDAQ op-

erations

As presented in the previous section, about the 50% of the TDAQ data taking inef-

�ciency is coming from situations where human intervention is involved. A high-level

monitoring tool helping operators with automated diagnosis of problems and suggesting

the appropriate reaction could reduce the time for error management and minimize the

loss of experimental data. This is the objective of the AAL project: to be an automated

and intelligent assistant for TDAQ operators.

3.4.1 Aims

Assisting TDAQ operators means increasing the situational awareness they have on the

data taking operations. The target for the assistant are both shifters and experts. It

aims at providing a clear and e�ective support for shifters as well at presenting detailed

and complex system analysis for experts in case of problem troubleshooting.

45

3. PROBLEM INTRODUCTION

3.4.2 Requirements

The assistant aims to be intelligent in the way it processes TDAQ working conditions

and automated in how it detects problems and noti�es operators. The main require-

ments are:

� To automatize checks and controls in real-time.

� To detect complex error situations, performing time-based analysis on multiple

system conditions.

� To receive instructions from TDAQ experts on what to detect and how to react,

building a knowledge-base of instructions.

� To e�ectively notify TDAQ operators with the problem diagnosis and appropriate

reaction.

The di�erent requirements are analyzed in the following sections.

3.4.2.1 Automatize check and controls in real-time

The assistant should automatically collect and process information from the TDAQ

monitoring infrastructure in order to detect problems and failures as they happen and

immediately notify operators. This will be further referred as real-time error detection.

In this context the adjective real-time refers to a level of responsiveness that a user senses

as immediate or nearly immediate, as the delay from problem detection to noti�cation

is expected to be in the order of few seconds.

3.4.2.2 Detect complex system behavior

The ability to detect complex system behaviour and produce problem-relevant informa-

tion, and get it in time for it to be useful, is a key feature for the assistant tool. This

requires acting at two stages:

� gather data from the multiple data providers,

� detection of relevant patterns of events among the monitored information.

46

3.5 Summary

The assistant should gather data from the TDAQ monitoring infrastructure interacting

with providers of di�erent nature and consuming several data formats. Moreover, it

should be able to perform complex reasoning over the streams of monitoring events.

The Complex Event Processing (CEP) approach has been adopted by the AAL project

to express events relationship, as presented in Chapter 4, allowing for diagnosis of TDAQ

problems and issues.

3.4.2.3 Knowledge-base of instructions

The shifter assistant will largely depend on the willingness of TDAQ experts to regularly

feed the tool with correct knowledge and remove stale information. Experts from the

di�erent domains should feed the assistant with the information on how detect problems

and failures and the suggested reactions. The assistant should allow an easy and �exible

management of the knowledge, in order to add new and remove old instructions without

the need to restart the service.

3.4.2.4 E�ective noti�cation

Di�erent people engaged in the operations of the TDAQ system, such as shifters and ex-

perts, need di�erent kinds of information. The capability to construct problem-relevant

views of a system operation is a prerequisite for automating processes for real-time

decision making and TDAQ system managing. The main requirements are:

� Ability to create per-shifter views on system conditions and events. The di�er-

ent TDAQ operators should be provided with information relevant to their core

competency.

� E�ectively present this information to operators. Automatically present the mon-

itoring data when needed, without requiring the user to ask for it.

� Support multiple ways to visualize the information, decoupling diagnosis results

from the visualization media (e.g. web interface, mails, SMS, MRS messages).

3.5 Summary

Operating the ATLAS TDAQ infrastructure requires strong competences and deep

knowledge of the system. Since the ATLAS experiment has entered the full running

47

3. PROBLEM INTRODUCTION

phase, more and more often operators are inexperienced collaborators with very limited

training. The need to streamline the way the TDAQ system is managed by operators

has become increasingly important. The knowledge has to be transferred from experts

to new intelligent tools.

The existing error management system (EMS) has proved to be a very e�ective

solution to detect failures and performs recovery procedures for well de�ned speci�c

conditions, without the need for human interaction. About 50% of the TDAQ data

taking ine�ciency is coming from situations where operators are involved. Dealing

fast and e�ectively with problems and failures is fundamental to minimize the loss of

experimental data. This is the objective of the AAL project: to be an automated and

intelligent assistant for TDAQ operators.

48

Chapter 4

Complex event processing with

Esper

The need to process streams of information from distributed sources at high rate with

low latency is of interest from the most disparate �elds: from wireless sensor networks

to �nancial analysis, from business process management to fault diagnosis. All these

applications rely on an information processing engine capable to timely process and

digest the �ow of data, to extract new knowledge to answer complex queries and to

promptly present results.

In recent years Complex Event Processing (CEP) technologies have emerged as e�ec-

tive solutions for information processing and event stream analysis. CEP technologies

provide the means to reason upon events and relationships among them. Esper(7) is

the leading open source engine for complex event processing and it has been adopted

as CEP engine in the project presented in this thesis.

This chapter gives an overview of information processing technologies, describes the

concepts and mechanisms at the base of complex event processing and presents Esper

architecture and functionalities.

4.1 Information processing technologies

Information processing technologies have been developed to address the requirements

of applications that analyze and react to events. Some typical examples are:

49

4. COMPLEX EVENT PROCESSING WITH ESPER

� Business process management and automation (process monitoring, reporting ex-

ceptions).

� Finance (algorithmic trading, fraud detection, risk management).

� Network and application monitoring (intrusion detection, SLA monitoring).

� Sensor network applications (RFID reading, scheduling and control of fabrication

lines, air tra�c control).

The commonality of all these applications is the requirement to process events in real-

time or near real-time. Key aspects for these types of applications are throughput,

latency and the complexity of the logic required.

� High throughput: applications that process large volumes of messages per unit of

time (up to hundreds of thousands of messages per second).

� Low latency: applications that react in real-time to conditions that occur (from

a few milliseconds to a few seconds).

� Complex computations: applications that detect patterns among events (event

correlation), �lter events, aggregate events over time, join event streams, trigger

on absence of events.

These requirements led to the development of a number of technologies di�erent in

architecture, data models, rule languages, and processing mechanisms. An example

of information processing application is a �re detection system that has to generate an

alarm if �re is detected in a building. It works by gathering and processing temperature

data from a set of sensors, potentially at high rate, from all building rooms.

To illustrate the di�erent types of information processing technology the classi�ca-

tion presented in (32) is adopted, where three models emerged: the active database

system (37), the data stream processing (6) and the complex event processing (30).

4.1.1 Active DBMS

Active Data Base Systems can be seen as an extension of classical Data Base Manage-

ment Systems (DBMSs). A DBMS requires data to be persistently stored and indexed

before it could be processed. The processing model of a DBMS is completely passive:

50

4.1 Information processing technologies

data are only processed and presented when explicitly asked by users or applications via

data queries. The concept of active DBMSs emerged from the database community to

overcome this limitation, moving the reactive behavior from the application layer into

the DBMS. The knowledge model usually consists of active rules composed of three

parts: Events (that de�ne which action should trigger a reaction, such as a tuple inser-

tion or update); Condition (that speci�es the query criteria, e.g. when an event has to

be considered interesting); Action (actions to be performed when the event is detected,

such as database modi�cation).

Nevertheless, as a database extension, active rules can refer only to data presents in

the database, e.g. implement an automatic reaction to constraint violations for certain

tuple insertion or other operations. In the context of continuous processing of data �ow

this is a strong limitation, because most of the processed data have no intrinsic value.

For example, to implement the �re detection system, an active DBMS requires to store

all sensor reading as database entries. But most of this information is of no value if

no �re is detected, while storing a high �ow of data may impact the overall system

behaviour.

4.1.2 Data stream processing

The database community developed a new class of systems to process large streams of

data: Data Stream Management Systems (DSMSs). They di�er from DBMSs in:

� data is organized in streams that are usually unbounded, not in tables;

� a query can continuously produce results as new data is inserted, as opposite to

user-driven query execution.

Data are analyzed via standing (or continuous) queries, i.e. queries that are deployed

once and continue to produce results until removed. Standing queries can be executed

periodically or continuously as new stream items arrive. The answer to a query can be

seen as an output stream or as an entry in a storage that is continuously modi�ed as

new elements �ow inside the processing stream. The project Aurora (14) is an example

of this technology.

Although this is an improvement in data stream analysis, these systems do not

support any complex pattern detections or expression of event relationships, so they

remain limited in practical applications.

51

4. COMPLEX EVENT PROCESSING WITH ESPER

4.1.3 Event processing technologies

Event processing technologies, like the name says, introduce the concept of event to

associate a precise semantics to the information data being processed: they are noti�-

cations of events which happened in the external world and were observed by sources.

An event processing engine is responsible for �ltering and combining such noti�cations

to understand what is happening in terms of higher-level events. Indeed, the event pro-

cessing model relies on the ability to specify composite events through event patterns

that match incoming event noti�cations on the basis of their content and on some re-

lationships among them. Events are analyzed via the continuous processing of de�ned

patterns. The main requirements for an event processing system are:

� the need to perform real-time analysis of incoming information to produce new

knowledge;

� the need for an expressive language to describe how incoming information has to be

processed with the ability to specify complex relationships among the information

items;

� the need for scalability to e�ectively cope with large number of events and infor-

mation sources.

4.2 Complex Event Processing: a theoretical introduction

The term Complex Event Processing (CEP), coined by D. Luckham in his �The Power

of Events� book (30), is a de-facto standard to identify event processing technologies for

distributed enterprise systems, with focus on pattern detection and recognition. This

section discusses the basic concepts of CEP, what events are, how they are created and

how CEP systems analyze and process event streams.

4.2.1 What events are

An event is an object that is a record of an activity in the system. It has three main

aspects:

� Form: an event can have many attributes or components. The form of an event

is the representation in a certain format of the event as a set of attributes. It can

52

4.2 Complex Event Processing: a theoretical introduction

be as simple as a string or a tuple of data components. In this thesis the term �

event attribute�, is as a short way to say �a data component of an event form�.

� Signi�cance: an event signi�es an activity. The event form contains data describ-

ing the activity it signi�es.

� Relativity : an activity is related to other activities by time, causality and aggre-

gation. The relationship between events is called relativity.

It is quite common to confuse an event with is form, e.g. �An event is just a message�.

Event processing is di�erent from message processing because it provides the means to

reason upon relationships between events.

4.2.2 How events are created

CEP technologies have to be able to create events that signify the activities that are

happening in the system. There are two steps:

� Observation step: the CEP system has to be able to access and observe the ac-

tivities at any level of the target system.

� Adaptation step: observations must be transformed into event objects that can be

handled by a processing engine.

Considering the process of monitoring the �ow of information in an enterprise system,

as presented in Section 1.2.1, there are three principal sources of events:

� System layers: in distributed system, as shown in Figure 4.1, communications

between the components are observable from di�erent layers. Each layer may

contain a variety of components, such as message-oriented middleware, ORBs,

databases, etc.

� Instrumentation: components of the system can generate events as metrics and

reports, such as heartbeats or alerts reported by monitoring tools.

� CEP : events are created by the CEP system itself in the course of processing

events observed in the system.

53

4. COMPLEX EVENT PROCESSING WITH ESPER

Figure 4.1: High-level view on enterprise system layers.

4.2.3 Time, Causality and Aggregation

The three most common and important relations between events are the following:

� Time: is a relation that orders events. A time relation depends upon a clock,

typically via a timestamp associated to the event when it is created. The order

of event timestamps de�nes the time relation between events. A system can have

multiple clocks, that may or may not be synchronized.

� Cause: is a dependence relation between events in the system. An event depends

upon other events if it happened only because the other events happened.

