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Adenosine 

 

The endogenous nucleoside adenosine is composed of a molecule of adenine attached to a 

ribose sugar molecule (ribofuranose) via a β-N9-glycosidic bond (Figure 1).  
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Figure 1 – Chemical structure of adenosine 

 

Adenosine plays a central role as a structural element of nucleic acids and in the energy 

metabolism of all living organism. The physiological effects of adenosine were first 

described in the cardiovascular system and gastrointestinal tract [1]. Adenosine, acting on 

specific membrane receptors, produces a number of physiological and pathophysiological 

effects in the central nervous system (CNS) [2, 3], in the cardiovascular system [4],  as an 

endogenous pain modular [5], in the immune system [6, 7], cell growth and apoptosis [8]. 

Under normal conditions, adenosine is continuously formed intracellularly as well as 

extracellularly. The intracellular production is mediated either by an intracellular 5'-

nucleotidase, which dephosphorylates or by hydrolysis of S-adenosyl-homocysteine [9]. 

Adenosine generated intracellularly is transported into the extracellular space mainly via 

specific bi-directional transporters through facilitated diffusion that efficiently evens out the 

intra- and extracellular levels of adenosine. The dephosphorylation of extracellular AMP to 

adenosine, mediated by ecto-5'-nucleotidase, is the last step in the enzymatic chain that 

catalyzes the breakdown of extracellular adenine nucleotides, such as ATP, to adenosine. 

Ectonucleotidases include ectonucleoside triphosphate diphosphohydrolase which can 
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hydrolyze ATP or ADP, ectonucleotide pyrophosphatase/phosphodiesterases, alkaline 

phosphatases and 5'-nucleotidases [10]. When adenosine levels in the extracellular space 

are high, adenosine is transported into cells by means of transporters. It is then 

phosphorylated to AMP by adenosine kinase or degraded to inosine by adenosine 

deaminase. Adenosine deaminase, but not adenosine kinase, is also present in the 

extracellular space [9]. Another potential source of extracellular adenosine is cAMP, which 

can be released from neurons and converted by extracellular phosphodiesterases into AMP 

and thereafter by an ecto-5'-nucleotidase to adenosine. The transport of adenosine by 

facilitated diffusion is equilibrative and bidirectional, meaning that the net transport of 

adenosine either into or out of the cell depends upon the adenosine concentration gradient 

in both sides of the membrane. Inhibition of adenosine transport can, therefore, inhibit 

either adenosine release or adenosine uptake, depending upon the intra- and extracellular 

levels of adenosine [11]. However, since the extracellular formation of adenosine from 

released adenine nucleotides constitutes a second source of adenosine, which is not affected 

by transport inhibition, the transport inhibitors usually cause an increase in the extracellular 

adenosine levels. Under hypoxic and ischemic conditions there is a marked increase in 

cytoplasmatic adenosine leading to an intense release of adenosine, which is inhibited by 

adenosine uptake inhibitors [12].  

Excitatory aminoacid-mediated release of adenosine is certainly involved; however, of 

greater importance is probably the fact that whenever intracellular levels of adenine 

nucleotides fall as a result of excessive energy use, the intracellular levels of adenosine will 

rise dramatically [9]. For example, following hypoxia there is a decrease of intracellular 

ATP, accompanied by an accumulation of 5'-AMP and subsequently adenosine. The 

nucleoside is thereafter transported into the extracellular space via the transporters. 

Furthermore, when the intracellular level of adenosine is very high, adenosine simply 

diffuses out of cells. Direct release of intracellular adenine nucleotides, such as ATP, that is 

thereafter converted extracellularly by ecto-ATPase and ecto-ATP-diphosphohydrolase 

(ecto-apyrase) to AMP and dephosphorylated by ecto-5'-nucleotidase to adenosine, should 

also be considered [12]. Adenosine is neither stored nor released as a classical 

neurotransmitter since it does not accumulate in synaptic vesicles, being released from the 

cytoplasm into the extracellular space through a nucleoside transporter. The adenosine 

transporters also mediate adenosine reuptake, the direction of the transport being dependent 

upon the concentration gradient at both sides of the membrane [9].  
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G protein-coupled receptors 

 

