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Introduction

One of the most challenging problems in hadronic and nuclear physics is to study

nuclear matter at finite density by using a scheme which includes one of the fun-

damental properties of QCD, namely chiral symmetry. In general, when studying

a physical system one would like to use a technique which can allow, at least in

principle, for a systematic improvement in the theoretical quantitative analysis.

For instance, in the regimes where they are applicable, perturbative techniques

are able to provide more and more precise estimates by increasing the order of

the calculation. A good example of such a technique applied to this field is the

so-called hard thermal loop expansion [1, 2] which is able to provide a good de-

scription of the behaviour of matter at temperature larger than the critical one.

Another example is chiral perturbation theory [3], which on the other hand is still

struggling to provide reliable results at densities of the order of nuclear matter

saturation density. At asymptotically large densities one can vice versa imag-

ine that perturbation theory is again applicable and important results have been

obtained in that regime showing for instance the relevance of the phenomenon

of color superconductivity [4]. On the other hand the deconfinement transition

from hadrons to quarks and gluons cannot be described by using a perturbative

1
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approach.1 At the moment the only non-perturbative technique which is able to

describe some aspects of the transition from hadrons to quark and gluons is lattice

QCD: this technique can provide rather precise informations about the behaviour

of matter at very high temperatures [6–8] but unfortunately these calculations

can be performed only for small values of the chemical potential µ.

In this work we will focus on the non-perturbative region of QCD; in the absence

of any reliable expansion scheme we have to resort to model Lagrangians, incorpo-

rating the degrees of freedom relevant at the energy scale of the phase transition.

Chiral symmetry breaking is typically described in terms of chiral Lagrangians

including the corresponding Goldstone bosons as the relevant degrees of freedom.

At the moment the process of confinement-deconfinement at finite density is much

less understood and it is not even clear if it is associated with a phase transition.

The simplest choice, which we will also adopt, is to neglect altogether coloured

degrees of freedom, by assuming that they are suppressed by the mechanism of

confinement. Therefore we take into account quark-antiquark correlations having

the quantum numbers of the pion but we do not include coloured quark-antiquark

fluctuations: while this simple scheme is maybe correct at relatively low densities,

it is certainly questionable at larger densities where the role of coloured diquark

condensates can be relevant. While discussing symmetries and confinement one

has to recall that scale invariance is an almost exact symmetry of QCD but it is

non perturbatively broken in the hadronic phase. On the other hand scale invari-

ance is restored (but for perturbative contributions) in the quark-gluon plasma

at large temperatures. One is therefore pressed to investigate the role played by

scale invariance in model Lagrangians.

1For an attempt to relate large Nc and confinement see e.g. [5]
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There are many chiral models able to provide a quite accurate description of

the nucleon. We concentrate on models where the fermionic degrees of freedom

are coupled to mesons in a chirally invariant way. This type of models can be sep-

arated in two main classes: models in which no kinetic energy is attributed to the

quark-antiquark fluctuations and models where those correlations are identified

with real chiral fields having an explicit kinetic term. The first class includes the

Nambu-Jona-Lasinio model [9] and the chiral quark-soliton model [10, 11]. This

type of models are very nicely related to QCD but they are not easy to use having

in mind to obtain an effective Lagrangian for nuclear physics by starting from a

Lagrangian of interacting quarks. In particular the kinetic energy of the physical

pion should be obtained by evaluating non trivial contributions coming from the

sea. From this viewpoint the second class of models [12–14] is simpler because its

Lagrangian already contains the kinetic terms which appear in a typical nuclear

physics Lagrangian. These types of models are able to provide non-topological

solitonic solutions, given by the interaction between quarks and mesons, which

yield a good description of the nucleon properties in vacuum.

It is well known that the introduction of chiral symmetry in an effective La-

grangian to describe nuclear matter at finite density and nuclei is not straight-

forward. For instance models based on the Linear σ-model fail to describe nu-

clear matter already at densities ρ ∼ ρ0 because the normal solution in which

chiral symmetry is broken becomes unstable respect to the so-called Lee-Wick

phase [15]. The main problems in these models are due to the constraints on the

scalar field dynamics imposed by the Mexican hat potential [16]. The interaction

terms of σ and π fields in the linear realization of chiral symmetry allows the

chiral fields to move away from the chiral circle as the density raises and to reach,
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already at ρ0, the local maximum where σv = 0 and chiral symmetry is restored.

The problem of a too early restoration of chiral symmetry at finite density can

be overcame in two different ways. One could implement chiral symmetry into the

Lagrangian through a non-linear realization [17] where the scalar fields are forced

to stay on the chiral circle. In Ref. [18] the authors use a non-linear realization

of chiral symmetry in which a scalar-isoscalar effective field is introduced, as a

chiral singlet, to simulate intermediate range attraction and to satisfy broken

scale invariance in QCD; in this way the dynamics of the chiral singlet field is

no more regulated by the Mexican hat potential and accurate results for finite

nuclei are presented. The other approach is still based on a linear realization of

chiral symmetry but with a new potential, which includes terms not present in

the Mexican hat potential. A possible guideline in building such a potential is

scale invariance, which is spontaneously broken in QCD due to the presence of

the parameter ΛQCD coming from the renormalization process and it is strictly

connected to a non vanishing gluon condensate. This fundamental symmetry of

QCD can be implemented in the Lagrangian at mean-field level, following the

approaches in [19, 20], through the introduction of a new scalar field, the dilaton

field, whose dynamics is regulated by a potential chosen in order to reproduce

the scale divergence of QCD.

In this work we will adopt a Chiral Dilaton Model (CDM) which also includes

scale invariance introduced by the nuclear physics group of the University of

Minnesota [21–24]. In their first paper [21] the authors have shown that the model

with hadronic degrees of freedom is indeed able to provide a good description of

nuclear physics at densities about ρ0. In the following work [25] it is also shown

that the model describes the gradual restoration of chiral symmetry at higher
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densities and leads to a phase diagram where the interplay between chiral and

scale invariance restoration results in a scenario similar to the one proposed by

McLerran and Pisarski in [26].This is not too surprising since the large Nc limit

explored in [26] should be well represented in chiral models as the one discussed

in [25]. It is therefore tempting to explore the scenario presented in [25] at a

more microscopic level.

The new idea we develop in this work is to interpret the fermions as quarks, to

build the hadrons as solitonic solutions of the fields equations as in [13, 27] and,

finally, to explore the properties of the soliton at finite density.

The description of nuclear matter at finite density can be achieved through

several approaches. A possibility is to describe the modification of the single

nucleon properties when it is embedded in a dense medium [28–30]. Another

possibility is to mimic nuclear matter by placing the solitons on a lattice, with

a specific geometry and specific boundary conditions. The Wigner-Seitz approx-

imation is one of the most used approaches in this category, since it relies on

the simply assumption of a spherical cell in which the fermions move under the

action of a periodic potential given by the meson fields. This scheme has been

applied in the past [31–37] but one of the problems in those works is that the

solitonic solutions are unstable and disappear already at moderate densities when

e.g the Linear σ-model is adopted. We are therefore facing an instability simi-

lar to the one discussed and solved when studying nuclear matter with hadronic

chiral Lagrangians.

The first aim of this thesis is to check whether, just by modifying the mesons

interaction with the inclusion of scale invariance, the new logarithmic potential

allows the soliton crystal to reach higher densities. Next, since the CDM also
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takes into account the presence of vector mesons, the second and more impor-

tant aim is to check whether the inclusion of vector mesons in the dynamics of

the quarks can provide saturation for chiral matter. We should remark that no

calculation, neither in vacuum nor at finite density, exists at the moment for the

CDM with quarks and vector mesons.

The structure of the thesis is the following: in Chapter 1 a brief overview of

soliton models in QCD is presented; in Chapter 2 we introduce the CDM and

we present the results for the single soliton in vacuum; in Chapter 3 the Wigner-

Seitz approximation to nuclear matter is discussed together with the results for

the CDM at finite density; in Chapter 4 we show a first attempt to go beyond

the Wigner-Seitz approach with the construction of the B = 2 soliton system and

the study of the inter-soliton energy. Finally in the Conclusions we summarize

the main results achieved along with the discussion of future improvements and

extensions of the model.



List of publications

The work presented in this thesis is based on the following papers and preprints:

• “A chiral quark-soliton model with broken scale invariance for nuclear mat-

ter.”.

Valentina Mantovani Sarti, Alessandro Drago.

Submitted for publication to Phys.Rev.C.

• “A hybrid-chiral soliton model with broken scale invariance for nuclear mat-

ter.”.

Valentina Mantovani Sarti, Alessandro Drago.

J.Phys.Conf.Ser. 336 (2011) 012028.

• ‘The baryon number two system in the Chiral Soliton Model”.

Valentina Mantovani Sarti, Alessandro Drago, Vicente Vento and Byung-

Yoon Park.

Proceedings for the Conference Few-Body Systems (APFB2011) .

7





Chapter 1

Soliton models in QCD

The description of nucleons and in general of hadrons properties has to take into

account the internal structure of these particles, given by the interaction of quarks

and gluons. In particular the calculation of nucleons properties in an appropriate

theoretical framework, including masses and form factors, has to provide results

compatible with phenomenology.

The main difficulty with QCD is that it becomes a free theory at asymptotically

large energies. In most cases the experiments cannot be described just in a per-

turbative approach. For instance the theoretical interpretation of the structure

functions of the hadrons, extracted from experiments of deep inelastic scattering,

is given in terms of a non-perturbative matrix element and only its evolution in

q2 can be evaluated using perturbative techniques. The non-perturbative matrix

element describes physical processes which take place at low energies.

Since low energy phenomenology is directly linked to the non-perturbative be-

haviour of QCD, the calculation of hadronic observables involves the full com-

plexity of the underlying fundamental theory.

9
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Lattice simulations of QCD [38,39] are able to provide useful informations in this

regime but are still affected by large uncertainties due to the difficulties of the

chiral extrapolation.

The gap between the exact gauge theory and the phenomenology in this low

regime can be filled by relativistic effective field theories.

The essential idea of these effective models is to include the fundamental

symmetries of QCD into the Lagrangian and to realize that the dynamics at low

energies is governed by appropriate degrees of freedom depending on the energy

scale.

Models for hadrons can be loosely divided in two classes: bag-like models [40,41]

in which confinement is imposed via special boundary conditions given on a chosen

(and in most cases static) surface and soliton models in which confinement (or

at least binding) is the outcome of the internal dynamics of the fields. It is

interesting to notice how the interaction between quarks and chiral fields takes

place in the two cases: in the MIT bag model the interaction occurs only at the

surface, while in the chiral soliton model the energy density of the interaction is

peaked close to the extended region which separates the internal from the external

part of the nucleon.

The term soliton has to be interpreted as a localised non-dissipative solution

of the set of non-linear classical field equations, given by the chosen Lagrangian.

There are different types of soliton models, depending on how the stability of the

solution is obtained. On one side there are non-topological solitons, whose energy

is smaller than the free wave solution; here the stability is directly given by an

energetically favourable state identified with the soliton. This category includes

non-chiral theories as the Friedberg-Lee model [42,43] and also chiral Lagrangians
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as the chiral colour dielectric model [44] and Linear σ-models [45].

On the other hand, the topological solitons are stable because they carry a con-

served topological charge q which forbids the decay into plane waves; this is the

case of the Skyrme model [46, 47] where the topological charge is identified with

the baryon charge B.

At mean-field level, namely treating the field operators as classical fields, all

the chiral models admit a solution having a special isospin configuration called

Hedgehog, which will be discussed in details in chapter 2. The configuration of

fields provided by this ansatz is based essentially on spherical symmetry. It can

be shown that the Hedgehog state is one element of an infinite class of degener-

ate solutions of field equations at mean-field level [48] and it provides the lowest

energy state [49].

Although the Hedgehog state permits to easily calculate energies and observ-

ables, it breaks rotational and isospin symmetries. Hence projection methods are

needed to make contact with physical states of good spin and isospin. Moreover

mean-fields solitons are by definition localised solutions, and so they also break

translational invariance. These configurations contain spurious centre-of-mass

motion whose contributions to the energy of the baryon and to other observables

should be removed. More details about the approaches used in nuclear physics

for projection on linear momentum can be found in [35].

In this chapter we will describe in details all the main features of the models that

provide non-topological solitons and we will give a brief review of the Skyrme

model.
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1.1 Non-topological solitons

Here we will present a class of solitons where the coupling of various boson

fields, mesons or glueballs, to fermions leads to an energetically stable solution

of field equations. It is interesting to notice that even normal nuclei, in which

the fermions are nucleons, can be considered as non-topological solitons. The

low energy features of QCD, as chiral symmetry and dynamical confinement,

are included in these models through the self-interaction of meson fields and the

coupling of fermions to scalar fields.

1.1.1 Non-chiral solitons

In this section we will present the most known soliton models which do not in-

clude chiral symmetry but provide confinement through the interaction of quarks

and scalar fields.

The Friedberg-Lee model

The soliton bag model presented here [50] is the most representative one for the

class of non-chiral soliton models. The model consists of quarks interacting with

a scalar field σ and the Lagrangian density has the following form:

L = ψ(i/∂ − gσ)ψ +
1

2
∂µσ∂

µσ − U(σ) (1.1)

where U(σ) is the self-interacting potential of the scalar field.

This potential is usually chosen to have a quartic form:

U(σ) =
1

2!
aσ2 +

1

3!
bσ3 +

1

4!
cσ4 + p. (1.2)

The quartic form makes the model renormalizable and the coefficients a, b, c, p

in (1.2) can be chosen so that U(σ) has the shapes shown in Fig. 1.1. Here the
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Figure 1.1: Typical forms for the potential U(σ) in the soliton bag model.

potential always shows two minima: the absolute one at a finite value σv and

the other one at σ = 0. The former represents the non-perturbative physical

vacuum with a condensate σ = σv, while the latter corresponds to a metastable

vacuum in which the condensate vanishes. We will see later that for the Linear-σ

model the non vanishing condensate is connected to the spontaneous breaking of

chiral symmetry, i.e. the vacuum is not invariant under chiral transformations.

In other models as e.g in the non-chiral version of the dielectric model, a non

vanishing scalar field in the vacuum is instead associated with the breaking of

scale invariance: the scalar field is related to the dilaton field which in turns is

connected to the gluon condensate.

The coupling between the quarks and the scalar field, gσψψ, besides acting as

the mass term for the quarks, also adds a linear term in the potential U(σ). This
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means that when the scalar density ρs = ψψ is large enough, this linear term can

raise the energy of the non-perturbative vacuum and the perturbative vacuum

becomes the stable minimum. In this way the quarks are confined in a finite

region by the self-interaction of the scalar field and the quarks density forces the

σ field to stay close to zero.

The colour dielectric model

This model is similar to the Friedberg-Lee one but here the coupling of the quarks

to the scalar field χ can provide absolute confinement.

In this model the interaction term between χ and fermion is non-linear, but it goes

like 1
gχχ

. Solitons in this model have been studied in different papers as [51–54].

The Lagrangian of the model reads:

L = ψ

(
i/∂ − m

gχχ

)
ψ +

1

2
(∂µχ)

2 − U(χ). (1.3)

The potential U(χ) can still have a quartic form, similar to the potential of the

soliton bag model in Fig. 1.1 but here the absolute minimum now occurs at χv = 0

as shown in Fig. 1.2. In this way the effective mass of the quarks given by −gσ/χv
diverges outside the nucleon. In Fig. 1.3 we show a ”one phase” configuration

of fields, where the scalar field stays close to zero; here all fields have a smooth

behaviour as they approach the surface of the confining region.

In the case of a ”two phase” solution (Fig. 1.4), since the χ field can switch

from one minimum to the other as shown in Fig. 1.2, the scalar field shows a

sharper decrease at the surface and also the quarks wave function G and F are

rapidly cut off.

The colour dielectric model can be made chiral invariant by replacing the

mass term with the coupling of quarks to the chiral fields, σ and π. The modified
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Figure 1.2: Potential Ũχ as given in Ref. [55]. The case with b̃ = 0 provides a ”one

phase” solution (Fig. 1.3), while the case with b̃ = 4 gives a ”two phase” configuration

(Fig. 1.4).

Figure 1.3: Upper and lower Dirac components (dashed line) and scalar field (solid

line) in the colour-dielectric model for ”one phase” solution [55].

Lagrangian becomes:

L =ψ

(
i/∂ − gπ

σ + iτ · πγ5
gχχ

)
ψ

+
1

2
(∂µχ)

2 +
1

2
(∂µσ)

2 +
1

2
(∂µπ)

2 − U(χ)− Umex(σ,π) (1.4)
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Figure 1.4: Upper and lower Dirac components (dashed line) and scalar field (solid

line) in the colour-dielectric model for ”two phase” solution [55].

where Umex(σ,π) is the Mexican hat potential which will be described in Sec. 1.1.2.

This extension to include chiral symmetry plays anyway a small role in determin-

ing the structure and properties of baryons [56].

1.1.2 Chiral solitons

Chiral symmetry is an exact symmetry of QCD in the limit of vanishing quark

masses. In this case the quark part of the QCD Lagrangian,

Lq = ψ(iγµDµ)ψ (1.5)

is invariant under ordinary SU(2) rotation in isospin space and also under axial

isospin rotations. This whole set of transformations is equivalent to isospin ro-

tations which act independently on right- and left-handed quarks and hence the

symmetry group is denoted as SU(2)R × SU(2)L.

