

Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN
Matematica e Informatica

CICLO XXIV

COORDINATORE Prof.ssa Ruggiero Valeria

A Scalable Parallel Architecture
with FPGA-Based Network Processor

for Scientific Computing

Settore Scientifico Disciplinare INF/01

Dottorando Tutori

Dott. Pivanti Marcello Dott. Schifano Sebastiano Fabio

 Dott. Simma Hubert

Anni 2009/2011

2

Contents

1 Introduction 13

2 Network Processor 19
2.1 Two-Sided Communication Protocol 23
2.2 TNW Communication Protocol 24
2.3 Physical Link Layer . 26
2.4 Torus Network Layer . 29

2.4.1 The “TXLINK” Module 29
2.4.2 The MDIO Interface . 32
2.4.3 The Receiver Synchronizer 33
2.4.4 The “RXLINK” Module 35
2.4.5 The “Test-Bench” Module 38

3 Network Processor’s CPU Interface 41
3.1 Transaction Models . 41
3.2 Input/Output Controller . 48

3.2.1 PCIe Input Controller . 50
3.2.2 Design Optimization, TXFIFO as Re-order Buffer 52
3.2.3 Register Access Controller 53
3.2.4 DMA Engine . 55
3.2.5 PCIe Output Controller 57

4 Software Layers 61
4.1 Communication Model . 62
4.2 Driver . 64
4.3 Low-level Library . 66

4.3.1 Device Initialization and Release 66
4.3.2 Register Access . 67

3

4 CONTENTS

4.3.3 PPUT Send . 67
4.3.4 NGET Send . 70
4.3.5 Receive . 71

4.4 Application Examples . 72
4.4.1 Ping Example . 72
4.4.2 Ping-Pong Example . 74

5 Results and Benchmarks 77
5.1 FPGA Synthesis Report . 77
5.2 PHY Bit Error Rate Test . 77
5.3 CPU-to-NWP Transmission with PPUT Model 80
5.4 CPU-to-NWP Transmission with NGET Model 85
5.5 CPU-to-CPU Transmission Benchmarks 92

5.5.1 Benchmarks Using libftnw 92
5.5.2 Benchmarks Not Using libftnw 94

5.6 Transmission Test on the AuroraScience Machine 99
Scalability over multi-nodes 104

6 Conclusions 109

A NWP Registers Mapping 113
A.1 RX-Link Registers . 113
A.2 TX-Link Registers . 115
A.3 TB Registers . 117
A.4 BAR0 and BAR1: Tx Fifos Address Space 118
A.5 BAR2 Address Space . 120

A.5.1 TNW Register Address Space 120
A.5.2 IOC Register Address Space 120
A.5.3 TXFIFO Counters Registers 120
A.5.4 DMA Request . 120
A.5.5 DMA Buffer BAR . 120
A.5.6 DMA Notify BAR . 121

B libftnw Functions Summary 125
B.1 Device Initialization and Release 125
B.2 Send . 125
B.3 Receive . 127
B.4 Register Access . 128

List of Figures

2.1 Network Processor (NWP) block-diagram 20
2.2 Node-to-node reliable communication diagram 24
2.3 PMC-Sierra PM8358 block-diagram 26
2.4 Re-partitioning example . 28
2.5 Torus Network (TNW) layer block-diagram 30
2.6 TXLINK module block-diagram 31
2.7 Management Data Input/Output (MDIO) frames diagram 33
2.8 SDR and DDR scheme . 34
2.9 Receiver Synchronizer (RXSYNC) module block-diagram 34
2.10 RXLINK module block-diagram 36
2.11 RXBUFF module block-diagram 37
2.12 TB module block-diagram . 39

3.1 PPUT and NGET transaction-methods 42
3.2 NPUT and PGET transaction-methods 44
3.3 Peripheral Component Interconnect (PCI) transaction modes . . . 45
3.4 PCI Express (PCIe) memory request headers 47
3.5 PCI Express (PCIe) memory completion header 47
3.6 Input/Output Controller (IOC) module block-diagram 49
3.7 PCI Express Input Controller (PIC) module block-diagram 50
3.8 RX_FSM block-diagram . 51
3.9 Re-order Buffer block-diagram 53
3.10 Register Controller (RC) module block-diagram 54
3.11 DMA Engine block-diagram . 56
3.12 POC FSM block-diagram . 58

4.1 NWP software stack . 62
4.2 VCs/memory-address mapping 63

5

6 LIST OF FIGURES

4.3 ftnwSend() code extract . 69
4.4 Ping example . 72
4.5 libftnw Ping code . 73
4.6 libftnw Ping-pong example . 74
4.7 ftnw Ping-pong code . 75

5.1 PM8354 testbed . 79
5.2 PM8354 BER test setup . 79
5.3 PPUT with Intel intrinsics . 82
5.4 PPUT trace without WC . 82
5.5 PPUT implementation with packet-level fences 83
5.6 PPUT trace with WC . 84
5.7 PPUT trace with WC and Re-order Buffer 84
5.8 Network Processor (NWP) traversal time 85
5.9 Network GET (NGET) timing 86
5.10 NGET latency benchmark code 87
5.11 NGET latency . 88
5.12 NGET timing with 1 KB payload 89
5.13 NGET bandwidth benchmark code 90
5.14 CPU-to-CPU tx time and bw benchmark code 92
5.15 PPUT and NGET CPU-to-CPU transmission time 94
5.16 PPUT and NGET CPU-to-CPU bandwidth 95
5.17 PPUT CPU-to-CPU tx time and bw benchmark code 97
5.18 NGET CPU-to-CPU tx time and bw benchmark code 98
5.19 PPUT CPU-to-CPU transmission times step 100
5.20 PPUT CPU-to-CPU bandwidth with/without copy 101
5.21 NGET CPU-to-CPU transmission times step 102
5.22 NGET CPU-to-CPU bandwidth with/without copy 103
5.23 Ping-pong test on AuroraScience concept 104
5.24 Ping-pong test on AuroraScience node configuration 104
5.25 Ping-pong test on AuroraScience Max Transmission time 106
5.26 Ping-pong test on AuroraScience Aggregate Bandwidth 107

List of Tables

3.1 Trans. methods mapping on PCIe operations 48

5.1 Network Processor (NWP) synthesis report 78
5.2 PPUT bandwidth . 85
5.3 NGET TX time for several payload sizes 89
5.4 NGET bandwidth for several payload sizes 91
5.5 NGET bandwidth for several payload sizes 91
5.6 PPUT bandwidth for several payload sizes 93
5.7 NGET bandwidth for several payload sizes 93
5.8 PPUT and NGET transmission time and bandwidth 96
5.9 PPUT TX time and BW stepped 96
5.10 NGET TX time and BW stepped 99
5.11 Ping-pong test on AuroraScience TX time 105
5.12 Ping-pong test on AuroraScience aggregate bandwidth 105

A.1 BAR0 mapping . 119
A.2 BAR2 mapping for TNW . 122
A.3 BAR2 mapping for IOC . 123

7

8 LIST OF TABLES

Acronyms
ACK Acknowledge

ASIC Application Specific Integrated Circuit

BAR Base Address Register

CplD Completion with Data

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRDBAR Credit Base Address Register

CRDFIFO Credit FIFO

DATACHK Data Checker

DATAGEN Data Generator

DDR Double Data-Rate

DESCRFIFO Descriptor FIFO

DMA Direct Memory Access

DRV Device Driver

EMI ElectroMagnetic Interference

FPGA Field Programmable Gate Array

ID Identifier

IOC Input/Output Controller

LBM Lattice Boltzmann Methods

LIB Low Level Library

LID Link-ID

LQCD Lattice Quantum-Chromodynamics

LIST OF TABLES 9

LVDS Low-Voltage Differential Signaling

MAC Medium Access Control

MDC Management Data Clock

MDIO Management Data Input/Output

MMAP Memory Mapping

MPI Message Passing Interface

MRd Memory Read Request

MWr Memory Write Request

NAK Not Acknowledge

NTFBAR Notify Base Address Register

NGET Network GET

NID Notify-ID

NPUT Network PUT

NWP Network Processor

PCIe PCI Express

PCI Peripheral Component Interconnect

PCKARB Packet Arbiter

PCKBUFFER Packet Buffer

PGET Processor GET

PHY Physical Layer

PIC PCI Express Input Controller

PIO Programmed Input/Output

PLL Phase Locked Loop

10 LIST OF TABLES

POC PCI Express Output Controller

PPUT Processor PUT

RAO Remote-Address Offset

RC Register Controller

RCV Receiver Buffer

RSND Re-send Buffer

RXCLK Receive Clock

RXFSM Reception Finite State Machine

RXLINK Link Receiver

RX Receive

RXSYNC Receiver Synchronizer

SDR Single Data-Rate

TB Test-Bench

TLP Transaction Layer Packet

TNW Torus Network

TXCLK Transmit Clock

TXFIFO Injection Buffer

TXFSM Transmission Finite State Machine

TXLINK Link Transmitter

TX Transmit

VCID Virtual Channel ID

VC Virtual Channel

VHDL VHSIC Hardware Description Language

LIST OF TABLES 11

VHSIC Very High Speed Integrated Circuits

WCB Write Combining Buffer

WC Write Combining

XAUI 10 GigaBit Attachment Unit Interface

XGMII 10 GigaBit Media Independent Interface

12 LIST OF TABLES

Chapter 1

Introduction

Several problems in scientific computing require surprisingly large computing
power which current HPC commercial systems cannot deliver. In these cases the
development of application-driven machines has to be taken into account since it
can be the only viable and rewarding approach.

From the computational point of view, one of the most challenging scien-
tific areas is the Lattice Quantum Chromodynamics (LQCD), the discretized and
computer-friendly version of Quantum Chromodynamics (QCD). QCD is the fun-
damental quantum theory of strong interactions. It describes the behavior of the
elementary constituents of matter (the quarks) that are building blocks of stable
elementary particles, such as the proton and the neutron, and of a wealth of other
particles studied in high-energy physics experiments.

Monte Carlo simulations are a key technique to compute quantitative predic-
tions from LQCD. In LQCD the physical space-time is discretized on a finite 4D
lattice (state-of-the-art sizes are ≈ 804 lattice sites). Larger lattices would be wel-
come, since more accurate prediction would be possible. However algorithmic
complexity grows with the 6th . . . 10th power of the linear lattice size, so the size
of the lattices is in fact limited by available computing power.

The Monte Carlo algorithms used in this field are characterized by a very
small set of kernel functions that dominate the computational load. Five or six
key critical kernels correspond to ≃ 95% of the computational load. Within this
already small set of kernels, the evaluation of the product of the Dirac operator,
a sparse and regular complex-valued matrix, with appropriate state-vector is truly
dominant, so approximately 60 . . . 90% of the computing time of LQCD codes is
spent in just this task.

The Monte Carlo algorithms applied in this field (and the Dirac-operator in

13

14 CHAPTER 1. INTRODUCTION

particular) have many features that make an efficient implementation on massively-
parallel machines relatively easy to achieve.

• the computation can be easily partitioned among many processors; basically
the whole lattice can be divided in smaller equally-sized sub-lattices and
each one can be assigned to a different CPU;

• Single Instruction Multiple Data (SIMD) parallelism can be easily exploited;
all CPUs perform the same program on a different data set;

• Data access patterns of each CPU to its local memory are regular and pre-
dictable, allowing to exploit data-prefetch to prevent stalls of the processors;

• The communication pattern among CPUs is very simple: if processors are
assigned at the vertices of a D-dimensional grid, all data communications
for the Dirac kernel occur between nearest-neighbor processing elements.
This suggests to use a D-dimensional mesh interconnection network, for
which it is possible to obtain scalability, high bandwidth and low latency.

The properties of the network are relevant for the overall performance of the
program execution, since latencies and low-transfer data rate may negatively af-
fect the execution time, causing stalls of the CPUs. The required features of the
interconnection network are strictly related to parameters of the application, per-
formance of the processor, memory bandwidth, and size of the on-chip memory.

In the last 20 years of the previous century, several dedicated LQCD machines
used as building-block processing elements which were designed from scratch for
this specific application, so all their features were carefully tailored to best meet
all requirements. As an example, the main features of the APE series of processors
can be summarized as following:

• high performance low-power processors that could be easily packed in a
small volume;

• instruction set optimized for LQCD applications. For instance, the so-called
normal operation a × b + c with complex operands a, b, c was the imple-
mented in hardware to accelerate the vector-matrix multiplications;

• low-latency high-bandwidth network system, with network interface inte-
grated inside the processor.

15

These features made it possible to assemble systems that had far better perfor-
mance (in term of several relevant metrics, such as performance per dissipated
power, performance per volume, price per performance) than achievable with
commodity building blocks, whose structure was not well matching the require-
ments.

The advent of multi-core processors (including powerful floating-point sup-
port) in the last years has radically changed these conditions. Starting from the
IBM Cell Broadband engine (CBE), these new processors have dramatically in-
creased the computing performance available on just one computing node. Pro-
cessors in this class include now the multi-core Intel chips of the Nehalem and
Sandy-bridge families.

As an example, the most recent multi-core architecture developed by Intel,
the Sandy-Bridge processor, delivers ≈ 200 Gflops in single precision and ≈
100 Gflops in double precision. New VLSI technologies and architectural trade-
offs which are more oriented to scientific computing have allowed to integrate
large memory banks on chip, and made the processor much less power-hungry.
Again, as example, the Sandy-Bridge integrates up to 20 MB of on-chip cache
and dissipates less than ≈ 150 Watt.

These features strongly suggest that multi-core commodity processor are a
very good option for being used as a building-block to assemble a new LQCD
system. As an additional advantage, high performance and large memory on chip
allow to map large partitions of the lattice on each CPU, improving the volume
over surface ratio. This reduces the communication requirements and renders the
architecture well balanced.

As discussed above, a massively parallel system needs an interconnection har-
ness. From LQCD applications, what we need is:

• scalability up to thousand of CPUs,

• appropriate bandwidth to balance the computing power of the processor,
and sufficiently low latency to allow efficient communication of the small-
size data packets that occur in the typical communication patterns of the
algorithms.

• first-neighbor only data-links since each CPU needs to exchange data only
with its nearest neighbors in space

The best network topology meeting all the above described requirements is a 3D-
mesh.

16 CHAPTER 1. INTRODUCTION

In contrast to the processor developments, commercially available intercon-
nections for commodity processors, perform poorly with respect to the require-
ments discussed above. This has mainly two reasons:

• the network interface is not directly coupled to the processor; the connection
goes over some standardized bus, PCI Express or similar, introducing large
latencies.

• star topologies are used to interconnect thousand of processors with one or
more levels of switches, making scalability technically difficult and expen-
sive, and introducing extra latency in the communication

This discussion suggests that an optimal LQCD engine today should use com-
modity processors while a custom interconnection network is still a rewarding
option. This is for instance the choice made by the QPACE project.

This work was done in the framework of the FPGA Torus Network (FTNW)
project, which extends the results achieved within the QPACE project, Its aim
was to developing an FPGA-based implementation of a light-weight communi-
cation network to tightly interconnect commodity multi-core CPUs in a 3D torus
topology.

FTNW is based on a communication core that is largely independent of the
technology used for the physical link and of the interface with the processor. Thus
it can be adapted to new developments of the link technology and to different I/O
architectures of the CPU.

In this context, the current thesis work focuses on the design, implementa-
tion and test of a 3D network based on the FTNW architecture. A major part
of the work concerned the interface between the communication network and the
computing node based on PCI Express, a standard I/O bus supported any several
recent commodity processors. I implemented and tested the network processor on
commodity systems with dual-socket quad-core Nehalem and six-core Westmere
processors.

The main activities of the thesis thesis cover both hardware and software top-
ics:

• extensions of VHDL modules used for the implementation of the Torus Net-
work on the QPACE project

• design and implementation of a new processor interface based on the stan-
dard PCI Express protocol to interconnect the CPU and the Torus Network

17

• design, development and test of a device driver for the Linux operating sys-
tem to access and manage the network device

• design and development of a system library to access the network device
from user-applications in an efficient way and with small overhead

• development of micro- and application-benchmarks to measure both latency
and bandwidth of the communications

The thesis is organized as follows:

• in chapter 2, I outline the development and the implementation of the net-
work processor, describing the communication model and the layered struc-
ture of the network design. The main part of this chapter describes the phys-
ical and logical layer of the torus links, including details of the VHDL mod-
ules that implement the custom communication protocol of the network.

• Chapter 3 explains the general mechanisms for moving data between the
main memory of the CPU and the I/O devices. I then discuss the best way
to map the transactions between CPU and I/O devices on the specific PCI
Express Protocol and describe the design and implementation of the specific
VHDL modules to interface the network processor with the CPU.

• In chapter 4, I describe the design and the implementation of a device driver
for the Linux operating system to manage I/O with the network processor
device. Moreover, I describe the implementation of a user-library to access
the network device from user-applications, implementing the transaction
methods between CPU and I/O devices outlined in chapter 3.

• In chapter 5, I present benchmark programs and their results for the mea-
surement of latency and bandwidth of the communications.

• Conclusions of the development on the Network Processor are discussed in
chapter 6.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Network Processor

The Network Processor (NWP) implements the interface to access a custom high-
bandwidth low-latency point-to-point interconnection network with three-dimensional
toroidal topology. If we consider the computing-nodes as edges of a 3D lattice, the
NWP provides the interconnection between each node and the nearest neighbors
along the six directions 1 with periodic re-closings, providing a full-duplex point-
to-point reliable link; this interconnection is also known as 3D-torus or torus-
network, it physically reproduces the communication pattern of common scien-
tific applications e.g. “Lattice Quantum-Chromodynamics” (LQCD) and “Lattice
Boltzmann Methods” (LBM).

The Network Processor takes advantages of hardware and software techniques
to achieve the minimal latency (tentatively in the order of 1µsecond) and the max-
imum bandwidth for the communication by lowering the protocol overhead.

The hardware level consists of three layers as shown in figure 2.1. The highest
two are implemented in VHSIC Hardware Description Language (VHDL) lan-
guage on a reconfigurable Field Programmable Gate Array (FPGA) device, while
the lowest is implemented on a commodity device. The choice to implement the
Network Processor on a FPGA instead of a custom Application Specific Integrated
Circuit (ASIC) has several advantages such as the shorter development time and
costs, lower risks, and the possibility to modify the design of the NWP after the
machine has been deployed.

The software stack has been developed for the Linux operating system, it con-
sists on two layers, the lowest is a Device Driver (DRV) to provide the basic
access to NWP and the higher is a Low Level Library (LIB) of routines accessible

1Direction-names are X+, X-, Y+, Y-, Z+ and Z-.

19

20 CHAPTER 2. NETWORK PROCESSOR

Figure 2.1: NWP block-diagram, on the green-dotted box are shown the PHY commodity
components that manage the physical level of the links such as electrical signals; on the
red-dotted box are shown the 6 link managers, together called TNW, that take care of
the PHYs configuration and reliable data transfer. On the blue-dotted box is shown the
interface to the CPU, called Input/Output Controller (IOC), it manages the PCIe link to
the CPU and the DMA engine.

21

by applications.
From bottom to top of the NWP stack, the first hardware layer is the Physi-

cal Layer (PHY) that takes care of the electrical signals and link establishment,
it is based on the commodity component PMC-Sierra PM8358, mainly a XAUI-
to-XGMII SERDES 2 device that allows data communication on four PCIe Gen
1 lanes, with a raw aggregate bandwidth of 10 Gbit/s, value estimated as suffi-
ciently large for which application type (mainly LQCD) NWP has been developed
for[25][26]. The choice for a commodity device allows to move outside the FPGA
the most timing-critical logics, also the use of a well-tested and cheap transceiver
based on commercial standard shorten the development time.

The second HW layer, called Torus Network (TNW) is one of the two layers
implemented on the FPGA, a “Xilinx Virtex-5 lx110t” for the QPACE machine
or an “Altera Stratix IV 230 GX” for AuroraScience, TNW has been written in
VHDL language, mainly his purpose is to implement a custom communication
protocol optimized for low latencies. This layer exports the injection and recep-
tion buffers to exchange data between nodes, as well as the rules to obtain a re-
liable link among an unreliable electrical path. TNW task is also to act as the
Medium Access Control (MAC) for the PM8358 so it implements the modules to
configure and check the PHY.

The third and last layer of the hardware stack. is the “Input/Output Controller”
(IOC) and will be explained in detail in chapter 3.2. The purpose of the IOC is to
export to the CPU the injection, reception and control/status interfaces, providing
a translation layer between the CPU’s Input/Output system and the TNW.

The software layers, are explained in detail in chapter 4. They are tailored to
provide a convenient an efficient access to the NWP from thread-applications. For
this purpose I developed a driver for the Linux operating system and a Low Level
Library (LIB), allowing threads to directly access the injection buffers avoiding
time overhead from frequent context switches between user- and kernel-mode.

The NWP provides the hardware control of the data transmission and has in-
jection and reception buffers for each of the six links, the applications access the
torus-network by (i) moving data into the injection buffer of the NWP of sending
node, and (ii) enabling data to be moved out of the reception buffer of the NWP of
the receiving node. Thus, the data transfer between two nodes proceeds according

2XAUI means “10 GigaBit Attachment Unit Interface” while XGMII means “10 GigaBit Me-
dia Independent Interface” (compliant to IEEE 802.3ae standard). SERDES means serializer/de-
serializer, deriving from the conversion from parallel data at one side of the device to serial data at
the other side and vice-versa.

22 CHAPTER 2. NETWORK PROCESSOR

to the two-sided communication model 3 , where explicit operation of both sender
and receiver are required to control the data transmission [29].

Data is split in a hierarchical way into smaller units during the various trans-
mission steps. The size and name of these units depends on the step which is
considered. Applications running on CPUs exchange “Messages” with a variable
size between a minimum of 128 Bytes and a maximum of 256 KBytes, but always
in multiples of 128 Bytes. At the NWP level a message is split into “Packets” with
a fixed size of 128 Bytes. They are the basic entity which the network processors
exchange. Inside the NWP a packet is split into “Items”, which have a size of 4 or
16 Bytes, depending on the stage of the NWP considered.

Tracing a CPU-to-CPU data transfer over the 3d-torus the following steps oc-
cur:
1. The application calls the send operation specifying over which of the six links
to send the message. It simply copies the message-items from the user-buffer to
the address-space where the injection buffer of the link is mapped. Depending
on the architecture and the I/O interface of the CPU, this operation can be imple-
mented according to different schemes.
2. As soon as an injection buffer holds data, the NWP breaks it into fixed-size
packets and transfers them in a strictly ordered and reliable way over the corre-
sponding link. Of course, the transfer is stalled when the reception buffer of the
destination runs out of space (back-pressure).
3. The receive operation on the destination CPU is initiated by passing a credit
to the NWP. The credit provides all necessary informations to move the received
data to the physical-memory and to notify the CPU when the whole message has
been delivered.
To allow a tight interconnection of processors with a multi-core architecture, the
TNW also supports the concept of virtual channels to multiplex multiple data
streams over the same physical link. A virtual channel is identified by an index
(or tag) which is transfered over the link together with each data packet. This is
needed to support independent message streams between different pairs of sender
and receiver threads (or cores) over the same link. The virtual channels can also
be used as a tag to distinguish independent messages between the same pair of
sender and receiver threads[29].