� Aggregation: is an abstraction relationship. Usually, event A is created when a set

of events {Bi} happens. A is an higher-level event that signi�es complex activities,

so it is called a complex event.

All these relations between events are transitive and asymmetric. Each of these relations

is a strict partial ordering rather than a total ordering because there can be events that

are not ordered by the relationship. That is events A and B can exist such that neither

A R B nor B R A, where R is one of the above relationships.

54

4.2 Complex Event Processing: a theoretical introduction

4.2.3.1 Cause-Time Axiom

In most systems, causality and time always have a very simple consistency relationship,

stated by the following law:

� Cause-Time axiom: If event A caused event B in system S, then no clock in S

gives B an earlier timestamp than it gives A.

The CEP system discussed in this thesis obeys to the cause-time axiom.

4.2.3.2 Genetic parameters

In CEP event relationship to other events are encoded as data parameters in the event

form. Special data parameters are added, during the adaptation step, to encode event

timing and causal relationship. These are called genetic parameters:

� Timestamp: de�nes the time the event is created.

� A causal vector : which is the set of the identi�ers of the events that are the causal

history.

4.2.3.3 Augmenting time with causality

When complex event processing is applied to investigate the root cause of problems,

the combination of event time and correlation can extract meaningful information from

events �ow.

For example, consider a set of events together with their causal relationship rep-

resented as Direct Acyclic Graphs (DAG). Figure 4.2 shows a log �le of events in the

time order they happened. Events are transmitted between pairs of nodes in a network

according to the simple protocol to exchange messages: each message is accompanied

by a bit b. Ideally, a send of the message M: Send(M, b) should be followed by a

Receive(M,b), Ack(M,b) and ReAck(M,b).

55

4. COMPLEX EVENT PROCESSING WITH ESPER

Send
M,0

Wait
M,0

Receive
M1,0

ReSend
M,0

Receive
M,0

Ack
M,0

RecAck
M,0

Send
M1,0

TimeOut
M,0

Ack
M1,0

Receive
M,0

Ack
M,0

Send
M2,1

Wait
M2,1

RecAck
M1,0

1 2 3 4 5 6 7 time

Figure 4.2: An event log of network protocol events ordered by time.

As the log shows, the ideal transmission happened for message M1. But the �rst

message sent (M) was received twice, only after a TimeOut. Only from time ordered log

is not easy to deduce if the ReSend was actually necessary. Figure 4.3shows the same

event log with causal relationship between the events. Now it is clear that the ReSend

of M is part of the complete transmission with an acknowledgment from the receiver

and a �nal receipt by the sender, RecAck.

Send
M,0

Wait
M,0

Receive
M1,0

ReSend
M,0

Receive
M,0

Ack
M,0

RecAck
M,0

Send
M1,0

TimeOut
M,0

Ack
M1,0

Receive
M,0

Ack
M,0

Send
M2,1

Wait
M2,1

RecAck
M1,0

1 2 3 4 5 6 7 time

Figure 4.3: The same event log of network protocol with explicit causal-relationship as

DAG

4.2.4 Event patterns

An event pattern is a template that matches a certain set of events with well de�ned

criteria. It describes precisely not only the events but also their causal relationship,

timing, data parameters and context. A set of events together with their causal rela-

tionship is called a poset, abbreviation of partially ordered set of events. So an event

pattern is a template for posets. A pattern has to declare:

� A list of variables, together with their types:

� A variable M of type Message: Message M.

56

4.2 Complex Event Processing: a theoretical introduction

� A variable T of type Time: Time T.

� A list of types of events, with a name and a parameter list of variable

� A Send event: Send(Message M, Bit B, Time T).

� A ReSend event: ReSend(Message M, Bit B, Time T).

� A pattern, as a set of event templates together with relationship between events:

� A Send and a ReSend with the same message and bit, and possibly a di�erent

timestamps: Send(M,B,T1) and ReSend(M,B,T2)

� A condition on the context of any match. This is a test that must be true when

the pattern is matched:

� The time between the Send and ReSend events must be less than a bound : 0

< T2 - T1 < Bnd

Each match of a pattern is a poset that is an instance of the pattern constructed by

replacing variables in the pattern with values from the events stream. The process of

replacing variables in a pattern with values is called pattern matching.

4.2.4.1 Rules

A rule for a CEP system speci�es an action to be taken whenever and event pattern is

matched. It has two parts:

� A trigger : an event pattern described in a certain pattern language.

� An action: an event that is created whenever the trigger matches.

While the action is strictly dependent on the technology used to develop the processing

engine, the pattern languages proposed by most of CEP solutions are derived from the

Structured Query Language (SQL) (28). Streams replace tables as the source of data

with events replacing rows as the basic unit of data. Since events are composed of

data, the SQL concepts of correlation through joins, �ltering and aggregation through

grouping can be e�ectively leveraged.

57

4. COMPLEX EVENT PROCESSING WITH ESPER

4.2.5 Processing model architecture

A CEP system is interfaced to the target enterprise system to receive and process

events as presented in Figure 4.4. The CEP infrastructure is fed by event adapters that

monitor a variety of subsystems. The role of adapters is to monitor for events, messages

or whatever form of activity and to convert its input into events in format used by CEP.

The processing model is continuous: when a rule is created the corresponding pattern

is continuously evaluated against the new events generated by the speci�ed streams.

Subsystem 1

Subsystem 2

...

Local Adapter

Local Adapter

Local Adapter

CEP
engine

Web pages

Activity
 viewer

...

Enterprise system Analysis Tool

continous
patterns

evaluations

Figure 4.4: A CEP system interfaced with a target system.

4.2.5.1 FSM automata

State machines are a common approach to build a CEP engine because event patterns

can be easily represented as a set of well de�ned state, where the transition among states

is driven by the input events. Considering a simple pattern like A -> (B and C) ->

D, where -> expresses the relationship �followed by�, the corresponding FSM machine is

presented in Figure 4.5.

S0 S1

S2

S3

S4

S5

S6START
A

B

C

C

B
D

D

Figure 4.5: Finale State Machine to express a simple pattern.

58

4.3 Event processing implementations

4.3 Event processing implementations

Complex event processing, in particular the continuous processing model and the ability

to detect complex patterns of events, suits very well with automated monitoring and

errors detection requirements. This thesis applies CEP techniques for the intelligent

processing required in AAL.

The AAL project is meant to assist TDAQ operators during data taking runs and

it has to be fully integrated in the ATLAS TDAQ system (i.e. gather information from

and provide information to the TDAQ services). The CEP engine used in AAL should

then ful�ll the following requirements:

� processing capabilities: support the detection of complex pattern of events over

time with aggregation and �ltering on event properties. In particular, the pattern

language should provide this functionality without requiring a speci�c develop-

ment for patterns operations. This is because the AAL project should be applied

to a number of di�erent scenarios, dynamics and not predictable in advance.

� long-lifetime: being the lifetime of the ATLAS experiment several years (i.e. until

2020 by design) the adopted technology should have a long expected lifetime;

� light-weight: being the data processing only one of the functionalities of the AAL

project, as presented in Section 3.4.2, the CEP engine should be easily integrated

with the other AAL components.

The Esper engine from EsperTech (7) has been adopted as CEP implementation for

AAL, but other solutions have been investigated as reported below. Event processing

technologies have evolved in recent years mainly with input from two communities:

cloud technologies and pure CEP systems.

4.3.1 Cloud-derived technologies

With the evolution of distributed systems towards cloud computing platforms, several

information processing projects emerged from the major cloud actors and frameworks

with the aim to analyze logs and events �owing in cloud systems. Although these

technologies are not formally classi�ed as CEP, the provided functionalities match the

CEP requirements, so they are of interest for this investigation.

59

4. COMPLEX EVENT PROCESSING WITH ESPER

4.3.1.1 Storm

Storm is a platform for real-time computation released by Twitter in 2010 (26). It

provides a set of general primitives for doing distributed real-time computing. It can be

used for stream processing, processing messages and updating databases in real-time.

Storm also supports continuous computation, doing a continuous query on data streams

and streaming out the results to users as they are computed.

However, the Storm core competency is doing real-time distributed computation

in a way that is horizontally scalable. It was used by Twitter to process millions of

messages per second and the throughput should be even higher than that (just adding

more machines). But Storm does not have the higher-level abstractions for doing stream

processing like Esper does. It supports �ltering, joins, aggregation, but it lacks the time

window supports and more advanced constructs.

4.3.1.2 S4 - Yahoo!

S4 (45) is a general-purpose, distributed, scalable, partially fault-tolerant, plug-gable

platform that allows programmers to easily develop applications for processing continu-

ous unbounded streams of data. S4 was released by Yahoo! Inc. in October 2010. The

core platform is written in Java. The drivers to read from and write to the platform

can be implemented in any language making it possible to integrate with legacy data

sources and systems.

Although the S4 design is very �exible, in particular supporting the development of

customized client adapter that allow to send and to receive events from an S4 cluster,

the current processing capabilities are not suitable for the complex processing needed

in AAL. It mainly provided aggregation of streams and �ltering on streams criteria, but

it lacks the ability to perform time-based computations.

4.3.2 Pure CEP solutions

The recent focus on Complex Event Processing technologies (32) drives a consolidation

and evolution of the existing projects and frameworks.

60

4.4 A CEP engine for the TDAQ assistant: Esper

4.3.2.1 StreamBase Event Processing Platform

StreamBase Event Processing Platform� (9) is a high-performance software for rapidly

building systems that analyze and act on real-time streaming data. It combines a rapid

application development environment, a low-latency high-throughput event server, and

enterprise connectivity to real-time and historical data. The StreamBase programming

model uses the StreamSQL language to express pattern over stream of data. It is derived

from SQL and it supports time windows, complex operators and high level abstraction

of events.

StreamBase provides the processing capabilities required for AAL. But the Stream-

Base CEP is part of a more comprehensive framework o�ering a visual editor for rules,

graphical interfaces for monitoring and system management. Being the AAL project

integrated into the existing TDAQ software infrastructure, the integration of a new

framework with its own editing/con�guration/management was not possible. More-

over, StreamBase is not available as open-source software, and considering the long

lifetime expected for TDAQ software facilities, being locked to a speci�c-product with-

out control on it was not a feasible solution.

4.3.2.2 Oracle-CEP

Oracle-CEP is the complex event processing solution from Oracle (25). Together with

CEP functionalities it o�ers both a visual development environment as well as a standard

Java-based tooling. Until 2009, the ORACLE CEP functionalities were powered by

Esper. In the last years Oracle has developed its own processing engine. The main

advantage of Oracle CEP is to be fully integrated with Oracle eco-systems of products

and services, but this was not a requirement for the AAL project.

4.4 A CEP engine for the TDAQ assistant: Esper

Esper from EsperTech (7) is considered the leading open source solution for event stream

and complex event processing. It is designed for high volume event correlation over

millions of events with low latency. Esper focuses on providing powerful processing

capabilities via a high-performance engine with a rich and �exible API. This section

presents the Esper CEP engine and the facilities it o�ers.

61

4. COMPLEX EVENT PROCESSING WITH ESPER

Figure 4.6: Esper processing model.

Java class Description

java.lang.Object Any Java POJO (plain-old java object) with getter

methods following JavaBean conventions.

java.util.Map Map events are key-values pairs and can also

contain objects, further Map, and arrays thereof.

org.w3c.dom.Node XML document object model (DOM).

org.apache.axiom

OMDocument or OME

XML - Streaming API for XML (StAX).

Application classes Plug-in event representation via the extension

API.

Table 4.1: Events types and underlying Java objects

4.4.1 Esper engine

The Esper core is a CEP engine with a continuous processing execution model. Event

patterns are expressed via the rich Event Processing Language (EPL), supporting �l-

tering, aggregation, and joins, possibly over sliding windows of multiple event streams.