However, it is well known that current quark masses are finite but, considering

only up and down quarks, since their masses are small compared to the hadronic

scale, chiral symmetry can be considered as an approximate symmetry of the
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strong interactions.

There are two modes to realize chiral symmetry: the Wigner-Weyl mode and the

Nambu-Goldstone mode [57].

In the Wigner-Weyl mode we have a chiral-symmetric vacuum which annihilates

under the action of isospin Qα and axial Qα,5 charges. In this case if we apply to

the proton state |p〉 the strong interaction Hamiltonian H and the parity operator

P (which anti-commutes with the axial charge) we obtain:

HQα,5|p〉 = Qα,5H|p〉 = mpQα,5|p〉

PQα,5|p〉 = −Qα,5P |p〉 = −Qα,5|p〉 . (1.6)

Hence, from here it is clear that if chiral symmetry is an exact symmetry realized

in the Wigner-Weyl mode, there should exist a chiral partner of the proton with

same massmp but opposite parity. This realization of chiral symmetry has already

been used in several σ-models [58–60] especially to study matter at high density

and temperatures.

In the Nambu-Goldstone realization of chiral symmetry in QCD the symme-

try is spontaneously broken, due to the fact that now the vacuum is not chiral

invariant. From Goldstone theorem it follows that there exist a boson for each

broken symmetry. Since there are three axial charges, then there should be three

massless pseudoscalar bosons, identified with the pion, which are the correspond-

ing Goldstone bosons. The existence of massless particles in the chirally broken

phase has to be taken into account in any effective low-energy Lagrangian.

In this section we will present the best known chiral soliton models used in

hadronic and nuclear physics. In these models the quarks are coupled to the chiral

fields, a scalar-isoscalar σ and a pseudoscalar-isovector π, in a chirally invariant
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Figure 1.5: The Mexican hat potential for the meson fields in the Linear-σ model.

way. The meson potential provides the suitable mechanism for the spontaneous

breakdown of chiral symmetry.

The Linear σ-model

The Linear σ-model [45] includes a fermionic massless isodoublet field ψ, a triplet

of pseudoscalar pions π and a scalar field σ. The chirally symmetric Lagrangian

involving these fields has the form:

L = ψ[i/∂ + g(σ + iπ · τγ5)]ψ +
1

2
(∂µσ)

2 ++
1

2
(∂µπ)

2 − U(σ,π). (1.7)

The potential in (1.7) is chosen to have a Mexican hat form:

Umex(σ,π) =
λ2

4
(σ2 + π2 − ν2)2. (1.8)

As can be seen in Fig. 1.5, the potential admits degenerate minima, which

satisfy the chiral circle equation σ2 + π2 = ν2. By imposing that the physical

vacuum is parity even, it follows that σv = ±ν, πv = 0. The pionic vacuum

excitations are then massless particles, the three Goldstone bosons of the model,

while the sigma excitations acquire a mass.
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Explicit symmetry breaking can be included in the model by adding to the

potential a term linear in σ:

Umex,SB(σ,π) = Umex(σ,π) + cσ (1.9)

The linear term tilts the potential and allows the pion to have a finite mass. The

three parameters λ, ν and c can be fixed by requiring that:

• the pion has the physical mass mπ = 139 MeV,

• the pion decay constant (which can be estimated by using the divergence

of the axial current inside the matrix element of the pion decay) has the

physical value fπ = 93 MeV,

• finally λ can be related to the mass of the sigma by the equation:

λ2 =
m2
σ −m2

π

2f 2
π

, (1.10)

and after this parameter fixing :

ν2 =
m2
σ − 3m2

π

2f 2
π

. (1.11)

The label linear used in this section distinguishes this model from the non-

linear one, where the sigma and the pion fields are tied to the chiral circle. Under

this constraint, the sigma field reads:

σ = fπ

(
1− π2

f 2
π

)1/2

(1.12)

and by substituting it in (1.7) we obtain the Lagrangian for the non-linear model.

The σ model has been fully analysed in many papers, both in its linear [12,61]

and non linear form [13]. It has been shown that, with a proper choice of the
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parameters g and mσ, good results can be obtained for both baryon masses and

nucleon observables.

The basic model has been extended in several directions, in particular in [62] the

authors include also the vector mesons. The new Lagrangian incorporates the

idea of universal coupling [63], which couples the vector mesons to the appropriate

currents: the ρ meson to the isospin current, the a1 to the axial isospin current

and the ω to the baryon one.

1.2 Topological solitons

In the large-Nc limit, it has been proved [64] that QCD reduces to a local field

theory of weakly interacting mesons and baryons may emerge as solitons of this

theory. Many of these properties of large-Nc are satisfied by the meson-sector of

the non-linear sigma model and are included in the Skyrme model [46, 47].

The Skyrme model does not have explicit quarks and gluons degrees of freedom

but it is based only on meson fields and their interaction.

The Lagrangian of the model reads:

L =
f 2
π

16
Tr(∂µU

†∂µU) +
1

32e2
Tr[U †∂µU, U

†∂νU ] +
1

8
m2
πf

2
π(TrU − 2) (1.13)

where U =
1

fπ
(σ + iτ · π), fπ is the pion decay constant and e is an adjustable

parameter of the model. The first term in the Lagrangian represents the kinetic

energies of the meson fields, the second one is the necessary fourth-order term

that stabilizes the solitonic configurations and the last term takes into account

the explicit symmetry breaking.

The solutions of fields equations of (1.13) are called Skyrmions and are classified

according to a positive integer n, called topological charge. This conserved charge

can be identified with the baryon number B, once the Wess-Zumino term is
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included [65]. It has been shown that a skyrmion with n = 1 has the same

properties of a fermion; hence starting from a pure bosonic model, we can obtain

solitonic solutions which behaves as nucleons thanks to its topological properties.





Chapter 2

The Chiral Dilaton Model

At present we are still far from being able to describe the phenomenology of the

non-perturbative regime of QCD with an effective Lagrangian involving mesons

and quarks, and which could be used for nuclear physics starting from the funda-

mental constituents. A possible guideline to the construction of such a Lagrangian

is to incorporate in it all the fundamental symmetries of the exact theory, such

as the spontaneous breakdown of chiral and scale symmetry. In the previous

chapter we presented an overview of the non-topological soliton models used in

QCD, where quarks degrees of freedom are explicitly included and where chiral

symmetry plays a fundamental role in building up the nucleon.

In this chapter we will describe an effective Lagrangian, introduced by the

nuclear physics group of the University of Minnesota [21–24], which reproduces

the chiral dynamics together with the breaking of scale invariance, given by the

introduction in the model of the gluon condensate as an additional scalar field.

In the next sections we will introduce scale invariance and the so-called scale

anomaly, which is responsible for the breaking of scale invariance in QCD. Later

23
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on we will discuss in detail the Chiral Dilaton Model, in particular how chiral

symmetry and scale invariance are implemented in the Lagrangian. Subsequently

we will review the mean-field approximation and the Hedgehog ansatz, used for

computing the soliton properties. We will also give a brief description of the

projection technique adopted for obtaining the nucleon observables. Finally we

will present the results for the single soliton in vacuum.

2.1 Scale invariance in QCD

2.1.1 Invariance under dilatations

A classical massless theory is invariant under scale transformations if its action

remains constant when fields, denoted generically as φ, and coordinates transform

as follows [66, 67] :

x→ λ−1x , λ > 0,

φ(x) → U(λ)φ(λx) (2.1)

where U(λ) is the scale operator assumed to be fully reducible. This means that

it can be written as:

U(λ) = eD lnλ (2.2)

with D a matrix that can be diagonalized. In a classical massless theory these

transformations are symmetries if all non-dimensionless parameters (coupling

constants and masses) are set equal to zero and if the eigenvalues of D are equal

to d = 1 for bosons and d = 3/2 for fermions.

From Noether’s theorem we know that the scale invariance of the action is as-

sociated with the conservation of the so called dilatation current. In order to take

into account also the case of a massive theory, an improved energy-momentum
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tensor is defined so that its trace vanishes for vanishing masses. Recalling the fact

that the equations of motions do not change when a total derivative is added to the

Lagrangian, a similar possibility exists for the definition of the energy-momentum

tensor. As shown in [68], the improved expression of the energy-momentum ten-

sor does not change the form of the global generators of the Poincarè group. It

can than be proved that the divergence of the dilatation current corresponds to

the trace of the ’improved’ energy momentum tensor, i.e.:

∂µD
µ = T̃ µµ . (2.3)

For instance, in the case of the Lagrangian of a scalar field φ the improved energy-

momentum tensor is obtained by adding to the canonical energy-momentum ten-

sor the term:

1

6
(gµν∂

2 − ∂µ∂ν)φ
2 . (2.4)

The following expression for the ’improved’ tensor is then obtained:

T̃µν = Tµν+
1

6
(gµν∂

2−∂µ∂ν)φ2 =
∂Lφ
∂(∂µφ)

(∂νφ)−gµνLφ+
1

6
(gµν∂

2−∂µ∂ν)φ2 . (2.5)

2.1.2 Scale anomaly

The concept of quantum anomaly is simple: when the Lagrangian of a classi-

cal field theory is invariant under a given symmetry, it can happen that, after the

quantization of the fields, the symmetry is no more exact, since the associated

Noether currents are no longer conserved. In this case it is said that there is a

quantum anomaly, since the symmetry of the Lagrangian is broken at a quantum

level.
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Let us now concentrate on scale invariance. In the case of QCD, in the ap-

proximation of massless quarks the Lagrangian is scale invariant due to the ab-

sence of any dimensional parameter. The renormalization process, in the case of

asymptotic free theories as e.g. QCD, allows only to determine how the coupling

constant varies with the scale, but not the absolute value itself. An alternative

procedure is to introduce a dimensional parameter Λ directly into the definition

of the running coupling. The numerical value of Λ can then be determined by

comparison with experimental values and it turns out to be of the order of a few

hundred MeV. In this way, and at variance with QED, scale invariance is broken

due to quantum corrections due to the appearance of a dimensional parameter.

Notice also that, since the masses of the up and down quarks are small, all di-

mensional quantities in hadronic physics should be related to the numerical value

of Λ.

In order to quantify the breaking of scale symmetry, one computes the divergence

of the dilatation current, which is given by the trace of the ’improved’ energy-

momentum tensor. In QCD the trace of the energy-momentum tensor reads

[69–71]:

(T̃QCD)
µ
µ(x) =

β(g)

2g
F a
µν(x)F

aµν(x) , (2.6)

where F a
µν is the field strength and β(g) is the QCD beta function:

β(g) = −11g3

16π2
(1− 2nf

33
) +O(g5) . (2.7)

Here the first number in parentheses arises from the anti-screening self-interaction

of the gluons and the second, proportional to the number of active flavours nf ,

is the screening contribution of quark pairs.

It has been speculated that the vacuum expectation value of the r.h.s of
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eq. (2.6) does not vanish, generating a gluon condensate [72]. It is then pos-

sible to relate the value of such a condensate to various observables, by using

QCD sum rules [73].

2.2 The dilaton potential

In the previous section we showed that quantum corrections in QCD violate scale

symmetry. The first attempt of building up a Lagrangian able to mimic the

scale anomaly of QCD at mean-field level has been done by Schechter [19] and

subsequently by Migdal and Shifman [20]. Here we start developing the potential

in the pure gauge sector and later on we will add the quarks.

The fundamental ingredient is a new scalar-isoscalar field φ, called dilaton, whose

Lagrangian reads:

Ldil =
1

2
∂µφ∂

µφ− Vdil(φ) (2.8)

where Vdil(φ) represents the dilaton potential. In order to get the explicit ex-

pression for the dilaton potential we compute the trace of the improved energy-

momentum tensor:

T̃ µµ =
∂Ldil
∂φ

φ+ 2
∂Ldil
∂(∂µφ)

(∂νφ)− 4Ldil = 4Vdil −
∂Vdil
∂φ

φ . (2.9)

Recalling that the non conservation of the dilatation current is directly connected

to the trace of (2.9), we request that the trace is not vanishing and in particular

that it is proportional to φ4 through a dimensionless constant−B. This constraint

permits to obtain the dilaton potential by solving the differential equation:

4Vdil −
∂Vdil
∂φ

φ = −Bφ4 . (2.10)

By imposing the boundary condition V(0) = 0 one gets:

Vdil(φ) = Bφ4

(
ln

φ

φ0

− 1

4

)
. (2.11)
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This potential admits a minimum for φ = φ0 where V(φ0) = ǫvac = −1
4
Bφ0

4.

Expanding Vdil(φ) around φ0 one obtains:

Vdil(φ) ≃ ǫvac + 2Bφ2
0(φ− φ0)

2 +O[(φ− φ0)
3]

≡ ǫvac +
1

2
M2

φ(φ− φ0)
2 +O[(φ− φ0)

3] , (2.12)

where the mass of the dilaton field is Mφ = 2φ0

√
B. Since the dilaton field rep-

resents the gluon condensate, its fluctuation around φ0 can be associated with

the scalar glueball. In this way Mφ can be associated with the mass of the scalar

glueball [74]. The numerical value of the parameters φ0 and B can be fixed in

terms of the values of the gluon condensate and of the scalar glueball mass.

In order to mimic QCD scale anomaly at a mean-field level the vacuum expecta-

tion value of the trace of the “improved” energy-momentum tensor computed in

the model must equal the same quantity computed in QCD (eq.(2.6)):

〈T̃ µµdil〉 = 〈T̃ µµQCD
〉 . (2.13)

2.2.1 The modified glueball potential

Here we will discuss how to modify the effective potential (2.11) when we

introduce the quarks degrees of freedom in the Lagrangian.

Basically the potential should again reproduce at mean-field level the QCD

scale anomaly of eq. (2.6) but now taking into account also the quarks, as de-

scribed by the β-function of eq. (2.7). A way to build up such potential has been

shown in [19, 20].

A generalization of the glueball potential is needed when the single scalar field

is replaced by the set {σ,π, φ} [75]. The divergence of the dilatation current
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including the chiral fields, becomes:

(T̃dil)
µ
µ = 4Vdil(Φi)−

∑

i

Φi
∂Vdil
∂Φi

= 4ǫvac

(
φ

φ0

)4

(2.14)

where Φi runs over the scalar and pseudo-scalar fields {σ,π, φ}. The proportion-
ality (T̃dil)

µ
µ ∝ φ4 is suggested by the form of the QCD trace anomaly in eq. (2.6).

Here again ǫvac =
1

4
Bφ4

0(1 − δ) is the value of the potential at minimum, where

the parameter δ = 2nf/33 weights the contribution of the quarks to the trace

anomaly.

In order to have an explicit form of the potential Vdil(Φi), we should impose a fur-

ther constraint, namely that the modified potential has to be chirally invariant.

This means that the dependency on chiral fields has to occur only through the

combination σ2 + π2 and moreover the contribution arising from the chiral fields

has to be weighted by the δ parameter, in order to reproduce the same result

obtained in QCD.

The final form of the potential introduced in Ref. [75] reads:

Vdil(φ, σ,π) = Bφ4

(
ln

φ

φ0

− 1

4

)
− 1

2
Bδφ4ln

σ2 + π2

f 2
π

(2.15)

+
1

2
Bδζ2φ2

(
σ2 + π2 − 1

2

φ2

ζ2

)
.

Here the first term on the right hand side is the usual dilaton potential introduced

by Schechter [19] and discussed in the previous section, while the second term

provides the contribution of the chiral fields to the violation of scale invariance.

A “new” dimensional parameter fπ is introduced, which as usual can be inter-

preted as the pion decay constant. The third term does not contribute to the

trace anomaly, and it is needed to ensure that in the vacuum φ = φ0, σ = φ0
ζ
= fπ

and π = 0, where Vdil(φ0, σ0, 0) = ǫvac = −1
4
Bφ4

0(1− δ).
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Figure 2.1: The glueball mean-field ratio χ as a function of density for various tem-

peratures in MeV.

In this work we will kept the dilaton field frozen to its vacuum value φ0. This

choice of not including at the moment the dilaton in the dynamics of the model

can be justified by the results provided in [22,25]. In particular in [22] the authors

show that the ratio χ = φ/φ0 at low temperatures remains close to unity, even

at large densities, as can be seen in Fig. 2.1. Under this assumption, the dilaton

potential reads:

Vdil(σ, π) = λ21(σ
2 + π2)− λ22 ln(σ2 + π2) (2.16)

where:

λ21 =
1

2

Bδφ4
0 + ǫ1
σ2
0

=
1

4
(m2

σ +m2
π) (2.17)

λ22 =
1

2
Bδφ4

0 =
σ2
0

4
(m2

σ −m2
π). (2.18)

It is interesting to compare the logarithmic with the Mexican hat potential. In

Fig. 2.2 it can be seen that in the case of the Mexican hat potential it is relatively
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Figure 2.2: Comparison between the logarithmic (solid line) and the Mexican hat

potential (dashed line).

easy to restore chiral symmetry by climbing the maximum located at the center.

This is not possible in the case of the logarithmic potential as long as the dilaton

field remains frozen. Since only at large temperatures the dilaton field changes

significantly [25] we can expect that at large densities and moderate temperatures

this model provides more stable solitonic solutions. This is a crucial point which

will be investigated in the next chapter.