In the rest of this chapter I explain the PHY and TNW hardware layers in
detail.

3Two-sided Communication Model, see section 2.1 for more details.

2.1. TWO-SIDED COMMUNICATION PROTOCOL 23

2.1 Two-Sided Communication Protocol

The “Two-Sided Communication Protocol” is based on the classic approach to
distributed memory parallel systems programming, the “message passing” model
where messages are exchanged using matching pairs of send and receive
function calls from the threads involved into the communication. The basics of
this model are widely used in Message Passing Interface (MPI) programming and
the most important concept is the notion of matching. Matching means that a
receive call does not deliver just the next message available from the transport
layer, but a message that matches certain criteria. Typical criteria implemented
are sender ID, size or the user specified tag.

The NWP implementation of the Two-Sided Communication Protocol is based
on three separated operations, one to send data and two to receive them;
the first operation, called SEND, allows to move messages from the user-space
of the sending thread directly into the injection buffers of the network processor,
triggering the message delivery to the peer-entity at the other side of the commu-
nication link.
The remaining two operations are both required to receive data, the first operation
is called CREDIT, the receiving thread must issue it to NWP as soon as possible
to provide the basic information to deliver the incoming messages directly to the
main memory of the receiving node, once the CREDIT has been issued, NWP can
autonomously end-up the message delivery and the thread can spend to any other
operation that does not require the incoming data. The second operation to receive
a message is POLL, this operation is undertaken by the thread when it requires the
incoming data to go on with computation, calling POLL is tested the condition of
completely delivered message, once the condition is true the thread can proceed
using data, otherwise it keeps waiting.

The whole mechanism is based upon the use of tags, each SEND has its own
tag that must match with the corresponding CREDIT/POLL tag on the receiver
side, subsequent messages with the same tag must be sent in the same order as the
CREDIT/POLL are issued to avoid data loss or corruption.

The above mechanism limits the need of temporary buffers to store incoming
data and any other complex infrastructure at operating system level to keep care
of transactions, leaving the whole communication in user-space under the control
of the application.

24 CHAPTER 2. NETWORK PROCESSOR

Figure 2.2: Node-to-node reliable communication diagram, it is based on a ACK/NAK
protocol. Each packet is protected by a CRC and a copy of data is stored into the Re-send
Buffer (RSND), if the CRCs on TX and RX match the packet is accepted issuing an ACK
or otherwise it is discarded issuing a NAK. The ACK feedback removes the packet from
RSND while a NAK implies the resend of the packet.

2.2 TNW Communication Protocol

The entities at the end-points of the Physical Link Layer are the transmitter (TX)
and the receiver (RX), the communication among them follows few simple rules, a
“Packet-Based ACK/NAK Protocol[2]”, that allow a reliable data exchange. This
protocol implements only the detection of possible errors, not their correction,
if an error occurs data are simply re-transmitted. The basics of the above men-
tioned protocol require a data unit called “packet”, with a well-defined format
and size, that are received by RX in the strict order they are sent by TX, even
despite an error occurred; the entire packet is protected by a Cyclic Redundancy
Check (CRC) calculated upon the entire packet and appended to it on transmis-
sion, a copy of the packet is stored into a Re-send Buffer (RSND) in the case it
must be re-transmitted, on the receiver side the CRC is re-calculated and compared
with the appended one, if they match an Acknowledge (ACK) is sent-back by the
FEED module and the packet is accepted by RX and stored into the Receiver
Buffer (RCV) while dropped by the resend-buffer, on the other hand the packet
is dropped by RX and a Not Acknowledge (NAK) feedback is sent-back, at this
point TX enters in RESEND mode and re-send the copy stored into the resend-
buffer until it is not acknowledged by RX or until a time-out occurs. The above
mechanism is shown in figure 2.2.

Acknowledging one packet per time before sending next could be a waste of
bandwidth, a way to maximize throughput is to send a continuous packet-flow
while waiting for feedbacks, this implies that each packet has his-own sequence
number that must be claimed into feedback and the calibration of resend-buffer to

2.2. TNW COMMUNICATION PROTOCOL 25

store a sufficient number of packets corresponding to in-flight packets. When an
error occurs, RX drops the faulted packet and sends-back a NAK with the corre-
sponding sequence number, discarding all the in-flight packets that follow without
issuing feedbacks, TX stops sending new packets and issues a “RESTART” com-
mand to RX followed by the packets with equal and greater sequence number
then the one on the feedback, after RX receives the RESTART it behaves as usual.
“receiver-buffer’ Protocol rules:

• packet format and size are well-defined

• packet is entirely protected by a CRC and has a sequence number

• RX must receive packets in the same order TX send them, also despite any
error occurrence

• TX computes the CRC and appends it to packet

• RX re-computes CRC, if it matches with appended one, send-back an Acknowledge
(ACK), if not, send-back a NAK (not acknowledge)

• packet is stored into a resend-buffer until not ACK by RX

• resend-buffer must fit in-flight packets number

Required control characters:

• ACK to acknowledge a packet that match with his-own CRC

• NAK to not acknowledge a packet that does not match with his-own CRC

• RESTART to stop RX to discard incoming packets after an error occurs

The “TNW Communication Protocol” also manages the case the receiver-
buffer runs-out of space, as explained in section 2.1, the CPU must to issue a
CREDIT to RX as soon as possible, ideally before the first packet of a message
has been transmitted by TX, in this case data can stream directly from the link
to the main memory without lying too much time into RCV. To the contrary, if
TX starts to transmit the message before the CREDIT has been issued, RCV can
quickly run-out of space, and all the further incoming packets are treated by RX
as faulted, discarding them and sending-back to TX a NAK feedback; at this point
TX will behaves as usual, entering in RESEND mode until the packets are not
acknowledged by RX or a timeout occurs. If a CREDIT is issued to RX before
the timeout occurrence, the communication restarts.

26 CHAPTER 2. NETWORK PROCESSOR

Figure 2.3: Block-diagram of the commodity PHY PMC-Sierra PM8358. On the left-
side are visible the Primary/Redundant serial ports (XAUI) used for the node-to-node
communications; on the right-side are visible the parallel ports (XGMII) managed by the
TNW module.

2.3 Physical Link Layer

The Physical Layer (PHY) is the unreliable data path between the network proces-
sors. The bandwidth required for the project described in this thesis is 10 Gbit/s.
This can be reached, for instance, by using a “PCI Express Generation 1” link with
4 lanes (4x). The link is implemented by using the commodity PHY component
“PM8358” manufactured by PMC-Sierra.

The PM8358 is a multi-protocol silicon device for telecommunication and has
the block-diagram as shown in figure 2.3. This PHY implements several telecom
standards, such as PCIe, Gigabit Ethernet, 10 Gigabit Ethernet, Infiniband, Com-
mon Public Radio Interface, High-Definition TV, etc. and supports a wide range
of operative frequencies (1.2 to 3.2 GHz).

The PM8358 is mainly a XAUI-to-XGMII serialization/deserialization device
(SERDES). While XGMII allows only a limited signal routing (maximum 7 cm)
4, the XAUI ports provide serialized data over LVDS pairs. These allow to drive

4See http://www.10gea.org/xaui-interface-introduction-to-xaui/

http://www.10gea.org/xaui-interface-introduction-to-xaui/

2.3. PHYSICAL LINK LAYER 27

drive signals over a longer distance, for instance over a back-plane or cable for
node-to-node communication.

The XGMII ports are parallel buses connected to the application logic im-
plemented inside the FPGA. Each port has a 32-bits data-path (TXD and RXD)
and 4 bits for flow-control (TXC and RXC). These lines operate in Double Data-
Rate (DDR) mode with two independent clocks (TXCLK and RXCLK). Each 8
bits of the data-path have one associated bit of flow-control, which flags whether
the data is a “data character” or a “control character”. The latter are functional to
the correctness of the transmission and management of the link.

Data serialization includes the “8b/10b Encoding” encoding stage to reduce
ElectroMagnetic Interference (EMI) noise generation in different manners and to
reduce data corruption. The 8b/10b Encoding embeds the clock of the data source
into a data-stream. This eliminates the need of a separate clock-lane which would
generate significant EMI noise and it also keeps the number of ‘1’ and ‘0’ trans-
mitted over the signal lines approximately equal to maintain the DC component
balanced and to avoid interference between bits send over the link, see [2] for
more details.

The configuration/status of the PHY is accessible via MDIO 5 (Management
Data Input/Output). This it is a serial master/slave protocol to read and write the
configuration registers on a device. In our case the logical master is the NWP
(physically one the FPGA) and the slave is the PHY. The master can access dif-
ferent slaves via a two-signal bus shared by them. One signal is the “Management
Data Input/Output/Serial Data Line” (MDIO) that actually carries control and sta-
tus informations. The other is the “Management Data Clock” (Management Data
Clock (MDC)), which is just a strobe, i.e. the MDIO line is sampled at the rising
edge of MDC.

The NWP interconnects the nodes of a machine as edges of a three-dimensional
grid with toroidal re-closing. Multiple grids with this topology can be connect to-
gether simply “opening” the re-closings and pairing them, resulting in an extended
single machine with more nodes. Vice versa, a single machine can be partitioned
into multiple independent ones just by “cutting” some connections and re-closing
them into the new smaller partition. This allows to assemble a machine with an
arbitrary number of Nx × Ny × Nz nodes that can be partitioned as independent
machines or expanded as needed.

for more details.
5For the specific, the MDIO “Clause 45” defined by IEEE 802.3ae that allow to access up to

65536 registers in 32 different devices.

28 CHAPTER 2. NETWORK PROCESSOR

Figure 2.4: Re-partitioning example of a four-nodes machine. Depending on configu-
ration of PHY ports, primary (blue lines) or redundant (red lines), the machine can be
configured as one four-nodes machine (layer “B”) either as two separated two-nodes
machines (layer “C”) without re-cabling the connections.

Usually such a re-partitioning of a machine would require re-cabling. How-
ever, exploit the fact that the PM8358 provides a “Primary” and a “Redundant”
XAUI port. They are both connected to XGMII interface via an internal crossbar
and are mutually exclusive. This feature allows to physically connect one PHY
with two others instead of one. Thus, by selecting at configuration time which of
the two physical links will be actually activated, we can re-partition the machine
without the need for re-cabling.

An example of re-partitioning is shown in figure 2.4. The layer “A” of the
figure shows a four-nodes machine, where each node is connected to its nearest
neighbors only along one dimension, the dotted-blue lines are the connections
between primary ports of the PHYs while the dotted-red lines are the connec-
tions between redundant ports (nothing prevents to connect a primary port to a
redundant). The machine can be configured as one four-nodes machine enabling
via software all the connections on primary ports (blue lines) and disabling the
connections on redundant (red lines), as shown in layer “B”. Alternatively the
machine can be configured as two separated two-nodes machines, enabling the
redundant links among nodes 0 and 1 and among nodes 2 and 3, preserving the
primary connections among node-pairs, as shown in layer “C” of the figure.

2.4. TORUS NETWORK LAYER 29

2.4 Torus Network Layer

The basic idea underlying TNW is to provide a high-bandwidth low-latency point-
to-point link among two computing-nodes on a massive parallel machine for sci-
entific computing.

NWP is based on the 3D-torus topology so it must manage six links, one
per spatial direction, all those links lie on the Torus Network (TNW) hardware
layer and each of them is the Medium Access Control (MAC) for the Physical
Layer (PHY) of the link connecting two computing-nodes, implementing a reli-
able communication among a non-reliable media. To allow a tight interconnec-
tion of processors with multi-core architecture, TNW must support an abstraction
mechanism to virtually provide a dedicated link among a pair of cores belonging
to different computing-nodes, I used the “Virtual Channels” mechanism to mul-
tiplex data streams belonging to different core-pairs over the same physical link.
TNW implements a “Two-sided Communication Protocol” where data exchange
is completed with explicit actions of both sender and receiver, see section 2.1 for
a more detailed explanation of the Two-sided Communication approach.

Each TNW link is mainly divided into “transmitter” (TXLINK) and “receiver”
(RXLINK) sub-systems that will be presented in detail in sections 2.4.1 and 2.4.4,
each link also implements a Test-Bench (TB) module, explained in section 2.4.5,
fully controlled via register interface, that features a data generation/check mech-
anism to fully test the low-level activities of TNW. On the receiver-side I also
implemented a synchronizer (Receiver Synchronizer (RXSYNC)), explained in
section 2.4.3, to efficiently synchronize data among the clock-domain of the PHY
(125 MHz DDR) and the clock-domain of TNW (250 MHz Single Data-Rate
(SDR)) 6. In figure 2.5 is shown the diagram of the TNW layer.

2.4.1 The “TXLINK” Module

The Link Transmitter (TXLINK) has the purpose to send the data injected by the
CPU over the physical link in a reliable manner, it also takes care to manage and
configure the physical link driver (PHY) via the MDIO interface.

The main components of TXLINK are the “Injection Buffer” called TXFIFO,

6The PHY outputs data @125 MHz in Double Data-Rate (DDR) mode, considering two sub-
sequent data, one is produced on the rising-edge of the clock while the other is produced on
the falling-edge. The TNW clock-domain is 250 MHz and accepts input data in Single Data-
Rate (SDR) mode, in this case input data are expected on the rising-edge of the clock.

30 CHAPTER 2. NETWORK PROCESSOR

Figure 2.5: Block-diagram of the TNW layer. The bottom-side shows the transmitter path,
data flows from the CPU interface (IOC) to the physical-link (PHY), the transmission is
managed by the TXLINK module. The top-side shows the receiver path, data flows from
the physical-link (PHY) to the CPU interface (IOC), the RXSYNC module synchronizes the
incoming data between the PHY clock-domain and the TNW clock-domain; the RXLINK
module manages data reception. The TB module features a data generation/check mech-
anism to fully test the TNW low-level activities, it’s interposed between the CPU interface
and the TNW’s injection/reception buffers, when not enabled it is completely transparent
to the other modules and acts like a pass through without affecting data-flow. Otherwise
it separates TNW from the CPU interface, autonomously managing the data-stream.

2.4. TORUS NETWORK LAYER 31

Figure 2.6: Diagram of the TXLINK module. The upper section is the data transmission
pipeline, it includes the injection buffer (TXFIFO) and the modules to implement the cus-
tom packet-based ACK/NAK protocol, RSND stores packet-copies in case they must to be
resent due to corruption among the link, CRC module computes the protection-code to
validate or not the packet at the receiver-side. The lower section is the register access
including the MDIO interface to the PHY.

the “Re-send Buffer” called RSND, the “CRC7module” and the Transmission Fi-
nite State Machine (TXFSM). A diagram of TXLINK is shown in figure 2.6.

Before describing the TXLINK functionalities, it is important to specify the
informations contained into the basic entity managed by NWP: the “packet” that
is composed by a header and a 128-bytes payload; the header contains all the
informations to fully route data from sender to receiver, these informations are:
the Link-ID (LID) that specifies over which one of the 6 links data will be sent,
the Virtual Channel ID (VCID) that specifies which virtual channel within the
same link will be used, the Remote-Address Offset (RAO) that specifies the offset
to write data respect to the memory-address of the reception buffer at the receiver
side of the link. The payload contains the actual data to be sent.

A hardware module, located into the IOC module so external to TNW, uses
the LID field of the packet-header to select in which of the 6 TXFIFOs to inject
data, preserving VCID and RAO fields, the TXFSM is sensitive to the injection

7The CRC module directly derives from the VHDL code provided in the paper "Parallel CRC
Realization[30]" by Giuseppe Campobello, Giuseppe Patané, Marco Russo. This module imple-
ments a parallel method to calculate CRC checksums, allowing it’s use in high-speed communica-
tion links.

32 CHAPTER 2. NETWORK PROCESSOR

buffer status, when at least one packet is stored there, TXFSM starts to extract it
and route it through the transmission pipeline. During the 4-stages transmission
pipeline a new header is assembled using VCID and RAO fields and the pay-
load is appended. The payload is stored inside the TXFIFO in 8 16-bytes items
while during the pipeline it is extracted as 32 4-bytes items due to the PHY data-
interface width. While the packet steps into the pipeline a copy is stored into the
re-send buffer where it lies ready to be retransmitted in case the receiver claims a
corrupted reception; the copy is removed only if the receiver claims a correct re-
ception of the packet. The above scheme is based on a ACK/NAK protocol where
the sender trails to the packet a 4-bytes CRC item calculated over the whole packet
and the receiver recalculates the CRC comparing it with the trailed one, if CRCs
match, the packet is accepted and a positive feedback (ACK) is sent back, other-
wise the packet is discarded and is sent back a negative feedback (NAK). A more
accurate description of the protocol used for a reliable communication in TNW is
exposed into section 2.2. A remarkable thing to keep in mind is that a TNW link
is composed by one TXLINK and one RXLINK modules, the TXLINK module
of an end-point is directly connected with the RXLINK of the other end-point,
so RXLINK checks the correctness of sent data but only TXLINK can send feed-
backs to the peer, at this purpose TXLINK accepts requests from RXLINK to send
back feedbacks to the peer; the feedback sending has a highest priority respect to
data.

TXLINK contains a set of configuration and status registers to control the
configuration of the link and to provide a snapshot of its status.

2.4.2 The MDIO Interface
TXLINK manages the configuration of the PHY device via the MDIO interface,
briefly described in section 2.3. The MDIO module is based on a FSM that man-
ages read/write operations to the PHY that are always composed by an ADDRESS
frame followed by a READ or WRITE frame, the frame layout is shown in figure
2.7 and follows the explanation, the PREAMBLE, a sequence of 32 “logic 1s”, is
at the beginning of each frame to establish synchronization among endpoints;
ST is the “Start of frame”, a pattern of 2 “logic 0s”;
OP is the “Operation code”, 0b00 for ADDRESS frame, 0b11 for READ frame,
0b01 for WRITE frame;
PRTAD is the “Port address” and identifies the PHY to which the operation has
been issued;
DEVAD identifies the MDD (Maximum Data Delay) type for the communication,

2.4. TORUS NETWORK LAYER 33

Figure 2.7: MDIO frames diagram
MDIO frames diagram.

in this case it is set to DTE-XS (Dumb Terminal Emulator) 0b00101;
TA is the “Turn-around”, a 2-bit time spacing between DEVAD and DATA/AD-
DRESS fields to avoid contention during a read transaction, during a read trans-
action, both the master and the slave remain in a high-impedance state for the first
bit time of the turnaround, and the slave drives a “logic 0” during the second bit
time of the turnaround, during a write transaction, the master drives a “logic 1”
for the first bit time of the turnaround and a 0 bit for the second bit time of the
turnaround;
DATA/ADDRESS is a 16-bit field that, depending on the frame, contains the reg-
ister address to operate to or the read/write data.

I implemented the MDIO module to be accessible via internal register of
TXLINK, a write operation addressed to the MDIO_W register triggers the MDIO
module for a write transaction to the PHY, the MDIO_W register layout includes
the address of the PHY register where to write to and the data to be written, a
busy-flag in MDIO_W reflect the status of the MDIO transaction. Same concept
is applied to the MDIO_R register, a write operation addressed to this register
triggers the MDIO module for a read transaction from the PHY, the MDIO_R
register layout includes the address of the PHY register to read and a busy-flag
reflect the status of the MDIO transaction, when the transaction is done, the data
field of MDIO_R contains the value read from PHY.

2.4.3 The Receiver Synchronizer

The RXLINK module, as whole the TNW layer, works on a 250 MHz clock-
domain where data are sampled in Single Data-Rate (SDR) mode, considering
two subsequent data both are sampled on the rising-edge of the clock, as shown
on the left-side of figure 2.8, while the PHY outputs data @125 MHz in Double
Data-Rate (DDR) mode, considering two subsequent data, former is produced
on the rising-edge of the clock while the latter is produced on the falling-edge,
as shown on the right-side of figure 2.8, these data are in sync with the clock
recovered from the 8b/10b data-stream received.

34 CHAPTER 2. NETWORK PROCESSOR

Figure 2.8: Differences among “Single Data Rate” (SDR) mode and Double Data-Rate
(DDR) mode. In SDR data are sampled either on rising or falling edge of the clock, in this
example data are sampled on rising edge. In DDR data are sampled on both clock edges.

Figure 2.9: RXSYNC diagram, data are synchronized among PHY’s and TNW’s
clock-domains using a FIFO. To avoid FIFO-full due to the differences among clock-
frequencies, not all the incoming data are pushed-in, the control-character not needed by
the TNW protocol are removed by the IDL_RM logic. The READ logic extracts data as
soon as they are available.

To deal with the above mentioned characteristics, is required a synchroniza-
tion layer between PHY and TNW clock-domains that allows to get in sync data
in a reliable manner. At this purpose I implemented the Receiver Synchronizer
(RXSYNC) module, shown in figure 2.9.

The data clock-domain transition is implemented using a “Synchronization
FIFO” (SYNC_FIFO), data are written in sync with PHY’s clock and read in sync
with TNW’s clock. First of all the 125 MHz output from the PHY is doubled to
250 MHz using a Phase Locked Loop (PLL), in this way data can be sampled in
SDR mode instead of DDR.
The custom protocol used for TNW-to-TNW communications foreseen the injec-
tion of IDLE code (K28.3) every 256 consecutive-packets sent to allow for suffi-
cient clock rate compensation between the end-points of a link; these IDLEs are
required just on the earliest stage of the receiver so they are removed from the data
stream by the “Idle Removal” (IDL_RM) logic and not written into SYNC_FIFO
to avoid FIFO full. To the contrary data-packets are stored into the FIFO and can

2.4. TORUS NETWORK LAYER 35

proceed to the TNW clock-domain.
The empty signal of the FIFO triggers the READ logic to extract data that are

then output.

2.4.4 The “RXLINK” Module
The purpose of the Link Receiver (RXLINK) is to receive packets from his peer
entity in a reliable manner and deliver data to the CPU.

The basic idea underlying the structure of RXLINK is to implement the two-
sided protocol and to provide a set of Virtual Channel (VC) to allow communi-
cations of independent thread-pairs running on adjacent computing-nodes shar-
ing the same physical link or to allow different message priorities. Each VC is
managed with a credit-based mechanism where the CPU provides to TNW the
informations to complete the message delivery, the “credit” precisely, these infor-
mations contains the IDs of both link and VC (LID and VCID) the message will
come, the main memory-address (CRDADDR) to deliver data and the message
size (SIZE), the last information is the Notify-ID (NID), this is the offset respect
to a particular main memory-address (Notify Base Address Register (NTFBAR))
where the CPU will wait the notification from TNW that the whole message has
been received and CPU can use data. The messages-items, called packets, in-
coming from the link are stored into TNW buffers until the CPU does not issues
the corresponding credit, these buffers can rapidly run out of space and to cause
the stall of the communications, this requires that for each send operation must
be issued the corresponding credit, and referred to the same link and VC, they
must be issued in strictly order; to avoid that the stall of a VC affects the others,
each virtual-channel has his own credit-based mechanism explained later in this
section.