Response from the Esper engine is real-time when conditions occur that match the

user de�ned queries. Esper also includes pattern semantics to express complex tempo-

ral causality among events (followed-by relationship). Esper is coded in Java and its

POJO (Plain Old Java Object) based programming model and core API makes it fully

embeddable in existing Java based architectures.

62

4.4 A CEP engine for the TDAQ assistant: Esper

Type Description Syntax

Simple A property that has a single value that may

be retrieved.

name

Indexed An indexed property stores an ordered

collection of objects (all of the same type)

that can be individually accessed by an

integer-valued, non-negative index (or

subscript).

name[index]

Mapped A mapped property stores a keyed collection

of objects (all of the same type).

name('key')

Nested A nested property is a property that lives within

another property of an event.

name.nestedname

Table 4.2: Types of event properties

4.4.2 An event in Esper

In Esper, an event is an immutable record of a past occurrence of an action or state

change. Event properties contain the information carried by an event. Esper provides

multiple choices for representing an event. The supported event types are shown in

Table 4.1.

Events are sent into the engine via the run-time Esper interface. A �ow of events

of the same type creates a stream, on top of which Esper performs the processing

operations.

4.4.2.1 Event properties

Event properties capture the state information for an event, used for querying and

selecting events. Table 4.2 outlines the di�erent types of properties and their syntax

in an event pattern. This syntax allows patterns to query JavaBean objects, XML

structures and Map events.

In Esper events are not only static containers of information but rich, object-oriented

entities. Esper allows to invoke methods on POJOs event to retrieve information on

demand while processing patterns.

63

4. COMPLEX EVENT PROCESSING WITH ESPER

4.4.2.2 Event example

pub l i c c l a s s NewEmployeeEvent{

pub l i c S t r ing getFirstName () ;

pub l i c Address getAddress (S t r ing type) ;

pub l i c Employee getSubord inate (i n t index) ;

pub l i c Employee [] g e tA l lSubord inate s () ;

}

The example above is the POJO form of an event. The mapped and indexed prop-

erties in this example return Java objects but could also return Java language primitive

types. The Address and Employee objects can themselves have properties that are

nested within them, such as a street name in the Address object or a name of the

employee in the Employee object. Events of type NewEmployeeEvent are generated

by adapters creating new instances of the NewEmployeeEvent class, specifying all con-

stituent parameters.

A pattern statement allows the use of indexed, mapped and nested properties (or a

combination of these) anywhere where one or more event property names are expected.

The example below shows di�erent combinations of indexed, mapped and nested prop-

erties in �lters of event pattern expressions:

s e l e c t f irstName , address (' work ') , subord inate [0] . name

from NewEmployeeEvent

where address (' work ') . streetName = 'Park Ave '

4.4.3 Event Processing Language (EPL)

The optimal approach for any event processing platform is to leverage a high-level

language, using familiar, well-proven relational operators adapted for use in event pro-

cessing. SQL combination of functionality, power, and relative easy of use has made it

a standard for complex data transformations. The Event Processing Language (EPL)

is a SQL-like language adopted by Esper to express event patterns. Streams replace

64

4.4 A CEP engine for the TDAQ assistant: Esper

tables as the source of data with events replacing rows as the basic unit of data. Since

events are composed of data, the SQL concepts of correlation through joins, �ltering

and aggregation through grouping can be e�ectively leveraged. The main aspects of the

EPL language are:

� Powerful operations: EPL operators provide the capability to �lter streams, merge,

combine, and correlate multiple streams, and run time-window-based aggregations

and computations on real-time streams or stored tables. EPL queries can detect

late or missing data, perform pattern-matching functions, and also access and

manipulate in-memory and external storage.

� Plug-in: because the EPL operator set is highly extensible, developers can easily

achieve new processing functionality within the system, such as implementing a

proprietary analysis algorithm, or creating user-de�ned aggregates, functions, and

custom operators.

� Data windows: EPL extends the semantics of standard SQL (which assumes

records in a �nite stored dataset) by adding rich windowing constructs and stream-

speci�c operators. With EPL the window construct de�nes the stream as an ag-

gregate or a join, letting the engine know when to �nish an operation and output

an answer. Windows are de�nable over time, number of messages, or breakpoints

in other message attributes.

� Parametrized queries: parametrized queries allow to put placeholders inside of an

EPL query. At run-time these placeholders are bound with values from events

and they are then compiled into regular statements.

4.4.4 Processing model

The Esper processing model is continuous: CEP rules are composed by a pattern de�ned

in EPL and one or more actions de�ned as listeners. A listener receive updated data as

soon as the engine processes events for that pattern, according to the EPL statement

choice of event streams, views, �lters and output rates. Listener are attached to every

statement via the Esper run-time API.

65

4. COMPLEX EVENT PROCESSING WITH ESPER

Figure 4.7: Output example for a simple statement.

4.4.4.1 Streams

A stream is a time-ordered sequence of events in time. A stream is append-only, one

cannot remove events (conceptually), one can just add them to the sequence.

A stream is unbounded, i.e. there is no end to the sequence {event1, event2,

event3, event4, ...}.

A query selects events from one or more streams applying aggregations, �ltering,

grouping and all the functionalities provided by the EPL languages. The statement

below select all the event of type Withdrawal:

s e l e c t * from Withdrawal

The term input stream denotes the new events arriving, and entering a window

or aggregation. For the example above The insert stream is the stream of all arriving

Withdrawal events. From the Esper documentation, the Figure 4.7 graphically presents

the �ow of events entering the input stream.

66

4.4 A CEP engine for the TDAQ assistant: Esper

Figure 4.8: Output example for a statement with data window.

Esper supports the concept of data window to keep track of the last N events for a

stream. The next statement applies a length window onto the Withdrawal event stream.

The statement serves to illustrate the concept of data window and events entering and

leaving a data window:

s e l e c t * from Withdrawal . win : l ength (5)

The size of this statement's length window is �ve events. The engine enters all

arriving Withdrawal events into the length window. When the length window is full,

the oldest Withdrawal event is pushed out the window, as shown in Figure 4.8. The

engine indicates to listeners all events entering the window as new events, and all events

leaving the window as old events.

4.4.4.2 Filters

Filters to event streams allow �ltering events out of a given stream before events enter

a data window. The statement below shows a �lter that selects Withdrawal events with

67

4. COMPLEX EVENT PROCESSING WITH ESPER

Figure 4.9: Output example for a �ltering statement.

an amount value of 200 or more. With the �lter, any Withdrawal events that have an

amount of less then 200 do not enter the length window and are therefore not passed

to update listeners, as shown in 4.9.

s e l e c t * from Withdrawal (amount>=200).win : l ength (5)

4.4.4.3 Time windows

A time window is a moving window extending to the speci�ed time interval into the

past based on the system time.

Time windows enable to limit the number of events considered by a query over a

time period. The following statements uses a normal time window and a time_batch

window. The di�erent behavior is detailed in Figure 4.10 and 4.11.

The time batch view bu�ers events and releases them every speci�ed time interval

in one update. Time windows control the evaluation of events, as does the length batch

window.

68

4.4 A CEP engine for the TDAQ assistant: Esper

Figure 4.10: Output example for a statement with time window.

Figure 4.11: Output example for a statement with time batch window.

69

4. COMPLEX EVENT PROCESSING WITH ESPER

s e l e c t * from Withdrawal . win : time (4 sec)

s e l e c t * from Withdrawal . win : time_batch (4 sec)

4.4.4.4 Event aggregations

Following the SQL (Standard Query Language) standards for queries against relational

databases, the presence or absence of aggregation functions and the presence or absence

of the group by clause de�nes the number of rows posted by the engine to listeners.

In summary, as in SQL, if a EPL statement selects only aggregation values, the engine

provides one row of aggregated values. It provides that row every time the aggregation is

updated (insert stream), which is when events arrive or a batch of events gets processed,

and when the events leave a data window or a new batch of events arrives.

4.4.5 Performance

Esper has been highly optimized to handle very high throughput streams with very

low latency between event receipt and output result posting. Memory consumption is

one of the most critical aspects. EPL statements with time-based or length-based data

windows can consume large amounts of memory as their size or length can be large. For

time-based data windows the memory consumed depends on the actual event stream

input throughput.

Processing performance has been deeply investigated by Esper development team,

as from documentation: � Esper exceeds over 500 000 event/s on a dual CPU 2GHz Intel

based hardware, with engine latency below 3 microseconds average (below 10us with more

than 99% predictability) on a VWAP benchmark (31) with 1000 statements registered in

the system - this tops at 70 Mbit/s at 85% CPU usage.�, with linear scalability on the

event rate. The results have been con�rmed by a set of dedicated tests performed while

prototyping the AAL project. The tests consisted in the sustained processing of a high-

rate IS update with patterns generating time-based statistics on IS data, at di�erent

time precisions. The prototype was able to handle a sustained IS rate of hundreds

of thousands update per seconds, compatible with the real load generated by TDAQ

operations.

70

4.5 Summary

Although Esper is designed as a multi-threaded software to exploit multi-core ar-

chitectures, the default threading con�guration showed several limitations for the use

cases of this project. But thanks to the con�guration options engine-level queues and

thread-pools have been optimized to �t the needs of the AAL project, as presented in

Section 6.4

4.5 Summary

The need to process streams of information from distributed sources at high-rate with

low-latency is of interest from the most disparate �elds: from wireless sensor networks to

�nancial analysis, from business process management to system monitoring. Complex

Event Processing (CEP) technologies have emerged as e�ective solutions for information

processing and event stream analysis. In particular, they provide the means to reason

upon events and on relationships among them. These functionalities are extremely

powerful when applied to error detection and fault diagnosis in a complex system such

as the ATLAS TDAQ. Esper(7) is the leading open source engine for complex event

processing and it has been investigated and adopted to provide CEP functionality for

the AAL project.

71

4. COMPLEX EVENT PROCESSING WITH ESPER

72

Chapter 5

The AAL project

This chapter presents the AAL project (29). The AAL name stands for �Automated

Analysis and inteLligent monitoring�. The project is meant at assuring a constant high-

quality problem detection in a distributed system via the automation of monitoring

tasks and the correlation of operational data and system metrics. The main operational

stages are the gathering of monitoring data, the processing of system activities and

the noti�cation of detected problems to operators. This chapter introduces AAL main

functionalities and it discusses its integration in the ATLAS trigger and data acquisition

system.

5.1 The project architecture

AAL performs a real-time1 analysis of the whole TDAQ system, detecting problematic

situations and misbehavior and producing noti�cations to operators. It is able to react

on single problems (e.g. a log message reporting a network connectivity issue from

a data acquisition application), but it o�ers more advanced correlation and analysis

capabilities (e.g. if a burst of similar log message is received in a short time period

from multiple applications belonging to the same farm rack, then the problem should

be recognized as a network switch failure).

Three main operational stages are identi�ed: information gathering, informa-

tion processing and results distribution. Being the ATLAS TDAQ system the �rst

1In this context the adjective real-time refers to a level of responsiveness that a user senses as

immediate or nearly immediate, as the delay from problem detection to noti�cation is expected to be

in the order of few seconds.

73

5. THE AAL PROJECT

Knowledge Base
in XML

DO THAT

Assistant Engine

Expert Instructions
Nagios

IS servers

MRS messages

COOL, OKS, ...

Configuration

Farm metrics

...

E-mail/SMS

IF

Alerts

Web

Open source
event processing engine

Information gathering Information processing Result distribution

Figure 5.1: High-level view on the AAL project architecture and operational stages.

target for the AAL project, each stage poses di�erent challenges and requirements that

are presented in subsequent sections.