Considering the overall protein structure, adenosine receptors (ARs) display the topology 

typical of an important class of transmembrane proteins is the superfamily of G protein-

coupled receptors (GPCRs) which are known as seven transmembrane (7TM) or 

heptahelical receptors. Sequence comparison between the different GPCRs revealed the 

existence of different receptor families sharing no sequence similarity even if specific 

fingerprints exist in all GPCR classes.  They constitute a prominent superfamily targeted by 

many drugs. Up to 50% of all modern-day medicines act on GPCRs [13]. This makes 

GPCRs of great interest to both pharmaceutical and academic research, which is focused on 

drug discovery and the function and malfunction of various human systems. GPCRs play a 

vital role in signal transduction and may be activated by a wide variety of ligands, including 

photons, amines, hormones, neurotransmitters and proteins. GPCRs are single polypeptide 

chains having seven hydrophobic transmembrane-spanning segments that couple in the 

presence of an activator to an intracellular effectors molecule through a trimeric G protein 

complex [14]. The latter protein name originates from its interaction with guanine 

nucleotides. The class of guanine nucleotide binding proteins (G proteins) initiate some of 

the important signalling pathways in the cell. The members of the GPCR superfamily share 

two major structural and functional similarities. The first principal feature are the setup by 

seven membrane-spanning α-helices (TM1-7) connected by alternating intracellular (IL1, 

IL2, and IL3) and extracellular loop domains (EL1, EL2, and EL3). The orientation of the 

N and C terminus is also conserved across all GPCRs. The N-terminal tail is exposed to the 

extracellular environment and the C-terminal tail is located in the cytosol of the cell and 

thought to maintain an interaction with cytosolic G proteins. The family A of receptors, 

which comprises the well characterized rhodopsin/β2-adrenergic receptors, contains 90% of 

all GPCRs and is by far the largest and the most studied [15]. The high degree of 

conservation among these key residues suggests that they have an essential role for either 

the structural or functional integrity of the receptors. Only for class A, crystal structures of 

four GPCRs are known providing detailed molecular information on these receptors. G 

proteins transmit extracellular signals from GPCRs to downstream effectors proteins, which 

then cause further rapid changes in intracellular responses through signalling molecules 

such as cAMP, cGMP, inositol phosphates, diacylglycerol, arachidonic acid and cytosolic 

ions [16].  
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Adenosine receptors 

 

The ARs are members of the superfamily of GPCRs belonging to the subfamily of 

rhodopsin-like receptors and thus, show the typical heptahelical structure. The adenosine 

receptor subtypes in a tissue or isolated cells are characterized by their G protein coupling 

preference. Biological functions of extracellular adenosine are mediated by four different 

adenosine receptor subtypes; including the A1 and A3AR subtypes, which couple to a Gi 

protein that inhibit the intracellular adenylate cyclase (AC) and thus leading to a decrease of 

cAMP, and the A2A and A2BAR,  which couple to a Gs protein that stimulate cAMP 

production in brain slices at low (0.1-1 µM) and high (≥ 10 µM) adenosine concentration, 

respectively [17]. The four ARs have been cloned from several mammalian species, 

including human. There is extensive sequence similarity between species for the A1, A2A 

and A2BARs , whereas A3ARs are more variable. Each ARs has different but overlapping 

functions. Each of them is unique in pharmacological profile, tissue distribution, binding 

partners and on coupling to other second messenger systems, activation of K+ channels 

(A1), or phospholipase C (all subtypes) has been described [9]. Generally, the A2BARs 

requires higher concentration of adenosine than other subtypes to be significantly activated. 

In particular, all of the ARs subtypes can also be characterized according to the potency of 

the natural agonist adenosine: the A1 and A2A subtypes are high-affinity receptors activated 

by adenosine in nanomolar concentrations, while the A2B and A3ARs are low-affinity 

subtypes that require high micromolar concentrations for activation. Based on the extensive 

roles of the ARs in both physiologic and pathophysiologic events, these subtypes are 

becoming important drug targets in the treatment of several diseases because they have a 

role in controlling physiological processes [18]. 

 

A 1 adenosine receptors 

 

The adenosine A1ARs are widely expressed throughout the body, having its highest 

expression in the brain, spinal cord, atria and adipose tissue [19]. Adenosine, via A1ARs, 

reduces heart rate, glomerular filtration rate, and renin release in the kidney, induces 

bronchoconstriction and inhibits lipolysis [20]. A1ARs can be coupled to different pertussis 

toxin-sensitive G proteins, which mediate inhibition of adenylate cyclase and regulate 

calcium and potassium channels, as well as inositol phosphate metabolism [9]. A1ARs and 
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A2AARs are primarily responsible for the central effects of adenosine [21]. In addition to 

their postsynaptic locations in different brain regions, A1ARs can be found pre-synaptically 

and modulate neurotransmitter release. Pre-synaptic A1ARs are the prototype of GPCRs, 

the stimulation of which decreases the probability of neurotransmitter release. The main 

mechanism of A1AR-mediated inhibition of exocytosis is a direct inhibitory effect on 

voltage-dependent Ca2+ channels [22]. A1AR displays two different affinities for agonist, 

which have classically been attributed to a different coupling to heterotrimeric G proteins. 