2.3 The Lagrangian of the Chiral Dilaton Model

In this section we will present the full Lagrangian of the model with the inclusion

of the vector mesons.

An important point in our approach is that we aim at describing the dynamics

of nuclear matter by incorporating all the interactions already at a quark level.

This is at variance with e.g. the approach of Ref. [76, 77] where the vector field

ω was introduced only at the nucleon level, but was not present in the dynamics

of the quarks.
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First of all we will provide a brief review, both phenomenological and theoretical,

concerning the introduction of vector mesons in nuclear models; next we will

describe in detail the Lagrangian of the model, at first in its chiral invariant

realization and later on including also an explicit chiral breaking term.

2.3.1 Vector Meson Dominance

The first measurements of the electromagnetic form factors of the nucleons

were performed during the fifties. The experimental data suggested that the

electromagnetic structure of the nucleon is dominated by vector mesons, namely

that the exchanged photon does not interact directly with the nucleon but rather

transforms into a neutral vector meson which next couples to the nucleon, as

shown in Fig. 2.3. The picture of a nucleon surrounded by a pion cloud allowed

to interpret the data on electromagnetic form factors for the existence of a vector-

isoscalar meson ω → 3π [78] and of a vector-isovector meson ρ0 → 2π. [79].

Figure 2.3: Diagram of nucleon-photon interaction through exchange of a vector

meson.

The nucleon-photon interaction is shown in Fig. 2.3, where N and N
′

are the

initial and final nucleon states and the line between the photon and the fermion

lines is the meson propagator for the ρ0 and the ω. The so-called vector mesons

dominance is based on the fact that the coupling between the nucleon and the
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vector mesons is treated as an interaction between elementary particles.

From the theoretical point of view this concept can be expressed through the

current field identities [80], which basically permit to write the electromagnetic

current proportional to the isovector and isoscalar currents coupled to the neutral

vector mesons.

The presence of vector mesons also plays an important role in the description

of the nucleon-nucleon interaction. This feature is clearly present in the one-

boson exchange model, where a coupling between nucleons and vector fields is

included in the Lagrangian in order to go beyond the one-pion exchange potential

and provide the necessary repulsion at short distances. This approach has been

extremely successful in reproducing the experimental data [81].

Hence it is quite evident that one way to improve the description of nucleon

properties and nucleon-nucleon interactions seems to include in the effective La-

grangian explicitly vector degrees of freedom. This extension is however not

unique and additional principles have to be invoked in order to reduce the num-

ber of coupling constants. One possible solution lies in the principle of universal-

ity [63], which states that the ρ meson couples to the conserved isospin current

and the ω meson couples to the baryonic one. For further insight into this fun-

damental request, let us consider the case for the ρ meson. The isovectorial

contribution to the electromagnetic form factor given by the process in Fig. 2.3

is proportional to:

〈N ′

(p′)|J ivµ (0)|N(p)〉 ∝ u′(p′)[F iv
1 (q2)γµ]

τ3
2
u(p) (2.19)

where p and p′ are the momentum for the initial and final state and q = p′ − p is

the transferred momentum. Let us define gγρ and gρNN the respective couplings

for the vertices γ − ρ0 and ρ0 −N . From the Feynman rules applied on Fig. 2.3
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we obtain:

F iv
1 (q2) = gγρ

−1

m2
ρ − q2

gρNN (2.20)

which contains the propagator of the massive meson fields. Considering the limit

q2 → 0 of the expression (2.20), which has to be equal to the unitary charge of

the proton:

F iv
1 (0) = −gγρgρNN

m2
ρ

= 1 (2.21)

we get the following relation between the coupling constants:

gρNN = −
m2
ρ

gγρ
. (2.22)

This latter formula explicitly shows that if we consider the interaction of photons

with particles carrying an isospin charge (such as quarks, pions), since the process

is still dominated by the ρ0 meson exchange and the universality of charge imposes

again F iv
particle(0) = 1, we can obtain:

gρNN = gρqq = gρππ = gρρρ , (q
2 = 0) (2.23)

This last equality formally explains the principle of universality which simply

states that in the limit of q2 → 0 the coupling between the ρ0 meson and isovector

particles is the same.

An analogous argument can be obtained for the ω meson which couples to the

baryonic current. In the case of quarks, since they carry B = 1/3, the universality

imposes gωqq =
1
3
gωNN .

The next step consists in realizing the vector meson dominance and the prin-

ciple of universality in an effective chiral Lagrangian. Actually vector mesons

can be introduced in chiral Lagrangians following two approaches which can be

proved to be equivalent and both fulfil low-energy hadronic relations, such as the
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Weinberg sum rule [17] and the KSFR relation [82, 83].

In the first scheme, a hidden local symmetry is shown to be present in chiral La-

grangians [84–87] and vector mesons represent the gauge fields of this local sym-

metry. This approach relies on the understanding, firstly proposed in super grav-

ity theories [88,89], that any non-linear sigma model based on the manifold G/H

is gauge equivalent to another model with Gglobal⊗Hlocal symmetry; in particular

for the case of massless two-flavoured QCD we will have the global symmetry

G = SU(2)L⊗SU(2)R to be spontaneously broken to the subgroup H = SU(2)V

and the candidate gauge boson will be the ρ meson. In the second strategy,

which is the one adopted in the present work, the vector mesons are treated as

massive Yang-Mills fields of the chiral SU(2)L⊗SU(2)R symmetry [90–92]. This

approach was initially suggested by Sakurai for isospin symmetry [93] and then

extended to the chiral symmetric case by Lee and Nieh [94]. Focusing on the

context of chiral quark-meson soliton models the massive Yang-Mills Lagrangian

with valence quarks coupled to the mesons was first proposed by Broniowski and

Banerjee [62]. In this work the authors extended the Linear-σ model to the vector

mesons sector, by including the ρ0, the ω and the a1 mesons which play the role

of gauge bosons of the symmetry group SU(2)L⊗SU(2)R⊗U(1), locally broken

by mass terms.
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2.3.2 Chiral symmetric Lagrangian

Following Refs. [21–25] the chiral symmetric Lagrangian including the vector

mesons reads:

LVM = ψ̄
(
iγµ∂µ − gπ(σ + iπ · τγ5) + gργ

µτ

2
· (ρµ + γ5Aµ)−

gω
3
γµωµ

)
ψ

+
β

2
(DµσD

µσ +Dµπ ·Dµπ)

− 1

4
(ρµν · ρµν +Aµν ·Aµν + ωµνω

µν)

+
1

2
m2
ρ(ρµ · ρµ +Aµ ·Aµ) +

1

2
m2
ωωµω

µ

− V (φ0, σ, π). (2.24)

Here ψ stands for quark fields and in addition to chiral fields σ and π there is

the vector field ωµ responsible for the short-range repulsion, the vector-isovector

ρµ and the axial-vector-isovector field Aµ. The potential V (φ0, σ, π) is given by

the expression (2.16).

The covariant derivatives of the chiral fields and the field tensors for vector mesons

are given by:

Dµσ = ∂µσ + gρAµ · π,

Dµπ = ∂µπ + gρ(ρµ ∧ π −Aµσ),

ωµν = ∂µων − ∂νωµ,

ρµν = ∂µρν − ∂νρµ + gρ(ρµ ∧ ρν +Aµ ∧Aν),

Aµν = ∂µAν − ∂νAµ + gρ(ρµ ∧Aν +Aµ ∧ ρν). (2.25)

First of all we notice that in the Lagrangian (2.24) there are terms which mix ρµ

and Aµ with the chiral fields. These terms arise form the covariant derivatives
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and from the tensor fields and are due to the fact that vector mesons are intro-

duced as massive gauge bosons of the local symmetry SU(2)L ⊗ SU(2)R.

Chiral symmetry requires that the masses of ρµ and bare Aµ mesons to be

equal. The presence of the β parameter requires a brief explanation and more

details can be found in [95, 96]. Let us consider the kinetic term for the pions

β
2
DµπD

µπ, where the covariant derivative is given by (2.25). In vacuum the

sigma field develops a non vanishing value σv = fπ, hence the pion kinetic term

introduces in the Lagrangian terms proportional to fπAµ · ∂µπ which do not

correspond to any physical process. The solution to this problem is given by a

redefinition of the Aµ field, by identifying it with the new physical field Aph
µ such

that the pion kinetic term recovers the usual form:

m2
ρ

2
A2
µ+

β

2

[
∂µπ + gρ(ρµ × π − fπAµ)

]2
=

1

2
(m2

ρ + βg2ρf
2
π)(A

ph
µ )2 +

1

2

βmrho
2

mrho2 + βg2ρf
2
π

(∂µπ + gρρµ × π)2 (2.26)

where:

Aph
µ = Aµ −

βgρfπ
m2
ρ + βg2ρf

2
π

(∂µπ + gρρµ × π). (2.27)

Requiring now that the coefficient of the pion kinetic terms equals 1
2
, the β

parameter becomes:

β =
m2
ρ

m2
ρ − g2ρf

2
π

(2.28)

and from eq. (2.26) we obtain the relation between the masses of the physical field

A and mρ, namely mA =
√
βmρ which agrees with the Weinberg sum rule [17].

In the following we assign the physical masses to the meson fields π, ρ and ω;

mπ = 139 MeV, mρ = 776 MeV and mω = 782 MeV.
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2.3.3 Explicit chiral symmetry breaking term

Up to now we have introduced a Lagrangian which is exactly invariant under

chiral transformations. Is well known that this limit holds as long as the quarks

are massless and consequently the pion mass is zero. In order to describe in a

realistic way nuclear matter phenomenology we must take into account that chiral

symmetry is not an exact symmetry and the PCAC (Partially Conserved Axial

Current) relation implies:

∂µa
µ = −fπm2

ππ (2.29)

and relates the non conservation of the axial current aµ to the finite pion mass

and decay constant.

To do so we need to add another term in the Lagrangian (2.24) which is able

to break explicitly the chiral symmetry and give a finite mass to the pion. In

order to restrict the range of possibilities, we recall that chiral symmetry, at a

quark level, is explicitly broken by terms like VSB = m(uu + dd) where m is

the averaged (u, d) quark mass. In [24] the authors provide three forms for the

symmetry breaking term, requesting that it should also contributes to the trace

anomaly. The most general symmetry breaking term in the potential (2.16) may

be written as:

VSB = −ǫ1σ − ǫ2σ(σ
2 + π2) + ǫ3ψψ. (2.30)
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Moreover, in order to recover the vacuum conditions σ = fπ and π = 0, we add

a term which does contribute to the symmetry breaking, hence obtaining:

V ′
SB = − 1

4
fpiφ

2
0ǫ1

[
4ν − 2

(
σ2 + π2

fπ

)
− 1

]

− 1

4
f 3
πǫ2

[
(4ν − 6φ2

0)

(
σ2 + π2

f 2
π

)
− 3

]
(2.31)

+ ǫ3N̄N − 3

4
fπ(φ

2
0ǫ1 + f 2

πǫ2) ,

where ν = σ/fπ. In [24] the authors showed that only the term proportional to ǫ1

provides a correct phenomenology of nuclei, thus is the only term which is taken

into account. Keeping only ǫ1 6= 0 the trace anomaly now reads:

(T̃dil)
µ
µ = −

(
1

4
Bφ4

0(1− δ) + ǫ1

)(
φ

φ0

)4

= 4ǫvac

(
φ

φ0

)4

(2.32)

where ǫvac = −1
4
Bφ4

0(1− δ)− ǫ1. It is easy to verify that the pion vacuum mass

is related to the value of ǫ1 by the following equation:

ǫ1 = (σ0mπ)
2 . (2.33)

Now the final expression of the potential becomes:

V (σ, π) = λ21(σ
2 + π2)− λ22 ln(σ2 + π2)− σ0m

2
πσ. (2.34)
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2.3.4 Hamiltonian of the model and field equations

The density Lagrangian of the model, including the symmetry breaking term

given in the previous section, reads:

L = ψ̄
(
iγµ∂µ − gπ(σ + iπ · τγ5) + gργ

µτ

2
· (ρµ + γ5Aµ)

− gω
3
γµωµ

)
ψ +

β

2
(DµσD

µσ +Dµπ ·Dµπ)

− 1

4
(ρµν · ρµν +Aµν ·Aµν + ωµνω

µν)

+
1

2
m2
ρ(ρµ · ρµ +Aµ ·Aµ) +

1

2
m2
ωωµω

µ

− V (σ, π). (2.35)

The Euler-Lagrangian equations that follow from this Lagrangian are:

[i/∂ − gπ(σ + iπ · τγ5) + gρ
τ

2
· (/ρ+ γ5 /A)− gω

3
/ω]ψ = 0,

β∂µD
µσ = −βgρAµ · π − gψ̄ψ − ∂V

∂σ
,

β∂µD
µπ = βgρ(−ρµ ×Dµπ +AµD

µσ)− igψ̄τγ5ψ − ∂V

∂π
,

− ∂µρµν = gρυν +m2
ρρν ,

− ∂µAµν = gρaν +m2
ρAν ,

− ∂µωµν = −1

3
gωbν +m2

ωων . (2.36)

Here υν , aν and bν are respectively the vector, the axial-vector and the baryonic

currents:

υν = ρµ × ρµν +Aµ ×Aµν + βπ ×Dνπ + ψ̄γν
τ

2
ψ, (2.37)

aν = ρµ ×Aµν +Aµ × ρµν + βπ ×Dνσ − βσDνπ + ψ̄γ5γν
τ

2
ψ

bν = ψγνψ.
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It can be easily verified that for these currents hold the following relations:

∂νaν = −fπm2
ππ (PCAC) (2.38)

∂νvν = 0 (CV C) (2.39)

Using these relations and taking the divergence of the vector mesons field equa-

tions in (2.36), we obtain:

∂νρν = − gρ
m2
ρ

∂νvν = 0 ,

∂νAν = − gρ
m2
ρ

∂νaν = −gρfπm
2
π

m2
ρ

π , (2.40)

∂νων =
gω
3m2

ω

∂νψγνψ = 0

which just underline the fact that, for spin 1 fields, only three components are

linearly independent.

Now in order to evaluate the Hamiltonian density H = ϕpϕ − L we need to

compute the conjugate momenta pϕ for every field ϕ:

pψ =
∂L
∂ψ̇

= iψ† ,

pσ =
∂L
∂σ̇

= βD0σ

pπ =
∂L
∂π̇

= βD0π ,

pµω =
∂L
∂ω̇µ

= −ω0µ ,

pµρ =
∂L
∂ρ̇µ

= −ρ0µ ,

pµA =
∂L
∂Ȧµ

= −A0µ . (2.41)

Due to the antisymmetry of the field tensors the time component of the canonical

conjugate momenta vanishes, namely the time component of the vector meson
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fields is not a dynamical variable and has to be eliminated. In order to do so we

consider the time components of the vector mesons field equations in (2.36):

− ∂µρµ0 = gρv0 +m2
ρρ0 ,

∂µAµ0 = gρa0 +m2
ρA0 , (2.42)

∂µωµ0 = −gω
3
b0 +m2

ωω0 ,

which allow to express the time component of fields in terms of fields themselves

and momenta:

ρ0 = − 1

m2
ρ

(∂µρµ0 + gρv0) ,

A0 = − 1

m2
ρ

(∂µAµ0 + gρa0) , (2.43)

ω0 = − 1

m2
ω

(∂µωµ0 −
gω
3
b0).

The Hamiltonian density of the model hence reads:

H = ψ
[
−iγ ·∇+ gπ(σ + iπ · τγ5) + gργ

iτ

2
(ρi + γ5Ai) +

gω
3
γiωi

]

+
1

2β
(p2σ + p2

π) +
1

2
(p2ωi

+ p2
ρi
+ p2

Ai
) + V (σ,π)

+
β

2
[(Diσ)

2 + (Diπ)
2] +

1

4
(ρij · ρij +Aij ·Aij + ωijωij)

+
1

2
m2
ρ(ρ

2
i +A2

i ) +
1

2
m2
ωω

2
i +

1

2
m2
ρ(ρ

2
0 +A2

0) +
1

2
m2
ωω

2
0 (2.44)

2.4 Mean-field approximation

The fields equations in (2.36) involve quantum meson fields. The mean-field ap-

proximation (MFA) consists of describing the mesons as time-independent clas-

sical fields and of replacing powers and products of these fields by powers and
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products of their expectation value on the vacuum state. This means that all fluc-

tuations in the meson fields are neglected in the dynamics and only tree graphs

are included

The mean-field state is defined as a Slater determinant of quarks and mesons

reads:

|B〉 = |Ncψ〉|σ〉|π〉|ω〉|ρ〉|A〉 (2.45)

where the quark part reads:

|Ncψ〉 =
Nc∏

α=1

∫
d3xψ+

α (x)ψval(x)|0〉 (2.46)

and the valence quarks ψval are in a 1s-state. The meson fields are written in

terms of coherent states:

|σ〉 = U(σ, pσ)|0〉 (2.47)

where U(σ, pσ) is a unitary transformation given by:

U(σ, pσ) = exp

(
−i
∫
d3x[σcl(x)pσ(x) + pσ,cl(x)σ(x)]

)
. (2.48)

Here σcl and pσ,cl are respectively the expectation values of the field operators

σ(x) and pσ(x) in the mean-field state |σ〉. Basically the coherent state is a

Gaussian wave packet in the functional space of the quantum field we study,

and it is centered at the field configuration corresponding to the classical mean-

field. Similar expressions hold for the other mesons and more details can be

found in [35, 97] and in Appendix I. In the next section we will introduce a field

configuration which allows to obtain a classical solution which minimizes the

mean-field energy of the soliton [49, 98].
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2.4.1 The Hedgehog ansatz

The Hedgehog configuration for quark spinor in the spin-isospin space reads:

ψ =
1√
4π


 u(r)

iv(r)σ · r̂


χh (2.49)

where the spin or χh, defined as:

χh =
1√
2
(χuχ↓ − χdχ↑) (2.50)

satisfies the condition for the Grand Spin G = I + J :

Gχh = 0. (2.51)

This last relation means that there is a mixing between angular momentum and

isospin, and this holds for all the fields. The corresponding Hedgehog baryon

|B〉 = |Ncq〉|σ〉|π〉|ω〉|ρ〉|A〉 hence should be a linear combination of states with

I = 1/2 and I = 3/2.