RXLINK is mainly composed by the Reception Finite State Machine (RXFSM),
the “CRC” module and the “Reception Buffer”(RXBUFF) as shown in figure
2.10. RXFSM takes in charge to supervise the reception of the packet-items from
the PHY and to verify their correctness with the help of the CRC module, for each
incoming packet is recalculated the CRC and, if it matches with the trailed one,
data are stored into RXBUFF and is triggered TXLINK to send to the peer entity a
positive feedback (ACK), otherwise is triggered a negative feedback (NAK), each
feedback is accompanied by the sequence-number relative to the packet. The de-
tailed description of reliable communication protocol is in section 2.2.

RXBUFF is the most complex module of the receiver block, it actually imple-
ments the logic to manage the two-sided communication protocol and the virtual-

36 CHAPTER 2. NETWORK PROCESSOR

Figure 2.10: Diagram of the RXLINK module. The lower section includes pipeline where
data are checked using the CRC method and the reception buffer (RXBUFF) to store data
before sending them to the CPU. The upper section is the register access.

channels. A diagram of RXBUFF is shown in figure 2.11.
Each Virtual Channel (VC) has his own private Credit FIFO (CRDFIFO) and

Descriptor FIFO (DESCRFIFO), the former stores the credits issued by the appli-
cation while the latter stores the descriptors (actually the headers) of the received
packets, when a packet has been received and validated, the payload is stored into
the Packet Buffer (PCKBUFFER) while the header is stored into the DESCR-
FIFO relative to the VC the packet belong, if the Packet Arbiter (PCKARB) finds
a match between a DESCR and a CRD for the corresponding VC, it triggers the
operations to deliver data to the CPU. When a credit is exhausted, in other words
all the packets relative to the same message are delivered to CPU, a particular
transaction called “notify” is sent to the CPU, telling that the whole message has
been arrived and data are ready to be used by the CPU.

The PCKBUFFER is designed around a single memory block, common to all
virtual channels, an internal module called “free-pool” keeps trace of the unused
memory-locations, so each incoming packet can be stored into an arbitrary loca-
tion, independently from the VC it belongs and packets belonging to the same
message could be stored into non-adjacent memory-locations, this allows to effi-
ciently manage the TNW storage without reserving a fixed amount of memory to
each virtual-channel that could results in a waste of memory-space.

The main memory-addresses where to send data and notifies are a combination
of base-addresses stored into internal registers and some fields of both credit and

2.4. TORUS NETWORK LAYER 37

Figure 2.11: Detailed view of RXBUFF, credits provided by CPU are stored into the
related CRDFIFO based on the virtual-channel they has been issued for, the incoming
data are stored into MEM while the header (descriptor) is stored into the related DESCR-
FIFO depending on the virtual-channel they belong, if the Packet Arbiter (PCKARB) find
a match between one descriptor and one credit, the interface with the CPU is triggered to
move data into main memory.

38 CHAPTER 2. NETWORK PROCESSOR

descriptor. For data there is one Credit Base Address Register (CRDBAR) register
per virtual-channel, it stores the main memory-address where starts the address-
space of the buffer to deliver data relative to the specific VC, at this address is
summed the Remote-Address Offset (RAO) field stored into the descriptor of the
packet. Same concept is used to retrieve the physical memory-address to notify the
CPU that a message has been completely delivered, a register called Notify Base
Address Register (NTFBAR) stores the memory-address where starts the address-
space of the buffer to deliver the notification relative to the specific message, at
this address is summed the Notify-ID (NID) field stored into the credit for the
message, it specifies the offset to write the notify respect to NTFBAR.

2.4.5 The “Test-Bench” Module
The Test-Bench (TB) features a data generation/check mechanism to fully test the
functionalities of TNW such as the register access and the communications. It’s
interposed between the CPU interface and the TNW’s injection/reception buffers,
when not enabled it is completely transparent to the other modules and acts like
a pass through without affecting data-flow. Otherwise it separates TNW from the
CPU interface and manages autonomously the data-stream. TB is mainly com-
posed by a data generator Data Generator (DATAGEN) and a Data Checker (DAT-
ACHK), as shown in figure 2.12,

both can manage a sequential counter or a pseudo-random sequence of data,
the former has been used in the earliest phases of the link development where
the data transmission has been controlled using a simulation tool and it was more
simple to follow sequential data on the simulation window, the latter has been
used for all the actual link tests. DATAGEN is controlled by a finite-state machine
(FSM) managed via configuration registers and sensitive to the status of the in-
jection fifo of the link to generate data on-the-fly and to inject them only when
the fifo is not full, two 64-bits pseudo-random generators has been implemented
to fit the 128-bits data-bus of the injection buffer, each generator implements the
following equation to generate data,

rnd = rndprev ⊕ (C + swap(rndprev))

where the swap() function permutes the 17 lowest bits of ndprev with the 47 high-
est bits. The sequential number generator is a 32-bits counter replicated 4 times
to fit the 128-bit data-bus. DATACHK is similar to DATAGEN it is managed by
configuration registers and is controlled by a FSM, it implements both the same

2.4. TORUS NETWORK LAYER 39

Figure 2.12: Block-diagram of the TB module. It’s interposed between the CPU interface
and the TNW’s injection/reception buffers, when not enabled, the switches act like a pass
through between IOC and TNW, so TB is completely transparent to the other modules,
otherwise TB separates TNW from the CPU interface and manages autonomously the
data-stream. All the TB’s functionalities are fully controlled by register interface.

sequential- and the pseudo-random number generators, here the incoming data
are compared to the internal-generated ones and if they differ an error-counter is
incremented.

A set of internal registers manage and keep track of the test bench activities,
such as the control of DATAGEN and DATACHK, e.g. selecting which kind of
data to generate (random or counter), as well to introduce voluntary errors in-
side the data-flow, keep track of the whole amount of data generated/checked and
eventually the number of errors detected.

40 CHAPTER 2. NETWORK PROCESSOR

Chapter 3

Network Processor’s CPU Interface

In this chapter I explain the general mechanisms for moving data between the
main memory of the CPU and the I/O devices. I then discuss the best way to
map the transactions between CPU and I/O devices on the specific PCI Express
Protocol and describe the design and implementation of the VHDL modules to
interface the network processor with the CPU.

3.1 Transaction Models

Data exchange between CPU and Network Processor (NWP) can be implemented
in several ways, here follows the descriptions of four of these methods applied to
the Intel Architecture, analyzing pros and cons.

To send a message along a TNW link, from the main memory point of view,
requires to move data to the injection buffer of the link. In NWP jargon, data
movement can be done in two ways, the former, called Processor PUT (PPUT),
is shown in the left-side of figure 3.1, it foreseen that the CPU actively loads data
from main memory (1) and stores them into the injection buffer (2), one-by-one,
being involved for the whole time the data movement requires. Beside is shown
the temporal diagram of the data movement between CPU and NWP using the
PPUT method. The latter method, called Network GET (NGET), is shown in
the right-side of figure 3.1, here the CPU simply gathers informations about the
data movement (address and size) and pass them to the network processor (1) that
will autonomously retrieve data from main memory (2,3) without any other CPU
intervention; CPU will be notified about the completion of the data movement (4).
The temporal diagram of NGET method is shown beside.

41

42 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

Figure 3.1: Diagram of PPUT and NGET transaction-methods to send data over the link,
targeting the Intel Architecture. With PPUT the CPU directly loads data from memory
(MEM) to its internal registers (1), then it stores data (2) to the injection buffer (TX) of the
Network Processor (NWP); the CPU is involved to data movement instead of computation
for all the transaction-time. With NGET the CPU collects informations about transactions
and pass them to the NWP (1) that will independently interact with memory to retrieve
data (2,3), at the end of the transaction NWP notifies CPU (4); in NGET computation
and data movement can be overlapped but it suffers of higher latency respect to PPUT
due to the higher number of CPU-NWP interactions. Beside of each transaction-method
is shown the relative temporal diagram of the operations.

3.1. TRANSACTION MODELS 43

As predictable, in Intel Architecture, the PPUT method offers lower latencies
respect to NGET due to the lesser number of interactions required; the PPUT
drawback is that it keeps the CPU involved until the end of transaction, preventing
it to perform calculations, on the contrary NGET allows the CPU to do not care
about the data movement, letting it available for calculations.

On the receiving side, to receive a message from a TNW link requires to move
data from the receiver buffer of the link to main memory, and also in this case
there are two ways to do it, the former, shown in the left-side of figure 3.2, is called
Network PUT (NPUT), in this case, the CPU provides to the network processor
the informations about the message it is waiting for (1), such as the address to
deliver it and its size, calling these “credit” (CRD); as well as message’s fragments
have been received the network processor independently interact with the memory
controller to move data to main memory (2) at the address provided by the CPU;
then the CPU has to be notified (3) about the whole message reception. Beside is
shown the temporal diagram of the data movement between NWP and CPU using
the NPUT method. The latter method, shown in the right-side of figure 3.2, is
called Processor GET (PGET), here the CPU is actively involved to the receive
operations; when the network processor has been received a defined amount of
data, it notifies the CPU (1) that will issue read operations (2/3) to the network
device to retrieve data from the receiving buffer and then move them into memory.
The temporal diagram of PGET method is shown beside.

In NPUT method, once the CPU has issued the credit, it can continue with
other tasks, leaving to the network processor the interaction with memory to carry-
out the data-reception, in this way computation and communication can be over-
lapped; in PGET the CPU must to issue read operations to retrieve data from
NWP, limiting the overlap of computation and communication.

The Network Processor object of this thesis interfaces with the CPU via the
PCI Express bus. In this section I describe how to map the transaction methods
described in section 3.1 to the operations implemented by the PCI Express Proto-
col.

The PCI Protocol, from whom PCIe derives, provides three transaction modes[2]
on which can to map PPUT, NGET and NPUT transaction models; to understand
the differences among them I will explain the transactions considering the sim-
plified architecture in figure 3.3, here two devices (device0 and device1) are at-
tached to the PCI bus, the CPU can access the PCI via a companion-chip called
“ChipSet”, it also integrates the memory-controller to access the main memory
modules.

44 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

Figure 3.2: Diagram of NPUT and PGET transaction-methods to receive data from the
link. With NPUT the CPU provides a credit (1) to the Network Processor (NWP), incom-
ing data are written to memory (2) according with the credit-information, when the whole
message has been received the CPU is notified (3). With PGET the NWP notifies (1) the
CPU that some data has been arrived, the CPU issues read operations to retrieve data
from RX-buffer (2/3) and moves them into memory (4). Beside of each transaction-method
is shown the relative temporal diagram of the operations.

The first mode is Programmed Input/Output (PIO), it can be directly mapped
to the PPUT model, when the CPU wants to start a write transaction to a target de-
vice, it must load data from memory into its internal registers and then store them
to the target device address-space, in a read transaction the CPU must interrogate
the target device and then waiting for the response. The PIO mode involves both
the CPU and the target device until the transaction is carried out, keeping busy
the CPU on data transferring instead of computation, to transfer small amount of
data from memory to the target device this is not an issue, actually has better per-
formance in terms of latency, to the contrary, for large data transfer the PIO mode
subtract computational resources.

The second mode is Direct Memory Access (DMA), from the network proces-
sor point of view it can be directly mapped to NGET respect to data-read opera-
tions and mapped to PPUT respect to write operations. In DMA a PCI device can
directly access the main memory both for load and store operations, without the
intermediate step of the CPU registers, letting the CPU to continue computing;
considering a data transfer from memory to a target device as done previously for
PIO mode, the CPU must to gather the informations to carry-out the transaction
and pass them to the device, at this point the CPU job is done and can continue

3.1. TRANSACTION MODELS 45

Figure 3.3: PCI transaction modes, in PIO mode both CPU and target device are involved
until the end of the transaction, data are transferred from the internal registers of the CPU
to the address-space of the target device. In DMA the device directly access the memory
without CPU intervention, just interacting with the memory controller, letting the CPU
freely computing. In Peer-to-peer mode a master device can autonomously access a target
device.

46 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

the computation, the device can autonomously interact with the memory to trans-
fer data. DMA mode suffers of higher latency compared to PIO due to the initial
transaction between CPU and device to start the data transfer but this mode allows
to free the CPU from any other intervention, letting it to dedicate to computing
instead of data transfer.

The third mode is Peer-to-peer, it is not implemented by NWP, and it provides
the direct data transfer between two PCI devices, for store operation a master di-
rectly move data to the address-space of the target, while for load operation the
master interrogates the target device and then waits for the response.

The PCIe Protocols foreseen 4 transaction types, depending on the address-
space they are generated. The 4 address-spaces are I) Memory, to transfer data
to or from a location in the system memory map; II) IO, to transfer data to or
from a location in the system IO map, this address space is kept to compatibility
with legacy devices and is not permitted for Native PCI Express devices; III)
Configuration, to transfer data to or from a location in the configuration space of
PCIe devices, it is used to discover device capabilities, program plug-and-play
features and check status; IV) Message, provides in-band messaging and event-
reporting without consuming memory or IO address resources.

Of all the above mentioned transaction type, in the NWP design I used only
the “Memory Address-Space”, it supports both Read and Write transactions called
“Memory Read Request” (MRd) and “Memory Write Request” (MWr). Each of
the above mentioned operation is mapped into the data transfer unit of the PCIe
protocol, the Transaction Layer Packet (TLP). Memory transaction TLP has a
well-know format and size, it is composed by a header and a payload (here I do
not consider the optional digest), the header includes lots of informations where
the most relevant for NWP are shown in figure 3.4, they are the type of transaction,
given by the union of “Type” and “Format” fields; the “Traffic class” to provide
differentiated services for different packets; the “Attributes”, the “Requester ID”
that identifies the device initiates the transaction; the “Tag” that identifies each
outstanding request issued by a requester; allowing a device to issue more trans-
actions at the same time; the memory-address for which the transaction has been
issued; and last the payload size (if any).

3.1. TRANSACTION MODELS 47

Figure 3.4: PCI Express (PCIe) memory request headers, top-side shows the 4DW header
used to operate on a 64-bit address-space, bottom-side shows the 3DW header used to
operate on a 32-bit address-space

The Memory Read Request (MRd) must be completed returning-back to the
requester a Completion with Data (CplD), where the payload contains the read
value while the header requires some fields coming from the request, such as
the “Traffic Class”, the “Attributes”, the “Requester ID”, the “Tag” to match the
outstanding request with the completion, the “Byte Count” that specifies the re-
maining bytes count until a read request is satisfied, and the “Lower Address” that
are the lowest 7 bits of address for the first byte of data returned with a read.

Figure 3.5: PCI Express (PCIe) completion header.

Considering the above mentioned memory operations, I can map the PPUT,
NGET, NPUT and PGET transaction-methods in PCIe TLPs. PPUT simply trans-
lates into a Memory Write Request (MWr) TLP originating from CPU to NWP.
NGET is split into four TLPs, the first is a MWr from the CPU to the NWP con-
taining all the informations to trigger the DMA transfer from memory to Network
Processor, in the specific a MRd from NWP to MEM and a CplD in the oppo-
site direction, finally NWP notifies the CPU via a MWr. NPUT requires three

48 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

TLPs to carry-out the transaction, the first is a MWr from CPU to NWP to issue
the CREDIT, then NWP deliver data to memory and notifies the CPU using two
MWr. PGET is mapped to three TLPs, the first is a MWr from NWP to CPU to
notify that a message has been received, the CPU then issues one or more MRd to
retrieve data from NWP via CplD. A summary of the above operations is shown
in table 3.1.

Method Source Dest Operation TLP
PPUT CPU NWP data MWr
NGET CPU NWP snd_req MWr

NWP MEM mem_rd MRd
MEM NWP data CplD
NWP CPU dma_ntf MWr

NPUT CPU NWP crd MWr
NWP MEM data MWr
NWP CPU ntf MWr

PGET NWP CPU ntf MWr
CPU NWP rcv_req MRd
NWP CPU data CplD

Table 3.1: Mapping of the PPUT, NGET, NPUT and PGET transaction-methods in PCIe
TLPs.

3.2 Input/Output Controller
The Input/Output Controller (IOC), is the interface exported to the CPU by the
Network Processor (NWP), providing a translation layer between the CPU’s In-
put/Output System and the Torus Network (TNW) module; it supports three of the
transaction models described in section 3.1, PPUT and NGET for transmission,
and NPUT for reception. IOC layer is present only in the AuroraScience ver-
sion of NWP, for the QPACE machine I’ve been worked only on PHY and TNW
layers.

IOC has been designed to interface with the “Intel Nehalem Processor Family”
whom I/O subsystem is managed by the “Tylersburg Chipset” that interfaces with
the FPGA, where NWP has been implemented, via PCIe Gen 2 protocol. IOC ac-
cesses the PCIe link using two main subsystems, the former manages the transac-

3.2. INPUT/OUTPUT CONTROLLER 49

Figure 3.6: Conceptual layout of the IOC module.

tions from the CPU to the NWP and is called PCI Express Input Controller (PIC),
the latter manages the transactions from the NWP to the CPU and is called PCI
Express Output Controller (POC), these two subsystems cooperate to send/receive
data among the end-points of the torus-link and to access the configuration/status
registers of the NWP.

The Input/Output Controller (IOC) is mainly composed by four modules as
shown in figure 3.6:

• PCI Express Input Controller (PIC)

• PCI Express Output Controller (POC)

• Register Controller (RC)

• Direct Memory Access (DMA) Controller

further each module will be explain in details, follows a brief overview of their
functionalities.

PIC manages the transactions from the CPU to the NWP, it’s purpose is to
properly recognize the incoming transaction type analyzing the packet header and
deliver it to the proper IOC module to manage that kind of transaction. POC
manages the transactions in the opposite direction respect to PIC, it takes care to
deliver to the CPU the transactions generated by the other IOC modules, correctly
formatting the out-coming packets based on the information they pass to it. Both
PIC and POC interface with the PCIe IP hardwired into the FPGA.

The purpose of the RC module is to manage the configuration and status reg-
isters of both IOC and TNW, accepting transactions from PIC both for read and
write operations, and interacting with POC in case of reads, sending register-
values to CPU.

50 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

Figure 3.7: Conceptual layout of the PIC module, incoming packets are analyzed by the
RX_FSM and DEC to route the transaction to the right interface.

The DMA engine receives from PIC the CPU instructions to fetch data to be
sent over the TNW links and triggers POC to generate the corresponding memory-
reads. When data are sent back from memory, DMA interacts with PIC to properly
encapsulate them into TNW packets.

3.2.1 PCIe Input Controller
The PCI Express Input Controller (PIC), by itself, implements the PPUT transac-
tion models exposed in section 3.1, in cooperation with the DMA engine exposed
further, it allows also to implement the NGET method.

The PIC module is mainly a stream-pipeline where the transactions gener-
ated by the CPU are properly recognized by a finite-state machine (RX_FSM) and
a transaction decoder (DEC), to be then delivered to the appropriate NWP sub-
system, could it be an injection-buffer, the register-controller or the DMA engine.
The conceptual layout of PIC is shown in figure 3.7.

The RX_FSM is controlled by two signals exported by the PCIe Macro, the
first is the “Start of Packet” (SOP) that asserts, as its name explains, when the first
16-bytes item of a packet has been received, actually this word is the header of the
transaction; the second signal is the “End of Packet” (SOP) that asserts to denote
that the last packet item has been received. Each transaction is composed by a
fixed size header followed by a payload of arbitrary length (but not exceeding
the PCI protocol limit of 4 KBytes), this rules the RX_FSM layout, as shown
in figure 3.8, after initialization the FSM is in the idle state (RXIDLE), waiting
for packets, the SOP signal changes the state to HDR where the packet-header is

3.2. INPUT/OUTPUT CONTROLLER 51

Figure 3.8: Diagram of the finite state machine RX_FSM of the PIC module, it is con-
trolled by the SOP and EOP signals exported by the PCIe Macro and allows to manage
transactions with arbitrary payload size.

evaluated to recognize the transaction type; in case of register-read the packet is
only composed by the header and the EOP signal is asserted together with SOP;
if a payload is present, the state changes to DATA where the FSM stills until the
assertion of EOP when the last packet item has been received.

The header fields, particularly the memory address, is used to define the NWP
sub-system to deliver the transaction, in case of data packet to be sent over a
link, data will be delivered to one of the TNW injection buffers depending on
the memory address stored into header; going through the pipeline some header
fields are analyzed to define the destination link while others are extracted and
re-elaborated to match the TNW header format; each payload item simply goes
through the pipeline as it is (no data buffering is applied at IOC level of the data-
path) and is flanked by his own destination address before to be stored into the
injection buffer.

When a register access transaction arrives, it is simply forwarded to the RC
module that will take in charge to carry out the operation.

PIC also cooperates with the DMA engine to properly deliver the incoming
data resulting by a memory-read transaction (NGET model). Each memory-read
issued to CPU is marked with a “tag” that will identifies the corresponding Com-
pletion with Data (CplD) are sent back to NWP. The informations to deliver data
among the Torus Network are stored by the DMA module into registers address-

52 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

able by the tag of the CplD, letting PIC to format the destination address of each
line of the payload to adhere to the TNW format.

3.2.2 Design Optimization, TXFIFO as Re-order Buffer
An efficient implementation of the PPUT transaction model on the latest Intel
processors requires to use of the “non-temporal store instructions” treating data
with the Write Combining (WC) semantics, see [7] section 10.4.6.2 and [10], in
this case the store transactions will be weakly ordered, meaning that the data may
not be written to memory in program-order. A problem arise due to the fact that
injection buffer of each link is implemented by the TNW module called Injection
Buffer (TXFIFO), it is a queue where data are stored waiting to be sent over the
link, the rules implemented by TNW layer imply that data must to be stored there
in the strict order as they will be sent. One solution to the above problem is to
re-implement the TXFIFO as a “re-order buffer” where to store and re-assemble
packet-fragments sent by the CPU before being sent over the link.

The re-order buffer is subdivided into four modules:

• "DATA_MEM" is the memory where data are stored waiting for completion

• "PCK_CNT" is an array of registers that count how many items of each
packet are arrived

• "RDY_FIFO" is the queue where the base addresses of the completed pack-
ets are stored

• "READ_MNG" is the FSM that pops a ready address from RDY_FIFO and
extracts the corresponding data items from DATA_MEM when requested
by TNW.