According to this two independent site model, coupled receptor–G protein complexes 

display high affinity for agonists and uncoupled receptors display low affinity. The reported 

cluster-arranged cooperative model predicts that the high- and low-affinity sites are a 

consequence of the negative cooperativity of agonist binding and do not seem to be related 

to the content of G protein-coupled or –uncoupled receptors [9]. Like other GPCR 

members, A1AR expression is regulated in response to agonist or antagonist stimulation. 

Desensitization of A1ARs has been described in intact animals and in cell cultures. 

Prolonged administration of A1AR agonists to animals leads to functional desensitization of 

A1ARs in guinea pig heart, rat adipocytes, rat atrial muscle, and rat brain [23]. The reduced 

functional response is attributable to a net loss of A1ARs or down-regulation, a decrease in 

the proportion of A1ARs displaying the high-affinity state for agonists, and a decrease in 

the content of Gi proteins. The loss of binding sites on the cell membrane owing to 

internalization of A1ARs is a slower event. Ser/Thr phosphorylation seems to be related to 

short-term clustering and desensitization, as well as long-term internalization of A1ARs 

[24]. 

 

A 2A adenosine receptors 

 

The A2AARs exists in a wide variety of organs including major peripheral tissues (liver, 

heart, lung, and the immune system) and the CNS [25]. In the developing rat brain, the 

expression of A2AAR is transiently regulated in various areas (e.g., the striatum, cortex, and 

hippocampus), perhaps implying a role of adenosine in neuronal development. Soon after 

neurogenesis, the A2AAR is highly expressed by striatal neurons and co-localizes with the 

D2 dopamine receptor in GABAergic striatopallidal neurons [26]. In addition to the intense 

expression in the striatum, low levels of A2AARs are found in many brain regions (e.g., 

cortex and hippocampus) and it has been suggested that adenosine via A2AAR regulates 

important neuronal functions including neuronal protection and synaptic transmission [26]. 
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The regulation of A2AAR gene expression is therefore likely to play an important role in 

neuronal development, basal ganglia activity, and many other peripheral functions. In the 

CNS, l-DOPA enhanced the gene expression of the striatal A2AAR in 6-OHDA-lesioned 

rats [27]. Treatment with an antagonist of the NMDA receptor (memantine) was also 

reported to elevate the transcript level of striatal A2AARs [28]. Like other GPCRs it can also 

interact with other G proteins if the receptor is very over-expressed, but the evidence for 

such coupling in vivo is not compelling. In striatum the A2AARs interacts with Golf 

proteins [29]. Most effects are probably due to activation of adenylyl cyclase and 

production of cAMP. The A2AAR can recruit β-arrestin via a GRK-2 dependent mechanism, 

influenced by activation of cytokine receptors, which cause reduced desensitization of the 

A2AAR [30]. The cAMP responsive element-binding protein (CREB) is critical for many 

forms of neuronal plasticity as well as other neuronal functions, phosphorylation of CREB 

at Ser133 by protein kinase A (PKA) activates CREB and turns on genes with cAMP 

responsive elements (CRE sites) in their promoters. One important feature of CREB is that 

it is a point of convergence for the cAMP/PKA and MAPK pathways [31]. The stimulation 

of A2AARs counteracts the inhibition of neurite outgrowth due to MAPK blockade. The 

A2AAR activation alone also stimulates the Ras/Raf-1/MEK/ERK signalling through PKA-

dependent and PKA-independent pathways via Src- and Sos- mediated mechanisms, 

respectively [32]. Interestingly, phosphorylation/activation of CREB has been shown to 

compete with nuclear factor-κB (NF-κB) p65 for an important co-factor, CBP. 

Phosphorylated CREB was therefore proposed to mediate the anti-inflammatory effect of 

A2AARs and inhibition of NF-κB by A2AAR activation during in vivo acute inflammation 

[2]. An interesting observation is that A2AARs activation facilitates adenosine transporters 

via a protein kinase C (PKC)-dependent pathway in the hippocampus, and reduces the level 

of extracellular adenosine available for A1AR activation. In addition, PKC was shown to 

play a key role in mediating the enhancement of noradrenaline release by A2AARs in rat tail 

artery [33]. Activation of multiple signalling pathways by A2AARs appears to contribute to 

their complex functions in various tissues. 