The project combines technologies coming from di�erent disciplines, in particular

it leverages on an event driven architecture to unify the �ow of data to be monitored,

on a Complex Event Processing (CEP) engine for real time correlation of events and

pattern recognition and on a Message Queuing system for components integration and

communication. The picture in Figure 5.1 presents an overview of the architecture

together with the three operational stages.

5.1.1 Information gathering

As presented in Chapter 3, the information about correctness of data acquisition oper-

ations in the TDAQ infrastructure is spread among several data sources, di�erent for

data formats, technologies and publication mechanisms. AAL is able to gathers and

processes all log messages from data acquisition applications, the operational data pub-

lished in the information system, the network and farm metrics, as well as data retrieved

from the con�guration databases. The high-rate of information events, that can reach

74

5.1 The project architecture

spikes in the order of hundreds of kHz, together with the diversity of technologies and

of data formats are the main challenges concerning information gathering. Section 5.2

presents data providers characteristics and requirements.

5.1.2 Information processing

The continuous processing of monitoring data in order to detect problems and failures

is the key objective of the AAL project. AAL is fed with instructions about what

situations to detect by TDAQ experts, leveraging their know-how and expertise on the

TDAQ system and operational procedures. The main aspects of information processing

are:

� Real-time complex data processing: continuous evaluation of monitoring data

streams to detect complex pattern.

� Knowledge engineering : formalize expert knowledge in patterns of monitoring

events, together with instructions on what type of result the pattern detection

should produce.

AAL relies on a CEP engine to provide the real-time processing functionalities. Chapter

6 discusses how CEP is used for problems detection and how the Esper engine has

been integrated in AAL. For what concerns knowledge engineering, AAL implements

a �exible approach, presented in Section 5.3, based on generic directives structured as

XML documents.

5.1.3 Result distribution and visualization

The AAL project has been designed to support di�erent types of reactions in case of

pattern detection. For the application of AAL as assistant in the TDAQ infrastructure

the generation of alerts is the most common reaction to a pattern detection.

Alerts are generated by AAL to notify TDAQ operators of problems and failures

in the system. Every alert contains information about the detected problems, the sug-

gested reaction as de�ned by experts and all details about the conditions that matched

the pattern. Alerts can be customized per TDAQ sub-system (e.g. an alert can be

addressed to speci�c TDAQ shifters), o�ering customized views on the system condi-

tions. Alerts provide operators with the complete set of information they need to react

promptly and e�ectively to the problem. The alert format is introduced in Section 5.4.

75

5. THE AAL PROJECT

Figure 5.2: Information Service (IS) functional schema.

5.2 Information providers and data types

The TDAQ monitoring infrastructure provides data of di�erent types and formats.

A �rst classi�cation of data providers is done considering the supported publication

mechanisms.

5.2.1 Information streams

Information streams are produced by data providers creating a �ow of monitoring data

of di�erent types. Every log message or IS information update can be considered as

a monitoring event part of a stream. This section discusses the di�erent information

streams and types of data.

5.2.1.1 Information Service (IS)

The Information Service (IS) is an in-memory information system that allows to share

key-value typed information in a publish/subscribe fashion. It is used for sharing oper-

ational data, control parameters and system metrics. Software entities called IS servers

take care of distributing IS information using the CORBA-based IPC facility, as pre-

sented in Figure 5.2. Via the IS API a generic data acquisition application can act as

an IS producer to create, update or delete an IS information. Other applications can

act as IS receivers to be noti�ed every time an IS information matching the desired

subscription criteria is changed.

When con�gured for ATLAS data taking, the TDAQ system contains around 150

IS servers hosting more than 300.000 IS information objects. Information objects are

76

5.2 Information providers and data types

Figure 5.3: IS information as seen from IS viewer.

of di�erent types, de�ned by a set of basic attributes (e.g. string, int, long, �oat,

etc.). There are more then 5 millions attributes published in IS servers when ATLAS

is running (41).

The key to identify an IS information is the tuple [Partition name, IS server name,

IS information name]. Figure 5.3 presents an example of an IS information published

by the DataFlowManager application (i.e. the application responsible to collect colli-

sions data from the ATLAS front-end electronics), containing metrics on data collection

operations.

Every single attribute of an IS object can be independently updated by the publisher

application at speci�c time intervals. Processing the aggregated IS stream requires the

AAL engine to digest hundreds of thousands of events per seconds.

Figure 5.4 presents the integral of IS update rate received by AAL during a data

taking run. The rate strongly depends on the status of the system. In stable conditions

the rate remains around few thousands updates per second, but in case of problems it

can increase up to hundreds of thousands updates per second. (41).

77

5. THE AAL PROJECT

Figure 5.4: IS update rates during ATLAS data taking operations.

5.2.1.2 Application log messages

Every software component of the TDAQ system uses the Error Reporting Service (ERS)

to report issues, i.e. events that need attention, either to the software component calling

it or to the external environment. The analysis of log messages is fundamental for debug

procedures and fault diagnosis.

The ERS de�nes a precise structure for log messages. Thanks to this uni�ed ap-

proach the log format is standardized across all TDAQ components. The example in

Table 5.1 shows an error reported by a data collection application. The ERS format

requires for a precise set of parameters, such as the host reporting the problem, the

date, the message type and the severity. This strong categorization simpli�es the auto-

mated processing performed by AAL. Nevertheless, since for many situations logs are

meant to be read by humans, the real information is only present in the message body,

as a free text. In the example, the name of the failing device ROS-TDQ-CALPP-00 is

only expressed as message text. This requires the AAL processing engine to be �exible

enough in parsing and retrieving the desired information.

The MRS tool is used for distributing messages between di�erent TDAQ applications

using a publish/subscribe model. A generic MRS client can subscribe to speci�c criteria,

expressed in term of partitions, application name and log parameters. The AAL engine

is con�gured to receive all the messages produced in every partition involved in data

78

5.2 Information providers and data types

Parameter Sample value

Host pc-tdq-sfi-001.cern.ch

Application Name SFI-22

IssueDate 17 Nov 2011 11:58:14 CET

Severity WARNING

MessageID SFI::DataFlowIssue

Message Problem with the flow of data: Event with LVL1ID

1711385943 misses 1 data fragment(s) from:

ROS-TDQ-CALPP-00

Context PACKAGE_NAME: SFI. FILE_NAME:

../src/EventAssembly.cxx. FUNCTION_NAME:

DC::StatusWord

EventAssembly::EventCompleted(LVL1Id).

LINE_NUMBER: 478.DATE_TIME: 1329476294.

Parameters reason: Event with LVL1ID 1711385943 misses 1 data

fragment(s) from: ROS-TDQ-CALPP-00,

Qualifiers SFI

Table 5.1: ERS message schema

taking operations. The rate of messages in normal conditions is very low, but as shown

in Figure 5.5, in case of problems it can increase up to thousands of messages per minute.

This is a consequence of the problems described in Chapter 3. Given the interconnected

architecture of the data acquisition system, a single failure impacts on many aspects of

data acquisition operations, generating storms of events that are di�cult to analyze by

operators.

5.2.1.3 Java Message Service (JMS) stream

The Java Message Service (JMS) API (35) is a standard for exchanging messages be-

tween applications. Over the years it has been widely adopted, also out of the Java

domains. Entities called JMS providers o�ers a public/subscribe interface. JMS clients

can use that interface to receive messages produced by JMS writers. This generic

approach allows to develop loosely coupled distributed applications with information

producer agnostic to the possible existing consumers. As presented in Figure 5.6, AAL

79

5. THE AAL PROJECT

Figure 5.5: Spike in ERS messages generated in case of a network connectivity problem.

can act as JMS client to gather messages from JMS providers. A �rst application of

this generic approach was for collecting farm metrics reported by the Nagios tool (34),

although for a compatibility issue a di�erent strategy has been adopted, as presented

in 5.2.2.2.

Nevertheless, as better explained in Chapter 6, this generic approach to produce

and consume information is the foundation of the alert distribution strategy, in order

to decouple alerts production form visualization.

5.2.2 Static information providers

Not all TDAQ information providers match with the information stream model. For

example, the con�guration of the TDAQ system is de�ned by operators before the data

acquisition starts and then it remains unchanged for the whole data taking run. Or,

more generally, information archived in databases cannot be seen as a �ow of events.

Nevertheless, static information providers contain meaningful information for de-

bugging and fault analysis. AAL is able to collect this information on demand, on

a time basis or triggered by the detected patterns. This section presents the static

information providers currently supported.

5.2.2.1 Con�guration

The con�guration of the TDAQ system is based on an object-oriented database con-

taining a description of the TDAQ topology. These descriptions cover the con�guration

80

5.2 Information providers and data types

Figure 5.6: Information can be collected from a JMS provider.

of all ATLAS applications which can be running during data taking. This information

can be useful for problem detection. For example, if a hardware problem is reported

for a certain host machine, it has to be treated di�erently depending on the machine

status, i.e. if it is actually part of the data acquisition operations or not.

The con�guration API allows to retrieve information on TDAQ computers, appli-

cations, segments and partitions. Due to the size of the overall system, the query

processing time for retrieving the complete TDAQ con�guration is in the order of tens

of seconds(24). AAL is able to collect con�guration information on demand only on

speci�c objects when involved in detected patterns.

5.2.2.2 Nagios

The data acquisition farm is monitored by the Nagios tool (34). For most of the nodes

only low�level monitoring has been implemented: basic OS warnings and errors are

reported, network connections are being regularly polled and hardware state is mon-

itored. For core nodes (�le servers, gateways, web servers) speci�c services are also

monitored, such as NTP, NFS and DHCP. The results of checks and controls are stored

in a MySQL database on top of which monitoring tools for the farm are built. AAL

81

5. THE AAL PROJECT

AAL directive

Pattern: what to detect

select application.name, rack.name, message.date
from Message(severity=ERROR, type="ConnectivityIssue").win:time(30 seconds)

group by rack.name having count(*) > 300

Listener(s)<alert, statistic, ems>:
how to react

Alert listener

Properties:
ALERT.message: "Connectivity problem detected for rack: $RACK$".
ALERT.action: "Please disable the involved segment and notify networking experts."

Writer(s)<jms, ers, file>:
define the format(s) of output

JMS writer
JMS.provider.host=jms.cern.ch, message.format=XML, ...

File writer
file.name=log/mydebug

Figure 5.7: Directive schema.

is instructed to read the farm metrics directly from the MySQL database periodically

(every 5 minutes). In this way the engine is able to handle information from a static

data source as a stream of events, being able to apply the correlation abilities previously

presented.

5.3 Knowledge engineering: directives

TDAQ system experts have to feed AAL with instructions about what situations to

detect and how to react. This knowledge engineering process is fundamental to build

and maintain a data set of problems and errors. These instructions are codi�ed in

directives written in XML documents.

Although the main usage of AAL in TDAQ is to produce alerts for operators, dif-

ferent types of instruction can be expressed as directives, such as the production of

statistics on system usage and the interaction with the error management system to

trigger automated reaction. Directives are then generic entities able to express the

diverse use cases.

82

5.3 Knowledge engineering: directives

5.3.1 Directive structure

A directive, as presented in Figure 5.7, is composed by two main elements: the pattern,

that de�nes the sequence of events to react on, and by one or more listeners, that

de�ne the actions to be performed when the pattern is matched. A directive is derived

from the more generic concept of CEP rule, but it introduces a precise structure for the

listener part, speci�c to the AAL project.