To follow the below description see figure 3.9. A packet is composed by 8 16-
Bytes items and each item is joined with the corresponding remote address offset.
When a packet-item reaches the re-order buffer (1), lowest bits of his remote ad-
dress offset are used to address the DATA_MEM location where to store it;
each item stored increments the counter inside PCK_CNT (1), corresponding to
the packet the item belongs, when this counter reaches the maximum value, all
the items of the packet has been arrived, and his base address is pushed into
RDY_FIFO (2).
When RDY_FIFO is not empty, READ_MNG pops an address and informs the

3.2. INPUT/OUTPUT CONTROLLER 53

Figure 3.9: Re-order Buffer scheme, data are stored into DATA_MEM until completion
(1), PCK_CNT counts how many items of a packet are arrived (1), when done, the packet
address is pushed into RDY_FIFO (2); READ_MNG interacts with TNW to send packets
over the link (3,4).

TNW (3) that a packet is ready to be sent, TNW fetches data from DATA_MEM
via READ_MNG (4).

The DATA_MEM addressing limits the number of packets that can be sent in
a single transaction, if the size of the message to be sent exceed DATA_MEM
size, the software must to split the transaction in more of them, to avoid that more
packets with the same remote address offset interfere, causing data-loss. The
remote address offset interference does not affect the implementation of TXFIFO
as a queue but the software-controls required to grant the packet-order limits the
inbound bandwidth of TXFIFO by a factor of 5 as explained in section 5.3.

The implementation of TXFIFO as a queue has a traversal time of 17 clock-
cycles, from the moment data are written into the FIFO and the moment they are
extracted, while the implementation as re-order buffer has a traversal time of 20
clock-cycle, adding a penalty of just 3 extra clock-cycles but it allows to maximize
the throughput of the CPU, doubling the bandwidth over the TNW link, as will be
explained in section 5.3.

3.2.3 Register Access Controller

When an incoming transaction is a register access, PIC routes the packet to the
RC module. The RC modules, which diagram is shown in figure 3.10,

takes care of all the configuration/status registers transactions, it is mainly
composed by a command FIFO (CMD_FIFO) written by PIC and a Finite-state

54 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

Figure 3.10: Diagram of the Register Access Controller.

Machine (RC_FSM) that extracts commands from the FIFO and routes the trans-
actions to the right port, waiting for the completion of the operation before ex-
tracting another transaction from the CMD_FIFO.

The modules which RC interfaces are: I) the IOC registers, they stores all the
configurations and status of the interface to the CPU of the network processor,
bit-stream (firmware) that will be loaded into the FPGA at power-up, II) the TNW
register interface to setup and control all the links facilities, III) the DMA engine
to autonomously retrieve data from main memory, IV) the POC module to return
the register values in case of register read. ENDREAD The whole TNW lies on a
different clock-domain respect to IOC where RC belongs, so all the transactions
to TNW registers must be synchronized to the IOC clock-domain, I implemented
the synchronization into different ways respect to data and commands, both in
read and write transactions, data simply falls through a “Metastability Sync.” [37]
[34] [38] where data outputs from one register of the out-coming clock-domain
and are synchronized using two registers into the incoming clock-domain, avoid-
ing data loss due to metastability of the registers. For the command the path is
different, I used a “Pulse Sync.” where the command is converted to a toggler 1

into the origin clock-domain and passes through a metastability synchronizer and
then is re-converted to a pulse signal in the destination clock-domain. To be sure
that the transaction has been correctly delivered, the command signals are also
used as a probe, when a write command traverses all the synchronizers from IOC
clock-domain to TNW domain and came back, I’m sure that the write transac-
tion has been delivered, while in case of a read transaction the round-trip among
synchronizers takes also in charge the time to respond of the TNW, granting that

1A toggler is a signal that flips each time a condition changes, it also known as “Non-return to
zero” (NRZ) signal, because different to the normal signals, it does not pulse going to logical 1
and then to logical 0 but it just inverts his present state to the opposite.

3.2. INPUT/OUTPUT CONTROLLER 55

when the command come-back to IOC domain, also the value read from TNW is
already synchronized into IOC domain.

A read transaction of a NWP register is performed via a “Memory Read re-
quest” according to the PCIe protocol, this kind of transaction initiated by the
CPU must end with a Completion with Data (CplD) sent back by NWP, in this
case, in addition to the read register-value that figures as payload of the CplD,
RC must extract all the informations from the Memory Read request to properly
format the CplD header to send back, informations are: the “Traffic Class”, the
“Attributes”, the “Requester Identifier (ID)”, the “Tag” and the “Lower Address
Bits”, all these fields are explained in section 3.1. Once RC has collected all the
informations. it triggers to the PCI Express Output Controller (POC) module to
send back the completion.

3.2.4 DMA Engine
The DMA engine interacts with PIC and POC modules to implement the NGET
transaction model exposed in section 3.1, DMA transactions are triggered via
register-access, writing informations about the data transfer to carry-out, such in-
formations must include all the coordinates to retrieve data from main memory
and to notify the CPU about the operation has been carried-out.

Data to be retrieved are moved by the CPU in a reserved buffer allocated in
main memory, the DMA engine stores the base-address of that buffer in a register
called DMA_BAR, all the DMA-requests issued by CPU refer to this address,
providing to the engine the offset respect to it and the size of the data to send. As
well as the transaction has been carried-out, the DMA engine notifies the CPU
about the transfer completion. The DMA engine diagram is shown in figure 3.11.

The DMA request is queued into the “Requests-FIFO” (REQ_FIFO) waiting
for a time slot to be issued to the memory controller by the POC module (ex-
plained further in this chapter), the DMA engine provides to POC all the informa-
tions to prepare a Memory Read Request (MRd) addressed to the main memory
controller. See section 3.1 for more details about memory transacions over PCIe
protocol. Each memory read has his own TAG field in the header that will identify
the transaction among all the ones issued by the network processor, the TAG will
be kept in the Completion with Data (CplD) sent-back by the memory controller to
identify at which memory read it is associated. The TAG provided by POC is used
to address the DMA_STORE, a set of register-locations that keep track of the out-
standing memory reads, it stores all the destination-attributes of the transactions;
the destination-attributes are: the address to deliver data, the SIZE of the trans-

56 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

Figure 3.11: Diagram of the DMA engine.

3.2. INPUT/OUTPUT CONTROLLER 57

action and the the Notify-ID (NID) to inform the CPU. When a CplD has been
received by PIC, its TAG extracts from DMA_STORE the informations to recon-
struct the destination-address of data in the format managed by the TXLINK mod-
ule of the TNW layer, and the SIZE field is decremented according to the CplD
size, as well as SIZE reaches the value “zero”, it means that all the data has been
sent over the link, at this point the NID is extracted and written into the “Notify
FIFO” (NTF_FIFO) and the DMA_STORE location is freed for another transac-
tion. The NTF_FIFO is required for the same reason as the REQ_FIFO: waiting
for a time slot by the POC module but at the same time to free the DMA_STORE
resources to allow new incoming transactions. The notify is generated using the
same concepts explained in section 2.4.4, the DMA_NTF_BAR register stores
stores the memory-address where starts the address-space of the buffer to deliver
the notification relative to the specific DMA request, at this address is summed
the Notify-ID (NID) field that specifies the offset to write the notify respect to
NTFBAR. NTF_FIFO asserts a transaction request to POC that will carry-it-out
as well as is available a time slot to send the notify to the CPU.

3.2.5 PCIe Output Controller
The PCI Express Output Controller (POC) module manages the NWP-to-CPU
transactions, managing the accesses to the PCIe link issued by RC, DMA and
TNW modules; apart the CplD requests issued by RC, all the transactions to the
main memory are issued via the DMA mode called NPUT model in section 3.1.
POC implements a separated auxiliary Finite-State Machine for each NWP mod-
ule that must send data to main-memory, all controlled by the main state machine
(MAIN_FSM) that catch the requests asserted by each module and, based on a
priority system, triggers the corresponding FSM when a slot is available, allowing
the state-machines to access the PCIe interface to carry-out its transaction. The
MAIN_FSM layout is shown in figure 3.12, after a request to access the PCIe in-
terface has been received and the PCIe interface is free to send data, MAIN_FSM
goes to the START_* state triggering the corresponding FSM and moves to the
BUSY_* state waiting for the end of the transaction that is achieved when the
triggered FSM returns to the IDLE state, at this point MAIN_FSM is able to serve
another request.

As previously said, POC implements more auxiliary FSM, follows a brief de-
scription of their functionalities.
The TNW_FSM is the only finite-state-machine that directly interacts with a mod-
ule external to the IOC layer, it’s purpose is to deliver to the CPU the data received

58 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

Figure 3.12: Diagram of the finite state machine MAIN_FSM of the POC module, it is
controlled by the requests issued by the modules that must access the PCIe interface to
send data to the CPU. The FMS goes to the START_* state when the corresponding re-
quest has been received and this transaction triggers the corresponding FSM to access
the PCIe, then MAIN_FSM stalls in the BUSY_* state until the triggered FSM does not
returns to the IDLE state, meaning that the transaction has been successfully completed,
at this point MAIN_FSM can return to his own IDLE state, ready to serve another trans-
action.

by the 6 TNW links; an arbitration stage, based on round-robin schedule, decide
which link-request to satisfy, at this point the finite-state-machine interacts with
the receiver-buffer of the TNW link to extract data to be delivered to the CPU.
When all the packets related to a message has been sent, the TNW link also as-
serts the request to send the NOTIFY to the CPU.
The RC_FSM satisfies the requests issued by the RC module, the module that in-
teracts with the registers of the TNW layers and the IOC internal registers, when
a register-read-request is issued to the RC module, it fetches data to send-back to
the CPU and gathers from the read-request the informations to format the comple-
tion header then this data are presented to POC and the MAIN_FSM is triggered
with a request to access the PCIe link; when a slot is available the MAIN_FSM
triggers the RC_FSM to start, which took control of the PCIe interface and acts to
send-back the completion with data to the CPU.
The purpose of DMA_FSM and DMA_NTF_FSM is to carry-out the NGET trans-
actions issued by the CPU, the former issues the memory-reads required to re-
trieve data from main memory to be sent over the TNW links, the latter issues the
NPUT operations to write in main memory the NOTIFY location related to the
NGET transactions as well as they are carried-out to inform the CPU about the
send completion.
The TFCNT_FSM implements the back-pressure of the TXFIFO-modules on the
TNW layer writing into a main-memory location their status; at each TXFIFO is

3.2. INPUT/OUTPUT CONTROLLER 59

associated one counter that keeps track of how many packets had been extracted,
these counters are written into main-memory (NWP_CNT) and are writable only
by the network processor, they make pair with another set of counters (CPU_CNT)
writable only by the CPU, each time the CPU inject packets into one TXFIFO,
it updates the related CPU_CNT, while when NWP_CNT are updated by NWP
when packets are extracted from TXFIFO, the difference between CPU_CNT and
NWP_CNT reflects the number of packets still into the injection buffer and the
CPU can throttle his transactions avoiding data loss due to FIFO full. A software-
programmable threshold controls the refresh rate of NWP_CNT in main-memory.
A more accurate description about this mechanism is in section 4.3.3.

60 CHAPTER 3. NETWORK PROCESSOR’S CPU INTERFACE

Chapter 4

Software Layers

The Network Processor (NWP) has been design to provide a high-bandwidth low-
latency link between computing node of a massive parallel machine, at hardware
level this has been done implementing a lightweight custom communication pro-
tocol among point-to-point links. The same requirements must to be honored also
at software level, at this purpose I implemented a software-stack to allow appli-
cations to directly access the Network Processor without the intervention of the
operating system, avoiding more of the overheads introduced by it.

The software layers of the Network Processor (NWP) has been designed for
the Linux Operating System and optimized for the “Intel Nehalem Processor Fam-
ily” who interfaces with the hardware layers of NWP via PCIe Gen 2 protocol.
At the lowest layer of the software-stack, shown in figure 4.1, lies the Device
Driver (DRV), it implements the kernel module to provide an entry-point to NWP,
integrated into the operating system environment, accessible by the applications.
DRV takes care to instantiate in the kernel-space the data structures and buffers
access the Network Processor. Upon the Device Driver (DRV) services has been
implemented a Low Level Library (LIB) to provide to threaded-applications a set
of functions and routines to configure and access NWP directly from user-space.
LIB is based on the following assumptions:

• only one application can access NWP at a time

• NWP is configured directly by the application owning it at start-up

• other applications can own NWP only after his release

61

62 CHAPTER 4. SOFTWARE LAYERS

Figure 4.1: NWP software stack. The lowest layer is the Device Driver (DRV) who
configures the network processors and allocates in main memory the required buffers.
Over the Device Driver (DRV) is implemented the Low Level Library (LIB) who exports
to the application all the basic routines to configure/monitor the network processor as
well as the functions to send/receive data over links.

4.1 Communication Model

The Network Processor’s communication model is based on the “Two-Sided Com-
munication Protocol” as explained in section 2.1, two applications at the end-
points of a link that want to exchange a message, must to cooperate to carry-out
the transaction. The receiver must to provide to his own Network Processor the
informations to deliver the incoming message to the receiving buffers in main
memory (CREDIT), then to be waiting for the notification about the complete de-
livery of the message (POLL), while the sender must to move the message into
the injection buffer of his own NWP (SEND).

As explained in section 3.1, there are two methods to implement the SEND
operation: PPUT and NGET, one way to efficiently implement the PPUT method
is to use the “Memory Mapped I/O”, this mechanism allows to associate a range of
memory addresses to device memory, whenever an application reads or writes in
the assigned address range, it is actually accessing the device[43]. So mapping the
injection buffers in the main memory address space (TX-BUFF) allows to move
data to be sent just performing a write operation to a memory address, then the
CPU will convert this transaction into a write operation to the device. NWP has
been designed to support communications among multi- and many-core CPUs,
providing a set of “Virtual Channels” (VC) to allow to access the link at different
core-pairs site in adjacent computing-node, at this purpose each link address space

4.1. COMMUNICATION MODEL 63

Figure 4.2: Mapping of the injection buffers (links) and related virtual channels (VCs)
into main memory using the “Memory Mapped I/O” to implement the PPUT method. To
send a message along the desired link using a given VC is just a matter to calculate the
corresponding offset respect to the base address where the first injection buffer has been
mapped.

has been sub-divided into memory areas corresponding to different VCs, to send
data along a defined link using a given VC is just a matter to move data at the
correct offset respect to the base address where the first injection buffer has been
mapped, as shown in figure 4.2.

The efficiency of “Memory Mapped I/O” mechanism can be improved mark-
ing the memory area as Write Combining (WC)[10], more I/O transactions to con-
tiguous memory addresses can be accumulated into the Write Combining Buffer
(WCB) and delivered to the Network Processor as a single I/O transaction, min-
imizing the overheads related to the transaction-setup exploiting the bandwidth
between the CPU and the Network Processor.

To implement the SEND operation with the NGET method, one way is to
allocate in main memory a buffer (NGET-BUFF) where the CPU copies data to
be sent and triggers the Network Processor to retrieve them via Direct Memory
Access (DMA), at this point the communication is completely asynchronous re-
spect to the CPU. After triggering the SEND operation, the CPU can dedicate
to other tasks such as computation, and can ignore the status of NGET-BUFF as
long as it must perform a new communication. One mechanism to keep track of
the communication status is to allocate in main memory a “notify buffer” (NGET-
NTF-BUFF) where the CPU sets a value when performs the SEND operation and
the Network Processor modifies it when the communication has been carried-out,
to know the communication status, the CPU must to check this memory location
(NGET-POLL).

Respect to the receiving operations, the Network Processor requires a buffer
(RX-BUFF) where to deliver the messages incoming from the links via DMA
transaction, as previously said the Network Processor manages more virtual-channels
per link and can be adopted the same philosophy as TX-BUFF: the destination ad-

64 CHAPTER 4. SOFTWARE LAYERS

dress of data inside RX-BUFF depends from the link they income and the virtual-
channel they belong. As further explained the actual implementation of RX-BUFF
is quite different, due to the problem to obtain large contiguous areas of physical-
memory from the system, has been allocated a different memory area per virtual-
channel. The informations to the Network Processor about the memory address
where to deliver data are provided by the application issuing a CREDIT, it also
contains the size of the message the application is waiting for and the “notify-
index” (NID); as for the notify-system of the NGET method, the application can
keeps track of the receiving-status checking the “notify buffer” (NTF-BUFF), this
is a set of memory locations addressable by the NID where the application sets a
value when performs the CREDIT operation to receive a message and the Network
Processor modifies it when all the packets related to a message has been received,
to know the reception status, the application must to check this memory location
performing the POLL operation, when the POLL operation detects that the mes-
sage has been received, it frees the RX-BUFF moving data to a user-defined buffer
where the application can use them.

The access to the NWP’s configuration/status registers is performed via “Mem-
ory Mapped I/O”, the whole register address-space is mapped into kernel-space
(RC-BUFF) where read/write operations are converted into I/O transactions.

For performance-critical applications like the communications among the Net-
work Processor, Memory Mapping (MMAP) can be implemented to provide user
programs with direct access to device memory[43], all the above mentioned buffers,
allocated in kernel-space, are re-mapped into the application-space, limiting the
overheads given by frequent context switches between user- and kernel-mode.

4.2 Driver
The Network Processor is seen by the operating system as a PCI character de-
vice, each PCI device has a unique identifier given by the number of the PCI bus,
the slot it is plugged and the function number; after the device has been discov-
ered by the system, it can be accessed by the applications via two methods, the
former foreseen to associate the PCI identifier to a file descriptor, letting the ap-
plications to access it via read and write system-calls managed by the operating
system; the latter maps the device to one or more memory address spaces, setting
the Base Address Register (BAR), and then re-mapping these addresses into the
user-space letting the applications to access the peripheral performing read/write
operations directly to these memory addresses, avoiding all the overheads given

4.2. DRIVER 65

by the previous method. The accesses to NWP are performed using the latter
method described above.

The int init_module(void) function initializes all the kernel structures and the
required buffers, see section 4.1. The network processor is accessible by the CPU
basically via 2 address-spaces, the former is a 64-bit wide address-space to access
the injection buffers, the latter, 32-bit wide, allows to access the configuration/sta-
tus register. The PCI devices stores into registers the physical addresses assigned
to these address-spaces by the system at boot-time, calling these registers Base
Address Register (BAR). The init_module() function reads these BARs and using
the sys-call

void __iomem * ioremap (ulong offset, ulong size);

it re-maps the corresponding address-spaces into kernel-space. The injection
buffers are re-mapped to TX-BUFF while the register access is re-mapped to RC-
BUFF. To perform efficient transactions to TX-BUFF, this address-space must to
be marked by the Device Driver (DRV) as Write Combining (WC) setting the
“Memory Type Range Registers” (MTRRs) of the CPU[10], the operating system
provides the sys-call

int mtrr_add (ulong base, ulong size, uint type, char increment);

The reception buffer (RX-BUFF) requires to allocate in kernel-space a signifi-
cant amount of contiguous memory, as explained in section 4.1, due to the problem
to obtain large contiguous areas of physical-memory from the system, the recep-
tion buffer has been allocated as separated memory areas, one per virtual-channel,
using the sys-call

ulong __get_free_page(int flags);

to allocate big chunks of memory.
All the other buffers such as NGET-BUFF, NGET-NTF-BUFF and NTF-BUFF,

has been allocated using the sys-call

void * kmalloc (size_t size, int priority);

due to they do not require a large amount of memory as RX-BUFF.
The Device Driver (DRV) implements the Memory Mapping (MMAP) method,

it is part of the file_operations structure and is invoked when the mmap sys-call
is issued. This method allows the mapping of device memory directly into a user

66 CHAPTER 4. SOFTWARE LAYERS

process’s address space, letting the application to direct access the buffers asso-
ciated to the device, instead of issuing system calls, limiting the overheads due
to continuous context switchings. The buffers allocated in kernel-space by the
init_module() function are flagged with “PG_reserved”[44] meaning that they are
accessible to kernel-only, the Device Driver (DRV) exports the function

static int ftnw_mmap (struct file * filp, struct vm_area_struct * vma);

that implements MMAP and resetting the PG_reserved flag by calling the sys-call

int remap_pfn_range (struct vm_area_struct * vma, ulong addr, ulong pfn,
ulong size, pgprot_t prot)

to re-map in user-space the buffers allocated in kernel-space.

4.3 Low-level Library
The Low Level Library (LIB), called libftnw, has been designed upon the services
provided by the Device Driver (DRV); it provides to the applications a set of
functions to directly access the Network Processor, a sub-set of these functions, to
send/receive data and register access, are listed in the following sections, divided
in to category by their purpose. The full set of functions is listed in section B.

4.3.1 Device Initialization and Release
The LIB provides to the applications the int ftnwInit(void) routine to configures the
Network Processors and all the software structures to properly access the device.

This routine calls the int open(const char *pathname, int flags) sys-call to
open the file descriptor associated to the entry point of the Network Processor,
then it use the sys-call mmap() to re-map in user-space all the buffers allocated by
the Device Driver (DRV) in kernel-space such as TX-BUFF, RC-BUFF, NGET-
BUFF, NGET-NTF-BUFF, RX-BUFF, NTF-BUFF and TFCNT-BUFF to allow
the application to directly access them without the intervention of the operating
system. This routine returns 0 in case all the operations has been successfully
executed, -1 otherwise.

The LIB also provides the function int ftnwOpen(void) to the applications that
just require to open the device without re-mapping the buffers in user-space. Re-
turns the NWP file descriptor.

4.3. LOW-LEVEL LIBRARY 67

To release the device at the end of the application, the LIB provides int ftnwFi-
nalize (void) and ftnwClose(void), both close the NWP file descriptor and always
return 0.

4.3.2 Register Access
The LIB provides the register access to NWP performing read and write opera-
tions to RC-BUFF where the registers are mapped, offsets respect to the base of
RC-BUFF are the register-addresses. NWP’s registers are all 32-bit-wide except
the requests for DMA Engine that are 64-bit-wide.

The application accesses a register in write-mode by calling the function

int ftnwPokeReg (uint regaddr, uint regval);

the parameter regaddr is the address of the register to write to while regval is the
32-bits value to write. The version of this function for 64-bit write is

int ftnwPokeReg64 (uint regaddr, ulong regval);

To access the registers in read-mode I implemented the function

int ftnwPeekReg (uint regaddr, uint * regval);

as for the write functions, the parameter regaddr is the register-address to read
while the 32-bit value returned by the read operation is stored into regval. I do
not implemented a 64-bit version of this function due to the fact that the only
64-bit-wide register in NWP is the request-FIFO of the DMA Engine and it is
write-only.

4.3.3 PPUT Send
The LIB provides two sets of functions that implements the SEND operation,
depending on the transaction model used: PPUT or NGET, see section 3.1 for
more details.

The PPUT model is implemented by the function

int ftnwSend (uint lid, uint vcid, void * txbuf, uint txoff, uint msglen);

its purpose is to send a given amount of data (msglen) stored into the buffer txbuf
at the offset txoff along a given link lid using the virtual-channel vcid; both msglen

68 CHAPTER 4. SOFTWARE LAYERS

and txoff are in units of 128 Bytes, the size of the single packet that can be moved
along the link.