Once the form of the quark wave function is defined, the self-consistent config-

uration for the meson fields follows from the invariance of the Hedgehog ansatz

under ”grand reversal” transformation R, namely the product of time reversal

and isorotation about the axis 2 by π. Since the quark fields in (2.49) is invariant

under R, we deduce that only mean-field mesons which are even under grand

reversal couple to quarks. In this way we can obtain the sources for the mesons,

by evaluating the matrix element of the meson fields on the state (2.49):

σ(r) → − 1

4π
(u2 − v2) ,

πa → − 1

4π
2uvr̂a ,
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ωµ →





1

4π
(u2 + v2) , µ = 0

0 , µ = i = 1, 2, 3

ρaµ →





0 , µ = 0

1

4π
2uvǫaij r̂j , µ = i = 1, 2, 3

Aaµ →





0 , µ = 0

− 1

4π

[
(u2 − 1

3
v2)δai + 2v2(r̂ar̂i − 1

3
δai)

]
, µ = i = 1, 2, 3.

(2.52)

The profiles of the chiral and the vector meson fields are hence given by:

〈B|σ|B〉
〈B|B〉 = σh(r),

〈B|πa|B〉
〈B|B〉 = r̂ah(r)

〈B|ωµ|B〉
〈B|B〉 = δµ0ωµ(r) = ω(r)

〈B|ρa|B〉
〈B|B〉 = ρai (r) = ρ(r)ǫikar̂k

〈B|Aa|B〉
〈B|B〉 = Aai (r) = AS(r)δ

ai + AT (r)(r̂
ar̂i − 1

3
δai) (2.53)

where σh(r), h(r), ω(r), ρ(r), AS(r) and AT (r) are radial functions.

Using the Hedgehog ansatz for the quarks in (2.49) and for the mesons in (2.53),

the fields equations (2.36) for the Dirac components read:

du

dr
= (gπh− gρρ)u+

[
−ǫ− gπσh +

gω
3
ω +

gρ
2

(
AS −

4

3
AT

)]
v , (2.54)

dv

dr
= −2

r
v + (−gπh+ gρρ)v +

[
ǫ− gπσh −

gω
3
ω +

3

2
gρAS

]
u , (2.55)
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while for the chiral fields, the equations become:

d2σh
dr2

=− 2

r

dσh
dr

+
gπ
β

3

4π
(u2 − v2) +

1

β

∂V

∂σh

+ 2gρ

[
−dh
dr

(
AS +

2

3
AT

)
− 2

r
h

(
AS − 1

3
AT

)]

+ g2ρ

[
σh

(
3A2

S +
2

3
A2
T

)
+ 2ρh

(
AS −

1

3
AT

)
− fπm

2
π

m2
ρ

h2
]

(2.56)

d2h

dr2
=− 2

r

dh

dr
+

2

r2
h+

gπ
β

3

2π
uv +

1

β

∂V

∂h

+ 2gρ

[
dσh
dr

(
AS +

2

3
AT

)
− 2

r
hρ

]

+ g2ρ

[
2ρh2 + 2σhρ

(
AS −

1

3
AT

)
+ h

(
AS +

2

3
AT

)2

+
fπm

2
π

m2
ρ

σhh

]
.

(2.57)

Finally for the vector mesons we obtain the following:

d2ω

dr2
=− 2

r

dω

dr
− gω

u2 + v2

4π
+m2

ωω (2.58)

d2ρ

dr2
=− 2

r

dρ

dr
+

2

r2
ρ− 3gρ

4π
uv +m2

ρρ

+ gρ

{
2

(
AS +

2

3
AT

)(
dAS
dr

− 1

3

dAT
dr

)
− 1

r

[
3ρ2 + βh2 + AT

(
2AS +

1

3
AT

)]}

+ g2ρ

{
βρh2βσhh

(
AS −

1

3
AT

)
+ ρ3 + ρ

[(
AS +

2

3
AT

)2

+

(
AS −

1

3
AT

)2
]

+
fπm

2
π

m2
ρ

h

(
AS −

1

3
AT

)}
(2.59)

d2AS
dr2

=− 2

r

dAS
dr

− 3gρ
8π

(
u2 − 1

3
v2
)
+m2

ρAS

+ 2grho

[
−dρ
dr

(
AS +

1

3
AT

)
− 2

r
ρAS +

ρ

3

(
dAS
dr

− 1

3

dAT
dr

)
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−fπm
2
π

6m2
ρ

(
dh

dr
+

2

r
h

)
+
β

6

(
h
dσh
dr

− σh
dh

dr
− 2

r
σhh

)]

+ g2ρ

{
β

3

[
h2
(
AS +

2

3
AT

)
+ 3σ2

hAS + 2σhhρ

]

+
2

3
ρ2
(
2AS +

1

3
AT

)
+ 2

(
A3
S − 1

27
A3
T

)
− 2

3

fπm
2
π

m2
ρ

ρh

}
(2.60)

d2AT
dr2

=− 2

r

dAT
dr

+
6

r2
AT +m2

ρAT − 3gρ
4π

v2

+ gρ

[
β

(
dσh
dr

h− σh
dh

dr
+

1

r
σhh

)
− 4

r
ρAT + 2

dρ

dr
AT

+2ρ

(
dAS
dr

− 1

3

dAT
dr

)
− fπm

2
π

m2
ρ

(
−dh
dr

+
1

r
h

)]

+ g2ρ

{
β

[
h2
(
AS +

2

3
AT

)
+ σ2

hAT − σhρh

]

+ρ2
(
AS +

5

3
AT

)
− A2

T

(
AS −

1

3
AT

)
+
fπm

2
π

m2
ρ

hρ

}
(2.61)

At mean-field level the mesons fields are classical and the differential equations

governing their dynamics have to be supplemented by the appropriate boundary

conditions.

For the single nucleon case we impose the following boundary conditions to the

fields:

u′(0) = v(0) = 0,

σ′
h(0) = h(0) = 0, (2.62)

ρ(0) = ω′(0) = A′
S(0) = AT (0) = 0,

while at infinity the boundary conditions read:

σh(∞) = σ0, h(∞) = 0,

v(∞)

u(∞)
=

√
−gσ0 + ǫ

−gσ0 − ǫ
, (2.63)
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ω′(∞) = ρ′(∞) = A′
S(∞) = A′

T (∞) = 0,

where ǫ is the quark eigenvalue.

The total energy of the soliton at mean-field level is given by:

EMFA = 4π

∫
r2dr(Eint + Ekin,Q + Eσ + Eπ + Eω + Eρ + EA + Epot) (2.64)

where the quark-mesons interaction and the quark kinetic energies are:

Eint =
3

4π

{
gπσh(u

2 − v2) + 2gπhuv +
gω
3
ω(u2 + v2)− 2gρρuv

+gρ

[
3

2
AS

(
u2 − 1

3
v2
)
+

2

3
v2AT

]}
(2.65)

Ekin,Q =
3

4π

(
u
dv

dr
− v

du

dr
+

2

r
uv

)
(2.66)

and the energy density of the mesons fields and of the potential read:

Eσ =
β

2

[
−dσh
dr

− gρh

(
AS +

2

3
AT

)]2
(2.67)

Eπ =
β

2

[
dh

dr
+ gρσh

(
AS +

2

3
AT

)]2

+ β

[
−h
r
+ gρh+ gρσh

(
AS −

1

3

)]2
(2.68)

Eω =− 1

2

(
dω

dr

)2

− 1

2
m2
ωω

2 (2.69)

Eρ =

[
dρ

dr
+
ρ

r
− gρ

(
AS +

2

3
AT

)(
AS −

1

3
AT

)]2

+
1

2

[
2

r
ρ− gρρ

2 − gρ

(
AS −

1

3
AT

)2
]2

+m2
ρρ

2 (2.70)

EA =

[(
dAS
dr

− 1

3

dAT
dr

)
− AT

r
+ gρρ

(
AS +

2

3
AT

)]2

+
1

2
m2
ρ

(
3A2

S +
2

3
A2
T

)
(2.71)
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Epot =V (φ0, σh, h) (2.72)

2.4.2 Static observables at mean-field level

The static properties of the Hedgehog baryon at mean-field level are presented

in this section. In particular, for both CDM and Linear σ-model with and with-

out vector mesons, we calculate the electric isoscalar radius 〈r2E〉I=0, the isovector

magnetic moment µI=1, the isovector magnetic radius 〈r2M〉I=1 and the axial cou-

pling constant ga.

The formulae for the observables in the mean-field approximation read:

〈r2E〉I=0 =

∫
r4(u2 + v2)dr ,

〈r2m〉I=1 =
1

µI=1

∫
r5dr

2π

9
(GQ

m(r) +Gπ
m(r) +Gρ

m(r) +GA
m(r)) ,

µI=1 =

∫
r3dr

2π

9
(GQ

m(r) +Gπ
m(r) +Gρ

m(r) +GA
m(r)) ,

ga =

∫
r2dr

2π

9
(GQ

a,0(r) +Gσ
a,0(r) +Gπ

a,0(r) +Gρ
a,0(r) +Gρ0

a,0(r) +GA
a,0(r)) .

(2.73)

The expressions for each term Gfield
i are given by:

GQ
m(r) =

3

π
uv ,

Gπ
m(r) = 4β

[
1

r
h2 − gρhσh

(
AS −

1

3
AT

)
− gρh

2ρ

]
,

Gρ
m(r) = 4

{
2

r
ρ2 − gρρ

[
ρ2 +

(
AS −

1

3
AT

)2
]}

, (2.74)

GA
m(r) = (−1)

[
4

(
A′
S −

1

3
A′
T − AT

r

)(
AS +

2

3
AT

)
+ 4gρρ

(
AS +

2

3
AT

)2
]
,
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while the contributions in the axial coupling constant are:

GQ
a,0(r) =

9

2π

(
u2 − 1

3
v2
)

,

Gσ
a,0(r) = −4βh

[
σ′
h + gρh

(
AS +

2

3
AT

)]
,

Gπ
a,0(r) = 4βσh

(
h′ +

2

r
h− 2gρρh− 3gρσhAS

)
, (2.75)

Gρ
a,0(r) = −8ρ

(
A′
S −

1

3
A′
T − AT

r

)
− 8gρρ

2

(
AS +

2

3
AT

)
,

Gρ0
a,0(r) =

gρ
πm2

ρ

ÃS(u
2 + v2) ,

GA
a,0(r) = 8

{
ρ2 +

(
2AS +

1

3
AT

)
+
ρ

r

(
4AS −

1

3
AT

)

−gρ
(
AS −

1

3
AT

)[
ρ2 + 3

(
AS −

1

3
AT

)2

+ 3ASAT

]}
. (2.76)

For the model without vector mesons the corresponding observables can be ob-

tained from the above formulae by putting gρ = 0.

2.5 Projection of the Hedgehog baryon

The Hedgehog baryon defined in Sec. 2.4.1, since it is an eigenstate of the grand

spin G, it violates both rotational and isospin symmetry of the Hamiltonian. The

baryon state can be written as:

|B〉 =
∑

JMMI

(−)J+MCJδM,−MI
|J = I,M,MI〉 (2.77)

where CJ are the coefficients of the expansion which will be defined later.

The constraint J = I follows from the fact that, since the Hedgehog states are

eigenstates of the Grand Spin G, it is equivalent to rotate either in spin or in

isospin space.
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One way to restore these symmetries is to use the so-called Peierls-Yoccoz pro-

jection approach [99, 100]. In this approach we introduce generator coordinates

and construct the physical states with correct quantum numbers, starting from

a linear combination of all the broken-symmetry mean-field states. In the case

of the spin-isospin symmetry, the states of good spin and isospin can be built

starting from a linear combination of all possible orientations of the Hedgehog

ansatz. Th states are thus:

|JMMI〉 = NJMI

∫
d3ΩDJ

M,−MI
(Ω)∗R̂(Ω)|B〉. (2.78)

where NJMI
is a normalization factor, the weight functions D are the Wigner

functions and the integral is done over the volume element:

∫
d3Ω =

∫ 2π

0

dα

∫ 2π

0

dγ

∫ π

0

sin βdβ (2.79)

The rotation matrix R̂(Ω) is a spatial rotation through Euler angles Ω ≡ (α, β, γ)

given by:

R̂(Ω) = e−iJxαe−iJyβe−iJzγ. (2.80)

When studying diagonal matrix elements of nucleon states, it is customary to

work with states where the third component of the angular momentumM is equal

to −MI since in this case the expression of the Wigner function is particularly

simple. In this way the projection operator becomes:

PJM =
2J + 1

8π2

∫
d3ΩDJ

M,M(Ω)∗R̂(Ω). (2.81)
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and it has the basic properties:

(PJM)† = PJM , (2.82)

(PJM)2 = PJM . (2.83)

The normalization factor has been determined by using (2.78)-(2.81):

N2
J,−M =

(
2J + 1

8π2

)2

(〈B|PJM |B〉)−1. (2.84)

Finally, the coefficients CJ in eq. (2.77) are given by the expression:

C2
J = 〈B|PJM |B〉

=
2J + 1

8π2

∫
d3ΩaDJ

M,M (Ω)〈B|R̂(Ω)|B〉. (2.85)

In this way the projected state reads:

|JM −M〉 = NJ,−MPJM |B〉 (2.86)

Once we obtain the projected state, we proceed to evaluate the correspondent

energy. Basically we need to calculate the expectation value of the Hamiltonian

in (2.44) on the projected state given by (2.86). The projected energy can be

written as:

EJ =〈JM −M | : H : |JM −M〉

=4π

∫
r2dr(Eint + Ekin,Q + EJ,σ + EJ,π + Eω

+ EJ,ρ + EJ,ρ0 + EJ,A + EJ,A0
+ EJ,pot) (2.87)

where the energy densities Eint, Ekin,Q and Eω are not affected by the projec-

tion and are given by their expressions at mean-field in eqs. (2.65)-(2.67) . The
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projected energies for the other meson fields are given by:

EJ,σ =
1

2
β

{
σ

′2
h + gρσ

′
hπ

(
AS +

2

3
AT

)(
1 +

1

3
GJ

1

)

+ g2ρh
2

[(
AS +

2

3
AT

)2
1

30
(10 + 5GJ

1 +GJ
2 )

+

(
AS −

1

3
AT

)2
1

120
(10 + 5GJ

1 +GJ
2 )

]}
(2.88)

EJ,π =
β

4

(
h

′2 +
2

r2
h2
)(

1 +
1

3
GJ

1

)
− 1

4β

(
h

′2 +
2

r2
h2 +mπh

2

)(
1− 1

3
GJ

1

)

− 1

2
βgρ

{
σh

[
h

(
AS +

2

3
AT

)
+

2

r
h

(
AS −

1

3
AT

)](
1 +

1

3
GJ

1

)
+ ρ

h2

r
(1 +GJ

1 )

}

+
1

4
βg2ρ

{
ρ2h2

1

12
(10 + 11GJ

1 +Gj
2) + 2σhhρ

(
AS −

1

3
AT

)
(1 +GJ

1 )

+σ2
h

[(
AS +

2

3
AT

)2

+ 2

(
AS −

1

3
AT

)2
](

1 +
1

3
GJ

1

)}
(2.89)

EJ,ρ =

(
ρ

′2 +
2

r2
ρ2 +m2

ρρ
2

)
1

3
GJ

1 − gρ

[(
rho′ +

ρ

r

)(
AS +

2

3
AT

)(
AS −

1

3
AT

)

+
ρ

r

(
AS −

1

3
AT

)2

+
ρ3

r

]
1

2
(1 +GJ

1 ) + g2ρ




1

2

[
ρ2 +

(
AS −

1

3
AT

)2
]2

+

(
AS −

1

3
AT

)2(
AS +

2

3
AT

)2
}

1

48
(10 + 11GJ

1 +GJ
2 ) (2.90)

EJ,A =

[(
A′
S −

1

3
A′
T − AT

r

)2

+
1

2
m2
ρ

(
3A2

S +
2

3
A2
T

)]
GJ

1

3

+
1

2
gρ

(
A′
S −

1

3
A′
T − AT

r

)(
AS +

2

3
AT

)
ρ(1 +GJ

1 )

+ g2ρ

(
AS +

2

3
AT

)2

ρ2
1

48
(10 + 11GJ

1 +GJ
2 ) (2.91)
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EJ,ρ0 =
g2ρ
m2
ρ

1

120

{[
ρρ̃+

(
AS −

1

3
AT

)(
ÃS −

1

3
ÃT

)]2
(7GJ

2 − 5GJ
1 − 20)

+ 2

[
ρρ̃+

(
AS −

1

3
AT

)(
ÃS −

1

3
ÃT

)][
hh̃+

(
AS +

2

3
AT

)(
ÃS +

2

3
ÃT

)]

× (3GJ
2 − 5GJ

1 ) + 2

[
hh̃+

(
AS +

2

3
AT

)(
ÃS +

2

3
ÃT

)]2
(GJ

2 − 5)

+
Nc

4π
(u2 + v2)

(
hh̃ + 2ρρ̃+ 3ASÃS +

2

3
AT ÃT

)
10(GJ

1 − 3)

+15Nc(Nc − 1)

(
u2 + v2

4π

)2

(1−GJ
N)

}
(2.92)

EJ,A0
=

1

12m2
ρ

{
g2ρ

[
ρ

(
ÃS −

1

3
ÃT

)
− ρ̃

(
AS −

1

3
AT

)
− σhh̃

]2

+ 2gρ

(
Ã′
S +

2

3
Ã′
T +

2

r
ÃT

)

×
[
ρ

(
ÃS −

1

3
ÃT

)
− ρ̃

(
AS −

1

3
AT

)
− σhh̃

]}
(GJ

1 − 3). (2.93)

In these expressions the coefficients GJ
1 , G

J
2 and GJ

Nare given by:

GJ
1 =

F J
1 (Nc, NB)

F J(Nc, NB)

GJ
1 =

F J
2 (Nc, NB)

F J(Nc, NB)
(2.94)

GJ
N =

F J(Nc − 2, NB)

F J(Nc, NB)
,

where F J(Nc, NB) = 〈B|PJJ |B〉 is the projected Hedgehog norm and:

F J
1 =

J+1∑

J ′=|J−1|

F J ′

(Nc, NB) (2.95)

F J
2 =

J+2∑

J ′=|J−2|

F J ′

(Nc, NB). (2.96)
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The evaluation of the generic fields φ̃ is given in detail in Appendix I and in

Ref. [97]. More details about the projection technique and the evaluation of

these projection coefficients can be found in [27, 97].