 

A 2B adenosine receptors 

 

A2BAR mRNA was originally detected in a limited number of rat tissues by Northern blot 

analysis, with the highest levels found in cecum, bowel, and bladder, followed by brain, 

spinal cord, lung, epididymis, vas deferens, and pituitary. The use of more sensitive reverse 
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transcriptase-polymerase chain reaction techniques revealed a ubiquitous distribution of 

A2BARs [34]. mRNA encoding A2BAR was detected at various levels in different rat tissues 

studied, with the highest levels in the proximal colon and lowest in the liver. In situ 

hybridization of A2BARs showed widespread and uniform distribution of A2BAR mRNA 

throughout the brain [35]. In brain, functional A2BARs are found in neurons, glial cells, in 

astrocytes and in different glioma cell lines [36]. The expression of A2BARs in glial cells, 

which represent a majority of the brain cell population, can explain the original observation 

that slices from all brain areas examined showed an adenosine-stimulated cAMP response. 

Functional A2BARs have been found in fibroblasts and various vascular beds, hematopoietic 

cells, mast cells, myocardial cells, intestinal epithelial and muscle cells, retinal pigment 

epithelium, endothelium, and neurosecretory. The activation of A2BARs can also increase 

phospholipase C in human mast cells and in mouse bone marrow-derived mast cells. In 

addition, A2BAR activation elevates inositol triphosphate levels, indicating this receptor can 

couple also to Gq-proteins. A2BARs have been implicated in the regulation of mast cell 

secretion, gene expression, intestinal function, neurosecretion, vascular tone and in 

particular asthma [37]. 

 

A 3 adenosine receptors 

 

The A3AR is the only adenosine subtype which was cloned before its pharmacological 

identification. It was originally isolated as an orphan receptor from rat testis, having 40% 

sequence homology with canine A1 and A2AARs and was identical with the A3AR later 

cloned from rat striatum [38]. Homologs of the rat striatal A3ARs have been cloned from 

sheep and human, revealing large interspecies differences in A3AR structure. For example, 

the rat A3AR presents only 74% sequence homology with sheep and human A3AR, while 

there is 85% homology between sheep and human A3AR. The A3AR has been mapped on 

human chromosome 1p21-p13 [39] and consists of 318 aminoacid residues. The A3AR is a 

G-protein-coupled receptor characterized by its C-terminal portion facing the intracellular 

compartment and 7 TM spanning domains. In contrast to other adenosine receptors, the C-

terminal region presents multiple serine and threonine residues, which may serve as 

potential sites of phosphorylation that are important for rapid receptor desensitization upon 

agonist application [40]. Phosphorylation leads to a decrease of the number of receptors in 

the high-affinity state and a decrease of agonist potency to inhibit adenylyl cyclase activity. 

At the same time, the receptor is reversibly internalized in an agonist-dependent fashion 
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[41]. The A3AR has widely distributed its mRNA being expressed in testis, lung, kidneys, 

placenta, heart, brain, spleen, liver, uterus, bladder, jejunum, proximal colon and eye of rat, 

sheep and humans. The classical pathways associated with A3AR activation are the 

inhibition of adenylyl cyclase activity, through the coupling with Gi proteins, and the 

stimulation of phospholipase C, inositol triphosphate and intracellular Ca2+, via Gq proteins 

[9]. 

 

Adenosine receptors in the respiratory system 

 

Increased adenosine levels have been found in the lungs of individuals with asthma or 

COPD, and ARs are known to be expressed on most, if not all, inflammatory and stromal 

cell types involved in the pathogenesis of these diseases [42]. A1ARs are responsible for 

many effects induced by adenosine. In particular, this signalling nucleoside has been 

implicated in the regulation of asthma and chronic obstructive pulmonary disease (COPD); 

adenosine levels are elevated in the asthmatic lungs to an extent that can be directly 

correlated with the degree of inflammatory insult [43]. A1AR expression is also increased in 

the epithelium and airway smooth muscle of human asthmatics. The involvement of A1ARs 

in asthma was provided by studies on allergic rabbit models, where the adenosine-induced 

acute bronchoconstrictor response was attenuated by pretreatment with A1AR antagonists. 

In particular, activation of A1ARs in human airway epithelial cells causes an increase in the 

expression of the MUC2 gene, which is responsible for mucus hyper secretion. Moreover, 

activation of A1ARs is known to produce pro-inflammatory effects on various types of 

human cells. The non-selective AR antagonists theophylline and doxofylline have been 

launched as bronchodilators for the treatment of various respiratory disorders [44]. 

Likewise, it has been recently reported that A1AR inhibits transendothelial and 

transepithelial polymorphonuclear cell migration in a murine model of lipopolysaccharide 

(LPS)-induced lung injury, presumably by reducing the release of chemotactic cytokines 

into the alveolar space. In addition, A1AR is involved in decreasing microvascular 

permeability and  leukocyte transmigration in endothelial cells, suggesting also a protective 

and anti-inflammatory role for A1AR [45]. 