In this section I explain the most performing implementation of ftnwSend(),
the one that properly works if the TXFIFO has been implemented as a re-order
buffer, in section 5.3 will be presented the comparison with other implementa-
tions.

This function is sensitive to the status of the injection buffer to avoid data-loss
due to packet-overwrite given by to the implementation of the re-order buffer, see
section 3.2.2, so ftnwSend() must to check the emptiness of the injection buffer and
to obtain the exclusiveness to move data in it, the last condition has been attained
using a mutex, while the other has been attained with the back-pressure method
explained as follows. I implemented the back-pressure using a set of two counters
per link, at each injection buffer is associated one counter that keeps track of how
many packets had been injected, these counters (CPU_CNT) are writable only by
the ftnwsend() function, they make pair with another set of counters (NWP_CNT)
writable only by the Network Processor, each time ftnwsend() moves data to an in-
jection buffer, it updates the related CPU_CNT, while NWP_CNT are updated by
NWP when packets are extracted to be sent over the link, the difference between
CPU_CNT and NWP_CNT reflects the number of packets still into the injection
buffer and ftnwsend() can throttle his transactions avoiding data loss.

If the comparison of the above mentioned counters reveal the emptiness of
the injection buffer, ftnwsend() moves data into it. I implemented the data-moving
using the “Intel Intrinsic”[15], an API extension built into the compiler that allows
to use a set of functions written in C language that the compiler directly maps to
assembly instructions. Data moving, shown in figure 4.3, is basically divided into
three steps:
1) Data load from main memory to CPU’s registers
2) Data stream to “memory mapped I/O” addresses
3) Fence operation to ensure flush of remaining WCB at the end of the message
transmission.

To fully exploit the bandwidth of the link between the CPU and the Network
Processor, the memory area, where the injection buffers has been mapped, has
been marked by the Device Driver (DRV) as Write Combining (WC), in this case
data to be sent to contiguous memory addresses can be accumulated into the Write
Combining Buffer (WCB) and delivered to the Network Processor as a single I/O
transaction, minimizing the overheads related to the transaction-setup, WCB size
in Intel processors is not architecturally defined, in the Nehalem/Westmere pro-
cessors available on the AuroraScience machine, the WCB size is 64-bytes corre-

4.3. LOW-LEVEL LIBRARY 69

if (isempty_txfifo ()) {

/ / Lock t h e mutex t o send ove r a l i n k
pthread_mutex_lock (&mutex [lid]) ;

/ / Send p a c k e t s
while (there_are_pck_to_send) {

/ / P o i n t (1) move 64−b y t e s from memory t o r e g i s t e r s
xmm0 = _mm_load_si128 ((__m128i ∗) ubuf+0) ;
xmm1 = _mm_load_si128 ((__m128i ∗) ubuf+1) ;
xmm2 = _mm_load_si128 ((__m128i ∗) ubuf+2) ;
xmm3 = _mm_load_si128 ((__m128i ∗) ubuf+3) ;

/ / P o i n t (2) move 64−b y t e s from r e g i s t e r s t o combin ing b u f f e r
_mm_stream_si128 ((__m128i ∗) kbuf+0 , xmm0) ;
_mm_stream_si128 ((__m128i ∗) kbuf+1 , xmm1) ;
_mm_stream_si128 ((__m128i ∗) kbuf+2 , xmm2) ;
_mm_stream_si128 ((__m128i ∗) kbuf+3 , xmm3) ;

/ / P o i n t (1) move 64−b y t e s from memory t o r e g i s t e r s
xmm0 = _mm_load_si128 ((__m128i ∗) ubuf+4) ;
xmm1 = _mm_load_si128 ((__m128i ∗) ubuf+5) ;
xmm2 = _mm_load_si128 ((__m128i ∗) ubuf+6) ;
xmm3 = _mm_load_si128 ((__m128i ∗) ubuf+7) ;

/ / P o i n t (2) move 64−b y t e s from r e g i s t e r s t o combin ing b u f f e r
_mm_stream_si128 ((__m128i ∗) kbuf+4 , xmm0) ;
_mm_stream_si128 ((__m128i ∗) kbuf+5 , xmm1) ;
_mm_stream_si128 ((__m128i ∗) kbuf+6 , xmm2) ;
_mm_stream_si128 ((__m128i ∗) kbuf+7 , xmm3) ;

increase (ubuf) ;
increase (kbuf) ;

}
/ / P o i n t (3) g r a n t f l u s h o f combin ing b u f f e r s
_mm_sfence () ;

/ / R e l e a s e t h e mutex
pthread_mutex_unlock (&mutex [lid]) ;

}

Figure 4.3: Conceptual extract of the ftnwSend() function, if the injection buffer is empty
and the thread obtain the exclusiveness to send data over the link (mutex), data are loaded
from main-memory (1) to CPU internal registers and then are moved to WCB (2) to be
sent to the Network Processor. The “store fence” (3) should to grant the flush of the WCBs
before to release the mutex.

70 CHAPTER 4. SOFTWARE LAYERS

sponding to the “cache-line” size. Referring to code in figure 4.3, I implemented
point (1) using the intrinsic function
__m128i _mm_load_si128(__m128i const*p),
it is directly mapped to the assembly instruction MOVDQA[8] that loads 128 bits
of data from the user-buffer ubuf into one of the XMM registers, executing 4 of
these instructions half of the packet to be sent over the link has been loaded into
the CPU registers and can be executed the point (2). I based point (2) on the
“non-temporal move instructions”[10] of the Intel Processors, they allow to move
data from the processor’s registers directly into system memory without being
also written into the L1, L2, and/or L3 caches. For each of the 4 XMM registers
loaded at point (1) is called the intrinsic function
void _mm_stream_pd(double* p, __m128d a),
mapped on the assembly instruction MOVNTDQ that moves the 128 bit item to
the address space where is mapped the injection buffer, as previously said, that
address space has been set as WC by the Device Driver (DRV) so the items are
actually stored into a WCB that when it has been full-filled, it triggers a 64-Bytes-
wide transaction to the PCIe link. The “fence” operation at point (3) grants that
all the WCBs has been flushed before ftnwSend() returns, I implemented this op-
eration using the intrinsic function _mm_sfence() that is mapped on the assembly
instruction SFENCE, it serializes load and store operations from/to memory

4.3.4 NGET Send
The NGET transaction model explained in section 3.1 is implemented by the func-
tion

int ftnwNgetSend (uint lid, uint vcid, void * txbuf, uint txoff,
uint nid, uint msglen);

its purpose is to send a given amount of data (msglen) stored into the buffer txbuf
at the offset txoff along a given link lid using the virtual-channel vcid; both msglen
and txoff are in units of 128 Bytes, the size of the single packet that can be moved
along the link. The nid parameter is explained further.

This function copies data from the application-space to the NGET-BUFF where
NWP will retrieve them to be sent; the PCIe transactions are limited in the size
of 4KB so ftnwNgetSend() splits the whole size of the message in sub-requests
with a maximum size of 4KB and issues them to the DMA engine of the Net-
work Processor using register access interface function ftnwPokeReg64(). Due to
the split of SEND transaction in sub-requests, I provided a way to the application

4.3. LOW-LEVEL LIBRARY 71

to keep track of all of them (if required), each request has his own notify-index
that is calculated incrementing the nid parameter provided to the function. To
simplify ftnwNgetSend() usage, this function returns the last notify-index issued
for the whole SEND operation, that the application can check to ensure about the
communication has been carried-out.

The LIB provides the function

int ftnwNgetTest (uint nid);

to check if a NGET transaction has been carried-out, due to the implementation of
ftnwNgetSend() the nid parameter could be any index between the one provided to
ftnwNgetSend() as parameter and the last nid returned by that function. Generally
ftnwNgetTest() is called to check only the last nid returned by ftnwNgetSend().
Non-blocking function, immediately returns in both cases if nid has been set or
not; the blocking version of this function is

int ftnwNgetPoll (uint nid);

that polls the notify-index nid until it is not set, meaning that all the sub-requests
of the NGET SEND has been satisfied.

4.3.5 Receive
The LIB provides a set of functions for the receive operations, as explained in
section 4.1, the data incoming from the Network Processor must to be stored into
main memory as well as they arrive, the informations where to store them must
to be provided by the application issuing a CREDIT. I implemented the CREDIT
operation with the function

int ftnwCredit (uint lid, uint vcid, uint rxoff, uint msglen, uint nid);

The above function provides the coordinates where to store data in main memory
via the parameters link-id (lid), virtual-channel-ID (vcid) and the offset inside the
RX-BUFF (rxoff); the size of the message is provided by the parameter msglen,
while the nid parameter is the notify-index the Network Processor must to set to
inform the application that the whole message has been received.

As previously said in section 4.1, to check if the whole message has been
received, the application must to check the notify-index performing a POLL op-
eration, I implemented that operation with the function

72 CHAPTER 4. SOFTWARE LAYERS

int ftnwTest (uint lid, uint vcid, uint rxoff, uint msglen, void * rxbuf, uint
nid);

the parameters lid, vcid and nid are combined to obtain the offset inside NTF-
BUFF to check for the notify about message receiving, if this location has not
yet been set by the Network Processor, the function immediately returns and
the application must to further check the notify-index. If the notify-location has
been already set, the function combines the parameters lid, vcid and rxoff to ob-
tain the offset inside RX-BUFF where the message has been stored by NWP and
moves the amount of data given by the parameter msglen to the user-defined buffer
pointed by rxbuf.

The blocking version of this function is

int ftnwPoll (uint lid, uint vcid, uint rxoff, uint msglen, void * rxbuf, uint
nid);

that continue to check the notify-index until it’s not set.

4.4 Application Examples

Follows some application examples based on the libftnw library.

4.4.1 Ping Example

The simplest application example is “Ping”, it is useful to understand the basis
of the Network Processor communication protocol, the SENDER, pictured as a
red-node in figure 4.4, sends a message using the ftnwSend() function, while the
RECEIVER, the blue-node, issues the credit to receive the message with ftnw-
Credit() and waits for the message delivery polling for the notify with ftnwPoll(),
as well as the message has been arrived the latter function moves data to rxbuf
where the receiver can use them for further computations.

The access to the Network Processor is granted to the application by calling
ftnwInit(). At the end, the application must to release the Network Processor by
calling ftnwFinalize().

The source-code is listed in figure 4.5, it does not include all the variable
declaration and others operations to save space.

4.4. APPLICATION EXAMPLES 73

Figure 4.4: Ping Example, the red node sends a message to the blue one.

4.4.2 Ping-Pong Example
The “Ping-Pong” example is similar to Ping but in this case, one node called
INITIATOR, sends a message to the other node called COMPLETER, that must
send-back the message to INITIATOR.

The INITIATOR, pictured as a red-node in figure 4.6, first of all issues the
credit for the PONG that will be sent back by the REPEATER, it is good practice
to issue the credit as soon as possible to avoid dead-locks or delays. Then the
INITIATOR sends a message using the ftnwSend() function. The REPEATER,
the blue-node, issues the credit as first operation with ftnwCredit() and waits for
the message delivery polling for the notify with ftnwPoll(). As well as the message
has been receive, ftnwPoll() moves data to rxbuf as temporary data-location, then
data are immediately sent to the INITIATOR using ftnwSend(). The INITIATOR
waits for the PONG to come-back using ftnwPoll(), once this function returns, the
PING-PONG data exchange has been correctly done.

The access to the Network Processor is granted to the application by calling
ftnwInit(). At the end the application must release the Network Processor calling
ftnwFinalize.

The source-code is listed in figure 4.7, it does not include all the variable
declaration and others operations to save space.

74 CHAPTER 4. SOFTWARE LAYERS

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ SENDER ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

#include < l i b f t n w . h>

int main (. . .) {

ulong txbuf __attribute__ ((aligned (1 6))) ;

. . .

ftnwInit () ;

/ / Send PING
ftnwSend (XPLUS , VC0 , &txbuf , 0 , msgsize) ;

. . .

ftnwFinalize () ;
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ RECEIVER ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

#include < l i b f t n w . h>

int main (. . .) {

ulong rxbuf __attribute__ ((aligned (1 6))) ;

. . .

ftnwInit () ;

/ / I s s u e CREDIT f o r PING
ftnwCredit (XMINUS , VC0 , 0 , msgsize , nid) ;

. . .

/ / P o l l i n g f o r PING NOTIFY
ftnwPoll (XMINUS , VC0 , 0 , msgsize ,

&rxbuf , nid) ;

. . .

ftnwFinalize () ;
}

Figure 4.5: Ping source-code example.

4.4. APPLICATION EXAMPLES 75

Figure 4.6: Ping-pong Example, the red node sends a message (PING) to the blue one
that, immediately send-it-back (PONG).

76 CHAPTER 4. SOFTWARE LAYERS

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ INITIATOR ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

#include < l i b f t n w . h>

int main (. . .) {

ulong txbuf __attribute__ ((aligned (1 6))) ;
ulong rxbuf __attribute__ ((aligned (1 6))) ;

. . .

ftnwInit () ;

/ / I s s u e CREDIT f o r PONG
ftnwCredit (XMINUS , VC0 , 0 , msgsize , nid) ;

/ / Send PING
ftnwSend (XPLUS , VC0 , &txbuf , 0 , msgsize) ;
. . .

/ / P o l l i n g f o r PONG NOTIFY
ftnwPoll (XMINUS , VC0 , 0 , msgsize ,

&rxbuf , nid) ;

ftnwFinalize () ;
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ COMPLETER ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

#include < l i b f t n w . h>

int main (. . .) {

ulong rxbuf __attribute__ ((aligned (1 6))) ;

. . .

ftnwInit () ;

/ / I s s u e CREDIT f o r PING
ftnwCredit (XMINUS , VC0 , 0 , msgsize , nid) ;

. . .

/ / P o l l i n g f o r PING NOTIFY
ftnwPoll (XMINUS , VC0 , 0 , msgsize ,

&rxbuf , nid) ;

/ / Send−back PONG
ftnwSend (XPLUS , VC0 , &rxbuf , 0 , msgsize) ;

. . .

ftnwFinalize () ;
}

Figure 4.7: Ping-Pong source-code example.

Chapter 5

Results and Benchmarks

5.1 FPGA Synthesis Report
Table 5.1 shows the synthesis-report of the Network Processor targeting the FPGA
Altera Stratix IV 230 GX, this synthesis includes the following main-features:

• 1 Altera PCI Express Hard-IP block

• 1 IOC interface to CPU including the DMA engine

• 6 Torus Network links equipped with the re-order buffers

The whole design has been properly mapped and routed into the FPGA with-
out any timing-slack among logic-elements; it has been synthesized at a frequency
of 250 MHz, using the 18% of the available logic and the 17% of the memory em-
bedded into device. The present implementation of NWP uses only one out of two
of the PCI Express hard-IP blocks embedded inside the FPGA fabric.

5.2 PHY Bit Error Rate Test
The Bit Error Rate (BER) defines a characteristic for the communication quality
between end-points, it is related to the number of faulty bits among the whole
amount of bit transmitted. The PCIe protocol defines a tolerance of 1 faulty bit
among a total of 1012 bits transmitted. To test the actual BER of the PM8354
PHY, I implemented a test-bench where two PHYs communicate via cables of
different length (0.5, 1 and 3 meters). I used the “test-bench” firmware described

77

78 CHAPTER 5. RESULTS AND BENCHMARKS

Fitter Summary
Fitter Status Successful
Quartus II 64-Bit Version 9.1 Build 222 10/21/2009 SJ Full Version
Family Stratix IV
Device EP4SGX230KF40C2
Logic utilization 18 %

Combinational ALUTs 17,308 / 182,400 (9 %)
Memory ALUTs 3 / 91,200 (< 1 %)
Dedicated logic registers 25,130 / 182,400 (14 %)

Total registers 25631
Total pins 612 / 888 (69 %)
Total block memory bits 2,504,480 / 14,625,792 (17 %)
Total GXB Receiver Channel PCS 8 / 24 (33 %)
Total GXB Receiver Channel PMA 8 / 36 (22 %)
Total GXB Transmitter Channel PCS 8 / 24 (33 %)
Total GXB Transmitter Channel PMA 8 / 36 (22 %)
Total PLLs 7 / 8 (88 %)

Table 5.1: Synthesis report for the Network Processor targeting the FPGA Altera Stratix
IV 230 GX.

in section 2.4.5, in an extensive campaign to test the PM8354 link, the firmware
has been deployed into a Xilinx Virtex-5 Development kit where has been plugged
a PM8358 test-bed board developed by Karl-Heinz Sulanke from DESY-Zeuthen
(DE), the boards are shown in figure 5.1. Two of the above mentioned setup has
been connected using cable of different length (0.5, 1 and 3 meters) and run the
tests for several days up to 21 of bidirectional transmissions without any error
detected; in figure 5.2 is shown the setup with 0.5 m cable.

I done an equivalent test on the AuroraScience version of the NWP, running
for one week without errors.

A most significant test has been run on the QPACE machines installed at the
Jülich Forschungszentrum and Wuppertal University in Germany, in this case has
been not used the test-bench firmware but a statistical-physics application running
for 24 hours on both installations using a total amount of 512 node for a grand-
total of 1536 active links, detecting a total amount of 39 code-violation/disparity
errors. Considering the number of errors detected by the two machines (ERR_NUM),
the full overlap among computation and data transmission over the 24 hours (RUN-

5.2. PHY BIT ERROR RATE TEST 79

Figure 5.1: Hardware components for the BER test of the PM8354 PHY, on the left-side
is shown the FPGA development kit while on the right-side is shown the PHY test-bed.

Figure 5.2: The dual end-point setup for the BER test. Here two FPGA development
kits are equipped with the PHY test-beds and connected by a 50cm cable. Each FPGA
has been programmed with the test bench firmware for the full-duplex communications.
This setup has been used for an extensive campaign with many runs up to 21 days of
bidirectional transmissions without any error detected.

80 CHAPTER 5. RESULTS AND BENCHMARKS

TIME), the number of active links (ACT_LINKS), the bandwidth of 1 GB/s per
link (BW_LINK), and assuming that for each error only 1 bit has been flipped, the
Bit-Error Rate has been

BER = ERR_NUM/((RUNTIME ∗ 60 ∗ 60) ∗ ACT_LINKS ∗BW_LINK

= 39/((24 ∗ 60 ∗ 60) ∗ 1536 ∗ (1 ∗ 109)) = 2.939 ∗ 10−16 =

≈ 3 ∗ 10−16

5.3 CPU-to-NWP Transmission with PPUT Model

In this section I discuss several ways to realize the ftnwSend()1 function of the
library which implements the software layer of the PPUT model as explained in
section 3.1. In particular I focus on techniques to gain best performances on the
PCI Express bus between CPU and NWP.

The PPUT operation is based on the Programmed Input/Output (PIO) scheme.
During the boot phase the injection buffers of the Network Processor (NWP) are
memory-mapped into the memory-space of the CPU. Data can then moved from
the main memory to the injection buffers performing store operations on specific
memory addresses.

The communication-bus between CPU and NWP is a 8x PCI Express bus.
Each line runs @5 Gbit/s, then the over-all maximum raw bandwidth is 40Gbit/s.
Due to the 8b/10b encoding required to reconstruct the transmission clock on
the receiving side, each Byte (8 bits) sent is encoded using 10 bits. Taking into
account this overhead, the maximum achievable bandwidth is

(8/10) ∗ 40Gbit/s = 32Gbit/s = 4GByte/s

As mentioned in section 3.1, the data transfer unit of the PCIe protocol is the
Transaction Layer Packet (TLP), which includes the following items:

• 1 Byte START character to mark the begin of the packet;

• 2 Bytes encoding the index number of the packet used to detect missed or
dropped packets;

1The ftnwSend() function is explained in section 4.3.3.

5.3. CPU-TO-NWP TRANSMISSION WITH PPUT MODEL 81

• 12 or 16 Bytes depending on the TLP type (3DW or 4DW) to encode the
header ; 2

• a payload which size can range from 0 to 4096 Bytes;

• 4 optional Bytes of ECRC for end-to-end error detection;

• 4 Bytes of LCRC for the error detection on the TLP;

• 1 Byte of END character.

In the computing-system I took into account, described in section 3.2, the
injection- and receiver-buffers of the network processor are mapped into a 64-bit
address-space, and the ECRC is not used. In this configuration TLPs use a 4DW
(16 Bytes size) header and the PIO mode of the Intel CPU achieves a maximum
burst payload of 64-Bytes. The overall TLP-size results to

1 + 2 + 16 + 64 + 4 + 1 = 88Bytes

The payload/TLP efficiency-ratio of 64/88 = 0.727, and the maximum achievable
bandwidth over the link is

0.727 ∗ 4GBytes/s = 2.909GBytes/s

The above result is an upper-bound of the achievable bandwidth and will be used
as reference to compare the efficiency of several implementations of the PPUT
method that is described in the following.

Figure 5.3 shows a first implementation of the PPUT operation. Data are
first loaded from the user memory area pointed by uoff into the 128-bit variables
mapped on the SSE registers (XMMx) of the CPU. Then, contents of the registers
are stored on consecutive memory-addresses of the kernel pointed by the koff vari-
able, previously mapped into user space by standard Memory Mapping (MMAP)
system-call.

Using the code of fig. 5.3 each _mm_stream_si128() is translated to a pcie-
write of 16-Bytes performed every 120 ns (30 cycles), see fig. 5.4. This achieves
a CPU-to-FPGA bandwidth of 0.133 GB/s.

BW =
16Bytes

120ns
= 0.133GB/s

82 CHAPTER 5. RESULTS AND BENCHMARKS

xmm0 = _mm_load_si128 ((__m128i ∗) uoff+0) ;
xmm1 = _mm_load_si128 ((__m128i ∗) uoff+1) ;
xmm2 = _mm_load_si128 ((__m128i ∗) uoff+2) ;
xmm3 = _mm_load_si128 ((__m128i ∗) uoff+3) ;
xmm4 = _mm_load_si128 ((__m128i ∗) uoff+4) ;
xmm5 = _mm_load_si128 ((__m128i ∗) uoff+5) ;
xmm6 = _mm_load_si128 ((__m128i ∗) uoff+6) ;
xmm7 = _mm_load_si128 ((__m128i ∗) uoff+7) ;

_mm_stream_si128 ((__m128i ∗) koff+0 , xmm0) ;
_mm_stream_si128 ((__m128i ∗) koff+1 , xmm1) ;
_mm_stream_si128 ((__m128i ∗) koff+2 , xmm2) ;
_mm_stream_si128 ((__m128i ∗) koff+3 , xmm3) ;
_mm_stream_si128 ((__m128i ∗) koff+4 , xmm4) ;
_mm_stream_si128 ((__m128i ∗) koff+5 , xmm5) ;
_mm_stream_si128 ((__m128i ∗) koff+6 , xmm6) ;
_mm_stream_si128 ((__m128i ∗) koff+7 , xmm7) ;

Figure 5.3: Scheme of the PPUT method implemented using Intel intrinsics func-
tions, the _mm_load_si128() load 128 bits of data from main memory to CPU registers
_mm_stream_si128() writes data to memory-addresses where injection buffers have been
mapped resulting in PCI Express transactions.