5.3.1.1 Pattern

A directive pattern de�nes the pattern of events to be detected. Being the processing

functionalities in AAL implemented by the Esper CEP engine, patterns are expressed

as Esper EPL statement. The role of a pattern in a directive is to:

� de�ne the situation to react on (i.e. detect more than 300 message of type �Con-

nectivityIssue� from di�erent applications from the same rack in 30 seconds);

� de�ne which information has to be extracted from the stream of events and passed

to the listener(s) (i.e. the list of application, the rack name, the date and time and

the message type).

5.3.1.2 Listener

A directive de�nes one or more listeners to instruct AAL on how to react when the

directive pattern is matched. There are three types of listeners:

� Alert producer: to create alerts for operators and experts.

� Statistics producer : to produce statistics using the event processing engine ca-

pabilities (e.g. computing the rate of IS callback during data taking runs or to

collect the number of log messages grouped by application).

� EMS interaction: to interact with the error management service (e.g. when a

certain pattern of events is detected, this listener can be used to interact with

EMS API to trigger a control action, such as restart a machine or application).

Every listener type requires its own set of parameters that need to be speci�ed as

instructions. Experts have to provide all the needed options when writing the directive.

83

5. THE AAL PROJECT

Figure 5.8: Directives are structured in XML documents.

Apart from the parameters set, listeners follow a common schema and structure as

presented in Section 6.2.3.

A listener includes one or more writer elements, to de�ne in which format and media

the results are propagated. This level of indirection allows to decouple data processing

with result distribution.

5.3.2 Directive management

Directives are structured in XML documents, each one grouping directives for a speci�c

TDAQ aspect. The XML format has been chosen because it can represent structured

data and it can be easily parsed by a machine. Figure 5.8 shows the di�erent elements

composing the document, corresponding to the structure de�ned in the previous section.

The syntactical validity of a directive is veri�ed against a speci�c XSD schema.

AAL foresees the possibility to modify directives at run-time, via a web-based admin

interface. Nevertheless, given the critical role of directives in the system, AAL restricts

access only to a subset of directive �elds, such as listeners details, that do not impact

on processing functionalities.

84

5.4 Alerts

5.4 Alerts

Alert-based systems do not share a good reputation in monitoring and operational

procedures (16). This is mainly because there is little or no intelligence in how standard

monitoring tools determines what is normal or abnormal. This leads to alerts that are

too generic, if not completely incorrect, with no or few contextual information and with

a high rate of false-positives. Alerts becomes of no use and, by consequence, they are

completely ignored by system operators.

The AAL project o�ers an e�ective alert-based noti�cation system leveraging on :

� Intelligent processing : thanks to the CEP capabilities it minimizes the number of

false-positive situations.

� Information on demand : alerts produced by AAL carry all the information needed

for debug and fault diagnosis.

� E�ective and timeliness noti�cation: distribution and visualization solutions to

notify both operators and experts as soon as a problem is detected, minimizing

the latency.

5.4.1 Alert structure

An alert is composed by di�erent �elds :

� Problem description: brief description of the problem detected.

� Reaction: expected reaction to be taken by the operator.

� Severity: the severity of the issue.

� Domain: the domain of the noti�cation. This information is used to route alert

to the appropriate shifters desk.

� Pattern details: all the information, as collected by the patterns, about the events

that triggered the alert.

Figure 5.9presents alerts visualized via the AAL web page.

85

5. THE AAL PROJECT

Figure 5.9: A list of alerts presented by the AAL web interface.

5.5 Conclusions

This chapter introduced the AAL project structure, with focus on the functionalities

provided to assist TDAQ operators. Information gathering, data processing and e�ec-

tive result distribution are the main challenges, in particular when integrating AAL

with the existing TDAQ architecture. AAL relies on a knowledge-base of directives

de�ned by TDAQ experts. The �ow of monitoring data, di�erent in types and formats,

is collected and processed at high-rate to detect problems and failures as de�ned in

directives. AAL produces alerts that contains all the information needed by shifters

and experts to promptly react to problems. The next chapter goes into the details of

the architecture, processing model and the alerts distribution.

86

Chapter 6

The AAL design and

implementation

The architecture of the AAL project decouples the gathering and the processing of mon-

itoring data from the distribution of noti�cations to operators. In this way, AAL can

be easily extended with new information sources and visualization strategies without

interfering with the data processing. Alerts are distributed via a message-driven archi-

tecture and visualized in dynamic web pages, to promptly notify problems to TDAQ

operators. This chapter presents the AAL engine architecture, it discusses the threading

structure and the processing model for TDAQ problems and it �nally describes alerts

distribution and visualization.

6.1 The AAL architecture

The AAL project has a loosely-coupled architecture where two main modules interact

via a message broker, also known as event/message bus (23). As presented in Figure

6.1 the AAL components are:

� The AAL engine: responsible for the collection and correlation of monitoring data

as speci�ed in directives.

� The AAL web application: responsible for providing a dynamic and interactive

visualization of alerts for operators.

87

6. THE AAL DESIGN AND IMPLEMENTATION

web pageweb page

AAL
 Engine

Apache ActiveMQ

AAL
Web

Application

JMS

JMS reader

web pages
 generation

Alerts archive

TDAQ

ERS, EMS

Alerts
web pages

AJAX update

Figure 6.1: AAL architecture overview.

� A message broker (Apache ActiveMQ) that centralizes all communication between

modules.

The next sections �rstly concentrate on the AAL engine architecture and on the thread-

ing processing model adopted. Examples of TDAQ use cases are then presented and

�nally the alert distribution and visualization strategy based on the message-broker

approach is discussed.

6.2 The AAL engine

The AAL engine is a Java-coded service that manages data gathering, events processing

and results generation. The Figure 6.2 presents the AAL engine architecture. The

engine is structured in:

� injectors, that collect data from information providers;

� listeners, that drive system reaction when a pattern is detected;

� a event processor, that interacts with the CEP engine and orchestrates operations.

88

6.2 The AAL engine

AAL engine

Events processor

IS Injector

MRS Injector
MRS Injector

IS Injector
IS Injector

MRS Injector

...

Esper

Listener: Statistics

Writer

Configuration

Directives
 management

Listener: Alert

Alert handlerWriter

Writer

Utils

Readers

Figure 6.2: AAL engine architecture.

6.2.1 The AAL events processor

The AAL events processor orchestrates the interaction among engine components and

manages the execution �ow. The execution steps are:

� engine con�guration: the �le containing the XML directives �les and the con�g-

uration �les are parsed;

� CEP initialization: the list of directive patterns are initialized in Esper

� injectors start: the set of injectors speci�ed by con�guration are started and data

starts �owing.

The events processor acts as a façade (20) de�ning a uniform interface for event process-

ing functionalities to the other engine components. It is a wrapper built on the Esper

functionalities, to limit the spread of vendor speci�c code and to con�ne the dependency

from Esper in one single component.

The functionalities exposed by the event processor interface are grouped in two

categories:

� Execution management : to send events to the CEP engine.

� Pattern compilation and management : to create, edit and manage event process-

ing patterns.

89

6. THE AAL DESIGN AND IMPLEMENTATION

receiver
event

formatter
event

decorator
TDAQ

services
CEP

Figure 6.3: An injector interfaces a TDAQ data source with the AAL domain.

6.2.2 Injectors

Injectors link TDAQ data sources to the engine infrastructure. They act as adapters

from the TDAQ system to the AAL engine. The main role of an injector is to receive

and to digest events from a data provider. An injector carries out the following steps,

as shown in Figure 6.3:

� Listen for events using the TDAQ communication layers. This step can be called

receiving phase. Each data source type requires a specialized receiver.

� Translate events to internal format for data processing. AAL injectors create

events as Pure Old Java Objects (POJOs).

� Append genetic properties to events, i.e. timestamp and causal map. This process

is further referred to decoration.

� Insert the generated events into the processing component.

6.2.2.1 Injector types

AAL currently supports three injector types, corresponding to TDAQ information

streams:

� MRS : for application log messages.

� IS : for information from the IS service.

� JMS : for generic JMS messages.

Although the JMS injector is available and was extensively used while prototyping the

system, currently it is not used by any data source in TDAQ, hence only the IS and

MRS injectors are further detailed.

90

6.2 The AAL engine

6.2.2.2 Injector criteria and con�guration

Both for IS and MRS injectors, events are received via the publish/subscribe API pro-

vided by the corresponding information sources. Injectors can be subscribed to speci�c

criteria to de�ne a set of interesting events, in terms of [Partition, IS Server, name,

Information Name] for IS and [Partition, Application-Name, Message-Attributes] for

MRS.

AAL is con�gured with a list of subscription criteria in order to retrieve all data

needed to feed existing patterns. It instantiates one injector per de�ned subscription

expression. Around 40 injectors are currently de�ned for normal data-taking operations.

The AAL events processor stops/starts injectors when the corresponding data sources

are stopped or restarted, to maintain the internal state coherent with the TDAQ status.

6.2.2.3 Injector design

As presented in Figure 6.4, injectors are handled by the events processor as generic enti-

ties. Concrete injector implementations receive and digest data from the corresponding

data sources and uses the events processor API to submit new events.

Events are represented as Pure Old Java Objects (POJOs). During the translation

phase injectors parse the information received by the data source and build the cor-

responding event class, formatting the data parameters ready for processing. POJO

events are than injected in the processing engine.

6.2.3 Listeners

Listeners de�ne the actions performed when a pattern is matched, re�ecting the instruc-

tions speci�ed in directives. Listeners receive the information collected by patterns at

matching time, and use it to build the expected result, e.g. an alert contains all details

on the detected problems.

6.2.3.1 Listener types

A listener factory is used to generate concrete listeners of di�erent types. A listener

implements an update method, as de�ned by the listener interface, that is invoked every

time a pattern is matched, passing the list of matching events as parameters. There are

three listener types:

91

6. THE AAL DESIGN AND IMPLEMENTATION

interface:Injector

start
stop

MRSInjector

start
stop

ISInjector

start
stop

JMSInjector

start
stop

InjectorsFactory

buildInjector

Events processor
UMLClassUMLClassUMLClassUMLClassUMLClassUMLClass

Figure 6.4: Injectors factory-based design.

� Alert listener : produces noti�cation for TDAQ operators with information about

a problem and instructions on how to react. This is the most common listener

type, used by most of the directives, and it is used as an example in the following

sections.

� Statistics listener: collects metrics on event streams. As an example the statistics

on IS and MRS update rate presented in Section 5.2.1 have been computed via

aggregation patterns bound to statistics listeners. This listener type parses the

events selected by the pattern and prepares a structured representation of collected

metrics, such as an XML document.

� EMS listener: interacts with the error management and recovery system. This

listener is used when a direct interaction with the EMS is needed.

A key feature of the listener design is to delegate to writers the distribution of results,

as shown in Figure 6.5

92

6.2 The AAL engine

interface:Listener

update(Event[])

Statistcs

update(Event[])

AlertListerner

update(Event[])

EMS

update(Event[])

interface:result

format(XML|ASCII|ERS)

Alert

format(XML|ASCII|ERS)

inerface:writer

write

JMSWriter

write

UMLClassUMLClassUMLClassUMLClassUMLClassUMLClassUMLClassUMLClass

Figure 6.5: Listeners and writers architecture.

6.2.3.2 Writers and output formats

A Writers is used by a listener to distribute a result representation via multiple media.

Structured results, such as alerts and statistics, can be represented in di�erent formats,

i.e. XML, ASCII and as ERS message. The role of the writer is to propagate a result

representation via one of the supported media:

� JMS : the result is sent as a JMS message to a JMS provider. For example an

XML representation of an alert is sent as a JMS payload.

� File: the result is written to a log �le. For example, an ASCII representation of

an alert is written to a log �le, for further analysis and debugging.