Pharmacological treatment of allergic rats with an A2A agonist has been shown to result in 

diminished pulmonary inflammation. Moreover, a recent study in an ADA-deficient model 

has demonstrated that genetic removal of A2A leads to enhanced pulmonary inflammation, 

mucus production and alveolar airway destruction [46]. Furthermore, A2AARs induced on 
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invariant natural killer T cells and natural killer cells can reduce pulmonary inflammation in 

mice with sickle-cell anemia, improving baseline pulmonary function and preventing 

hypoxia-reoxygenation-induced exacerbation of pulmonary injury [47]. These findings 

further confirm the involvement of A2AARs in the anti-inflammatory networks of the lung.  

Recently, A2BARs have been implicated in the mediation of several pro-inflammatory 

effects of adenosine in inflammatory cells of the lung. A2BARs have been reported to 

mediate degranulation and activation of canine mastocytoma and human mast cells line, 

thereby potentially playing a role in allergic and inflammatory disorders [48]. Adenosine 

constricts the airways of asthmatic patients through the release of histamine and  

leukotrienes from sensitized mast cells; although the receptor involved seems to be the 

A3ARs in rats and the A2BARs in humans. Accordingly, A2BARs antagonists potently 

inhibit the activation and degranulation of HMCs induced by adenosine. In addition to mast 

cells, functional A2BARs have been found in bronchial smooth muscle cells and lung 

fibroblasts. In these cells, adenosine, through stimulation of the A2B subtype, increases the 

release of various inflammatory cytokines, lending weight to evidence that A2BARs play a 

key role in the inflammatory response associated with asthma [49]. Furthermore, it has been 

reported that, through A2BARs activation, adenosine-differentiated dendritic cells express 

high levels of angiogenic, pro-inflammatory, immune suppressor and tolerogenic factors, 

including vascular endothelium grow factor (VEGF), interleukin 8 (IL-8), interleukin 6 (IL-

6), interleukin 10 (IL-10) and ciclooxigenase 2 [50]. Moreover, using ADA knockout 

animals, it has been shown that dendritic cells with a pro-angiogenic phenotype are highly 

abundant in vivo under conditions associated with elevated levels of extracellular 

adenosine. The first evidence for the involvement of A2BARs in asthma was provided by 

studies concerning the selectivity of enprofylline, a methylxanthine structurally related to 

theophylline [50], and further support came from research demonstrating the presence of 

A2BARs on various type of cells involved in cytokine release in asthmatic disease, such as 

smooth muscle cells, lung fibroblasts, endothelial cells, bronchial epithelium and mast cells. 

Expression of A2BARs has also been found in the mast cells and macrophages of patients 

affected by COPD. In another study, activation of A2BARs in the HMC-1 mast cell line 

provoked an increase in IL-8 release in vitro [51]. 

Particular relevance to the presence of A3ARs in the respiratory system has been reported. 

A3ARs are expressed in human neutrophils where, together with A2A, they are involved in 

the reduction of superoxide anion generation; they have also been implicated in the 

suppression of tumor necrosis factor α (TNF-α) release induced by endotoxin from human 
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monocytes [52]. In neutrophils, however, A3ARs also play a role in chemotaxis, in 

conjunction with P2Y receptors. Moreover, A3ARs activation seems to inhibit 

degranulation and superoxide anion production in human eosinophils [53]. Indeed, 

transcript levels for the A3 subtype are elevated in the lungs of asthma and COPD patients, 

where expression is localized to eosinophilic infiltrates. Similar evidence has also been 

observed in the lungs of ADA knockout mice exhibiting adenosine-mediated  lung disease 

[54]. Treatment of ADA knockout mice with 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-

2phenyl-4-propyl-3-pyridine carboxylate (MRS 1523), a selective A3 antagonist, prevented 

airway eosinophilia and mucus production. Nevertheless, these findings contrast sharply 

with the results of experiments performed in human eosinophils ex vivo, where chemotaxis 

was reduced by A3AR activation, suggesting that significant differences exist between the 

impact of A3ARs signalling on eosinophil migration ex vivo and in the whole animal. More 

recently, the involvement of the A3AR in a bleomycin model of pulmonary inflammation 

and fibrosis has been explored. Results demonstrated that A3AR knockout mice exhibit 

enhanced pulmonary inflammation that involves an increase in eosinophils. Accordingly, a 

selective upregulation of eosinophil-related chemokines and cytokines was found in the 

lungs of A3AR knockout mice exposed to bleomycin, thereby suggesting that the A3AR 

performs anti-inflammatory functions in the bleomycin model [53]. 

Nonetheless, the role of the A3ARs in the human lung, and indeed in asthma, still remains 

to be clarified. In general, receptor knockouts have provided significant new insights into 

adenosine’s control of complex physiological (i.e., cognition) and pathological (i.e., 

neuroinflammation) phenomena, suggesting that further studies in these animal models 

would help to clarify the role of A3ARs in inflammatory lung disease [55]. 