Figure 5.4: Tracing at the FPGA boundaries of the PCI Express transactions issued by
the code in figure 5.3, each _mm_stream_si128() results in a 16 Bytes TLP every 120 ns.

Arranging the sequence of load and store in a different way (e.g. interleaving
loads and stores) does not result in better performance.

Stream operations are issued to consecutive memory addresses and a way to
limit the setup overhead of the pcie transactions is to configure the memory ar-
eas of injection buffers as Write Combining (WC). This operation can be done by
modifying the Memory Type Range Registers (MTRR) of the CPU. This is a tech-
nique supported by Intel processors which use Write Combining Buffer (WCB)
available on the CPUs to enable burst transfer from CPU to IO sub-system, both
memory and IO devices. Store operations are staged on internal buffers of the

2In PCI Express Protocol the 3DW (Double Word) header is used when the device has been
mapped in a 32 bits address space, while the 4DW header is used in case of 64 bits address space.

5.3. CPU-TO-NWP TRANSMISSION WITH PPUT MODEL 83

CPU. As a Write Combining Buffer (WCB) is full, it is flushed to the memory
system generating a unique burst transfer with a payload of 64 Byte (the size of
a cache-line). Write Combining Buffer (WCB)s may be flushed also for other
reasons, like de-scheduling of threads or because of an interrupt. This may cause
out-of-order issuing of store-operations, and mixing items of two different WC-
buffers, which are then written into the FPGA with a different oder, corrupting the
integrity of the message. To control flushing of WC buffers, and enforce order-
ing I use memory-fence instructions, see code in figure 5.5. Two blocks of four
16-Bytes items are first moved from memory to SSE registers, and then stored to
memory. At end of each store block, a memory fence is issued to force the flush
of the WC buffer and keep the order of stores. This requires also a mutex to avoid
interleaving of items issued by different threads.

pthread_mutex_lock () ;

xmm0 = _mm_load_si128 ((__m128i ∗) uoff+0) ;
xmm1 = _mm_load_si128 ((__m128i ∗) uoff+1) ;
xmm2 = _mm_load_si128 ((__m128i ∗) uoff+2) ;
xmm3 = _mm_load_si128 ((__m128i ∗) uoff+3) ;

_mm_stream_si128 ((__m128i ∗) koff+0 , xmm0) ;
_mm_stream_si128 ((__m128i ∗) koff+1 , xmm1) ;
_mm_stream_si128 ((__m128i ∗) koff+2 , xmm2) ;
_mm_stream_si128 ((__m128i ∗) koff+3 , xmm3) ;

_mm_sfence () ;

xmm0 = _mm_load_si128 ((__m128i ∗) uoff+4) ;
xmm1 = _mm_load_si128 ((__m128i ∗) uoff+5) ;
xmm2 = _mm_load_si128 ((__m128i ∗) uoff+6) ;
xmm3 = _mm_load_si128 ((__m128i ∗) uoff+7) ;

_mm_stream_si128 ((__m128i ∗) koff+4 , xmm0) ;
_mm_stream_si128 ((__m128i ∗) koff+5 , xmm1) ;
_mm_stream_si128 ((__m128i ∗) koff+6 , xmm2) ;
_mm_stream_si128 ((__m128i ∗) koff+7 , xmm3) ;

_mm_sfence () ;

pthread_mutex_unlock () ;

Figure 5.5: Implementation of PPUT method to exploit the Write Combining
Buffer (WCB). 64 Bytes of data are loaded from memory to registers with using
_mm_load_si128() intrinsics and then stored to WCB using the _mm_stream_si128() in-
trinsic. The _mm_sfence() intrinsics serializes the use of WCB, granting the order of the
transaction to the PCI Express link between CPU and FPGA.

84 CHAPTER 5. RESULTS AND BENCHMARKS

Using this approach, and neglecting the time to check the status of the trans-
mission fifos, I write 64 Bytes every ≈ 124 ns, see figure 5.6, which translates to
a CPU-to-FPGA bandwidth of ≈ 0.516 GB/s.

BW =
64Bytes

124ns
= 0.516GB/s

Figure 5.6: Tracing at the FPGA boundaries of the PCI Express transactions issued by
the code in figure 5.5, four _mm_stream_si128() result in a 64 Bytes TLP every 124 ns.

To overcome the problem of unpredictability of flush of WC-buffers, the tx-
Fifo has been implemented as a reorder-buffer, see section 3.2.2, an addressable
memory capable to keep order of the 16-Bytes data-items issued by the CPU. The
reorder buffer module is implemented using a memory called DATA_MEM and a
fifo called RDY_FIFO. The lower three bits of the PCI-e address are used to ad-
dress the data memory to stores the 16-Bytes data-items into lines of 128-Bytes.
As one memory-line is filled, i.e. one TNW-packet is ready, the address is pushed
into the address-ready fifo. As txLink would pop a TNW-packet, an address is
popped-out from the address-ready fifo, and it is used to read one row of the data
memory. Use of reorder buffer eliminates the overhead of fence operations, WC-
buffers can be fully or partially flushed with any order, and the CPU can use all
WC-buffers available. Using this approach the CPU issues in average, a PCI-
e write of 64-Bytes every 24 ns, see fig 5.7, corresponding to a CPU-to-FPGA
bandwidth of 2.667 GB/s.

BW =
64Bytes

24ns
= 2.667GB/s

Taking into account this limit I obtain:
The traversal-time of the Network Processor, the time needed to move a packet

of 128B from the PCIE-RX interface to the PCI-TX interface of the peer, including
the traversal time of the PHYs and the cable, is 596 ns, see figure 5.8.

5.4. CPU-TO-NWP TRANSMISSION WITH NGET MODEL 85

Figure 5.7: Tracing at the FPGA boundaries of the PCI Express transactions using Write
Combining (WC) without fences among packets and the re-order buffer inside the FPGA,
four _mm_stream_si128() result in a 64 Bytes TLP every 24 ns.

Firmware Inbound Bandwidth Efficiency
no-WC 0.133 GB/s 4.6 %
with-WC 0.516 GB/s 17.7 %
WC+ROB 2.667 GB/s 91.7 %

Table 5.2: CPU to FPGA bandwidth achieved by the three PPUT approaches.

5.4 CPU-to-NWP Transmission with NGET Model
In this section I present the results of my implementation of the NGET model,
explained in section 3.1, focusing on latency and bandwidth of the PCI Express
link among CPU and NWP.

NGET operation is based on Direct Memory Access (DMA). The CPU passes
to NWP the memory-addresses of data to be sent that will interact with the mem-
ory controller to retrieve data to be sent independently from the CPU. Data to
be sent must to be moved from the user-buffer into the NGET-buffer, a memory
area allocated by the kernel and re-mapped into user-space to be accessible by the
application, then one or more DMA requests are issued to the Network Processor
until the whole message has not been sent.

The DMA module supporting NGET operations with the following features:

• 8-command fifo with a maximum length of 1024 DW each (4 Kbytes)

• pci-read requests are popped-out from the command-fifo and issued by the
FPGA one after the other

• a notify item is issued after all completion transactions have been received

• no check is implemented on txFifo status before issuing a command

86 CHAPTER 5. RESULTS AND BENCHMARKS

Figure 5.8: 596 ns is the traversal-time of the Network Processor (NWP) including the
CPU-interface, the Torus Network link and two PHYs.

• no support for back-pressure is implemented

• max of 8 tags are used

In figure 5.9 is shown the behavior of a NGET operation:

Figure 5.9: Timing of the NGET operations traced inside the FPGA.

1. the CPU issues a NGET command at time 0

2. after 60 ns POC issues a read request to the memory controller

3. after 512 ns completion packets arrive

4. at time 936 the notify for NGET is sent to the CPU

The latency of NGET has been measured issuing 1000 NGET transactions
with the minimum data-size for the Network Processor, 128 Bytes, and calculat-
ing the average time among them, see the code in figure 5.10, the time has been
calculated considering:

5.4. CPU-TO-NWP TRANSMISSION WITH NGET MODEL 87

for (iter=0; iter < 1000 ; iter++) {

rdtscpll (startTick , aux) ;

/ / Move d a t a from use r−s p a c e t o NGET−b u f f e r and
/ / i s s u e t h e t r a n s a c t i o n t o \ ac {NWP}
nid = ftnwNgetSend (lid , vcid , &txbuf , txoff , nid , msglen) ; ;

/ / p o l l f o r NGET n o t i f i c a t i o n
ftnwNgetPoll (nid) ;

rdtscpll (endTick , aux) ;

}

Figure 5.10: Code to benchmark NGET latency.

• the data movement from user-buffer to kernel-buffer

• the issue of the NGET command to NWP

• wait for the notification about the transaction has been carried-out

The function ftnwNgetPoll() features the _mydelay() routine used to intro-
duce a delay (as active wait of CPU) in the loop waiting for the notification, to
avoid/reduce conflicts accessing the memory.

In the following table I summarized the results of the tests with various values
of delay and payload of 128 Bytes:

delay (µsec) min (µsec) max (µsec) avg (µsec)
0 1.68 2.83 1.71

0.125 1.68 3.18 1.71
0.250 1.68 2.30 1.69
0.500 1.60 2.17 1.61
1.000 2.13 3.14 2.14
1.500 1.59 3.12 1.61
1.700 1.80 3.49 1.81
2.000 2.09 3.90 2.10

88 CHAPTER 5. RESULTS AND BENCHMARKS

In figure 5.11 I report the latencies measured during 1000 tests with delay set
to zero.

Figure 5.11: NGET latencies over 1000 measurements with delay=0 and payload=128B.

In the table 5.3 I report the time of NGET as function of payloads. In the last
column I report the corresponding bandwidth.

In figure 5.12 is shown a snapshot of a NGET operation with a payload size
of 1024 Bytes:

• at time 0 (corresponding to the bold black bar) the NGET command arrives

• at time 0 + 60 ns the FPGA issues the memory read

• at time 0 + 584 ns the data arrives

• at time 0 + 948 ns the notify is sent to the CPU

The FPGA inbound bandwidth is (924− 584)/1024 = 3.01 GB/s.

5.4. CPU-TO-NWP TRANSMISSION WITH NGET MODEL 89

size (Bytes) min (µsec) max (µsec) avg (µsec) Bw (GB/s)
128 1.69 1.83 1.71 0.075
256 1.74 1.81 1.76 0.146
512 1.83 1.90 1.85 0.277

1024 2.05 3.55 2.09 0.489
2048 2.56 3.28 2.59 0.791
4096 3.21 3.44 3.27 1.253

Table 5.3: NGET time as function of payload (100 samples).

Figure 5.12: Snapshot of NGET with payload=1024 B.

To benchmark the bandwidth achieved with the NGET model, I implemented
a “dense transactions” scheme to hide the latency effects, see code in figure 5.13,
transactions are started in a loop such that during each iteration are started N/2
new transactions and waiting for N/2 other transactions to be completed. The
maximum number of transactions in flight is equal to N . I run this scheme for
several message-size from 128 Bytes to 4 Kbytes.

In the following tables I report the results for N=4 and N=7:

The link between CPU and NWP is composed by 8 lanes PCI Express Gen. 2
for a maximum raw bandwidth of 40Gbit/s; due to the 8b/10b encoding required
to reconstruct the transmission clock on the receiving side, each Byte (8 bits) sent

90 CHAPTER 5. RESULTS AND BENCHMARKS

rdtscpll (startTick , aux) ;

for (1 . . N) {
copy_data_toNget_dmaBuffer (nid) ;
issue_Nget_request (nid) ;
nid = nid + 1 ;

}

for (iter=0; iter < 1000 ; iter++) {
for (0 . . 8−N) {

copy_data_toNget_dmaBuffer (nid) ;
issue_Nget_request (nid) ;
nid = nid + 1 ;

}

for (0 . . 8−N) {
wait_nget_notify (ngetWaitId) ;
ngetWaitId = ngetWaitId + 1 ;

}
nid = nid % 8 ; ngetWaitId = ngetWaitId % 8 ;

}

for (0 . . 8−N) {
wait_nget_notify (ngetWaitId) ;
ngetWaitId = ngetWaitId + 1 ;

}

rdtscpll (endTick , aux) ;

Figure 5.13: Code to benchmark NGET bandwidth.

5.4. CPU-TO-NWP TRANSMISSION WITH NGET MODEL 91

Size (Bytes) BW (GB/s)
128 0.420
256 0.862
512 1.439

1024 2.603
2048 3.136
4096 3.147

Table 5.4: NGET Bandwidth N=4, 1000 samples.

Size (Bytes) BW (GB/s)
128 0.450
256 0.869
512 1.596

1024 2.734
2048 3.122
4096 3.143

Table 5.5: NGET Bandwidth N=7, 1000 samples.

is encoded on the lanes with 10 bits, for a maximum bandwidth of

(8/10) ∗ 40Gbit/s = 32Gbit/s = 4GByte/s

The data transfer unit of the PCIe protocol is the TLP (Transaction Layer Packet)
that is composed by

• 1 Byte of START character

• 2 Bytes of sequence number to detect missed or dropped packets

• 12 or 16 Bytes of header depending on the TLP type (3DW or 4DW) 3

• from 0 to 4096 Bytes of payload

• optionally 4 Bytes of ECRC for end-to-end error detection

3In PCI Express Protocol the 3DW (Double Word) header is used when the device has been
mapped in a 32 bits address space, while the 4DW header is used in case of 64 bits address space.

92 CHAPTER 5. RESULTS AND BENCHMARKS

• 4 Bytes of LCRC for the error detection on the TLP

• 1 Byte of END character

in the computing-system I consider, I mapped the nget-buffer in a 64 bits ad-
dress space, resulting in a 4DW TLP-header (16 Bytes size), the ECRC has not
been used, and the DMA mode of the Intel CPU in my setup, has been set for a
maximum burst payload of 128-Bytes, so the overall TLP-size is 1+2+16+128+
4 + 1 = 152Bytes with a payload/TLP efficiency-ratio of 128/152 = 0.842, the
maximum usable bandwidth over the link results in

0.842 ∗ 4GBytes/s = 3.386GBytes/s

comparing this upper-bound with the bandwidths in tables 5.4 and 5.5 with a
payload of 4 KBytes, the efficiency of my implementation of the NGET method
reaches ≈ 93% of the bandwidth available between the CPU and the Network
Processor.

5.5 CPU-to-CPU Transmission Benchmarks
In this section I will present the benchmarks on the link among Network Proces-
sors, comparing my implementations of PPUT and NGET models. Both models
has been benchmarked using code based on the “libftnw” library and then using
code that directly re-implements the libftnw features reducing software overheads.
The CPU-to-CPU bandwidths and transmission-times for PPUT and NGET have
been measured using a single threaded program that sends/receives data over
TNW, which links are physically looped-back.

5.5.1 Benchmarks Using libftnw
The transmission time is measured at code level between the function-call to
send data, ftnwSend for PPUT method and ftnwNgetSend/ftnwNgetPoll for the
NGET’s, and the function-call that polls for data arrival, ftnwPoll.

Table 5.6 and 5.7 show the transmission times and bandwidth depending on
packet size respectively for PPUT and NGET methods.

The transmission time for the PPUT method is fitted by

f(x) = 1.561 + 0.001 ∗ x

5.5. CPU-TO-CPU TRANSMISSION BENCHMARKS 93

for (iter = 0 ; iter < niter ; iter++) {
ftnwCredit () ; / / s e t c r e d i t

rdtscll (startTick) ;

#ifdef PPUT
ftnwSend () ; / / send u s i n g PPUT method

#endif

#ifdef NGET
ftnwNgetSend () ; / / send u s i n g NGET method
ftnwNgetPoll () ; / / p o l l f o r DMA c o m p l e t i o n

#endif

ftnwPoll () ; / / p o l l f o r d a t a a r r i v a l

rdtscll (endTick) ;
}

Figure 5.14: Code for CPU-to-CPU transmission time and bandwidth measurement.

PPUT
Pckt size (B) 128 256 512 1024 2048 4096 8192 16384 32768

time (µsec) 1.674 1.815 2.178 2.782 3.891 6.299 11.012 20.675 39.406
BW (GB/s) 0.076 0.141 0.235 0.368 0.526 0.650 0.744 0.792 0.832

Table 5.6: PPUT transmission times and bandwidths depending on packet size.

while the transmission time for the NGET method is fitted by

f(x) = 2.103 + 0.001 ∗ x

resulting in a latency of 1.561 microseconds for the PPUT and 2.103 for the
NGET.

The Torus Network (TNW) implements a custom communication protocol,
over 4 PCIe Gen1 lanes as physical layer. The custom protocol allows to send only
packets with a fixed size payload of 128 Bytes, preceded by a 4 Bytes header and
followed by a 4 Bytes Cyclic Redundancy Check (CRC) for the error detection;
totally a packet is composed by 4+128+4 = 136Bytes, for a payload per packet
ratio of 128/136 = 0.941.

As previously told, the physical link is composed by 4 PCIe Gen1 lanes, for
a maximum raw bandwidth of 10Gbit/s; due to the 8b/10b encoding necessary to

94 CHAPTER 5. RESULTS AND BENCHMARKS

NGET
Pckt size (B) 128 256 512 1024 2048 4096 8192 16384 32768

time (µsec) 2.612 3.538 3.806 4.109 4.997 8.051 13.162 24.172 141.113
BW (GB/s) 0.059 0.105 0.188 0.292 0.438 0.570 0.670 0.728 0.764

Table 5.7: NGET transmission times and bandwidths depending on packet size.

Figure 5.15: CPU-to-CPU transmission time measurement of PPUT and NGET methods.

reconstruct the transmission clock on the receiving side, each Byte (8 bits) sent is
encoded on the lanes with 10 bits, for a maximum bandwidth of

(8/10) ∗ 10Gbit/s = 8Gbit/s = 1GByte/s

Considering the maximum raw bandwidth and the payload per packet ratio, the
maximum usable bandwidth over the link results in

0.941 ∗ 1GBytes/s = 0.941GBytes/s

this upper-bound of the bandwidth will be used as reference to compare the effi-
ciency of my implementations of the PPUT and NGET at TNW layer.

5.5. CPU-TO-CPU TRANSMISSION BENCHMARKS 95

Figure 5.16: CPU-to-CPU bandwidth measurements of PPUT and NGET methods, the
purple line at 0.941 GBytes/s indicates the max usable bandwidth of the TNW link.

5.5.2 Benchmarks Not Using libftnw
The CPU-to-CPU bandwidth and transmission time are measured using a single
threaded program (testDMA8) that sends/receives data over TNW, which links
are physically looped-back. Differently from testDMA6, testDMA8 do not use
the functions exported by libftnw to send/receive data, but re-implements the fea-
tures directly into the code, to reduce software overhead. The CPU-to-CPU trans-
mission path is split into 3/4 sections, depending on the transmission method, and
each time must to be considered as the elapsed from a common start.

PPUT time is subdivided as follows:

• SEND consider the transfer time between CPU-registers to PCIe

• POLL consider SEND time plus

– transfer time between CPU and FPGA

– transfer time between FPGA and FPGA

– transfer time between FPGA and CPU

– polling time

96 CHAPTER 5. RESULTS AND BENCHMARKS

Method BW (GB/s) max%

PPUT 0.832 88
NGET 0.764 81

Table 5.8: Comparison between PPUT and NGET methods, the max bandwidth is mea-
sured with a packet size of 32KB, compared in percentile with the max bandwidth (0.941
GBytes/s) achievable in the TNW link.

• PCPY consider POLL time plus the copy of the data between DMA buffer
to USR buffer

NGET time is subdivided as follows:

• DCPY consider the copy of the data between USR buffer to DMA buffer

• SEND consider DCPY time plus

– time to format and transfer the request to the FPGA

– transfer time between FPGA and CPU of the memRead

– transfer time between CPU and FPGA of the completion

– transfer time between FPGA and CPU of the notify

• POLL consider SEND time plus

– transfer time between CPU and FPGA

– transfer time between FPGA and FPGA

– transfer time between FPGA and CPU

– polling time

• PCPY consider POLL time plus the copy of the data between DMA buffer
to USR buffer

The firmware used for the tests is the ftnww-0421-A1B0, running on the board
anode033.

Tables 5.9 and 5.10 show the transmission times and bandwidth depending on
packet size respectively for PPUT and NGET methods.

5.5. CPU-TO-CPU TRANSMISSION BENCHMARKS 97

for (iter = 0 ; iter < niter ; iter++) {
ftnwCredit () ; / / s e t c r e d i t
rdtscp (startlow , starthigh , startaux) ; / / START TIME COUNT
. . .
for (i = 0 ; i < len ; i++) { / / send u s i n g PPUT method

vtmp0 = _mm_load_si128 ((__m128i ∗) uoff_tx+(i< <3)+0) ;
. . .
_mm_stream_si128 ((__m128i ∗) koff_tx+(i< <3)+7 , vtmp3) ;

}
_mm_sfence () ;
/ / GET SEND TIME FOR PPUT
rdtscp (endlow [SEC_SEND] , endhigh [SEC_SEND] , endaux [SEC_SEND]) ;

. . .
do { / / p o l l f o r d a t a a r r i v a l
pollcnt−−;

} while ((∗notify_a != POLLMAGIC) && (pollcnt > 0)) ;
/ / GET POLL TIME
rdtscp (endlow [SEC_POLL] , endhigh [SEC_POLL] , endaux [SEC_POLL]) ;

for (i = 0 ; i < len ; i++) / / copy dmaBuffer t o r x B u f f e r
. . .
/ / GET PCPY TIME
rdtscp (endlow [SEC_PCPY] , endhigh [SEC_PCPY] , endaux [SEC_PCPY]) ;

}

Figure 5.17: Code for PPUT method CPU-to-CPU transmission times and bandwidths
measurement.

98 CHAPTER 5. RESULTS AND BENCHMARKS

for (iter = 0 ; iter < niter ; iter++) {
ftnwCredit () ; / / s e t c r e d i t
rdtscp (startlow , starthigh , startaux) ; / / START TIME COUNT
. . .
/ / send u s i n g NGET method
for (i = 0 ; i < len ; i++) / / copy t x B u f f e r t o dmaBuffer
. . .
/ / GET DCPY TIME
rdtscp (endlow [SEC_DCPY] , endhigh [SEC_DCPY] , endaux [SEC_DCPY]) ;
. . .
while (i < lendw) {

. . .
_mm_stream_si128 ((__m128i ∗) (ftnw_descr−>racbuf + DMAREQ) ,

_mm_set_epi32 (0 , 0 , (int) (regval >> 3 2) , (int) (regval & 0xFFFFFFFF))) ;
. . .