� ERS : the result is propagated as message in the TDAQ system via ERS/MRS.

For example, an ERS message for the alert is sent via the Error Reporting Service,

entering the log messages path in the TDAQ infrastructure.

� Mail : the result is send as an e-mail to a group of addresses. For example, a

critical alert can be sent as an e-mail to a group of experts for prompt noti�cation

of problems and failures.

93

6. THE AAL DESIGN AND IMPLEMENTATION

ORB Servant

IS server

Slow IS subscriber

Fast IS subscriber

ORB
CORE

ORB Thread pool

slow_consume()

fast_consume()

IS updates

ORB Thread poool

IS
Thread pool

Figure 6.6: CORBA ORBs threading architecture for an IS server.

6.2.4 Readers

There are error conditions that, to be formalized as CEP patterns, require the ability

to retrieve and process data via TDAQ static information providers. In this respect,

the ability of Esper to invoke Java classes methods while evaluating patterns has been

used. The readers are a set of utility classes providing methods to gather data from

di�erent TDAQ services:

� Con�gurationReader : utility to read the TDAQ con�guration database e.g. when

a pattern processes a certain MRS message, this reader can be used to query the

Con�guration databases to check if the reporting application is included in the

data taking operations.

� ISReader: utility to get IS information on demand.

6.3 Threading and concurrency

To cope with the high rate of data produced by information streams, the AAL engine

relies on a threading architecture able to support the e�ective computation and delivery

of results. This section discusses the CORBA-based IPC threading model and the Esper

engine threading con�guration adopted for the AAL engine.

6.3.1 CORBA ORB

For the TDAQ system the distributed communication between clients and servers, such

as for the MRS and IS publish/subscribe actors, leverages the CORBA-based Inter

94

6.3 Threading and concurrency

Esper engine

Patterns
 evaluation

Deliver
output to
listeners

Application threads

...

Listener

inject(Event)

Figure 6.7: Esper threading model in default con�guration.

Process Communication facility. The CORBA Object Request Broker (ORB) delivers

client requests to servants and returns response to the client. To accomplish this, the

ORB manages transport connection, data marshaling and un-marshaling and provides

the multi-threading architecture used by applications. The multi-threaded ORB archi-

tecture has a substantial impact on AAL performance and predictability, as discussed

in the next section.

For the TDAQ infrastructure, the ORB is con�gured in a thread-pool architecture

(39), so that every request for a servant is served by a separate thread belonging to a

�xed thread-pool. In this con�guration, client requests can be executed concurrently

until the number of simultaneous requests exceeds the number of threads in the pool.

At this point, additional requests must be queued until a thread becomes available.

This con�guration has consequences in the processing model. Considering the case

for IS, every IS subscriber acts as an ORB servant, providing a callback function to

process the IS information/update. For every new IS information an IS sever computes

the list of IS subscribers/servants to be noti�ed (matching the subscription criteria)

and for every one the ORB assigns the corresponding callback task to a worker thread

of the servant pool. As presented in Figure 6.6, in this con�guration the risk is that a

slow subscriber impacts the noti�cation to healthy servants. To minimize this risk of

starving clients, callback functions have to be handled fast in order to free the resources

for further IS noti�cations.

95

6. THE AAL DESIGN AND IMPLEMENTATION

6.3.2 Esper threading model

Esper is designed to operate as a component to multi-threaded, highly-concurrent ap-

plications. The Esper APIs can be used to perform concurrently, by multiple threads of

execution, such functions as creating and managing statements, or sending events into

an engine instance for processing.

In the default con�guration it is up to the application code to use multiple threads

for processing events by the engine. All event processing operations and listener no-

ti�cations take places within the calling application thread call stack, as presented in

Figure 6.7. The only exception is for timer-based patterns, for which a dedicated thread

evaluates the statements at the speci�ed time intervals

Esper provides engine-level facilities for controlling concurrency and threads con�g-

uration:

� Inbound threading : queues all incoming events. A pool of engine-managed threads

performs the event processing. The application thread that sends an event returns

without blocking.

� Outbound threading : queues events for delivery to listeners and subscribers, such

that slow or blocking listeners do not block event processing.

� Timer Execution threading : means time-based event processing is performed by a

pool of engine-managed threads. With this option the internal timer thread serves

only as a metronome, providing units-of-work to the engine-managed threads in

the timer execution pool, pushing threading to the level of each statement for

time-based execution.

The engine starts engine-managed threads as daemon threads when the engine instance

is �rst obtained. Threading options utilize unbound queues or capacity-bound queues

with blocking-put, depending on the engine con�guration.

6.3.3 AAL engine threading and concurrency

The AAL engine threading model depends both on the ORB architecture and on the

Esper con�guration. Every injector gathering data from the TDAQ world acts as an

ORB servant. Every time an IS information or a MRS message is noti�ed, a thread

in the servant worker pool executes the injector callback. The callback performs the

96

6.3 Threading and concurrency

...

...

Listener
Listener

Listener

ORB Servant

IS injector

ORB Servant

MRS injector

ORB Servant

Inbound processing Outbound processing

Timer-based
processing

Esper engine

...

Figure 6.8: Overview of AAL threading architecture.

adapter tasks (data parsing, event creation and decoration) and eventually it injects

the new event into the processing engine. In the default con�guration the injection

function as provided by Esper is blocking, and this con�icts with the requirement to

minimize callback processing time. In particular, there are potentially many slow exe-

cution points:

� statements may use Readers interacting with external services, such as the con-

�guration or Nagios database. Their response time is not compatible with the

low-latency of event processing;

� massive use of time based metrics. By default, Esper allocates a single thread

to sequentially compute all the time-based window statements. In case there are

slow instructions in one of those statements, the overall execution can be delayed.

� listener dispatching may require network communication and interaction with high

level services (JMS proviers, Mail server), implying additional delay and latency.

6.3.3.1 AAL con�guration

The AAL threading architecture is presented in Figure in 6.8. In order to minimize

the callback processing time Esper has been con�gured with inbound processing. In

97

6. THE AAL DESIGN AND IMPLEMENTATION

Detect
specific events

Detect pattern on time windows

=

=
5 min

=
Detect absence of events

X

Elaborate complex results

=

i.e. React on FATAL or
ERROR MRS messages
from INITIAL partition

i.e. React if a ROS is
reporting high load conditions
for more than 60 seconds

i.e. React if ATLAS
is not running when stable
beam is declared

i.e. Detect unbalanced
SFO rate

Figure 6.9: High-level view on CEP functionalities applied on problem detection.

this way, the only task performed by the injector in the ORB callback is to create the

new event and insert it into an un-bounded queue. Events are consumed via a thread-

pool, dedicated to the processing operation. Every thread performs the evaluation of

the pattern in response to a new event. If the pattern is matched, the processing

thread inserts the list of events into another un-bounded queue, used for outbound

processing. Threads belonging to the outbound thread-pool notify the result to the

listeners attached to the matched pattern. Another thread pool is con�gured for the

time-based processing, to compute patterns involving windows of time.

6.4 Examples of TDAQ use cases

This section presents use cases of AAL processing functionalities applied to detect prob-

lems for ATLAS data acquisition operations. These are part of more than 100 directives

coded by TDAQ experts during the data taking in 2011. Figure 6.9 graphically sketches

the di�erent detection abilities provided by the CEP techniques.

6.4.1 Event streams

The main event streams are IS and MRS. The stream properties that can be accessed

in CEP patterns are de�ned by the event structures, as created by injectors. Tables 6.1

and 6.2 show the structure of the two streams.

98

6.4 Examples of TDAQ use cases

IS Stream Properties

partition_name Partition Name

type IS information type

name IS information name

server IS server

operation create/update/delete

attributes[] List of IS information attributes

timestamp Event creation time

Table 6.1: IS stream properties.

MRS Stream Properties

partition_name Partition

message_id Message type identifier

application_name Name of the sending application

severity Severity of the message

text Message text body

qualifiers Message qualifiers

parameters Additional/optional parameters

timestamp Event creation timestamp

Table 6.2: MRS stream properties.

99

6. THE AAL DESIGN AND IMPLEMENTATION

6.4.2 Composite streams

Composite streams are streams created selecting a set of interesting events or events

properties from one or more event streams and injecting them back into the CEP system

as new events. This approach is particularly useful to de�ne stream shared by multiple

patterns.

The pattern in the next example creates the new PartitionState stream to contain

information about the status of the main partitions running the TDAQ applications.

The select statement de�nes the properties to be retained, the from indicates the source

stream and the where expresses the selection criteria. The insert into statement in-

structs Esper to inject the result of this pattern into the new stream PartitionState.

All other patterns that need to get the status of these partitions can access this infor-

mation form the composite stream, without the need to re-apply �ltering and selection

criteria.

i n s e r t i n to Pa r t i t i t i o n S t a t e

s e l e c e i n f o . s ta te , i n f o . e r ro r , i n f o . reason

from ISStream as i n f o

where i n f o . partition_name in 'ATLAS' , ' i n i t i a l ' , ' setupDAQ '

and i n f o . name='RunCtrl . RootContro l ler '

6.4.3 Pattern samples

These patterns are extracted from the TDAQ list of directives to show how di�erent

error conditions are detected. Every pattern is associated with an alert listener to notify

operators about the detected problems.

6.4.3.1 Error for the ATLAS partition

In TDAQ, a partition de�nes a set of computers, software applications and hardware

components involved in data taking operations, together with their con�guration. A

partition is governed by a controller that starts/stops applications and propagates FSM

commands. The state of a partition is represented as a set of information objects pub-

lished in IS by the controller re�ecting the overall partition conditions. The information

objects are updated every time the state changes.

100

6.4 Examples of TDAQ use cases

When the ATLAS partition (i.e. the partition used for ATLAS data taking) goes in

error state, it signi�es problems in the hierarchy of applications, potentially meaning

ATLAS is loosing experimental data. Errors for the ATLAS partition have to be handled

fast and e�ectively by operators.

This pattern generates an alert if the ATLAS partition is in error for more than 2

minutes continuously. Every time a partition changes state an event is injected in the

PartitionState stream state, as explained above. The pattern below detects an IS event

reporting a problem on the ATLAS partition. If the event is not followed in 2 minutes

by an IS update reporting that ATLAS is no more in error, the pattern is matched and

the alert is generated. The -> is the EPL operator that expresses the followed-by time

relation.

s e l e c t f i r s t e v e n t . e r r o r as Error , f i r s t e v e n t . reson as De t a i l s

from pattern [every f i r s t e v e n t =

Pa r t i t i onS t a t e (partit ionName = 'ATLAS' , e r r o r = true) −>
(timer : i n t e r v a l (120 sec) and

not Pa r t i t i onS t a t e (partit ionName ='ATLAS' , e r r o r = f a l s e))]

6.4.3.2 Continuous check on ROS loads

The ROSes are the devices (i.e. commercial PCs with custom read-out cards) respon-

sible to gather and to transport data from the ATLAS sub-detectors to the TDAQ

computing facilities. They have a critical role in the data taking process: they have to

collect data at high-rate (i.e. the rate de�ned by the Level-1 trigger) and they have to

serve the collected data for the high-level event �ltering operations (i.e. Level-2 and

Event Building). ROSes are essentially bu�ering experimental data, and high load on

ROSes signi�es potential risk of �lling queues and loosing data. Each TDAQ applica-

tion running on a ROS publishes load conditions (i.e. cpu load and bu�er occupancy)

in IS every second.