The projected potential energy needs a detailed explanation, since this kind of

of calculation it has never been performed before for a logarithmic potential but

only for the Mexican hat potential. The matrix element for which we need to

develop a full calculation is:

EJ,pot = 〈JM −M | :
∫
d3rV (σh, h) : |JM −M〉 (2.97)

It has already been shown in [27] that terms which do not involve the pion field

(such as the quark-pion interaction energy and the σ and quark kinetic energies)

are not affected by projection. The main issue is the evaluation of the matrix

elements of the chiral fields between rotated and unrotated Hedgehog states.

These matrix elements for the sigma field σ(r) are:

〈B|R̂(Ω)−1σ(r)n|B〉 = σ(r)n〈B|R̂(Ω)−1|B〉 , (2.98)

where:

σ(r) =
1

2

(
σ(r) + R̂(Ω)−1σ(r)

)
≡ σh(r) . (2.99)

In an analogous way, for the pion field the matrix elements become:

〈B|R̂(Ω)−1π(r)|B〉 = π(r)h(r)〈B|R̂(Ω)−1|B〉 , (2.100)

π(r) =
1

2

(
r̂ + R̂(Ω)−1r̂

)
. (2.101)

Since the potential is a function of the pion only through quadratic terms, by
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using the previous relation we get:

〈B|R̂(Ω)−1π2(r)|B〉 = g(Ω, θ, φ)〈B|R̂(Ω)−1|B〉 ,

g(Ω, θ, φ) =
1

2
h(r)2

(
1 + r̂ · R̂(Ω)−1r̂

)
, (2.102)

where the function g depends on Euler angles Ω and on the polar and azimuthal

angles.

For a generic function F of the quadratic pionic terms, the following relation

holds:

〈B|R̂(Ω)−1F [π2(r)]|B〉 = F [g(Ω, θ, φ)]〈B|R̂(Ω)−1|B〉. (2.103)

Therefore the projection of the potential term can be obtained by leaving the

pure σ terms unchanged and by replacing the quadratic terms of the pion with

the function g given in eq. (2.102):

V (σh,h, g(Ω, θ, φ)) =

λ21
(
σ2
h + h2g(Ω, θ, φ)

)
− λ22 ln

(
σ2
h + h2g(Ω, θ, φ)

)

− fπm
2
πσh . (2.104)

The expectation value of the potential between the projected states, eq. (2.104),

becomes:

EJ,pot = 〈JJ − J | :
∫
d3rV (σh, h, g(Ω, θ, φ)) : |JJ − J〉 =

1

NJJ

∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ

×
∫
dΩ3DJ

J,J(Ω)V (σh, h, g(Ω, θ, φ))〈B|R̂(Ω)−1|B〉 (2.105)
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where the Wigner function is equal to:

DJ
J,J(Ω) = e−iJ(α+γ)

(
cos

β

2

)2J

. (2.106)

Finally, the overlap between rotated and unrotated Hedgehog states reads:

〈B|R̂(Ω)−1|B〉 =
(
cos

β

2
cos

α + γ

2

)3

× exp

(
Nσ +

Nπ

3

(
4 cos2

β

2
cos2

α + γ

2
− 1

))
. (2.107)

Here Nσ, Nπ are the average numbers of σ and π mesons in the Hedgehog

state [97] (see Appendix I) and NJJ is a normalization integral given by eq.( 2.84).

Besides the rotation and the isospin symmetries the semi-classical Hedgehog solu-

tion also breaks the translational symmetry of the Lagrangian, since the localized

soliton is not an eigenstate of the linear momentum, either. The soliton hence

contains spurious center-of-mass motion, whose kinetic contribution adds to the

total energy. In addition to that, this intrinsic motion also contributes to the

nucleon observables, such as radii and magnetic moments. In literature there are

many techniques that allow to handle the problem of collective motion, such as

the Peierls-Yoccoz projection on linear momentum [99, 100].

In the present work we do not perform a projection on the linear momentum,

but we adopt an easier approach [101], which provides a rough estimate of the

center-of-mass corrections to the baryon total energy. Using this approach, the

masses for the J state read:

MJ = (EJ − P 2)1/2 (2.108)
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where the momentum operator P 2 is defined as:

P 2 =

∫
d3r

[(
du

dr

)2

+

(
dv

dr

)2

+ 2v2

]
(2.109)

2.5.1 Projected observables

In this section we present the explicit expressions for the projected observables,

such as electric and magnetic radii and momenta, for the model with only chiral

fields and for the model with vector mesons. The projected formulae read:

〈r2E〉p =
∫
r4dr

{
(u2 + v2) +

1

2
G1/2
τ [2π(hh̃+ 2ρρ̃+ 3ASÃS +

2

3
AT ÃT −NB(u

2 + v2)]

}

〈r2E〉n =

∫
r4dr

{
1

2
G1/2
τ [2π(hh̃ + 2ρρ̃+ 3ASÃS +

2

3
AT ÃT −NB(u

2 + v2)]

}

µp =
1

3

∫
r3dr

{
1

3
uv(1−NBG

1/2
τ ) +

π

3
(GQ

m(r) +Gπ
m(r)

+Gρ
m(r) +Gρ0

m (r) +GA
m(r) +GA0

m (r))
}

µn =
1

3

∫
r3dr

{
1

3
uv(1−NBG

1/2
τ )− π

3
(GQ

m(r) +Gπ
m(r)

+Gρ
m(r) +Gρ0

m (r) +GA
m(r) +GA0

m (r))
}

〈r2M〉p =
1

µp

∫
r5dr

1

5

{
1

3
uv(1−NBG

1/2
τ ) +

π

3
(GQ

m(r) +Gπ
m(r)

+Gρ
m(r) +Gρ0

m (r) +GA
m(r) +GA0

m (r))
}

〈r2M〉n =
1

µn

∫
r5dr

1

5

{
1

3
uv(1−NBG

1/2
τ )− π

3
(GQ

m(r) +Gπ
m(r)

+Gρ
m(r) +Gρ0

m (r) +GA
m +GA0

m (r))
}

ga =

∫
r2dr

2π

9
[GQ

a,0(r) +Gσ
a,0(r) +Gπ

a,0(r)

+Gρ
a,0(r) +Gρ0

a,0(r) +GA
a,0(r)] (2.110)



2.5. Projection of the Hedgehog baryon 59

where the radial functions Gi(r) for the quarks and the chiral fields are given by:

GQ
m(r) =

1

π
uv(5− 2NBG

2
τ ) ,

Gπ
m(r) =β

[(
h2

r
− gρσhh

(
AS −

1

3
AT

))
(2 +G

1/2
1 −W1/2)

−gρh2ρ
1

2
(3 + 2G

1/2
1 −W1/2)

]
,

GQ
a,0(r) =

3

2π

(
u2 − 1

3
v2
)
(5− 2NBG

2
τ ) ,

Gσ
a,0(r) =− βh

{
4σ′

h + gρh

[(
AS −

1

3
AT

)
(3 +W1/2)

+AT
2

5
(6 +W1/2 +G

1/2
1 )

]}
,

Gπ
a,0(r) =2βσh

[
2

(
h′ +

2

r
h

)
− gρρh(2 +G

1/2
1 −W1/2)− 6gρσhAS

]
. (2.111)

For the magnetic terms of vector mesons we have:

Gρ
m(r) =

{
2

r
ρ2(2 +G

1/2
1 −W1/2)

−1

2
gρρ

[
ρ2 +

(
AS +

2

3
AT

)2
]
(3 + 2G

1/2
1 −W1/2)

}
,

Gρ0
m (r) =

gρ
5m2

ρ

{
ρ̃

[
hh̃ +

(
AS +

2

3
AT

)(
ÃS +

2

3
ÃT

)]
(1 +G

1/2
1 − 4W1/2)

−ρρ̃2(G1/2
1 + 6W1/2 − 9)− ρ̃

(
AS −

1

3
AT

)(
ÃS −

1

3
ÃT

)

×(G
1/2
1 + 6W1/2 − 9) +

5

π
(u2 + v2)ρ̃(1−NBG

1/2
τ )

}
,
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GA
m(r) =(−1)

[(
A′
S −

1

3
A′
T − AT

r

)(
AS +

2

3
AT

)
(2 +G

1/2
1 −W1/2)

+
1

2
gρρ

(
AS +

2

3
AT

)2

(3 + 2G
1/2
1 −W1/2)

]
,

GA0

m (r) =(−1)
1

m2
ρ

{
gρ

[
ρ̃

(
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1

3
AT

)
− ρ

(
ÃS −

1

3
ÃT
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×
(
ÃS −

1

3
ÃT

)
(2−G

1/2
1 +W1/2)

−
(
ÃS −

1

3
ÃT

)(
ÃS

′
+

2

3
ÃT

′
+

2

r
ÃT − gρσhh̃
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(2−G

1/2
1 +W1/2)

}
,

(2.112)

while the axial components read:

Gρ
a,0(r) =− 2ρ

(
A′
S −

1

3
A′
T − AT

r

)
(2 +G

1/2
1 −W1/2)

− gρρ
2

(
AS +

2

3
AT

)
(3 + 2G

1/2
1 −W1/2)

Gρ0
a,0(r) =− 2

gρ
m2
ρ

{
hh̃

[(
ÃS −

1

3
ÃT

)
(W1/2 − 1) + ÃT

1

5
(G

1/2
1 +W1/2 − 4)

]

+ρρ̃

[
2

(
ÃS +

1

6
ÃT

)
(W1/2 − 1)− ÃT

1

5
(G

1/2
1 +W1/2 − 4)

]

+

(
ÃS −

1

3
ÃT

)[
3

(
ÃS −

1

3
ÃT

)(
AS −

1

3
AT

)
+ 2ASÃT + AT ÃS

]
(W1/2 − 1)

+
1

5

(
ASÃT + AT ÃS +

1

3
AT ÃT

)
ÃT (G

1/2
1 +W1/2 − 4)

− 3

2π
ÃS(u

2 + v2)

(
1− 2

3
NBG

1/2
τ

)}
,
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GA
a,0(r) =2

[
ρ′
(
2AS +

1

3
AT

)
+
ρ

r

(
4AS −

1

3
AT

)]
(2 +G

1/2
1 −W1/2)

− gρ

(
AS −

1

3
AT

)[
ρ2 + 3

(
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3
AT

)2

− 3ASAT

]
(3 + 2G

1/2
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a,0(r) =
2

m2
ρ

{
gρρ̃

[
ρ̃

(
AS −

1

3
AT

)
− ρ

(
ÃS −

1

3
ÃT

)]
(2−G

1/2
1 +W1/2)

−ρ̃
(
ÃS
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+

2

3
ÃT

′
+

2

r
ÃT − gρσhh̃

)
(2−G

1/2
1 +W1/2)

}
. (2.113)

The definition of fields φ̃ is given in Appendix I. In these expressions NB represents

the total number of mesons given by Nπ + Nρ + NA (see Appendix I) and the

coefficients G
1/2
1 , W1/2 and G

1/2
τ are defined as:

G
1/2
1 =

F11/2(3, NB)

F 1/2(3, NB)
, W1/2 =

1

3

(
2
F 3/2

F 1/2
− 1

)
, G1/2

τ =
2

9

(
2− F 3/2

F 1/2

)
.

2.6 Single soliton in vacuum

In this section we present the results for the single soliton in vacuum, obtained in

the Chiral Dilaton Model with only chiral fields and then with the inclusion of the

vector mesons. First we will show the results at mean-field level for both models

and in particular we will compare them with the ones obtained in the Linear-σ

model. Finally we will show the results after projection and the comparison with

experimental values.

In this section the main aim is to check that the model can provide a reasonable

description of the nucleon properties with the chosen parameter set. In particular

we present here the results for the Lagrangian without vector mesons L0, obtained

by putting gω = gρ = 0 in eq. (2.35), for the set mσ = 550 MeV and the typical
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value gπ = 5 [27,75]. For the model including vector mesons we present here the

results for the set mσ = 1200 MeV, gπ = 3.9, gω = 12 and gρ = 4, denoted as

set I. This set has been chosen in order to both get saturation at finite density

(as will be shown in Chapter 3) and a reasonable description of the nucleon in

vacuum. Anyway, since the calculation of nuclear matter properties by using the

Wigner-Seitz approximation is affected by large uncertainties we also present a

second set of results with parameters better fitted to single nucleon properties,

namely mσ = 1200 MeV, gπ = 3.6, gω = 13 and gρ = 4 (set II).

2.6.1 Mean-field results

We start the analysis of the CDM in vacuum by showing the behaviour of

the fields at zero density. In Fig. 2.4 we plot the Dirac and the chiral fields for

the model without vector mesons and we compare them with the ones obtained

form the Linear σ-model. The field configurations provided by the two models

are very similar and show the usually trend. The same result is given for the

model including vector mesons in Fig. 2.5, where for this reason we just show the

fields in the logarithmic model.

In Tables 2.1 and 2.2 we present the static properties of the Hedgehog baryon

at mean-field level,calculated with the formulae (2.73), and we compare them

with results obtained in the Linear σ-model [61, 62].

The results are very similar for the CDM and the Linear σ-model; nevertheless

it should be noticed that, already at mean-field level, on one hand the repulsion

of the ω field provides a Hedgehog mass too large compared to the experimental

value, but on the other hand the contribution of the isovector fields, as the ρ and

the a1, leads to a better result for the correspondent radii and magnetic moment.
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Figure 2.4: Upper panel: Dirac components in the CDM (solid line) and in the Linear

σ-model (dashed line) without vector mesons. Lower panel: chiral fields in the CDM

(solid line) and in the Linear σ-model (dashed line) without vector mesons.

Table 2.1: Various nucleon properties at mean-field level in the present work without

vector mesons and in the σ-model [61].

Quantity Log. Model σ-Model Exp.

M (MeV ) 1176 1136 1085

〈r2e〉I=0 (0.76 fm)2 (0.78 fm)2 (0.72 fm)2

µI=1 (µN) 3.83 3.63 4.70

〈r2m〉I=1 (1.12 fm)2 (1.14 fm)2 (0.80 fm)2

gA 1.27 1.22 1.26

Nπ 2.4 1.9 �
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Figure 2.5: Left panel: Dirac components (upper panel) and chiral fields (lower panel)

in the CDM with vector mesons for set I. Right panel: vector mesons profiles in the

CDM for set I.

In Tables 2.3 and 2.4 we show the decomposition of the soliton total energy in

its various contributions and again we compare with the Linear σ-model [61,62].

We see that the contributions to the total energy coming from chiral fields and

from vector mesons are comparable: as expected vector mesons play an important

role in the dynamics of the soliton. It is also interesting to notice that the results
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Table 2.2: Various nucleon properties at mean-field level in the present model and in

the σ-model [62] with vector mesons and set I.

Quantity Log. Model σ-Model Exp.

M (MeV ) 1329.5 1331.7 1085

〈r2e〉I=0 (0.78 fm)2 (0.76 fm)2 (0.72 fm)2

µI=1 (µN) 4.49 4.51 4.70

〈r2m〉I=1 (0.99 fm)2 (1.01 fm)2 (0.80 fm)2

gA 1.34 1.35 1.26

Nπ 2.62 2.66 �

for the energy contributions obtained with the logarithmic model are very similar

to the ones obtained with the Mexican hat potential, at zero density, especially

when vector mesons are included.