}
do { / / p o l l f o r DMA c o m p l e t i o n
dmapollcnt−−;

} while ((∗dmanotify_a != POLLMAGIC) && (dmapollcnt > 0)) ;
/ / GET SEND TIME FOR NGET
rdtscp (endlow [SEC_SEND] , endhigh [SEC_SEND] , endaux [SEC_SEND]) ;

}

do { / / p o l l f o r d a t a a r r i v a l
pollcnt−−;

} while ((∗notify_a != POLLMAGIC) && (pollcnt > 0)) ;
/ / GET POLL TIME
rdtscp (endlow [SEC_POLL] , endhigh [SEC_POLL] , endaux [SEC_POLL]) ;

for (i = 0 ; i < len ; i++) / / copy dmaBuffer t o r x B u f f e r
. . .
/ / GET PCPY TIME
rdtscp (endlow [SEC_PCPY] , endhigh [SEC_PCPY] , endaux [SEC_PCPY]) ;

}

Figure 5.18: Code for NGET method CPU-to-CPU transmission times and bandwidths
measurement.

5.5. CPU-TO-CPU TRANSMISSION BENCHMARKS 99

Pckt size (B) 128 256 512 1024 2048 4096 8192 16384 32768
SEND time 0.015 0.018 0.127 0.143 0.489 1.200 2.742 5.849 12.198
SEND BW 8.389 12.979 4.045 7.157 4.192 3.413 2.988 2.801 2.686
POLL time 1.656 1.792 2.063 2.603 3.690 5.959 10.221 18.886 36.253
POLL BW 0.077 0.143 0.248 0.393 0.555 0.687 0.801 0.868 0.904
PCPY time 1.734 1.876 2.160 2.769 3.917 6.471 11.222 20.354 39.424
PCPY BW 0.074 0.136 0.237 0.370 0.523 0.633 0.730 0.805 0.831

Table 5.9: PPUT Method, Transmission times and bandwidth per each section, depending
on packet size. Times in µsec, bandwidth in GB/s

Pckt size (B) 128 256 512 1024 2048 4096 8192 16384 32768
DCPY time 0.016 0.020 0.030 0.050 0.164 0.352 0.671 1.332 2.808
DCPY BW 8.191 12.531 16.834 20.324 12.513 11.645 12.202 12.304 11.668
SEND time 1.649 1.704 1.874 2.013 2.389 3.186 4.795 8.073 14.732
SEND BW 0.078 0.150 0.273 0.509 0.857 1.286 1.708 2.030 2.224
POLL time 2.232 2.364 2.724 3.262 4.387 6.707 11.368 20.713 39.552
POLL BW 0.057 0.108 0.188 0.314 0.467 0.611 0.721 0.791 0.828
PCPY time 2.311 2.449 2.892 3.433 4.601 7.099 12.148 22.270 42.630
PCPY BW 0.055 0.105 0.177 0.298 0.445 0.577 0.674 0.736 0.769

Table 5.10: NGET Method, Transmission times and bandwidth per each section, depend-
ing on packet size. Times in µsec, bandwidth in GB/s

The transmission time for the PPUT method, excluding PCPY time, is fitted
by

f(x) = 1.538 + 0.001 ∗ x

while the transmission time for the NGET method, excluding PCPY time, is
fitted by

f(x) = 2.065 + 0.001 ∗ x

resulting in a latency of 1.538 microseconds for the PPUT and 2.065 for the
NGET.

100 CHAPTER 5. RESULTS AND BENCHMARKS

Figure 5.19: CPU-to-CPU transmission times measurement of PPUT method, the red
spots are the time to send data from CPU registers to PCIe, the blue ones include the time
to send data over TNWs and DMA time to deliver to system memory, the light-blue include
also the time to copy data from DMA buffer to USR buffer.

5.6 Transmission Test on the AuroraScience Machine
In this section will be shown the transmission test done on the AuroraScience ma-
chine installed in Trento, reporting the measures of transmission time and band-
width on up to four links contemporary. The test has been limited to four links
out of six of the Torus Network because, in the days I run the test, the connec-
tions on the Z directions of the AuroraScience machine were not yet available.
This test has been done using the Network-Processor-firmware marked as “Pro-
duction” that implements the TXFIFO as a queue and not as a re-order buffer, see
section 5.3.

The hardware setup for the test has been the following:

• Nodecard revision: E

• CPU: X5680 @ 3.33GHz

• Nodecards: anode248, anode247, anode240

• Firmware revision: ftnww-0410-41A0-E

5.6. TRANSMISSION TEST ON THE AURORASCIENCE MACHINE 101

Figure 5.20: CPU-to-CPU bandwidth measurement of PPUT method, the blue line shows
the bandwidth achievable without considering the time to copy data from DMA buffer to
USR buffer, that time is considered in the light-blue one. The purple line at 0.941 GBytes/s
indicates the max usable bandwidth of the TNW link.

This test is based on the communication concept called “ping-pong”, the basic
idea is that two entities, called INITIATOR and REPEATER, exchange a message;
INITIATOR sends a message to the REPEATER that sends it back, see figure
5.23. Calculating the “round-trip time” (the time the message takes to be sent
and come-back), is possible to know the “transmission time”, that is with good
approximation the half of the round-trip. Also known the message-size I can
calculate the “bandwidth” as the message-size divided by the transmission time.

Replicating the ping-pong at the same time among all the links that I want to
test, I can calculate the “aggregate bandwidth” that is the total amount of data
sent among all links divided by the transmission time.

I run the ping-pong test using one, two, three and four links at the same time,
sending messages of variable length, from 128 Bytes up to 256 KBytes, iterating
each transmission thousand times to limit the fluctuations. The resulting transmis-
sion times, calculated by the INITIATOR, is then used to calculate the aggregate
bandwidth.

The test on one link is done running one thread on the INITIATOR node that
communicates with another thread on the REPEATER node, both sending mes-

102 CHAPTER 5. RESULTS AND BENCHMARKS

Figure 5.21: CPU-to-CPU bandwidth measurement of NGET method, the green line is
the time to copy data from USR buffer to DMA buffer, the red lines includes time to send
data from CPU registers to PCIe, the blue one includes the time to send data over TNWs
and DMA time to deliver them to system memory, the light-blue includes also the time to
copy data from DMA buffer to USR buffer.

sages on X+ and receiving on X-, for this reason the REPEATER is called REP_X;
refer to figure 5.24, red path.

The test on two links is done involving three nodes; the INITIATOR node
instantiates two threads, one communicating on X direction as the same as one-
link-test, while the other communicating on Y direction with a different node
respect to REP_X; the communications on Y occur sending messages on Y+ and
receiving on Y-, for this reason the REPEATER is called REP_Y; refer to figure
5.24, red and green paths.

Consequently the tests on three and four links are done instantiating respec-
tively three and four INITIATOR-threads on the same node, communicating with
the peer thread on one of the repeater. In the three-links case the REP_X in-
stantiates two REPEATER-threads, one receiving on X- and sending-back on X+,
while the other is receiving on X+ and sending-back on X-; REP_Y instantiates
one REPEATER-thread receiving on Y+ and sending-back on Y-; refer to figure
5.24, red, green and blue paths. In the four-links case the REP_X instantiates
two REPEATER-threads, one receiving on X- and sending-back on X+, while

5.6. TRANSMISSION TEST ON THE AURORASCIENCE MACHINE 103

Figure 5.22: CPU-to-CPU bandwidth measurement of NGET method, the blue line shows
the bandwidth achievable without considering the time to copy data from DMA buffer to
USR buffer, that time is considered in the light-blue one. The purple line at 0.941 GBytes/s
indicates the max usable bandwidth of the TNW link.

the other is receiving on X+ and sending-back on X-; REP_Y instantiates also
two REPEATER-threads, one receiving on Y+ and sending-back on Y-. while the
other is receiving on Y+ and sending-back on Y-; refer to figure 5.24, red, green,
blue and magenta paths.

The configuration of the nodes for this test has been the following:

• anode248 as INITIATOR (INIT)

• anode247 as REPEATER in X (REP_X)

• anode240 as REPEATER in Y (REP_Y)

In the cases where more threads communicate over different links at the same
time:

1. each thread detects his own transmission time that is, at least little varia-
tions, the same for all the threads

2. the communications are fully overlapped

104 CHAPTER 5. RESULTS AND BENCHMARKS

Figure 5.23: Ping-Pong: INITIATOR sends a message to the REPEATER that sends it
back.

Figure 5.24: Conceptual configuration for the tests on the four links.

considering point 1 I calculate the minimum and the maximum transmission
time per message-length.

The bandwidth on each link is calculated as the “total amount of data sent” on
a link divided by the “transmission time”.

In this test the total amount of data sent (totData) is calculated as the double
of the length of the message sent (round-trip = 2 * msgLen), multiplied by the
number of iterations done (nIter) and also multiplied by the number of active links
(nLinks):

totData = 2 * msgLen * nIter * nLink

while the transmission time, due to point 2, can be considered in a conservative

5.6. TRANSMISSION TEST ON THE AURORASCIENCE MACHINE 105

manner as the maximum of the transmission times measured by all INITIATOR-
threads.

Table 5.11 shows the minimum and the maximum transmission times per
message-length, subdivided by number of active links.

msg len KB 1 link 2 links 3 links 4 links
min max min max min max

0.12 1.69 1.72 1.74 1.75 1.82 1.78 1.83
0.25 2.04 2.10 2.12 2.14 2.16 2.16 2.17
0.50 2.53 2.63 2.64 2.67 2.69 2.69 2.72
1.00 3.68 3.67 3.69 3.76 4.26 4.11 4.18
2.00 5.58 5.72 5.77 5.86 6.01 7.48 7.53
4.00 9.45 9.86 9.87 10.88 11.39 12.14 12.18
8.00 17.36 17.56 18.09 18.96 19.61 20.77 20.86
16.00 33.82 33.99 35.15 34.63 37.15 37.42 37.95
32.00 68.32 69.08 69.12 68.92 72.22 71.40 74.24
64.00 131.03 131.96 136.25 134.82 142.71 143.62 144.12
128.00 271.45 265.48 273.80 269.66 285.79 286.48 288.06
256.00 528.60 531.75 547.92 540.66 572.25 568.43 568.99

Table 5.11: Transmission times in micro-seconds (µsec) for one, two, three and four links
active at the same time.

Plots of the max transmission time are fitted by the following lines:

• 1-link : f(x) = 1.45 + 2.07x

• 2-links: f(x) = 1.19 + 2.13x

• 3-links: f(x) = 1.53 + 2.23x

• 4-links: f(x) = 2.52 + 2.22x

Table 5.12 shows the aggregate bandwidths per message-length, subdivided
by number of active links. Remember that the aggregate bandwidth is calculated
conservatively using the maximum transmission time.

106 CHAPTER 5. RESULTS AND BENCHMARKS

Figure 5.25: Max Transmission time in micro-seconds (µsec) for one, two, three and four
links active at the same time.

Scalability over multi-nodes

5.6. TRANSMISSION TEST ON THE AURORASCIENCE MACHINE 107

msg len KB 1 link 2 links 3 links 4 links
0.12 0.08 0.15 0.21 0.28
0.25 0.13 0.24 0.36 0.47
0.50 0.20 0.39 0.57 0.75
1.00 0.28 0.55 0.72 0.98
2.00 0.37 0.71 1.02 1.09
4.00 0.43 0.83 1.08 1.35
8.00 0.47 0.91 1.25 1.57
16.00 0.48 0.93 1.32 1.73
32.00 0.48 0.95 1.36 1.77
64.00 0.50 0.96 1.38 1.82
128.00 0.48 0.96 1.38 1.82
256.00 0.50 0.96 1.37 1.84

Table 5.12: Aggregate Bandwidth in GB/s for one, two, three and four links active at the
same time.

108 CHAPTER 5. RESULTS AND BENCHMARKS

Figure 5.26: Aggregate Bandwidth for one, two, three and four links active at the same
time.

Chapter 6

Conclusions

In this thesis I have discussed the design and the implementation of an FPGA-
Based Network Processor for scientific computing, specifically designed for appli-
cations in theoretical physics such as Lattice Quantum ChromoDinamycs (LQCD)
and fluid-dynamics based on the Lattice Boltzmann (LBM) approach; state-of-
the-art programs in this (and other similar) applications have a large degree of
available parallelism, that can be easily exploited on massively parallel systems,
provided the underlying communication network has not only high-bandwidth but
also low-latency.

The overall architecture of the Network Processor (NWP) has been divided
into three independent layers: the physical layer (PHY),The “Torus Network”
layer (TNW) and the “Input Output Controller” layer (IOC). This modularity al-
lows to implement separately each of the layers, so the NWP can be more easily
tailored to specific processor architectures or signalling technologies; equally im-
portant, each of the layers can be independently.

Building on previous work, I have designed in details, built and tested in hard-
ware, firmware and software an implementation of this structure, tailored for the
most recent families of multi-core processors manufactured by Intel. The phys-
ical layer (PHY) has been implemented using a commercial silicon-component,
the PMC-Sierra PM8354, a serializer/de-serializer device (SERDES) who man-
ages the electrical signaling of the link connecting adjacent Network Processors.
I tested the reliability of the physical link both on to recent experimental mas-
sively parallel machines (QPACE and AuroraScience) developed by the LQCD
community. The “Torus Network” layer (TNW) is the main logical network en-
gine, providing access to the three-dimensional toroidal network. The present
version of TNW is based on Field Programmable Gate Array (FPGA) technology,

109

110 CHAPTER 6. CONCLUSIONS

to reduce development costs and time, and is fully written in a VHDL code.
This layer is based on the “Two-Sided Communication” model, in which both

entities at the end-points of a link cooperate to carry-out the communications;
each SEND operation issued by one node, must be matched by an equivalent
RECEIVE request at the other side of the link, otherwise the communication is not
possible; this model – while lacking full generality – allows a significant reduction
in communication latency in all cases in which the pattern of communication is
fully known to both communication partners.

The TNW contains the buffers to send and receive data as well as a custom
protocol to grant reliable communications over an unreliable physical link. TNW
has been designed to work with multi-core architectures, so it implements the
virtual-channels mechanism to allow independent communications among pairs
of cores at the end-points of the link, sharing the same physical connection. I
extended or re-engineered some VHDL modules of this layer, starting from the
implementation that had been developed by the QPACE groups and extensively
tested the functionalities and the reliability of this layer.

The third element of the NWP, is “Input Output Controller” layer (IOC). This
is the interface between the CPU I/O sub-system and the Torus Network. One of
the key contribution of the present work is the design, implementation and test of
a version of the IOC able to manage the PCI Express transaction-methods adopted
by the Intel architectures, specifically the “Programmed Input Output” (PIO) and
the “Direct Memory Access” (DMA). The former method requires that the CPU
actively moves data from memory to devices; this prevents the CPU from perform-
ing other useful work, while the IO transaction is in progress. DMA on the other
hand let the communication devices to independently retrieve data from memory
after being instructed by the CPU; in this case the CPU can perform other tasks
without being involved in data movement. A key feature of this IOC design is the
presence of a a re-order buffer that allows to take advantage of the “Write Com-
bining” capabilities of the Intel architecture; this increase substantially bandwidth
on the link.

On the software side, I developed and test a device driver for the Linux oper-
ating system to access the NWP device, as well as a system library to access the
network device from user-applications in an efficient way and with small over-
head.

I used these system-level software components to develop a suite of micro-
benchmarks and application-benchmarks and measured accurately latency and
bandwidth of this communication link.

This thesis demonstrates the feasibility of a network infrastructure that satu-

111

rates the maximum bandwidth of the I/O sub-systems available on recent CPUs,
and reduces communication latencies to values very close to those needed by the
processor to move data across the chip boundary.

I have experimented both at the firmware and software layer, trying several
options allowed by the Intel architecture to move data between memory and de-
vices. The combination of “Write Combining” memory-setting, “Non-Temporal”
instructions and re-mapping of kernel-buffers in user-space has given the best re-
sults in terms of both bandwidth and latency. These results are close to the ar-
chitectural limits of state-of-the-art CPUs, that are optimized for bandwidth and
throughput, but are far from being the optimal solution for latency-bounded ap-
plications. Today the latency problem is clearly the most critical efficiency bottle-
neck in large multi-processor-systems, and one is led to believe that communica-
tion latency is not among the top priorities of silicon companies; any improvement
in this parameter that may become available in future processors will have a strong
impact on the structure of networks and on the overall performance of large par-
allel systems.

Future developments on NWP will lead to a more general layout, making its
layers fully autonomous of each other, and not dependent on a specific technol-
ogy. The FTNW project plans to work exactly in this direction, developing a a
communication core not directly dependent on any specific technology, and easily
portable onto several computing architectures. A future development of the Net-
work Processor can be the interconnection on a 3D-torus topology of computing-
accelerators such as the “Graphics Processing Units” (GPUs) or the emerging
“Many Integrated Core” (MIC). A further development to improve the NWP ca-
pabilities will be the support to “General Routing”, to allow communications be-
tween each node of the network, over nearest-neighbor links.

112 CHAPTER 6. CONCLUSIONS

Appendix A

NWP Registers Mapping

A.1 RX-Link Registers

0x0<l>00 RX_EXC RX exceptions

[00] RW 00000001 RX_FAULT_P from PHY
[01] RW 00000002 RX_FAULT_R from PHY
[02] RW 00000004 INTB from PHY
[03] RW 00000008 Timeout
[04] RW 00000010 Credit Fifo overrun, write while full
[05] RW 00000020 Credit size zero
[06] RW 00000040 Credit base address written while used
[07] RW 00000080 Notify base address written while used
[08] RW 00000100 Data received while offline
[09] RW 00000200 POC protocol error: unexpected done
[09] RW 00000400 POC protocol error: unexpected first
[12] RW 00001000 Invalid rCba arithmetics: carry into bit 32
[13] RW 00002000 Invalid rNba arithmetics: non-zero LSB in rNba
[16] RW 00010000 Last NAK: failed CRC (wErrC)
[17] RW 00020000 Last NAK: dirty data decoding (wErrD)
[18] RW 00040000 Last NAK: missed header, pending commit (wErrH)
[19] RW 00080000 Last NAK: failed write, data buffer full (wErrW)
[20] RW 00100000 Last NAK: timeout (wErrT)
Default: 0x00000003

0x0<l>01 RX_EXEN RX exceptions enable (RW)

Analog bits RX_EXC
Default: 0x000008FF

113

114 APPENDIX A. NWP REGISTERS MAPPING

0x0<l>02 RX_CMD

[07:00] RW 000000ff dirty decode ACK
[15:08] RW 0000ff00 dirty decode NAK
[23:16] RW 00ff0000 dirty decode RESTART
[31:24] RW ff000000 dirty decode IDLE
Default: 0x00000000

0x0<l>03 RX_DATA

[15:00] RW 0000ffff packets with CRC errors
[23:16] RW 00ff0000 packets with dirty data
[31:24] RW ff000000 packets with timeouts
Default: 0x00000000

0x0<l>04 RX_FLOW

[15:00] RW 0000ffff packets rejects for header commit
[31:16] RW ffff0000 packets rejected for failed data write
Default: 0x00000000

0x0<l>05 RX_RXH

[07:00] RW 000000ff counter of cycles with RXH(0)
[15:08] RW 0000ff00 counter of cycles with RXH(1)
[23:16] RW 00ff0000 counter of cycles with RXH(2)
[31:24] RW ff000000 counter of cycles with RXH(3)
Default: 0x00000000

0x0<l>06 Rx Fifo Status

[00] RO 00000001 Packet Buffer Not Empty
[01] RO 00000002 Packet Buffer ≥ half filled
[02] RO 00000004 Packet Buffer Full
[15:08] RO 0000ff00 Descriptor Fifos Not Empty
[23:16] RO 00ff0000 Credit Fifo Not Empty
[31:24] RO ff000000 Credit Fifos Full
Default: 0x00000000

0x0<l>07 Rx Control

[00] RW 00000001 Credit Fifo Hold
[01] RW 00000002 Credit Fifo Reset
Default: 0x00000000

0x0<l>1<c> Notify Base Address

[00] RW ffffffff Notify Base Address Bn of channel <c>
Default: 0x0fffffff

A.2. TX-LINK REGISTERS 115

0x0<l>2<c> Credit Fifo channel <c>

[15:00] WO 0000ffff Credit Address Cd of channel <c>
[23:16] WO 0fff0000 Credit Size (aligned to 128B) of channel <c>
[31:24] WO f0000000 Notify Address Cn

Default: empty

Note: this register is WO

0x0<l>2<c> Credit Base Address

[00] RW ffffffff Credit Base Address Bd of Channel <c>
Default: 0x0fffffff

A.2 TX-Link Registers

REG0 Tx Exceptions Status

[00] RW 00000001 TX_FAULT_P or TX_FAULTR from PHY
[01] RW 00000002 NAK counter overflow
[02] RW 00000004 restart counter overflow
[03] RW 00000008 feedback mismatch
[04] RW 00000010 invalid header (missing "first")
[05] RW 00000020 txFifo written while full
[06] RW 00000040 txFifo empty while packet send
[07] RW 00000080 txBuffer full
[08] RW 00000100 PIC data write while offline
[09] RW 00000200 fbIn accumulation
[10] RW 00000400 fbOut accumulation
[23:16] RW 00FF0000 last restart counter
[28] RO 10000000 txFifo not empty
[29] RO 20000000 txFifo not almost empty (≥ 8 pckts)
[30] RO 40000000 txFifo almost full
Default: 0x00000000

REG1 TX exceptions enable

[08:00] RW 000001FF enable of exceptions
[23:16] RW 00FF0000 restart limit
Default: 0x00ff01ff

116 APPENDIX A. NWP REGISTERS MAPPING

REG2 TX_CTRL

[00] RW 00000001 txLink offline
[01] RW 00000002 txLink reset
[02] RW 00000004 txLink reset Done
[04] RW 00000010 rxLink offline
[05] RW 00000020 rxLink reset
[06] RW 00000040 rxLink reset Done
[08] RW 00000100 rxClk DCM reset
[09] RW 00000200 rxClk DCM reset Done
[10] RW 00000400 rxClk DCM locked
[12] RW 00001000 PHY reset
[13] RW 00002000 PHY reset Done
[20] RO 00100000 txLink FSM not IDLE
[21] RO 00200000 txFifo not empty
[22] RO 00400000 txBuffer not empty
[24] RO 01000000 rxLink FSM not IDLE
[25] RO 02000000 rxBuffer FSM not IDLE
[26] RO 04000000 packet buffer not empty
[27] RO 08000000 descriptor fifo not empty
[28] RO 10000000 credit fifo not empty
Default: 0x00000011

REG3 TX_MDIO_R

[15:00] RW 0000FFFF Data (read)
[28:16] RW 1FFF0000 Address bits [12:0]
[29] RO 20000000 Busy
[31:30] RW C0000000 Address bits [15:14]
Default: 0x00000000

REG4 TX_MDIO_W

[15:00] RW 0000FFFF Data (to write)
[28:16] RW 1FFF0000 Address bits [12:0]
[29] RO 20000000 Busy
[31:30] RW C0000000 Address bits [15:14]
Default: 0x00000000

REG5 TX_CNT_NAK

[31:00] RW FFFFFFFF Total count of received NAK
Default: 0x00000000

REG6 TX_CNT_RESEND

[31:00] RW FFFFFFFF Total count of entries into resend mode
Default: 0x00000000

A.3. TB REGISTERS 117

A.3 TB Registers

REG0 TXCTRL

[00] RW 00000001 DGEN_EN endless data-gen enable
[01] RW 00000002 DGEN_FLAG data-gen flag: 0=RND, 1=SEQ
[02] RW 00000004 DGEN_CLEAR data-gen clear: 1= re-init data generator
[04] RW 00000010 PICSWITCH switch between dataGen and PIC
[08] RW 00000100 BACATXD change value of TXD bus to X"12345678"
[09] RW 00000200 BACATXC force value of TXC bus to X"A"
[14:12] RW 00007000 CHADDR channel address
[29:24] RW 1F000000 ONESHOTCNT one-shot data-gen counter and enable
DEFAULT VALUE = 0x00000000

Notes:

• writing the one-shot counter triggers send of the number of specified packets

• data sequence is reset after the end of one one-shot run and as the endless enable-bit
is de-asserted.