 

Adenosine receptors in cancer 

 

Adenosine, which is released to the microenvironment by metabolically active tumor cells, 

fulfils a multitude of functions in regulating tumor cell proliferation [56]. At micromolar 

(µM) concentrations it directly induces an anti-proliferative effect toward various tumor cell 

types. Indirectly, it affects tumor development via its capability to affect cytokine release, 

cell migration, angiogenesis, and chemotaxis [57]. Moreover, adenosine induces activation 

or suppression of T killer or natural killer cells that affect tumor cell development [58]. It is 

quite impossible to assess the effect of adenosine in vivo due to the rapid metabolization by 

ADA. The effect of adenosine and of the agonists/antagonists on tumor cells depends on 
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their extracellular concentrations and on the expression of different adenosine receptor 

subtypes. Upon receptor activation, various signal transduction pathways are generated, 

resulting in a direct inhibitory effect on tumor growth [59]. Other cell types, such as 

immunocytes or endothelial cells, may respond to receptor activation by the release of 

cytokines and mediators that indirectly affect tumor growth [60]. Interestingly, among the 

four receptor subtypes, the A3AR was found to mediate a potent antitumor effect [61]. The 

specificity of this target results from the finding that this receptor is highly expressed in 

tumor cells, whereas low receptor expression is reported in normal cells [59]. A3ARs are 

involved in the tumor growth, in the regulation of cell cycle and mediate both pro and anti-

apoptotic effects closely associated with the level of receptor activation [62, 63]. A3ARs 

involve the inhibition of telomerase activity and arrest the G0/Gi phase of the cell cycle 

leading to a cytostatic effect in Nb2-11C lymphoma cells [64]. The A3ARs reduce the 

ability of prostate cancer cells to migrate in vitro and metastasize in vivo. In particular it 

has been reported that activation of the A3ARs in prostate cancer cells reduced PKA-

mediated stimulation of ERK1/2 leading to lower NADPH oxidase activity and cancer cell 

invasiveness [65]. A3AR density was upregulated in colon carcinoma tissues closely 

correlated to the disease severity. In addition the alteration of A3ARs reflected a similar 

behavior shown in lymphocytes or neutrophils derived from colon cancer patients 

suggesting that these receptors may represent an interesting biological marker [66]. 

Recently, it has been reported that A3AR selective agonists induce anti-inflammatory and 

anti-cancer effect in xenograft animal model utilizing Hep-3B hepatocellular carcinoma 

cells [61]. In this model, the A3AR upregulation was present in inflammatory liver tissues 

similarly to those previously found in other inflammatory conditions [68]. 

The A3AR agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methyl-uronamide (CF102) 

inhibited tumor growth via de-regulation of the NF-kB signal transduction pathways, 

resulting in apoptosis of tumor cells [69]. Pharmacological studies demonstrated that A3AR 

agonists inhibited the growth of melanoma cells while promoting the proliferation of bone 

marrow cells, reduced cell viability in human breast cancer cells and induced arrest of cell 

cycle progression in human lung cancer cells [70-72]. 2-chloro-N6-(3-

iodobenzyl)adenosine-5′-N-methyl-carboxamide (Cl-IB-MECA) enhanced apoptosis via the 

modulation of NF-kB signalling pathway in thyroid cancer cells and reduced the ability of 

prostate cancer cells to migrate in vitro and metastasize in vivo [67]. Moreover, preclinical 

and Phase I studies showed that A3AR agonists are safe and well tolerated in humans and 

thus may be considered possible therapeutic agents for certain cancer diseases [73]. 
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The environmental risk factor such noxious particles exposure, in combination with a 

genetic predisposition, results in two causes of morbidity and mortality worldwide namely 

chronic obstructive pulmonary disease (COPD) and malignant pleural mesothelioma 

(MPM). Oxidative stress provided by inhalation of exogenous particles, smokes of sigarette 

for COPD and asbestos for MPM, may lead to the activation of many intracellular pathways 

including kinases, transcription factors and epigenetic events that modulate the 

inflammatory response and cell cycling/proliferation [74]. COPD is the fourth leading cause 

of mortality worldwide [75]. COPD is a disease state characterized by airflow limitation 

that is not fully reversible. The airflow limitation is usually both progressive and associated 

with an abnormal inflammatory response of the lung to noxious particles or gases. The 

main cause of COPD is cigarette smoking [76]. Adenosine has been suggested to play a role 

in the pathogenesis of COPD [77]. The exact role of adenosine in the pathogenesis of 

COPD is unknown and probably complex because adenosine receptors in the lungs, in vitro 

and in animal models, have both pro- and anti-inflammatory effects and may also cause 

bronchoconstriction [78].  