Temporary spikes in a ROS load are foreseen in standard working conditions. But

sustained high-load on a ROS signi�es a problem in the data-�ow chain. The pattern

below detects a continuous high load for one or more ROSes. The query aggregates

the ROS load values on 60 seconds, then it compares the average (via the avg() EPL

101

6. THE AAL DESIGN AND IMPLEMENTATION

statement) of the loads against a threshold. When a problem is detected, the generated

alert contains the ROS name(s) and the computed load average.

s e l e c t name as ROS, avg (a t t r i b u t e s (' rosLoad ') . i n t) as ROSLoad ,

avg (a t t r i b u t e s (' numberOfQueueElements ') . i n t) as ROSQueue

from ISStream (partit ionName="ATLAS" , name regexp 'ROS− .* ')

. win : time (60 seconds)

group by name

having avg (a t t r i b u t e s (' rosLoad ')) > 70 and

avg (a t t r i b u t e s (' numberOfQueueElements ')) > 30

Alternatively, the same problem could have been detected without usage of static

threshold comparing a single ROS load with the aggregated average loads from other

ROSes. The pattern, presented below, requires a uniform working points for the read-

out infrastructure. The pattern matches when a persisted load for a ROS in 1 minute

is 10% bigger than the average of the loads of the other ROSes.

s e l e c t name as ROS, avg (s i ng l e_ro s . a t t r i b u t e s (' rosLoad ') . i n t) . . .

from ISStream (partit ionName="ATLAS" , name regexp 'ROS− .* ')

. win : time (60 seconds) as s ing l e_ros ,

ISStream (partit ionName="ATLAS" , name regexp 'ROS− .* ')

. win : time (60 seconds) as g loba l_rose s

group by s ing l e_ro s . name

having avg (s ing l e_ro s . a t t r i b u t e s (' rosLoad ')) >

(avg (g loba l_ros . a t t r i b u t e s (' rosLoad '))+10)

6.4.3.3 Connectivity problems on ROS

A ROS bu�ers data from many subsequent LHC collisions events and it serves this

data to the many TDAQ applications responsible for reconstructing complete events

representation for further analysis. This applications are called SFI (Sub-Farm Input).

In case a ROS experiences a connectivity problem, many SFI applications report

many errors while collecting the needed data chunks. The pattern below detects a

connectivity problem on a ROS device, analyzing the �ow of MRS messages produced

102

6.5 Alerts distribution and visualization

by SFIs. Despite the log standard provided by ERS, most of the information about

the issue is only in the message text, such as the name of the problematic ROS. In

this case the ability of Esper to apply regular expression on event string properties is

used to extract the interesting information. The pattern matches if there are more than

300 messages in 30 seconds reporting issue for the same ROS, in which case an alert

is generated. Since this situation can persists over time, the output clause is used to

generate only a single alert in 5 minutes.

s e l e c t * from Message (messageID = ' SFI : : DataFlowIssue ' ,

messageText regexp

'^Problem with the f low o f data .* from : ROS− .* ' as ROS)

. win : time (30 seconds)

group by ROS

having count (*) > 300

output f i r s t every 5 minutes

6.5 Alerts distribution and visualization

For a fast and e�ective reaction on system failures alerts produced by the AAL engine

have to be distributed promptly to operators. In this respect, the AAL project has

been designed to decouple alerts production from alerts distribution. An e�ective web

visualization of alerts is available for operators in the ATLAS control room, but more

active noti�cation strategies, such as e-mails and RSS feeds are available for experts. To

decouple alerts production from alerts distribution the AAL project relies on a message

queue system, the ActiveMQ project from the Apache foundation (43).

6.5.1 Message queuing system

A message queuing system, or message broker, provides a generic communication fa-

cility for heterogeneous components via a publish/subscribe interface for sending and

receiving messages. The AAL engine acts as a message producer, while visualization

components, such as the web applications, act as receivers. ActiveMQ is an open-source

message broker from the Apache software foundation (43). It is compatible with the

JMS interface (35), the standard for message oriented middleware solutions, it supports

103

6. THE AAL DESIGN AND IMPLEMENTATION

AAL engine

Apache ActiveMQ

AAL
Web application

Alert produced as JMS messages
via XML/OpenWire

Alert read as JMS messages
via XML/STOMP

Real-time AJAX update
via JSON/HTTP

web pages
 generation

RSS feeds

Alerts
archive

Other notification
systems (sounds, ...)

Figure 6.10: Alerts distribution is based on a message-driven architecture.

multiple wire protocols (Openwire, STOMP, XMPP) and multiple network protocols.

Moreover, it provides several cross language clients for non-Java applications. Figure

6.10 presents how ActiveMQ functionalities are used for multiple alerts distribution

strategies.

For message routing (i.e. to decide to which subscribers a message has to be prop-

agated) JMS introduces the concept of topic. Every message is sent by a writer to a

speci�c topic. Subscribers specify subscription criterion in terms of a topic expression.

The message broker propagates a new message to all clients with matching subscription

criteria. Alerts distribution leverages the concept of topics, every alert is sent as a JMS

message to the topic corresponding to the alert TDAQ domain.

6.5.2 The AAL web application

AAL provides a dynamic and interactive web-based visualization for alerts. This allows

shifters, but in particular experts, to monitor the TDAQ system conditions indepen-

dently from the platforms and the device used, improving the overall e�ectiveness of

the AAL project.

104

6.5 Alerts distribution and visualization

The AAL web application is a Django-based (1)Python-coded service that collects

and archives alerts produced by the engine and builds rich web pages for alert visual-

ization. The rich functionalities are a set of actions operators can perform:

� Mark alerts as read, e.g. when a problem has been handled. The read information

is persisted into the alert archive.

� Mask read alerts, e.g. to visualize only new alerts as they arrive.

� Filters on alerts parameters.

� Browse alert history.

� Customized pages layout, e.g. create new pages containing a desired category of

alerts, identi�ed by a domain expression.

An alert is sent by the engine as the XML payload of a JMS message via the OpenWire

binary protocol. The web application server acts as a client subscribed to all messages

produced by the engine. ActiveMQ delivers the JMS messages to the web application

as via a text based protocol (STOMP).

The web pages are automatically updated when new alerts arrive via an asyn-

chronous communication over HTTP (AJAX) between the user's browser and the Ac-

tiveMQ message broker. This guarantees a prompt noti�cation of new problems as they

happen. The layout of the web page is presented in Figure 6.11.

6.5.2.1 Alert domain

The domain is an alert's attribute used to group alerts in views, each one bound to a

speci�c TDAQ aspect. Every desk in the ATLAS control room has a speci�c view on

alerts customized for its competency, and experts can customize their own view de�ning

expressions based on domains.

The domain is as a hierarchical concept represented by a string with period-separated

elements, such as:

� RunControl.Network

105

6. THE AAL DESIGN AND IMPLEMENTATION

Figure 6.11: The layout of the AAL web interface.

The example above de�nes a domain with one sub-levels. To build for example the

system view needed by the RunControl desk it is enough to select all alerts matching

the criteria �RunControl.* �. In the same way, more complex views can be created for

experts, such as networking admins may be interested in every network related issue,

identi�ed with the expression �*.Network.* �.

6.5.2.2 Per-domain view

The web application has a structured layout with several sections corresponding to the

di�erent domains:

� DAQ/HLT : to check the correctness of data �ow operations and the status of the

control infrastructure.

� Sub-detectors: to detect problems and failures related to sub-detector speci�c

infrastructures.

� Trigger : to detect problems and failures concerning triggering facilities.

� Farm and network : to analyze and react on warnings and problems from the

TDAQ infrastructure.

106

6.6 Summary

6.5.2.3 Other distribution strategies

The domain is speci�ed as JMS topic in the JMS messages produced by the AAL

engine. This allows to use the noti�cation strategies supported by ActiveMQ. For

example, experts receive alerts a RSS feeds directly connecting to ActiveMQ, specifying

the desired subscription criteria (e.g. RunControl.*)

Moreover, this loosely-coupled architecture allows to add new alert consumers with-

out a�ecting the alert production. For example, for speci�c alerts a sound is played in

the ATLAS control room. This was implemented with a simple application acting as a

new JMS subscriber.

6.6 Summary

E�ective monitoring and prompt error detection are fundamental to maximize the data

taking e�ciency of the ATLAS experiment. The main contribution of the AAL project

is to assist operators with automated analysis of system conditions and intelligent rea-

soning for discovering root causes of problems and misbehavior. AAL has been imple-

mented leveraging modern event correlation techniques combined with message driven

architecture for components integration and web technologies for alert visualization.

This lead to the development of an e�ective tool quickly adopted from di�erent com-

munities in the ATLAS TDAQ context and raising the interest from other groups with

similar monitoring requirements, such as networking and system administration.

107

6. THE AAL DESIGN AND IMPLEMENTATION

108

Chapter 7

Conclusions and future work

This chapter summarizes the results and presents the main outcome of this thesis

project. Final conclusions are drawn before some possible avenues of future research

are outlined.

7.1 Summary

This thesis proposes an innovative approach to monitoring and operating complex and

distributed computing systems, in particular referring to the ATLAS Trigger and Data

Acquisition (TDAQ) system currently in use at the European Organization for Nuclear

Research (CERN). E�ective monitoring and analysis tools are fundamental in modern

IT infrastructures to get insights on the overall system behavior and to deal promptly

and e�ectively with failures. These systems have in common a layered architecture, with

every layer providing functionalities other layers and services rely on (such as network,

middleware, application, user interfaces, web portals, etc.). In this scenario, standard

monitoring techniques and tools have several limitations, such as being too focused on

single aspects, the lack of �exibility with respect to the dynamic working conditions

and the timeliness of monitoring information provided.

The result of this thesis work is the AAL project (Automated Analysis and inteL-

ligent monitoring). It is meant to improve the system monitoring and fault diagnosis

through the automated and intelligent continuous processing of system activities. This

project combines technologies coming from di�erent disciplines, in particular it lever-

ages an event-driven architecture to manage the �ow of information coming from the

109

7. CONCLUSIONS AND FUTURE WORK

ATLAS TDAQ infrastructure, together with a Complex Event Processing (CEP) engine

to provide intelligent systems analysis.

The project has proven to be an e�ective solution and it has been extensively adopted

to assist shifters and experts during the ATLAS data acquisition operations in 2011.

Moreover, since it simpli�es operational procedures and it allows for a better use of

experts knowledge, it contributes to reduce the ATLAS operational ine�ciency while

increasing the overall situation awareness for the TDAQ infrastructure. Thanks to a

generic design it can be easily deployed to di�erent computing infrastructures.

7.1.1 ATLAS operational e�ciency

Now that the ATLAS experiment is steadily running, data acquisition procedures are

often covered by new operators with limited experience, assisted by a set of experts pro-

viding knowledge for speci�c components. The evaluation of the correctness of running

operations requires strong competence and experience in understanding log messages

and monitoring information. Moreover, the meaningful information is often not in a

single event but in the aggregated behaviour in a certain time-line. As presented in

Chapter 3, about 50% of the TDAQ data taking ine�ciency (i.e. the loss of experi-

mental data) is coming from situations where a human intervention is involved. Due to

the very critical operational task, both economically and in terms of manpower, dealing

fast and e�ectively with problems and failures is fundamental to minimize operational

ine�ciency. In this respect, a high-level monitoring tool helping operators with auto-

mated diagnosis of problems and suggesting the appropriate reaction is able to reduce

the time for error management and to minimize the loss of experimental data. This

is the objective of the AAL project, to be an automated and intelligent assistant for

TDAQ operators.

7.1.2 Complex Event Processing for TDAQ operations analysis

The need to process streams of information from distributed sources at high-rate with

low-latency is of interest from the most disparate �elds: from wireless sensor networks

to �nancial analysis, from business process management to infrastructure monitoring.