2.6.2 Results after projection

In Tables 2.5 and 2.6 we present the results after projection in both models,

with and without vector mesons. Moreover, in Table 2.7 we present the results

obtained for the model with vector mesons using set II, better fitted to the nucleon

and delta masses. It is important to stress that our results in the model with

only chiral fields are consistent with the ones obtained in [102]. There, a different

approach based on the coherent pair approximation was used. Their results are

similar to ours when the coherence length parameter x is taken to be of the order

of one, as suggested in [103].

The results obtained both without and with the vector mesons in general



66 The Chiral Dilaton Model

Table 2.3: Contributions to the soliton total energy at mean-field level in the Loga-

rithmic model and in the Linear σ-model [61]. All quantities are in MeV.

Quantity Log. Model Linear σ-Model

Quark eigenvalue 83.1 107.4

Quark kinetic energy 1138.0 1056.9

Eσ (mass+kin.) 334.5 320.3

Eπ (mass+kin.) 486.0 373.1

Potential energy σ − π 105.7 120.7

Eqσ −101.4 −62.3

Eqπ −787.0 −673.2

Total energy 1175.6 1136.2

overestimate the experimental values, particularly for the magnetic observables,

once the parameters are chosen so that the projected mass of the nucleon is close

to its physical value. One has anyway to recall that for the mass an approximate

correction for the spurious center of mass motion has been taken into account

(see eq.( 2.108)), while no center of mass correction has been done for the other

observables. When this further corrections are taken into account the value of

some observables typically reduces.
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Table 2.4: Contributions to the soliton total energy at mean-field level in the Loga-

rithmic model and in the Linear σ-model with vector mesons [62]. All quantities are

in MeV.

Quantity Log. Model Linear σ-Model

Quark eigenvalue 114.5 112.9

Quark kinetic energy 1075.8 1080.6

Eσ (mass+kin.) 213.8 212.2

Eπ (mass+kin.) 393.2 397.3

Potential energy σ − π 81.2 80.4

Eω (mass+kin.) −194.4 −196.5

Eρ (mass+kin.) 162.6 165.4

EA (mass+kin.) 329.5 334.1

Eqσ 6.54 4.74

Eqπ −621.9 −627.1

Eqω 388.9 393.0

Eqρ −163.8 −165.9

EqA −341.8 −346.4

Total energy 1329.5 1331.7
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Table 2.5: Projected nucleon properties in the present work without vector mesons

and in the linear σ-model and comparison with experimental values.

Quantity Log. Model σ-Model Exp.

E1/2 (MeV ) 1075 1002

MN (MeV ) 960 894 938

E3/2 (MeV ) 1140 1075

M∆ (MeV ) 1032 975 1232

〈r2E〉p (fm2) 0.55 0.61 0.74

〈r2E〉n (fm2) −0.02 −0.02 −0.12

〈r2M〉p (fm2) 0.7 0.72 0.74

〈r2M〉n (fm2) 0.72 0.75 0.77

µp (µN) 2.25 2.27 2.79

µn (µN) −1.97 −1.92 −1.91

ga 1.52 1.10 1.26

1.6 (J = 1/2) 1.2 (J = 1/2)

〈Nπ〉J �

2. (J = 3/2) 1.6 (J = 3/2)
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Table 2.6: Projected nucleon properties in the present work and in the linear σ-model

with vector mesons and comparison with experimental values.

Quantity Log. Model σ-Model Exp.

E1/2 (MeV ) 892 882

MN (MeV ) 763 750 938

E3/2 (MeV ) 1030 1029

M∆ (MeV ) 918 917 1232

〈r2E〉p (fm2) 0.59 0.58 0.74

〈r2E〉n (fm2) −0.03 −0.02 −0.12

〈r2M〉p (fm2) 0.69 0.69 0.74

〈r2M〉n (fm2) 0.70 0.71 0.77

µp (µN) 2.72 2.71 2.79

µn (µN) −2.49 −2.5 −1.91

ga 1.6 1.48 1.26

1.1 (J = 1/2) 1.8 (J = 1/2)

〈Nπ〉J �

1.3 (J = 3/2) 2.2 (J = 3/2)
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Table 2.7: Projected nucleon properties in the present work and in the linear σ-model

with vector mesons and comparison with experimental values for the parameter set:

g = 3.6, gω = 13, gρ = 4 and mσ = 1200 MeV.

Quantity Log. Model σ-Model Exp.

E1/2 (MeV ) 1020 1008

MN (MeV ) 926 912 938

E3/2 (MeV ) 1148 1147

M∆ (MeV ) 1066 1063 1232

〈r2E〉p (fm2) 0.67 0.66 0.74

〈r2E〉n (fm2) −0.05 −0.05 −0.12

〈r2M〉p (fm2) 0.77 0.76 0.74

〈r2M〉n (fm2) 0.78 0.77 0.77

µp (µN) 2.63 2.64 2.79

µn (µN) −2.37 −2.38 −1.91

ga 1.58 1.46 1.26



Chapter 3

The Wigner-Seitz approximation

to nuclear matter

In the previous chapters we described how to build up a single soliton, starting

from quarks interacting with mesons. Now to go further in our analysis and to

test the behaviour of the CDM at finite density, we need to mimic a dense system

of solitons.

The description of nuclear matter, starting from effective Lagrangians, has been

widely discussed in literature and it has been applied to models including both

nucleons or quarks degrees of freedom. One approach consists of considering

the fermion, a nucleon or a quark, embedded in a uniform mean meson field

which simulate the interactions with surrounding medium. This method has been

applied to the σ − ω model [104–107] achieving remarkable results in describing

nuclear matter as composed by hadrons. The same method has been used for

soliton models, such the colour dielectric model, with fermions as quarks and

mesons acting as confining forces [44, 54, 108, 109].

71
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The other approach we adopt in this work is a technique, the so-called Wigner-

Seitz approximation [110], coming from solid state physics which is based on the

construction of a lattice of spherical cells, each one containing a soliton. For

sake of completeness, we should mention that in the literature one can find also

attempts to treat nuclear matter as a crystal, by letting the particles sit on

a regular lattice [31, 111–113], but since nuclear matter looks like a fluid, the

Wigner-Seitz approach seems to provide a better physical picture.

Specifically the Wigner-Seitz method consists of replacing the cubic lattice by a

spherical symmetric one where each soliton sits on a spherical cell of radius R

with specific boundary conditions imposed on fields at the surface of the sphere.

The configuration of the meson fields, centered at each lattice point, generates a

periodic potential in which the quarks move. In this way a many-body problem,

such as a dense nuclear system, is reduced to a single particle one where the effects

of finite density enter through the imposition of proper boundary conditions.

This method has been used in the past to describe finite density systems in non-

topological soliton models [34,36,114], chiral solitons models [36,37,115,116] and

Skyrme models [117, 118].

In the next sections we will describe in detail the main features of the Wigner-

Seitz approximation, such as the choice of boundary conditions and the definition

of a band width.

3.1 The Wigner-Seitz cell

Before introducing the main features of the Wigner-Seitz cell, we briefly review

the case of a regular lattice, e.g an fcc lattice [119], in which quarks interact with

a scalar field σ. The assumption of periodicity of the lattice leads to the following
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constraint on the scalar field:

σ(r) = σ(r +L) (3.1)

where L is the lattice vector. The σ field will possess the symmetries of the

lattice. Under this configuration for the σ field, the spinor of the quark field must

satisfy the Bloch theorem:

ψk(r) = eik·rΦk(r), (3.2)

where k is the crystal momentum (which for the ground state is equal to zero)

and Φk(r) is a spinor that has the same periodicity of the lattice, namely:

Φk(r) = Φk(r +L). (3.3)

The quark spinor satisfies the Dirac equation:

[α · (p+ k) + gβσ(r)Φk = ǫkΦk (3.4)

where for a given k corresponds an eigenvalue ǫk.

In the case of the Wigner-Seitz cell, we replace the cubic lattice with a spher-

ical cell of radius R. The spherical symmetry imposes that for the lowest band

all the fields should have an s-wave form. This requirement is naturally satisfied

by the fields configuration in the Hedgehog ansatz, shown in Sec. 2.4.1, where

only an extra quantum number k for the linear momentum of the cell has to be
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added. Therefore the quarks spinor for example will read:

ψk =
1√
4π


 uk(r)

ivk(r)σ · r̂


χh. (3.5)

In this work we will limit the calculation to the ground state for which k = 0.

3.1.1 Boundary conditions

The translational invariance by multiples of the cell radius R, given by the

periodicity of the lattice, allows to impose appropriate boundary conditions for

the fields on the surface of the sphere.

In the literature various sets of possible boundary conditions have been dis-

cussed [36, 37]. In our work we adopt the choice of Ref. [36] which relates the

boundary conditions at R to the parity operation, r → −r. Respect to this

symmetry the lower component v(r) of quark spinor the pion h(r) and the rho

ρ(r) are odd, and therefore they have to vanish at R:

v(R) = h(R) = ρ(R) = 0. (3.6)

Similarly, for the σ field, the upper Dirac component, the ω and the A fields the

argument based on parity provides the conditions:

u′(R) = σ′
h(R) = ω′(R) = A′

S(R) = A′
T (R) = 0. (3.7)

The boundary conditions at r = 0 remain the ones given in eq. (2.62). Ba-

sically the calculation consists in solving the set of coupled field equations in a

self-consistent way for a given value R; practically we start from R = 4 fm, for
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which the periodic solutions are indistinguishable from the vacuum ones, and

we slowly decrease the cell radius down to the smallest radius for which self-

consistent solutions can be obtained.

In Fig. 3.1 we plot the Dirac and the chiral fields in the model without vector

mesons for different values of R; down to R = 2 fm, the solutions do not change

significantly, but as the cell radius shrinks to lower values, we see that all the

fields are deeply modified by the finite density.

For the model including vector mesons, we present in Fig. 3.2 the trend of the

vector mesons fields. To better clarify the difference between the models without

Figure 3.1: Upper (panel (a)) and lower (panel (b)) components of the Dirac spinor,

σ (panel (c)) and pion (panel (d)) fields for different values of the cell radius R in the

model without vector mesons.

and with vector mesons, in Fig. 3.3 we show the baryon density profiles in the two

cases. The relevant feature is that in the model without vector mesons the shape

of the soliton becomes significantly more flat, at large densities, than in the case

with vector mesons. This effect is due to the repulsion between the two solitons

provided by the ω field, which prevents the baryon density to become large in
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Figure 3.2: Vector mesons fields, as functions of the cell radius R. In (a) we plot the

ω field, in (b) the ρ field, in (c) the AS field and in (d) the AT field.

the inter-nucleon region. This feature will have an important consequence on the

dependence of the radii on the density, as discussed in Section 3.2.2.

Figure 3.3: Baryon density as a function of the ratio r/R for the model without

(dashed line) and with vector mesons (solid line). Two values of the cell radius R are

shown, namely R = 2 fm and R = 1.2 fm.



3.1. The Wigner-Seitz cell 77

3.1.2 Band width

The formation of a band structure, namely a continuous set of states with an

energy gap above the highest state, comes directly from the Bloch wave function

for the quark fields defined in eq. (3.2). By solving the Dirac equation in (3.4)

for a single cell, we can obtain the energy eigenvalues ǫk for all values of crystal

momentum k within the first Brillouin zone and hence define a band where the

lowest energy state is given by k = 0. For the spherical symmetric cell, how to

define the width of the band is highly not trivial. The assumption that inside the

cell the potential is spherically symmetric implies that the bottom of the band

will therefore be spherically symmetric and the upper Dirac component will be

flat on the boundary. Nevertheless to define a band we need all the states, not

only the bottom one, so a full calculation of non-spherical symmetric states with

k 6= 0 should be performed. Many attempts have been made in the field of soliton

matter in order to provide the full spectrum of Dirac states and to define the top

the band. The most sophisticated technique is the one provided in [36]. Here the

authors impose a Bloch-like boundary condition to relate the values of the quark

wave function at any pair of opposite points lying on the sphere S:

ψ(r) = e2ik·rψ(−r) , ∀r ∈ S (3.8)

and then they solve self-consistently the meson and quark fields equations which

obviously depend on k.

In this work we adopt two much simpler procedures. The first method is taken

from [116], where the authors estimates the top of the band from the momentum

connected to the size of the cell, ktop =
π
2R
. The explicit expressions for the band
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and the top eigenvalue read:

∆ =

√
ǫ20 +

( π

2R

)2
− |ǫ0|, (3.9)

ǫtop = ǫ0 +∆, (3.10)

where ǫ0 is the eigenvalue of the ground state.

An alternative approximation to the band width is obtained, following [34], by

imposing that the lower Dirac component vanishes at the boundary:

u(R) = 0. (3.11)

In [36] the authors show that this approximation leads to an upper limit on the

energy of the top of the band; the true top is typically about halfway between

the bottom and this upper limit.

Now we address the question of how to fill the band. Since we are considering

chiral solitons at mean-field level, as shown in Chapter 2, the relevant quantum

number is the grand-spin G and the lower band corresponds to G = G3 = 0.

For this value of grand-spin, the only degeneracy left is the colour and hence the

three quarks per soliton are completely filling the band.

The total energy of the soliton in the cell is estimated by assuming a uniform

filling and by averaging the energy within the band.

3.2 Solitons at finite density

In this section we present the results obtained by studying a Wigner-Seitz lattice

of solitons for the logarithmic model with only chiral fields and also with vector
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mesons. We first discuss the energy of the system at finite density and we then

present the effect of the density on the single nucleon properties.

We will show the two main purposes of this thesis:

• the modification of the chiral field interaction, with the inclusion of scale

invariance and the presence of a logarithmic term in the potential, allows

to reach higher densities in comparison to the Linear σ-model;

• the introduction of vector mesons in the dynamics of the model stabilises the

soliton at high densities and also partially provides the necessary repulsion

to obtain saturation.

3.2.1 Energy of the lattice

Let us start by showing in Fig. 3.4 the results for the total energy per unit cell

of the soliton at mean-field level in the CDM and in the Linear σ-model without

vector mesons. For each given value of the sigma mass, it can be seen that

the logarithmic model allows the system to reach higher densities in comparison

to the σ-model. Moreover it should be noticed that as mσ raises, the system

remains stable to lower R since the model is approaching the non-linear limit and

the chiral fields are more and more constrained to lay on the chiral circle.

The same result is shown in Fig. 3.5 for both models with the inclusion of

vector mesons.

The introduction of vector mesons also leads to more stable solutions at high

densities as can be seen in Fig. 3.6, where we present the total energy of the

soliton in the logarithmic model with vector mesons and we compare it to the

one obtained in the case with only chiral fields.

The other effect obtained by the introduction of vector mesons is to partially
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Figure 3.4: Total energy of the soliton as a function of cell radius R for the linear

σ-model [36] and for the present model without vector mesons with g = 5. Different

values of mσ are considered.

Figure 3.5: Total energy of the soliton as a function of cell radius R for the linear

σ-model [36] and for the present model with vector mesons. The parameter set is g = 5,

gω = 12 and gρ = 4. Different values of mσ are considered.

provide the repulsion that leads to the saturation of chiral matter. In order to

show the origin of this saturation mechanism we show in Figs. 3.7 and 3.8 the

behaviour of the quark eigenvalue in the CDM with and without vector mesons

as a function of the cell radius R. Here we plot the eigenvalue ǫ0 for the bottom of

the band and corresponding to the state GP = 0−. We also plot the estimates of

the top of the band calculated with the eqs. (3.9) and (3.11), denoted respectively
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Figure 3.6: Total energy of the soliton as a function of cell radius R for the present

model with and without vector mesons. The parameter set is g = 5, gω = 12 and

gρ = 4. Different values of mσ are considered.

with ǫ
(a)
top and ǫ

(b)
top. In addition to that we also show the lower state of the upper

band, given by the first excited state 1+. It is clear that in absence of vector

mesons we never obtain saturation. Moreover to change the value of mσ does not

modify this result. The band structure is quite similar in both cases. The band

is narrower at low densities, where the soliton is well localized within the cell.

As proposed in Ref. [33], one can picture this scenario as a colour insulator, with

the quarks not free to move across the lattice. While the density raises, the band

gets wider up to the density where solution is lost; in this case the chiral matter

would act as a colour conductor and the quarks would be free to move from one

soliton cell to the other. The main difference between the model without and

with vector mesons is given by a significant increase of the top of the band at

higher densities which allows us to obtain saturation.

To better understand our result which indicates the possibility of getting

saturation, in Fig. 3.9 we compare the total energy of the soliton at mean-field

without the contribution associated with the band. In order to emphasize the

effect of the density on the energy we subtracted the mass of the nucleon in
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Figure 3.7: Lower panel: quark eigenvalue as a function of the cell radius R, in the

model without vector mesons. The shaded areas represent the band as estimated in

eq.(3.9) and in eq. (3.11). The quark mass in vacuum, here 465 MeV, is indicated by

the dashed line.

vacuum. It is clear that the exchange of vector mesons plays a crucial role, by

contributing ∼ 100 MeV at R = 1 fm, but it is not sufficient to get saturation.