On this background, the aim of this study is to describe a detailed analysis, of A1, A2A, A2B 

and A3ARs expression in peripheral lung parenchyma, the major site of airflow obstruction 

in COPD using immunohistochemistry, radioligand binding and real time quantitative 

polymerase chain reaction (RT-QPCR). ARs were analyzed in age-matched smokers with 

normal lung function (control group) and COPD patients. Moreover, we have investigated 

whether changes in affinity and density of these receptors are correlated with clinical 

parameters such as forced expiratory volume in one second (FEV1)/forced vital capacity 

(FVC) ratio. We have also investigated, using the in vitro model of human lung type 2 

alveolar-like cells (A549 cells), the effect of pro-inflammatory cytokines on adenosine 

receptor subsets. COPD is characterized by an increased oxidative and nitrosative stress 

correlates with decreases in lung function and disease severity [79]. In addition, there is 

clear evidence for persistent inflammation in the lungs and airways of COPD patients 

which increases with disease severity. In COPD patients the inflammation and oxidative 

stress persist many years after smoking cessation  [80].  Alveolar macrophages are 

considered to have a central role in the pathogenesis of COPD whereas the pathogenetic 

role of mast cells in COPD peripheral lung is more controversial [81]. For this reason the 

A2BAR expression in bronchoalveolar lavage (BAL) macrophages from COPD smokers and 

age-matched with normal lung function was investigated. The effect of oxidative and 

nitrosative stress and of pro-inflammatory cytokines (TNF-α and IL-1β) on A1, A2A, A2B 
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and A3ARs expression and on their functionality in human leukaemic monocyte lymphoma 

cell line (U937), before and after phorbol 12-myristate 13-acetate (PMA)-treatment, and in 

the human mast cell line (HMC-1) was evaluated.  

Considerable evidence have highlighted that adenosine through the interaction with its 

receptors plays an important role in controlling tumorigenesis via its receptors. MPM is a 

highly aggressive neoplasm whose incidence is increasing due to asbestos exposure [82]. 

The capacity of asbestos to induce MPM has been linked to the release of TNF-α that 

promotes mesothelial cell survival via NF-kB pathway [82]. To date, there is no standard 

curative therapy for MPM that is largely unresponsive to conventional chemotherapy or 

radiotherapy [83]. As a consequence, more effective therapeutic strategies are needed for 

this fatal disease with the aim to identify new candidates for targeted therapies. A3ARs have 

been involved in the regulation of the cell cycle and both pro- and anti-apoptotic effects 

was closely associated with the level of receptor activation [84]. A3ARs play a role in the 

modulation of mitogen-activated protein kinase (MAPK) activity and in the regulation of 

extracellular signal-regulated kinases (ERK1/2). It has been accepted that A3ARs are highly 

expressed in tumor cells showing an important role in the development of cancer [85]. The 

serine/threonine kinase Akt/PKB has a central role in cell signalling downstream of growth 

factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt/PKB activation 

underlies the pathophysiological properties of a variety of complex diseases, including 

cancer [86, 87]. Therefore, the purpose of this thesis, is to describe the alteration of A3ARs 

in human MPM in comparison with healthy mesothelial pleura (HMP). We also studied the 

alteration of A3ARs in healthy mesothelial cells (HMC) treated with crocidolite asbestos 

and in malignant mesothelioma cells (MMC) respect to untreated HMC. We investigated 

the reduction of Akt phosphorylation and NF-kB activation in tumor cells, mediating by 

A3ARs. Furthermore, A3AR stimulation on proliferation and apoptosis in MMC and in 

HMC exposed to asbestos and TNF-α was analyzed. 
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Chronic obstructive pulmonary disease 

 

COPD is a common inflammatory lung disease and a major cause of illness and death 

throughout the world. The Global Initiative for Chronic Obstructive Lung Disease defines 

COPD as “a pulmonary disease characterized by airflow limitation that is not fully 

reversible. The airflow limitation is usually progressive and associated with an abnormal 

inflammatory response of the lung to noxious particles or gases” [88]. The abnormal 

inflammatory response is a pathology of COPD which it shares with asthma. In COPD this 

inflammatory process leads to a co-presence of small airway diseases (obstructive 

bronchiolitis) with fibrosis and obstruction, parenchymal lung tissue destruction 

(emphysema), loss of lung elasticity and closure of small airways and chronic bronchitis, 

characterized by cough and mucous hypersecretion. As a consequence, the airways undergo 

structural changes with further loss of lung elasticity and airflow limitation. These 

pathological mechanisms manifest at different degrees in COPD patients [89]. Despite its 

high global prevalence, there is still a fundamental lack of knowledge about the cellular, 

molecular and genetic causes of COPD and no available therapy which may reduce the 

disease progression or mortality [90]. 