REG 1 RXCTRL

[00] RW 00000001 CHKEN data-check enable
[01] RW 00000002 CHKFLAG data-check flag : 0=RND, 1=SEQ
[04] RW 00000010 POCSWITCH switch between dataChk and POC
DEFAULT VALUE = 0x00000000

Note: CHKEN = ’0’ clear register RXERRCNT
REG2 TXFRAMECNT

[31:00] RO FFFFFFFF TXFRAMECNT TX Frame Counter
DEFAULT VALUE = XXXXXXXX

REG3 RXERRCNT

[31:00] RO FFFFFFFF ERRCNT RX Data-Check Error Counter
DEFAULT VALUE = XXXXXXXX

Note: Register RXERRCNT is valid only if CHKEN = ’1’
REG4 RXFRAMECNT

[31:00] RO FFFFFFFF RXFRAMECNT RX Frame Counter
DEFAULT VALUE = XXXXXXXX

REG 5 LASTDATACHECKED

[31:00] RO FFFFFFFF LASTDATACHK LAST DATA CHECKED
DEFAULT VALUE = ??????

118 APPENDIX A. NWP REGISTERS MAPPING

A.4 BAR0 and BAR1: Tx Fifos Address Space

Virtual channels (VC) are mapped on a 64-bit prefetchable base address defined as com-
bination of BAR0 and BAR1 of the PCIe macro, and referred as BAR1 by software.

Currently each packet (128B) is written to BAR0 using following memory address format:

lllc.ccoo.o000.0000

where l are the bit for the link identifier, and c are the bits for the channel identifier, and
o is the offset of the packet aligned to 128B.

Each VC has an address space of 256KB corresponding to 2048 packets (256KB =
2048× 128B).

The PCI address of each VC is computed as:

(l « 21) + (c « 18)

where l is the link identifier, c is the channel identifier.

A.4. BAR0 AND BAR1: TX FIFOS ADDRESS SPACE 119

Link 0
VC0 BAR0 + 0x00.0000
VC1 BAR0 + 0x04.0000
VC2 BAR0 + 0x08.0000
VC3 BAR0 + 0x0C.0000
VC4 BAR0 + 0x10.0000
VC5 BAR0 + 0x14.0000
VC6 BAR0 + 0x18.0000
VC7 BAR0 + 0x1C.0000

Link 1
VC0 BAR0 + 0x20.0000
VC1 BAR0 + 0x24.0000
VC2 BAR0 + 0x28.0000
VC3 BAR0 + 0x2C.0000
VC4 BAR0 + 0x20.0000
VC5 BAR0 + 0x24.0000
VC6 BAR0 + 0x28.0000
VC7 BAR0 + 0x2C.0000

...
Link 5

VC0 BAR0 + 0xE0.0000
VC1 BAR0 + 0xE4.0000
VC2 BAR0 + 0xE8.0000
VC3 BAR0 + 0xEC.0000
VC4 BAR0 + 0xE0.0000
VC5 BAR0 + 0xE4.0000
VC6 BAR0 + 0xe8.0000
VC7 BAR0 + 0xeC.0000

Table A.1: Mapping of BAR0

120 APPENDIX A. NWP REGISTERS MAPPING

A.5 BAR2 Address Space

A.5.1 TNW Register Address Space
The BAR2 manages LINKs registers, each link has a set of configuration, status and debug
registers. The link number is noted as <l> in the below table. Registers are 32-bit wide,
but since they are mapped on 128-bit PCI address-space, the address should be 128-bit
aligned. All registers are mapped on 32-bit non-prefetchable physical BAR2.

A.5.2 IOC Register Address Space
The BAR2 manages IOC registers, they are mapped on 128-bit PCI address-space so the
address should be 128-bit aligned. All registers are mapped on 32-bit non-prefetchable
physical BAR2.

A.5.3 TXFIFO Counters Registers
The registers to manage the TXFIFO counters (TFCNT) are mapped on BAR2, the map-
ping of these registers is:
0x1001 TFCNT main memory address register

[48:00] RW FFFFFFFFFFFF Counters memory address
DEFAULT VALUE = 0000000000000000

0x1002 TFCNT reset register

[31:00] WO FFFFFFFF TFCNTRST Counters reset
DEFAULT VALUE = NONE

A.5.4 DMA Request
Issues a DMA transaction (NGET).
0x1005 DMA Request

[10:00] RO 0000007FF DMALENGTH DMA length in units of 32bits (DW)
[27:11] RO 00FFFF800 DMAPICATTR Attributes for PIC header
[30:28] RO 070000000 DMANOTIDX DMA Notify index
[33:31] RO 380000000 DMABUFOFF DMA Buffer offset in units of 4KB
DEFAULT VALUE = NONE

A.5.5 DMA Buffer BAR
DMA buffer base address register.

A.5. BAR2 ADDRESS SPACE 121

0x1006 DMA buffer BAR

[47:00] RW FFFFFFFFFFFF DMABUFADDR Base Memory Address to be sent
DEFAULT VALUE = NONE

A.5.6 DMA Notify BAR
DMA notifies base address register.
0x1006 DMA notify BAR

[47:00] RW FFFFFFFFFFFF DMANOTADDR Base Memory Address for notifies
DEFAULT VALUE = NONE

122 APPENDIX A. NWP REGISTERS MAPPING

Register Offset (16B unit) Description PCI Address (16B aligned)
Rx Registers

0x0<l>00 Rx Exceptions and Errors (l « 12) + 0x000
0x0<l>01 Rx Exception Enable (l « 12) + 0x010
0x0<l>02 Rx Commands Error Count (l « 12) + 0x020
0x0<l>03 Rx Data Error Count (l « 12) + 0x030
0x0<l>04 Rx Flow Error Count (l « 12) + 0x030
0x0<l>05 Rx PHY Error Count (l « 12) + 0x050
0x0<l>06 Rx Fifo Status (l « 12) + 0x060
0x0<l>07 Rx Control (l « 12) + 0x070
0x0<l>1<c> Notify Base Address (l « 12) + 0x100+<c«4>
0x0<l>2<c> Credit Fifos (l « 12) + 0x200+<c«4>
0x0<l>3<c> Credit Base Address (l « 12) + 0x300+<c«4>

Tx Registers
0x0<l>40 Tx Exception Status (l « 12) + 0x400
0x0<l>41 Tx Exception Enable (l « 12) + 0x410
0x0<l>42 Tx Control and Status (l « 12) + 0x420
0x0<l>43 MDIO Read Access (l « 12) + 0x430
0x0<l>44 MDIO Write Access (l « 12) + 0x440
0x0<l>45 Tx NAK Counter (l « 12) + 0x450
0x0<l>46 Tx Resend Counter (l « 12) + 0x460
0x0<l>4f TNW Revision (l « 12) + 0x4f0

Tb Registers
0x0<l>50 TxCtrl (l « 12) + 0x500
0x0<l>51 RxCtrl (l « 12) + 0x510
0x0<l>52 TxFrameCnt (l « 12) + 0x520
0x0<l>53 RxErrCnt (l « 12) + 0x530
0x0<l>54 RxFrameCnt (l « 12) + 0x540
0x0<l>55 LastDataChecked (l « 12) + 0x550
0x0<l>56 UNUSED (l « 12) + 0x560
0x0<l>57 UNUSED (l « 12) + 0x570

Table A.2: LINKs Register Mapping on BAR2. Addresses are 16B aligned, and in unit of
byte.

A.5. BAR2 ADDRESS SPACE 123

Register Offset (16B unit) Description PCI Address (16B aligned)
IOC Registers

0x1000 Flash Control Register 0x1.0000
0x1001 TXFIFO cnt main memory address 0x1.0010
0x1002 TXFIFO cnt reset 0x1.0020
0x1003 Slot Address 0x1.0030
0x1004 Links Exceptions 0x1.0040
0x1005 DMA Request 0x1.0050
0x1006 DMA Buffer BAR 0x1.0060
0x1007 DMA Notify BAR 0x1.0070

Table A.3: IOC Register Mapping on BAR2. Addresses are 16B aligned, and in unit of
byte.

124 APPENDIX A. NWP REGISTERS MAPPING

Appendix B

libftnw Functions Summary

Summary of the most important functions exported to the applications by libftnw.

B.1 Device Initialization and Release
int ftnwOpen (void);
Opens the NWP file descriptor. Returns the file descriptor.

int ftnwClose(void);
Closes the NWP file descriptor. Always Returns 0.

int ftnwInit (void);
Opens the NWP file descriptor and re-maps in user-space all the buffers allocated
in kernel-space. Returns 0 in case of success, -1 otherwise.

int ftnwFinalize (void);
Closes the NWP file descriptor. Always returns 0.

B.2 Send
int ftnwSend (uint lid, uint vcid, void * txbuf, uint txoff,
uint msglen);
Implements the SEND operation using the PPUT transaction model.
Parameters:

125

126 APPENDIX B. LIBFTNW FUNCTIONS SUMMARY

• lid : link ID [XPLUS, XMINUS, YPLUS, YMINUS, ZPLUS, ZMINUS]

• vcid : virtual-channel ID [0-7]

• txbuf : source buffer

• txoff : offset inside the source buffer, in unit of 128 Bytes

• msglen : message size, in unit of 128 Bytes

int ftnwNgetSend (uint lid, uint vcid, void * txbuf, uint
txoff, uint nid, uint msglen);
Implements the SEND operation using the NGET transaction model.
Parameters:

• lid : link ID [XPLUS, XMINUS, YPLUS, YMINUS, ZPLUS, ZMINUS]

• vcid : virtual-channel ID [0-7]

• txbuf : source buffer

• txoff : offset inside the source buffer, in unit of 128 Bytes

• nid : notify index

• msglen : message size, in unit of 128 Bytes

int ftnwNgetTest (uint nid);
Tests the notify-index nid to discover if the NGET SEND has been carried-out.
Non-blocking function, immediately returns in both cases if nid has been set or
not.

int ftnwNgetPoll (uint nid);
Blocking version of ftnwNgetTest, it polls the notify-index nid until it is not set,
meaning that the NGET SEND has been carried-out.

B.3. RECEIVE 127

B.3 Receive

int ftnwCredit (uint lid, uint vcid, uint rxoff, uint msglen,
uint nid);
Parameters:

• lid : link ID [XPLUS, XMINUS, YPLUS, YMINUS, ZPLUS, ZMINUS]

• vcid : virtual-channel ID [0-7]

• rxoff : offset inside the destination buffer, in unit of 128 Bytes

• msglen : message size, in unit of 128 Bytes

• nid : notify index

int ftnwTest (uint lid, uint vcid, uint rxoff, uint msglen,
void * rxbuf, uint nid);
Tests the notify-index nid to discover if the message has been received. Non-
blocking function, immediately returns in both cases if nid has been set or not. If
nid is set moves data from kernel-space to user-space.
Parameters:

• lid : link ID [XPLUS, XMINUS, YPLUS, YMINUS, ZPLUS, ZMINUS]

• vcid : virtual-channel ID [0-7]

• rxoff : offset inside the buffer in kernel-space, in unit of 128 Bytes

• msglen : message size, in unit of 128 Bytes

• rxbuf : destination buffer in user-space

• nid : notify index

int ftnwPoll (uint lid, uint vcid, uint rxoff, uint msglen,
void * rxbuf, uint nid);
Blocking version of ftnwTest, it polls the notify-index nid until it is not set.

128 APPENDIX B. LIBFTNW FUNCTIONS SUMMARY

B.4 Register Access
int ftnwPokeReg (uint regaddr, uint regval);
Parameters:

• regaddr : register address to write

• regval : 32-bits value to write

int ftnwPokeReg64 (uint regaddr, uint regval);
Parameters:

• regaddr : register address to write

• regval : 64-bits value to write

int ftnwPeekReg (uint regaddr, uint * regval);
Parameters:

• regaddr : register address to read

• regval : 32-bits value read

Bibliography

[1] N.R. Adiga et al., Blue Gene/L torus interconnection network, March/May
2005, IBM J. RES. & DEV. VOL. 49 NO. 2/3

[2] Mindshare, Inc., R. Budruk et al., PCI Express System Architecture, 2003,
Addison-Wesley

[3] 2nd Generation Intel R⃝ Core Processor Family Mobile, Datasheet -
Volume 1, “Supporting Intel Core i7 Mobile Extreme Edition Proces-
sor Series and Intel Core i5 and i7 Mobile Processor Series”, Febru-
ary 2011, http://download.intel.com/design/processor/
datashts/324692.pdf

[4] 2nd Generation Intel R⃝ Core Processor Family Desktop, Datasheet, Volume
1, “Supporting Intel Core i7, i5 and i3 Desktop Processor Series”, Febru-
ary 2011, http://download.intel.com/design/processor/
datashts/324641.pdf

[5] Intel R⃝ 6 Series Chipset, Datasheet, February 2011, http://www.
intel.com/Assets/PDF/datasheet/324645.pdf

[6] Intel Embedded Site, http://edc.intel.com

[7] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture, September 2010

[8] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-M, September 2010

[9] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B:
Instruction Set Reference, N-Z, September 2010

129

http://download.intel.com/design/processor/datashts/324692.pdf
http://download.intel.com/design/processor/datashts/324692.pdf
http://download.intel.com/design/processor/datashts/324641.pdf
http://download.intel.com/design/processor/datashts/324641.pdf
http://www.intel.com/Assets/PDF/datasheet/324645.pdf
http://www.intel.com/Assets/PDF/datasheet/324645.pdf
http://edc.intel.com

130 BIBLIOGRAPHY

[10] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1, September 2010

[11] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide, Part 2, September 2010

[12] Intel X58 Express Chipset, Datasheet, November 2009

[13] Intel Processor Identification and the CPUID Instruction, Application Note
485, August 2009

[14] Intel Write Combining Implemetation Guidelines, November 1998

[15] Intel C++ Intrinsics Reference

[16] J. Coleman, P. Taylor, Hardware Level IO Benchmarking of PCI Express,
Intel White Paper, December, 2008

[17] Mellanox Site, ConnectX InfiniBand Adapter Devices, http:
//www.mellanox.com/content/pages.php?pg=products_
dyn&product_family=3&menu_section=32

[18] Mellanox Site, ConnectX InfiniBand Adapter Devices, Product Brief,
http://www.mellanox.com/related-docs/prod_silicon/
PB_ConnectX_Silicon.pdf

[19] QLogic Site, InfiniBand Adapters, Product Series, http:
//www.qlogic.com/Products/adapters/Pages/
InfiniBandAdapters.aspx

[20] P.A. Boyle et al., Overview of the QCDSP and QCDOC computers, March/-
May 2005, IBM J. RES. & DEV. VOL. 49 NO. 351

[21] F. Belletti et al., Computing for LQCD: apeNEXT, 2006, Computing in Sci-
ence & Engineering 8

[22] G. Bilardi et al., The potential of On-Chip Multiprocessing for QCD Ma-
chines, 2005, Springer Lecture Notes in Computer Science 3769, 386

[23] J. Makino et al., A 1.349 Tflops Simulation of Black Holes in a Galactic
Center on GRAPE-6, Proceedings of the 2000 ACM/IEEE conference on
Supercomputing, Article n. 43, (2000).

http://www.mellanox.com/content/pages.php?pg=products_dyn&product_family=3&menu_section=32
http://www.mellanox.com/content/pages.php?pg=products_dyn&product_family=3&menu_section=32
http://www.mellanox.com/content/pages.php?pg=products_dyn&product_family=3&menu_section=32
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX_Silicon.pdf
http://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX_Silicon.pdf
http://www.qlogic.com/Products/adapters/Pages/InfiniBandAdapters.aspx
http://www.qlogic.com/Products/adapters/Pages/InfiniBandAdapters.aspx
http://www.qlogic.com/Products/adapters/Pages/InfiniBandAdapters.aspx

BIBLIOGRAPHY 131

[24] F. Belletti et al., Simulating an Ising spin-glass for 0.1 seconds with Janus
Computing in Science and Engineering in press, also arXiv:0710.3535v2,
(2008).

[25] F. Belletti et al., QCD on the Cell Broadband Engine, 2007, LATTICE 2007,
Proceedings of Science, arXiv:0710.2442

[26] G. Goldrian et al., QPACE: Quantum Chromodynamics Parallel Computing
on the Cell Broadband Engine, 2008, Computing in Science & Engineering,
Vol. 10, Issue 6

[27] H. Baier, M. Pivanti et al., Status of the QPACE Project, 9 October 2008,
LATTICE 2008, Proceedings of Science, arXiv:0810.1559v1

[28] H. Baier, M. Pivanti et al., QPACE - a QCD parallel computer based on
Cell processor, 24 December 2009, LATTICE 2009, Proceedings of Science,
arXiv:0911.2174v3

[29] M. Pivanti, S.F. Schifano, H.Simma, An FPGA-based Torus Communica-
tion Network, 11 February 2011, LATTICE 2010, Proceedings of Science,
arXiv:1102.2346v1

[30] G. Campobello, G. Patané, M. Russo, Parallel CRC Realization, October
2003, IEEE Transactions on Computers Vol. 52 Issue 10

[31] Clifford E. Cummings, Synthesis and Scripting Techniques for Designing
Multi-Asynchronous Clock Designs, “SNUG 2001 (Synopsys Users Group
Conference, San Jose, CA 2001) User Papers”, March 2001, also available
at : www.sunburst-design.com/papers

[32] Clifford E. Cummings, Simulation and Synthesis Techniques for Asyn-
chronous FIFO Design, “SNUG 2002 (Synopsys Users Group Confer-
ence, San Jose, CA 2002) User Papers”, March 2002, also available at :
www.sunburst-design.com/papers

[33] Clifford E. Cummings, Simulation and Synthesis Techniques for Asyn-
chronous FIFO Design with Asynchronous Pointer Comparison, “SNUG
2002 (Synopsys Users Group Conference, San Jose, CA 2002) User Papers”,
March 2002, also available at : www.sunburst-design.com/papers

132 BIBLIOGRAPHY

[34] Mike Stein, Crossing the abyss: asynchronous signals in
a synchronous world, July 24, 2003, also available at :
www.edn.com/contents/images/310388.pdf

[35] Vijay A. Nebhrajani, Asynchronous FIFO Architectures (Part 1), also avail-
able at : www.geocities.com/deepakgeorge2000/vlsi_book/Asynch1.pdf

[36] Vijay A. Nebhrajani, Asynchronous FIFO Architectures (Part 2), also avail-
able at : www.geocities.com/deepakgeorge2000/vlsi_book/asynch_fifo2.pdf

[37] Eilahard Haseloff, Metastable Response in 5-V Logic Circuits, February
1997, also available at : focus.ti.com/lit/an/sdya006/sdya006.pdf

[38] Ran Ginosar, Fourteen Ways to Fool Your Synchronizer, “Proceed-
ings of the Ninth International Symposium on Asynchronous Cir-
cuits and Systems (ASYNC’03)”, February 2003, also available at :
www.ee.technion.ac.il/ ran/papers/Sync_Errors_Feb03.pdf

[39] Cadence Design Systems Inc, Clock Domain Crossing, “Closing the loop on
clock domain functional implementation problems”, 2004, also available at
: www.cadence.com/whitepapers/cdc_wp.pdf

[40] Chris Wellheuser, Metastability Performance of Clocked FIFOs,
“First-In, First-Out Technology”, 1997, also available at : fo-
cus.ti.com/lit/an/scza004a/scza004a.pdf

[41] Frank Gray, Pulse Code Communication, Application November 13 1947
Serial No.785697, Patented March 17 1953 No.2632058, also available at :
www.freepatentsonline.com/2632058.pdf

[42] J. Corbet, A. Rubini, G. Kroah-Hartman Linux Device Drivers, Third Edi-
tion, January 25, 2005, O’Reilly Media, Inc.

[43] W. R. Stevens, S. A. Rago Advanced Programming in the UNIX Environ-
ment, Second Edition, 2005, Addison-Wesley

[44] D. P. Bovet, M. Cesati, Understanding the Linux Kernel, From I/O Ports to
Process Management, First Edition, October, 2000, O’Reilly Media, Inc.

	Introduction
	Network Processor
	Two-Sided Communication Protocol
	TNW Communication Protocol
	Physical Link Layer
	Torus Network Layer
	The ``TXLINK'' Module
	The MDIO Interface
	The Receiver Synchronizer
	The ``RXLINK'' Module
	The ``Test-Bench'' Module

	Network Processor's CPU Interface
	Transaction Models
	Input/Output Controller
	PCIe Input Controller
	Design Optimization, TXFIFO as Re-order Buffer
	Register Access Controller
	DMA Engine
	PCIe Output Controller

	Software Layers
	Communication Model
	Driver
	Low-level Library
	Device Initialization and Release
	Register Access
	PPUT Send
	NGET Send
	Receive

	Application Examples
	Ping Example
	Ping-Pong Example

	Results and Benchmarks
	FPGA Synthesis Report
	PHY Bit Error Rate Test
	CPU-to-NWP Transmission with PPUT Model
	CPU-to-NWP Transmission with NGET Model
	CPU-to-CPU Transmission Benchmarks
	Benchmarks Using libftnw
	Benchmarks Not Using libftnw

	Transmission Test on the AuroraScience Machine
	Scalability over multi-nodes

	Conclusions
	NWP Registers Mapping
	RX-Link Registers
	TX-Link Registers
	TB Registers
	BAR0 and BAR1: Tx Fifos Address Space
	BAR2 Address Space
	TNW Register Address Space
	IOC Register Address Space
	TXFIFO Counters Registers
	DMA Request
	DMA Buffer BAR
	DMA Notify BAR

	libftnw Functions Summary
	Device Initialization and Release
	Send
	Receive
	Register Access