To determine which ingredient of the model is actually providing the repul-

sion at high densities, in Fig. 3.10 we plot the interaction energies for each term

contributing to the total energy at finite density. The plotted quantities are de-

fined as the value of the chosen energy contribution at R minus the corresponding

vacuum value:

Ẽi(R) = Ei(R)− Ei(∞). (3.12)

From the figure it is clear that the band effect is strongly influencing the total

energy of the soliton, by providing the largest contribution to repulsion at high

densities. This is not surprising, because the band is associated with the sharing

of quarks between nucleons. It is well known [120,121] that in calculations of the
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Figure 3.8: Panel (a): total energy of the soliton with band effects (solid line) and

without band effects (dashed line) as a function of the cell radius R for the model

with vector mesons. Panel (b): the quark eigenvalue as a function of the cell radius R

for the model with vector mesons. The shaded areas represent the band as estimated

in eq.(3.9) and in eq. (3.11). The quark mass, here 362.7 MeV, is indicated by the

dashed line.

N − N potential based on quark models the short-range repulsion is associated

with the formation of a six-quark bag. In our calculation the exchange of vector

mesons is the dominant effect at densities up to ρ0, but at very high densities

the band effect dominates. The total amount of these contributions leads to the

repulsive mechanism responsible for the steep rising of the total energy at high

densities, as it can be seen in the upper panel of Fig. 3.8.

In more detail this is also shown in Figs. 3.11 and 3.12, where we focus on the

mesons contributions and we leave aside the band term. In the upper panels we

plot the contributions of the chiral mesons to the total energy (without the band
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Figure 3.9: Total energy of the soliton at mean-field level in the logarithmic model

without vector mesons (dashed line) and with vector mesons (solid line). The parameter

values are: mσ = 1200 MeV, gπ = 5, gω = 12 and gρ = 4.

effect) and the quark-chiral mesons interaction energies, respectively, and in the

lower panels we present a similar analysis but for the vector mesons. It is clear

that the ω meson provides the short-range repulsion, partially compensated by

the interaction of the quarks with the A meson.

It has been discussed in the literature how to interpret the results obtained

using the Wigner-Seitz lattice and in particular which should be the indications

of quark deconfinement. In [33] it has been suggested that deconfinement takes

place when the upper band, which corresponds to G = 1, merges with the lower

band. In the case with vector mesons this occurs roughly at densities slightly

larger than the saturation density. We should keep in mind that the estimate of

the width of the band is affected by large uncertainties and it is well possible that

in a more refined calculation saturation density and deconfinement density turn

out to be well separated.
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Figure 3.10: Interaction energies Ẽi, as defined in text, as a function of the cell radius

R in the model with vector mesons. Parameters as in Fig. 3.8.

Figure 3.11: Panel (a): contributions of the chiral fields to the total energy of the

soliton as a function of the cell radius R in the model with vector mesons. Panel (b):

contributions of the vector meson fields to the total energy of the soliton as a function

of the cell radius R. Parameters as in Fig. 3.8.

The scenario depicted by the results presented so far leads for the very first

time to saturation by making use of the interplay between attraction from chiral

fields and repulsion from the vector fields. The logarithmic turns out to play
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Figure 3.12: Panel (a): interaction energies of the chiral fields with quarks as a

function of the cell radius R in the model with vector mesons. Panel (b): interaction

energies with the vector mesons as a function of the cell radius R. Parameters as in

Fig. 3.8.

a fundamental role, by allowing the solitons to remain stable at densities large

enough that the vector mesons can start acting on the dynamics.

At this point it is important to prove that this result can be obtained not

only in a tiny parameters’ range but that the mechanism leading to saturation is

rather stable respect to the choice of parameter values. his analysis is shown in

Fig. 3.13 where we plot, as a function of the density, the value of the total energy,

including the band effects, at the ”saturation density” point minus the energy

in vacuum for different values of the parameters, at fixed mσ = 1200 MeV. Here

”saturation density” means the density at which a local minimum in the total

energy appears, even if that minimum is not the global one.

The minimum is global when the energy plotted in Fig. 3.13 is negative and

in that situation we are getting real saturation. Instead, when the plotted energy
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Figure 3.13: Minimum of the total energy as a function of the density. Different sets

of couplings are shown, for which the model admit saturation. See the text for more

details.

is positive the local minimum corresponds to a sort of metastable state. Since

our calculation is affected by large uncertainties we think it is interesting to show

also the parameters leading to this ”false” minimum, since in a more sophisticated

calculation (based for instance on a better estimate of the band) those energies

could easily become negative. For parameters values significantly outside the

indicated range no local minimum exist. For instance for values of gω > 12

the local minimum of the energy disappears because the energy keeps raising as

the density increases while for small values of gω the repulsion cannot contrast

the attraction and the energy gets smaller and smaller at large densities. It is

important to notice that the range of parameters’ values providing ”saturation”

is at least in part overlapping with the range of parameters’ values for which a

reasonable description of the single soliton in vacuum can be obtained. Finally,

we have to recall that we are not really studying nuclear matter, but rather
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G = 0 matter, which is composed of degenerate nucleons and deltas. Obviously,

no experimental data exist for that type of theoretical matter, but we can expect

it to be saturating, probably with a larger saturation energy than that of nuclear

matter. The corresponding saturation density is also obviously unknown.

3.2.2 Nucleon properties at finite density

The question about the modification of the nucleon properties at finite den-

sity have been investigated in many analysis, both experimental [122] and the-

oretical [77, 123–126]. In Figs. 3.14 and 3.15 we show how the values of a few

observables evolve as a function of the spherical cell density. The mean-field ob-

servables evaluated as a function of the density cell are the isoscalar electric and

the isovector magnetic radius and the number of pions. The formulae for these

quantities for the model without and with vector mesons read [97, 127]:

〈r2E〉I=0 =

∫
r4(u2 + v2)dr

〈r2M〉I=1 =
1

µI=1

∫
r5
2π

9
(GQ

M +Gπ
M +Gρ

M +GA
M) , (3.13)

µI=1 and the radial functions Gfield
m are given in eq.( 2.73) and in eq.( 2.74) in

Chapter 2.

The problem with our evaluation is that in the Wigner-Seitz approach we are

forcing a unit of baryon number in every cell of the lattice. Therefore, at densities

large enough that the fields start occupying most of the cell and their value is

no more strongly varying inside the cell, the various radii all simply scale with

the size of the cell. The results we are obtaining are therefore indicative only at

densities low enough that the fields are still relatively well contained inside each

cell. As shown in Figs. 3.1 and 3.2 all the fields are well confined up to values of
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density close to ρ0. This implies that the behaviour of the observables, evaluated

from these fields, have no physical relevance at densities of the order or above

nuclear matter saturation density ρ0.

The problem we are facing is deeply associated with the Wigner-Seitz ap-

proximation in which the effect of the finite density to the various observables

is due only to Hartree contributions. In the real case two neighbouring nucleons

interact also via the Fock term. Notice that at densities large enough that the

field fluctuations are suppressed, the Hartree contributions associated e.g with

the pion field vanishes. On the contrary the Fock term becomes relevant at those

densities and it provides to the electromagnetic observables contributions which

in nuclear physics are sometimes called pion-in-flight. These terms, of course,

cannot be evaluated in the Wigner-Seitz approach.

Another problem with the Wigner-Seitz approach is that it imposes spherical

boundary conditions on the fields. This is particularly dangerous in the case of the

chiral fields, since at mean-field level directions in ordinary space are connected

with directions in isospin space, a situation which is certainly quite far from

reality. Due to these problems a work is in progress [128] in which a real lattice

will be studied, with boundary conditions which can change depending on the

direction. We think it is nevertheless worthy to present our results in Figs. 3.14-

3.15 so to compare them with future more precise estimates.

For the model containing σ and π only, our results can be meaningful at low

densities where the dynamics is dominated by chiral fields. The introduction of

vector mesons affects in quite a interesting way the isoscalar radius: as shown

in Fig. 3.3, the repulsion provided by the ω field, for densities smaller than ρ0,

prevents the swelling of the nucleons. The qualitative effect of the inclusion of
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the vector mesons is to stabilize the shape of the solitons respect to compression.

This can be seen also in the case of the magnetic radius where the reduction

of this quantity as a function of the density is less marked than in the case

without vector mesons. It is also possible to evaluate the so-called ”super-ratio”

defined as (GE/GM)ρ/(GE/GM)vac, where GE,M are the electric and magnetic

form factors. In our calculation we obtain a reduction of this quantity as a

function of the density, similarly to what obtained in other works, although the

effect here is much larger. Although the model with vector mesons allows to reach

much higher densities, we do not attribute too much significance to the behaviour

of the observables at ρ & ρ0 for the reasons explained above. In the lowest panel

of Figs. 3.14 and 3.15 we also show the behaviour of the number of pions Nπ per

unit cell at finite density. The possibility of an enhancement of the pion cloud,

when the nucleon is not isolated, has been discussed in the literature [124]. In the

present approach we obtain instead a decrease of Nπ. This result stems from the

behaviour of the pionic field on the Wigner-Seitz lattice as shown in Fig. 3.1. The

strong reduction of the pionic field is due to the boundary conditions requested

by the spherical symmetry. It will be interesting to see if this result survives

when a real lattice is used in the calculation.
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Figure 3.14: Isoscalar electric radius (panel (a)), isovector magnetic radius (panel

(b)) and average number of pions (panel (c)) as a function of cell density ρC for the

model without vector mesons.

Figure 3.15: Isoscalar electric radius (panel (a)), isovector magnetic radius (panel

(b)) and average number of pions (panel (c)) as a function of cell density ρC for the

model with vector mesons.





Chapter 4

The B = 2 system in the Chiral

Dilaton Model

The Wigner-Seitz approximation, presented in the previous chapter, does not

permit to study the inter-soliton interaction including a possible dependence on

isospin. The Wigner-Seitz lattice represents a group of static field configurations

with a precise symmetry connected to the boundary conditions imposed on the

edge of each cell. Since the Hedgehog solution contains also isospin degrees of

freedom, it would be interesting to check if rotating the relative isospin orienta-

tion between solitons could lead to a lower energy configuration.

In this chapter we present a first attempt to go beyond the Wigner-Seitz approxi-

mation in order to study the interaction between two solitons in the Chiral Dilaton

Model without vector mesons. Starting from the B = 1 Hedgehog solution, using

a Product ansatz, we build a B = 2 system and we study the interaction of the

two solitons by changing the relative orientation of the Hedgehog quills.

The Product ansatz approach has been used in the past in the Skyrme model to

93
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describe the deuteron [129–132]. All these works start from the Hedgehog solu-

tion in the B = 1 sector and then the Product ansatz is used to build different

bi-skyrmions configurations where the isospin configuration plays a crucial role

in providing the lowest energy state. The results given by the Skyrme model in

this scheme are quite satisfactory and lead to a suitable description, concerning

the quantum numbers, of the deuteron as a skyrmion. More sophisticated ap-

proaches, including specific symmetries of the lattice, have been adopted to build

skyrmionic matter and to describe on one side multy-baryon systems [133] and

on the other to study hot and dense baryonic matter [134, 135].

In soliton models including quark degrees of freedom, the B = 2 system has been

already studied in previous papers [11, 136, 137] starting from the self-consistent

solution of field equations for six quarks.

In this section we will present the first description of the B = 2 system in the

Chiral Dilaton Model in the Product ansatz scheme and the dependence of the

soliton-soliton interaction on the isospin relative orientation. First in Sec. 4.1 we

will present the B = 1 Hedgehog solution and the results for the single soliton in

vacuum. Next in Sec. 4.2 we introduce the B = 2 soliton system and we will de-

scribe in detail the Product ansatz. Finally in Sec. 4.2.2 we will show the results

obtained.

4.1 The one baryon system

For our analysis we use the simplified Chiral Dilaton Model, including just quarks

and chiral fields, σ and π. The Lagrangian of the model reads:
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L = ψ̄[iγµ∂µ − gπ(σ + iπ · τγ5)]ψ +
1

2
(∂µσ∂

µσ + ∂µπ · ∂µπ)− V (φ0, σ, π).

(4.1)

The potential, already introduced in Chapter 2, is given by:

V (σ,π) = λ21(σ
2 + π2)− λ22 ln(σ2 + π2)− σ0m

2
πσ (4.2)

where:

λ21 =
1

2

Bδφ4
0 + ǫ1
σ2
0

=
1

4
(m2

σ +m2
π) (4.3)

λ22 =
1

2
Bδφ4

0 =
σ2
0

4
(m2

σ −m2
π) (4.4)

ǫ1 = m2
πσ

2
0. (4.5)

Here σ is the scalar-isoscalar field, π is the pseudoscalar-isotriplet meson field and

ψ describes the isodoublet quark fields. The vacuum state is chosen, as usually,

at σv = fπ and π = 0. In the following calculations we use: gπ = 5, mσ = 550

MeV, mπ = 139 MeV and fπ = 93 MeV. The self-consistent B = 1 solution for

the Lagrangian in eq. (4.1) has been obtained by adopting the Hedgehog ansatz,

namely:

σB=1(~r) = σh(r) , ~πB=1(~r) = h(r)r̂ ,

ψB=1(r) =
1√
4π


 u(r)

iσ · r̂v(r)


 1√

2
(|u ↓〉 − |d ↑〉). (4.6)
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The field equations for the Dirac components become:

du

dr
= gπhu+ (−ǫ− gπσh) v , (4.7)

dv

dr
= −2

r
v − gπhv + (ǫ− gπσh)u , (4.8)

while for the chiral fields, the equations become:

d2σh
dr2

= −2

r

dσh
dr

+
3gπ
4π

(u2 − v2) +
∂V

∂σh
(4.9)

d2h

dr2
= −2

r

dh

dr
+

2

r2
h+

3gπ
2π

uv +
∂V

∂h
. (4.10)

The solution has been obtained by imposing the following boundary conditions

at r = 0:

u′(0) = v(0) = 0,

σ′
h(0) = h(0) = 0, (4.11)

and at infinity:

σh(∞) = fπ, h(∞) = 0,

v(∞)

u(∞)
=

√
−gfπ + ǫ

−gfπ − ǫ
(4.12)

where ǫ is the quark eigenvalue.

The solution for the sigma field developes a bag-like spatial structure where the

quark fields become localized. In Fig. 4.1 we plot the Dirac components and the
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chiral fields for the B = 1 solution. Here it can be seen that the σ field defines

two distinct regions with a sharp jump around r ≈ 0.5 fm, developing a bag-like

spatial structure where the quark fields become localized. The pion field on the

other hand has the ordinary behaviour, namely it vanishes at the origin, having

its maximum exactly where the sigma changes sign, and it extends quite far out.

Regarding the quark fields, we see that the upper component u(r) reaches its

maximum at the origin, concentrating the energy and the baryon density near

r = 0, while the lower component has a peak between the origin and the maximum

value of the pion field.

Figure 4.1: Upper and lower components of the Dirac spinor, σ and pion fields for

the B = 1 solution.

The energy of the soliton in the Hedgehog configuration reads:

EB=1 = 4π

∫
r2dr(Eint + Ekin,Q + Eσ + Eπ + Epot) (4.13)
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where the quark-mesons interaction and the quark kinetic energies are:

Eint =
3

4π
[gπσh(u

2 − v2) + 2gπhuv] (4.14)

Ekin,Q =
3

4π

(
u
dv

dr
− v

du

dr
+

2

r
uv

)
(4.15)

and the energy density of the mesons fields and of the potential read:

Eσ =
1

2

(
−dσh
dr

)2

(4.16)

Eπ =

[(
dh

dr

)2

+
2

r2
h2

]
(4.17)

Epot = V (φ0, σh, h) (4.18)

Making such bag-like structure costs more than 800 MeV in meson field energy,

which is compensated by the binding energies of the quarks, as shown in Table 4.1.

In total, the whole system has a binding energy of about 400 MeV. The rms radius

of the baryon number distribution is about 0.7 fm.

In this model the baryon density is carried exclusively by the quarks, while

the energy density gets contributions form both quarks and mesons. n Fig. 4.2

we show on the left the energy density, which is maximum in the interior of the

soliton but extends further out due to the pion contribution. On the right we

plot the baryon density well localized in the interior of the soliton.

4.2 The two baryon system

In order to study the soliton-soliton interaction we need to construct a B = 2

system where two solitons are separated by a certain distance. Assume two
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Table 4.1: Contributions to the soliton total energy at mean-field level in the Loga-

rithmic model and in the Linear σ-model. All quantities are in MeV.

Quantity Log. Model

Quark eigenvalue 83.1

Quark kinetic energy 1138.0

Eσ (mass+kin.) 334.5

Eπ (mass+kin.) 486.0

Potential energy σ − π 105.7

Eqσ −101.4

Eqπ −787.0

Total energy 1175.6

solitons, each a B = 1 hedgehpg solution, whose centers are at r1 and r2 (see

Fig. 4.3).

For simplicity we place the centers of the two Hedgehogs symmetrically along

the ẑ axis at a distance d, hence the explicit expressions for the centers becomes:

r1 = (0, 0,−d
2
) (4.19)

r2 = (0, 0,
d

2
). (4.20)
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Figure 4.2: Distribution of the energy density (right) and baryon density (left) for

the B = 1 solution.

Figure 4.3: Construction of B = 2 system. The inter-separation d is along the ẑ axis.