Complex Event Processing (CEP) technologies have emerged as e�ective solutions for

information processing and event stream analysis. In particular, they provide the means

to reason upon events and on relationships among them.

110

7.2 Future research

This thesis demonstrates how to leverage these technologies to implement error

detection and fault diagnosis in a complex system such as the ATLAS TDAQ. Esper

(7) is the leading open-source engine for complex event processing and it has been

investigated and adopted to provide CEP functionalities for the AAL project.

7.1.3 The AAL project

The AAL project is meant to assist operators with automated analysis of system con-

ditions and intelligent reasoning for debug and fault diagnosis. Information gathering,

data processing and e�ective result distribution are the main challenges coming from the

complex ATLAS TDAQ architecture and the demanding working conditions. TDAQ

experts feed AAL with instructions, called directives, describing the problems to be

detected and the actions to perform when they happen. The �ow of monitoring data,

di�erent in type and format, is collected and processed at a high-rate to detect problems

and failures.

The AAL project has a loosely-coupled architecture where two main modules inter-

act via a message broker, also known as event/message bus, that centralizes all commu-

nication. The AAL engine is responsible for the collection and correlation of monitoring

data via CEP techniques. It produces alerts that contain all the information needed

by shifters and experts to investigate and react on problems. The AAL web applica-

tion provides a dynamic and interactive web-based visualization for TDAQ operators

to get insights on system conditions. Moreover, the message-oriented communication

decouples the processing model from alerts distribution, allowing to implement multiple

visualization and noti�cation strategies without interfering with the data processing.

The adoption of AAL by several TDAQ communities shows that automation and

intelligent system analysis were common monitoring requirements that were lacking in

the previous infrastructure. The results of this research will bene�t researcher evaluating

intelligent monitoring techniques on large-scale distributed computing system.

7.2 Future research

This thesis demonstrates how to leverage Complex Event Processing (CEP) techniques

to process heterogeneous and dynamic streams of data at high-rate to detect problems

111

7. CONCLUSIONS AND FUTURE WORK

and failures. The following is a consideration on some of the possible ways forward in

order to extend the AAL functionalities and e�ectiveness.

The current approach requires system experts to describe problems as event patterns.

This implies having a detailed knowledge of the system behavior and of the working

conditions. An interesting �eld of research would be to investigate the techniques to

learn the correctness of running operations from the prior know failures and from the

online �ow of monitoring data

7.2.1 Combination of CEP with machine learning for problem classi-

�cation

The research in (42) demonstrates how to possibly detect and classify patterns of prob-

lems processing and analyzing the log messages and information updates recorded dur-

ing ATLAS data taking operations. The analysis on those data-sets shows that clusters

exist in the data corresponding to the di�erent simulated errors. Nevertheless, the re-

search recognizes as the main limitation on its practical adoption the need to heavily

pre-process input data to extract any general rules for the intelligent systems.

In this respect, there are clear opportunities to combine machine learning algorithms

with CEP and leverage the pre-processing of the incoming raw data. A machine learning

module could use the CEP-processed data to train a error-speci�c classi�er for further

error detection. Moreover, the loosely-coupled architecture of the AAL project is very

well suited integrate the new module and to include its results as a new source of

information for TDAQ operators.

7.2.2 On-line problem classi�cations

Another interesting evolution in the same �eld of research is to pro�t from the learning

approach together with the continuous processing capability o�ered by CEP. The �ow of

operational data could be used to automatically analyze working conditions by collecting

data directly from the live operations. An online-learner module could incrementally

train a task-speci�c classi�er with these data, in an unsupervised or semi-supervised

manner. Since learning would occur online and without experts help, it could be done

continuously, in parallel with the normal pattern matching, thus allowing to adapt the

classi�er over time.

112

7.3 Conclusions

7.3 Conclusions

E�ective monitoring and analysis tools are fundamental in modern IT infrastructures

to get insights on the overall system behavior and to deal promptly and e�ectively with

failures. This thesis proposes an innovative approach to monitor and operate complex

and distributed computing systems, in particular referring to the ATLAS Trigger and

Data Acquisition (TDAQ) system currently in use at the European Laboratory for

Particle Physics (CERN).

In recent years, Complex Event Processing (CEP) technologies have emerged as ef-

fective solutions for information processing from the most disparate �elds: from wireless

sensor networks to �nancial analysis. The AAL project, subject of this thesis, demon-

strates how to leverage CEP techniques for the continuous processing monitoring data.

It provides system operators with automated and intelligent diagnosis of problems and

failures, improving the overall situation awareness and the operational e�ciency.

The extensive adoption of AAL to assist TDAQ operators during the ATLAS data

taking in 2011 shows that automation and intelligent system analysis were not prop-

erly addressed in the previous infrastructure. The results of this thesis will bene�t

researchers evaluating intelligent monitoring techniques on large-scale distributed com-

puting system.

113

7. CONCLUSIONS AND FUTURE WORK

114

References

[1] The django project. https://www.djangoproject.com/. 105

[2] ATLAS Collaboration. ATLAS High-Level Trigger, Data Acquisition and Controls

Technical Design Report. http://cdsweb.cern.ch/record/616089/. Jun 2003. 8, 9

[3] ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Col-

lider. Journal of Instrumentation, S08003. 2008. 6

[4] ATLAS Collaboration. Luminosity Determination in pp Collisions at

sqrt(s)=7 TeV Using the ATLAS Detector at the LHC. Journal refer-

ence:Eur.Phys.J.C71:1630. 2011. 42

[5] ATLAS TDAQ Shifters TDAQ Whiteboard. https://pc-atlas-

www.cern.ch/twiki/bin/view/main/daqwhiteboard. 2011. 35

[6] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Wido.

Models and issues in data stream systems. Standford Publication, 2002. 50

[7] Thomas Bernhardt. The esper project. http://esper.codehaus.org/. 49, 59, 61, 71,

111

[8] ATLAS Collaboration. Atlas high level data acquisition system and controls. Tech-

nical report, CERN, 2003. 25

[9] Complex Event Processing with StreamBase. http://http://www.streambase.com.

14, 61

[10] Alina Corso-Radu, Raul Murillo Garcia, Andrei Kazarov, Giovanna Lehmann

Miotto, Luca Magnoni, and John Erik Sloper. Applications of expert system

115

REFERENCES

technology in the atlas tdaq controls framework. In International Conference on

Software and Data Technologies, Athens, Grece., 2010. 39

[11] Pan Deyu and Rao Ruonan. The research on complex event processing in moni-

toring system. IEEE International Conference on Computational and Information

Sciences (ICCIS), 2011. 9

[12] Daniel Liko et al. Control in the ATLAS TDAQ System. Computing in High

Energy Physics and Nuclear Physics. Interlaken, Switzerland. 2004. 13

[13] Daniel Liko et al. Control in the atlas tdaq system. Computing in High Energy

Physics and Nuclear Physics, page 159, Interlaken, Switzerland., 2004. 40

[14] Don Carney et al. Monitoring Streams: A New Class of Data Management Appli-

cations. Proceedings of VLDB, 2002. 51

[15] Fabio Sacerdoti et al. Wide area cluster monitoring with ganglia. 2003. 35

[16] Evan Hoke and Jimeng Sun et al. InteMon: Continous Mining of Sensors Data

in Large-scale self infrastructures. ACM SIGOPS Operating System Review. 2006.

85

[17] Lyndon Evans. The large hadron collider. New Journal of Physics, 2007. 5

[18] Ivan Fedorko. The Message Reporting System of the ATLAS DAQ System. ICATPP

Conference on Astroparticle, Particle, Space Physics Detectors and Medical Physics

Applications. 2007. 20

[19] Charles Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Arti�cial Intelligence, 19(1):1737, 1982. ISSN 0004-3702, 1982.

39

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1

edition, November 1994. 89

[21] Raul Murillo Garcia and Giovanna Lehmann Miotto. A log service package for the

ATLAS TDAQ/DCS group. Nuclear Science, IEEE Transactions, 54(4):202�207,

2007. 21

116

REFERENCES

[22] Nicoletta Garelli. Atlas 2011 operations report. ATLAS Week, Nov 2011. 29, 44

[23] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Longman Publish-

ing Co., 2003. 87

[24] Igor Soloviev et al. ATLAS Con�guration Databases. CERN Technical report.

2002. 81

[25] Oracle Inc. Oracle complex event processing: Lightweight modular application

event stream processing in the real world. White paper, 2009. 14, 61

[26] Twtter Inc. Twitter storm: Open source real-time hadoop.

https://github.com/nathanmarz/storm, 2011. 60

[27] JacORB: The free Java implementation of the OMG's CORBA standard.

http://www.jaccorb.org. 19

[28] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer

Widom, and Hari Balakrishnan. Towards a streaming sql standard. Proceedings of

the VLDB Endowmen, 2008. 57

[29] Magnoni Luca, Giovanna Lehmann Miotto, and Kazarov Andrei. The aal project:

Automated monitoring and intelligent analysis for the atlas data taking infrastruc-

ture. In Proceedingd of 14th International Workshop On Advanced Computing And

Analysis Techniques In Physics Research,London, 2011. 73

[30] David Luckham. The Power of Events: An Introduction to Complex Event Pro-

cessing in Distributed Enterprise Systems. Addison-Wesley Professional, New York,

2002. 12, 50, 52

[31] Ananth Madhavan. VWAP Strategies. Trading, 2002. 70

[32] Alessandro Margara and Gianpaolo Cugola. Processing Flows of Information: From

Data Stream to Complex Event Processing. ACM Computing Surveys, ACM Press,

2012. 50, 60

117

REFERENCES

[33] Bran Martin, Costin Meirosu, and Stefan Stancu. Networks for ATLAS trigger and

data acquisition. Conference on Computing in High Energy and Nuclear Physics,

Mumbai, India. 2006. 33

[34] Nagios Enterprises. http://nagios.org/. 33, 35, 80, 81

[35] Oracle-Sun. The java message service api.

http://docs.oracle.com/cd/B1409919/jms.htm. 79, 103

[36] ORB CORBA. http://www.corba.org. 19

[37] Norman W Paton and Oscar Diaz. Active Database Systems. ACM Computing

Surveys, ACM Press, 1999. 50

[38] Dan Octavian Savu, Ali Al-Shabibi, Brian Martin, Silvia Batraneanu, and Stefan

Stancu. E�cient Network Monitoring for Large Data Acquisition Systems. Pro-

ceedings of the ICAPELCS 2011, Grenoble, France. 2010. 34

[39] Douglas C. Schmidt. Evaluating architectures for multi-threaded corba object

request brokers. Communications of the ACM, 2002. 95

[40] E. Shapiro and K. Fuchi. Concurrent prolog. MIT Press, Cambridge. ISBN 0-262-

19255-1, 1988. 38

[41] Alexandru Dan Sicoe, Giovanna Lehmann Miotto, and Magnoni Luca. A Persis-

tent Back-End for the ATLAS TDAQ On-line Information Service (P-BEAST).

Proceedings of the ACAT conference. 2011. 77

[42] John Erik Sloper. Error Management in ATLAS TDAQ: An Intelligent Systems

approach. PhD thesis, University of Warwick, 2010. 112

[43] The Apache Software foundation. Activemq http://activemq.apache.org/. 103

[44] Jos Vermeulen. Atlas data�ow: the read-out subsytem, results from triggering and

data-acquisition system testbed studies and fomr modeling. Nuclear Science, IEEE

Transaction, 53(3):912-917. ISSN 0018-9499, 2006. 9

[45] Yahoo Inc. S4 distributed stream computing platform,

http://incubator.apache.org/s4/. 60

118