Let us define the radial distances measured from these centers:

d1 = |r − r1| =

√

x2 + y2 +

(
z +

d

2

)2

(4.21)

d2 = |r − r2| =

√

x2 + y2 +

(
z − d

2

)2

. (4.22)
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Each radial field of the B = 1 soliton solution, displaced in one of the two centers,

can be expressed as a function of the distances d1 and d2, expressed above. The

fields for the soliton placed in r1 become:

σ1(r − r1) = σh(d1) , (4.23)

π1(r − r1) =

(
h(d1)

x

d1
, h(d1)

y

d1
, h(d1)

z + d/2

d1

)
, (4.24)

ψ1(r − r1) =
1√
4π


 u1(d1)

iσ · (r̂ − r̂1)v(d1)


 1√

2
(|u ↓〉 − |d ↑〉) (4.25)

and similarly for the soliton in r2:

σ2(r − r2) = σh(d2) , (4.26)

π2(r − r2) =

(
h(d2)

x

d2
, h(d2)

y

d2
, h(d2)

z − d/2

d2

)
, (4.27)

ψ2(r − r2) =
1√
4π


 u2(d2)

iσ · (r̂ − r̂2)v(d2)


 1√

2
(|u ↓〉 − |d ↑〉). (4.28)

The next step is to build, starting from these two soliton configurations, the chiral

and the Dirac fields for the B = 2 system.

4.2.1 The Product ansatz

In order to build up the B = 2 soliton system we use the Product ansatz

following the work of Skyrme in Ref. [46]. In this scheme the chiral fields for the
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B = 2 configuration are approximated by:

(
σB=2(r) + iτ · πB=2(r)

fπ

)

=

(
σ1(r − r1) + iτ · π1(r − r1)

fπ

)
A

(
σ2(r − r2) + iτ · π2(r − r2)

fπ

)
A†

(4.29)

where fπ is introduced in order to have the proper dimensions and to recover the

correct asymptotic behaviour. The operator A is a SU(2) matrix inserted to take

into account the relative orientation in the isospin space of one of the solitons

with respect to the other. From eq.( 4.29) we can obtain the expressions for the

new chiral fields:

σB=2(r) = σ1σ2 + π1 · π2 ,

πB=2(r) = σ1π2 + σ2π1 + π1 × π2. (4.30)

In the Skyrme model, taking the product of two B = 1 soliton solutions is one

of the most convenient ways to obtain the B = 2 intersoliton dynamics [134].

However, in the linear Chiral Soliton Model, with explicit quark degrees of free-

dom, since we are not restricted by a topological winding number, the product

scheme may not be so essential, though it provides some advantages. First of all,

it makes σB=2 and ~πB=2 naturally satisfy the boundary conditions at infinity, as

can be seen from eqs.( 4.30); that is,

σB=2(r → ∞) → fπ, πB=2(r → ∞) → 0 (4.31)
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Figure 4.4: The structure of the σ field for B=2, σB=2, for the three configurations

studied at large (upper figures) and small (lower figures) separation parameter d.

without any further artificial construction. Secondly, when the separation dis-

tance between two solitons is sufficiently large, the two solitons will have their

own identity. We show in Fig.4.4 the σB=2 field obtained by this ansatz (4.30).

Note that, at large and intermediate separations, the relative distance is a well

defined quantity, while at short separations the fields deform heavily, making

complicated overlapping shapes, and the relative distance cannot be well defined.

The relevant difference between the Chiral dilaton Model and Skyrme model

is the presence of quark degrees of freedom that also need to be taken into account

in the new fields configuration. At zero order, since the meson background con-

figuration shows a reflection symmetry except for an isospin rotation, the quark
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fields can be expressed as a linear combination given by:

ψ±(r) =
1√
2
(ψL(r)± ψR(r)) , (4.32)

where the left and right spinors read:

ψL(r) = ψ1(r − r1) ,

ψR(r) = Aψ2(r − r2). (4.33)

In order to study the soliton-soliton interaction we decide to keep one soliton

fixed and rotate the other, namely the one centered in r2. We will consider three

different configurations, shown in Fig. 4.5:

1. Configuration A: A = I, i.e. the two solitons are unrotated (panel A in

Fig. 4.5).

2. Configuration B: A = ei
τz
2
π = iτz , which corresponds to rotating the second

soliton by an angle π about the axis parallel to the line joining the two

centers (panel B in Fig. 4.5). Under such transformation the vector r̂2 and

the pion field become:

r̂2 =

(
− x

d2
,− y

d2
,
z − d

2

d2

)
,

π2 =

(
−h(d2)

x

d2
,−h(d2)

y

d2
, h(d2)

z − d/2

d2

)
, (4.34)

3. Configuration C:A = ei
τx
2
π = iτx, leading to a rotation of 180 degrees

around the axis perpendicular to the line joining the two solitons, in our
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case the x axis. For this configuration we obtain:

r̂2 =

(
x

d2
,− y

d2
,−z −

d
2

d2

)
,

π2 =

(
h(d2)

x

d2
,−h(d2)

y

d2
,−h(d2)

z − d/2

d2

)
. (4.35)

Figure 4.5: The three configurations A, B, and C corrensponding to the different

orientation in the isospin space.

For each configuration we calculate the energy of the B = 2 soliton using

the field expressions given in (4.30) and evaluating the expectation value of the

Hamiltonian on the new B = 2 state where the valence quarks fill the levels

provided by eq. (4.32). The energy hence reads:

EB=2 = Eσ,B=2 + Eπ,B=2 + Epot,B=2 + EQ,B=2 (4.36)
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where the meson and potential energy are given by:

Eσ,B=2 =
1

2

∫
d3r∇σB=2 · ∇σB=2 , (4.37)

Eπ,B=2 =
1

2

∫
d3r∇πB=2 · ∇πB=2 , (4.38)

Epot,B=2 =

∫
d3rV (σB=2, πB=2) , (4.39)

while the quark energy reads:

EQ,B=2 = 〈B = 2|
∫
d3rψ[iα · ∇+ gπ(σB=2 + iτ · πB=2)]ψ|B = 2〉 (4.40)

The soliton-soliton interaction energy is defined as:

Vint(d) = EB=2 − 2EB=1 (4.41)

where the energy for the B = 1 system is given by eq.( 4.13).

4.2.2 Results

In order to analyse how the interaction energy between the two solitons be-

haves with the different configurations, we study how the B = 2 system changes

as the distance d gets smaller.

In Fig. 4.6 we show the energy density for all configurations as a function of

the separation distance d. The profiles show that for all configurations at large

and intermediate distances the two solitons are still well localized and an separa-

tion distance d can be defined. As the two solitons approach each other the shape

of the halo around the core, provided by the meson fields, starts to deform heavily

and the two baryons begin to strongly overlap. The deformation on the outer
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Figure 4.6: Profiles of the energy density of the B = 2 system, for all configurations,

in the plane x− z as a function of the distance d. The inter-soliton distance decreases

from left to right, from the top the configuration are A, B and C in the lower panel.

part of the energy density is mostly due to the long-range contribution coming

from the pion fields, while the change of the inner core is given by the repulsion

of quarks at short separations. It can be seen that the rotation in isospin space

does not affect the system at large d, but it allows to have different behaviours

at smaller values of d, some partially attractive and some repulsive.

In order to provide a quantitative analysis of the dependence on isospin, we

present in Fig. 4.7 the contribution from meson fields and quarks to the total

interaction energy, defined in eq. (4.41) for the three configurations as a function

of the separation distance.

First of all it has to been pointed out that the various contributions show very
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different behaviours in the three configurations, even if the total interaction en-

ergy at the end seems quite similar for all the configurations. Both the σ and the

π energies are attractive, and for the sigma field the contribution is very large

in A configuration while on the contrary the pion provides a huge attraction in

rotated arrangements such as B and C and a very small one in the unrotated

system. The quarks always show the mostly large repulsive contribution at all

values of d which leads to the repulsion at short distances and the potential en-

ergy interaction has always small values in all configurations. Moreover it has to

be noticed that at large distances, namely when the two solitons are far apart,

we recover twice the energies of the B = 1 system. This should not be surprising

since, as already stressed in the Skyrme’s work [46], the Product ansatz represents

a good approximation when the two baryons are well-separated and there is no

interaction between them. Hence at large distances the soliton-soliton system is

similar to that obtained in the Skyrme model as expected, since when the two

solitons are very far apart the interaction between them is mainly through meson

exchange.

In Fig. 4.8 we present the total interaction energy for the three configurations.

There is no significant difference in shape between the three cases but the three

curves show very different behaviours as d decreases. Configurations A and B are

the repulsive for all d while at large distances C is the most stable configuration.

As the two baryons get closer there is a transition from the C to the B

configuration around d ≈ 1.5 fm, just at the point where Vint.,C raises (see

Fig. 4.8).Configuration B seems to be the lowest energy state only in the re-

gion where the interaction is repulsive. It seems that the quark fields plays a
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Figure 4.7: Contributions to the total soliton-soliton interaction energy (black line)

as a function of the distance d for the three configurations A, B and C.

Figure 4.8: Soliton-soliton interaction energy as a function of the distance d for the

three configurations A, B and C.
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crucial role at short separation. However, our first order calculations, without

any modifications on the quark wave function, are too primitive to draw any

conclusion for the short distance behaviour of the potential and the inclusion of

quark excited states can be relevant in order to get more insight into the physical

properties of the B = 2 soliton system.



Conclusions

In this thesis we used a Lagrangian with quarks degrees of freedom based on

chiral and scale invariance to study how the soliton behaves in vacuum and at

finite density. The main aims of the work was, besides checking that the model

is able to reproduce a good description of the nucleon at zero density, to verify

that the new logarithmic potential allows to reach higher densities in comparison

to the Linear σ-model and that the introduction of vector mesons stabilise the

soliton at high densities and provides the necessary repulsion to obtain saturation

of chiral matter.

Here we presented results for the simple model with just chiral fields and also for

the model including vector mesons.

To describe the single nucleon properties in vacuum we have used a projection

technique. The main results obtained in vacuum are the following:

• the interplay between quarks, chiral fields and vector mesons leads to values

of the static observables in the present model that are comparable to the

ones obtained using the Linear σ-model, when compared to the experimental

values.

For the description of the soliton at finite density we have employed the Wigner-

Seitz approximation. We have shown that:

111
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• the new potential, which includes a logarithmic term originating from the

breaking of scale invariance, allows the system, for each given mσ, to reach

densities larger than the ones obtained with the σ-model;

• as expected, the addition of the vector mesons plays a double role in the

study at finite density: on one hand it stabilizes the solution and allows to

reach even higher densities, on the other hand it partially provides the re-

pulsion necessary to obtain saturation.The remaining repulsive contribution

originates from the band effect.

The possibility to obtain saturation seems to be a firm result of the model,

at the level of the Wigner-Seitz approximation. In fact, by exploring the space

of parameters,we have shown that the interplay between attraction, provided by

the chiral fields, and repulsion, given by the omega field, allows to get saturation

for a rather extended range of parameter values.

At sub-nuclear densities the dynamics should be dominated by the chiral

fields and the modifications of the nucleon observables obtained in our work

can therefore be physically relevant in the low-density range. In particular the

isoscalar radius presents a slight swelling, of the order of 5%. This trend is in

agreement with previous calculations [30, 123, 126].

The present work will be extended in several directions. First a more precise

and accurate calculation of the band in the soliton crystal will be done following

Ref. [36]. Work is in progress in order to study this same model by using the

technique developed in Ref. [138], which provides a more precise description of a

multi-soliton system. Finally, the model can also be studied at finite temperature,

including the dynamics of the dilaton field. We can expect that the effect of the

finite temperature on the soliton lattice will be to reduce the stability, by lowering
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the value of the dilaton field and therefore making it more easy for the chiral fields

to fluctuate. It will be interesting to compare the obtained phase diagram with

the one proposed by McLerran and Pisarski [26].
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Appendix I: Coherent states

In this appendix we discuss the main properties of the coherent states which have

been used to describe the meson fields in the Hedgehog baryon wave function and

to calculate the nucleon observables [27, 97]. In the following general discussion

we define σ as a scalar-isoscalar field and ω as a vector-isovector field.

In order to define a coherent state, we first need to expand in the plane-wave

basis the chosen fields and its conjugate momentum as:

σ(r) =

∫
d3k

(2π)3
1√
2ωσ

[
b(k)eik·r + b(k)†e−ik·r

]
,

pσ(r) = −i
∫

d3k

(2π)3

√
ωσ
2

[
b(k)eik·r + b(k)†e−ik·r

]
, (4.42)

and in and analogous way for the ω field:

ω(r) =

∫
d3k

(2π)3
1√
2ωω

[(
k

k

ωω
mω

bL(k) +
∑

T

êt(k)bT (k)

)
eik·r + h.c

]
,

pω(r) = −i
∫

d3k

(2π)3

√
ωω
2

[(
k

k

ωω
mω

bL(k) +
∑

T

êt(k)bT (k)

)
eik·r + h.c

]
, (4.43)

where h.c stands for hermitian conjugate. For the ω we use the polarization

basis given by the transversal unit vectors eT (T = 1, 2) and the unit vector k/k.

The frequencies ωi are defined by the dispersion relation ωi =
√

k2 +m2
i . The

choice of the plane-wave basis allows to obtain a vacuum both translationally and

rotationally invariant. The rotational invariance leads to a more simple evaluation

of matrix elements and overlaps between projected states.

The vacuum state |0〉 can be obtained by the application of the annihilation
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operators b(k):

b(k)|0〉 = bL(k)|0〉 = bT (k)|0〉 = 0. (4.44)

The coherent state is defined by translating in function space this vacuum state,

so that it is centered on the classical field configuration σcl and ωcl (given by

eqs. (2.53) in chapter 2):

|σ〉 = U(σ, pσ)|0〉 ,

|ω〉 = U(ω,pω)|0〉 , (4.45)

where the operator U reads:

U(σ, pσ) = exp

(
−i
∫
d3r [σcl(r)pσ(r) + pσ,cl(r)σ(r)]

)
,

U(ω,pω) = exp

(
−i
∫
d3r
[
ωcl(r)pω(r) + pω,cl(r)ω(r)

])
. (4.46)

In terms of the creation and annihilation operators the coherent states become:

|σ〉 = 1

Ns

exp

(∫
d3kb(k)†σ(k)

)
|0〉 ,

|ω〉 = 1

No
exp

(∫
d3k

∑

λ

bλ(k)
†Ωλ(k)

)
|0〉 , (4.47)

where Ns, No are normalization factors and the polarization index λ = 1, 2, L.

The coherent states |σ〉 and |ω〉 are eigenstates of the annihilation operators b(k)

and bλ(k) and the amplitudes σ(k) and Ω(k) are the corresponding eigenvalues.
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Similar expressions hold for the other meson fields ρ, AS and AT and more details

about the construction of coherent states can be found in [139, 140].

For the meson fields present in the Lagrangian in eq. (2.35) , the amplitudes of

the corresponding coherent states read:

σ(k) =

√
ωσ
π

∫
r2drj0(kr)σh(r)

πa(k) = −ik̂a
√
ωπ
π

∫
r2drj1(kr)h(r) ,

ΩL(k) =

√
ωω
π

1

mωk

∫
r2drj1(kr)ω(r) ,

ΩT (k) = 0 ,

ρaT (k) = 0 ,

ρaL(k) = −ik̂a
√
ωρ
π
(êT ∧ k̂)a

∫
r2drj1(kr)ρ(r) ,

AaL(k) =
mρ√
πωρ

k̂a
∫
r2dr

[
j0(kr)AS(r)−

2

3
j2(kr)AT (r)

]
,

AaT (k) = êaT

√
ωρ
π

∫
r2dr

[
j0(kr)AS(r) +

1

3
j2(kr)AT (r)

]
, (4.48)

where the radial fields σh(r), h(r), ω(r), ρ(r), AS(r) and AT (r) are defined in

chapter 2.

The average number of mesons is evaluated in the following way:

Nσ = 2π

∫
r2drσh(r)σ̃h(r) ,

Nπ = 2π

∫
r2drh(r)h̃(r) ,

Nω = 2π

∫
r2drω(r)ω̃(r) ,
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Nρ = 4π

∫
r2drρ(r)ρ̃(r) ,

NA = 4π

∫
r2dr

[
3AS(r)ÃS(r) +

2

3
AT (r)ÃT (r)

]
, (4.49)

where the tilde fields are given by:

σ̃h(r) =
2

π

∫
dkk2ωσj0(kr)

∫
dr′r

′2j0(kr
′)σh(r

′) ,

h̃(r) =
2

π

∫
dkk2ωπj1(kr)

∫
dr′r

′2j1(kr
′)h(r′) ,

ω̃h(r) =
2

π

∫
dkk2ωωj0(kr)

∫
dr′r

′2j0(kr
′)ω(r′) ,

ρ̃(r) =
2

π

∫
dkk2ωρj1(kr)

∫
dr′r

′2j1(kr
′)ρ(r′) ,

ÃS(r) =
2

π

∫
dkk2dr′r

′2j0(kr)

× 1

3

[(
2ωρ +

m2
ρ

ωρ

)
j0(kr

′)AS(r
′)

+
2

3

(
ωρ −

m2
ρ

ωρ

)
j2(kr

′)AT (r
′)

]
,

ÃT (r) =
2

π

∫
dkk2dr′r

′2j2(kr)

×
[(
ωρ −

m2
ρ

ωρ

)
j0(kr

′)AS(r
′) +

1

3

(
ωρ +

2m2
ρ

ωρ

)
j2(kr

′)AT (r
′)

]
. (4.50)
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