COPD affects > 10% of the world population over the age of 40 years and every year 

almost 3 million people die of this disease [91]. According the World Health Organization 

WHO, in 2007 COPD was the 4th cause of death worldwide and it is predicted to become 

the 3rd leading cause of death by 2030 [91]. COPD is the 13th cause of morbidity today and 

will become the 5th cause of morbidity by 2020 [92]. Therefore, the economic and social 

burden of the disease is immense today and will dramatically increase in the future, also 

considering that at present the disease is under-estimated, it is insufficiently recognized and 

is poorly diagnosed [92]. For an individual, of course, the disease may dramatically lower 

the quality of life. Paradoxically, despite its global impact and compared to asthma, 

research in COPD is less progressing and highly under-funded. 

COPD is a complex, multi-factorial pathology and both environmental and host-depended 

factors are needed for the clinical manifestation of the disease. However, cigarette smoking 

is undoubtedly the major causative environmental risk factor for COPD. It accounts for 

approximately 90% of all cases and a dose-dependent relationship between tobacco 

consumption and the development and severity of COPD has been observed [93].  
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Important is the age at which a person started smoking, the numbers of packages of 

cigarettes smoked per year, and the current smoking status. Passive exposure to cigarette 

smoke is another risk factor that is increasing the total amount of inhaled particles into the 

lung. However, only 10-20% of the smokers develop clinical symptoms of COPD and 

susceptibility and other environmental factors are therefore crucial for the pathology of 

COPD [94]. Additional environmental risk factors are occupational dust and chemical 

exposure, indoor and outdoor air pollution, bacterial and viral infections, the socioeconomic 

status, and asthma [95]. Although there is no conclusive evidence, adults with asthma are 

found to have a twelvefold higher risk of acquiring COPD than subjects without asthma 

[96]. Like many other diseases, COPD is a polygenic disease and gene-environment 

interactions are critical for the development of this disorder. So far, the best investigated 

genetic cause for the development of COPD is the hereditary deficiency of the alpha-1 

antitrypsin, an inhibitor of serine proteases. The lack of this protein is leading to the 

development of emphysema and decline in lung function due to digestion of the lung 

forming extracellular matrix and cell-cell interactions [97]. 

Pathological changes in COPD include chronic inflammatory processes and airway 

remodeling, both localized in the proximal and peripheral airways, in the lung parenchyma 

and in pulmonary vasculature [98]. The chronic inflammation of COPD is characterized by 

an accumulation of neutrophils, macrophages, B cells, lymphoid aggregates and CD4+ and 

CD8+ T cells particularly in the small airways [99] and the degree of inflammation 

increases with the disease severity as classified by the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) [100]. Neutrophils and activated macrophages release 

oxygen radicals, elastase, and cytokines that are essential to the pathogenesis of COPD, 

with effects on goblet cells and submucosal glands, and on the induction of emphysema and 

inflammation. Monocytes/ macrophages are important effector cells in COPD due to the 

release of reactive oxygen species, extracellular matrix proteins, lipid mediators, cytokines, 

chemokines and matrix metalloproteinases and their numbers increase with increasing 

severity [101-103].  

Cigarette smoking is by far the most prominent cause for COPD. The inflammatory 

processes and the airway remodeling increase with disease severity and persist after 

cessation of smoking. Therefore, it is assumed that after a certain threshold of disease 

severity is passed, simply quitting smoking may not be sufficient to prevent disease 

progression. In recent years, investigations on COPD led to a major expansion of paradigms 

explaining the pathobiology of the disease and many different models are proposed today. 
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For example, COPD can be seen as a disease of accelerated lung aging, since many cellular 

pathological processes are due to the accumulation of reactive oxygen species [104, 105]. 

There is also a group of scientist that define COPD as an auto-immune disease which 

response to antigens released after smoke induced tissue or cell injuries [106]. Although 

other mechanisms that may be involved in COPD have been investigated and potential 

targets for a therapeutic approach proposed, an efficient cure for this disease is still not 

available today.  

In COPD the predominant inflammatory cells are neutrophils, macrophages, and CD8 

positive T-cells. Especially, macrophages seem to play a pivotal role in COPD [103]. 

COPD patients with emphysema show a 25-fold increase in the numbers of macrophages in 

the tissue and in the alveolar space when compared to normal smokers and there is a 

correlation between macrophage numbers in the airways and the severity of COPD. The 

key inflammatory mediators in COPD are IL-8, LTB4 and TNF-α [107] and the 

inflammation is localized in the peripheral airways, the lung parenchyma and in addition 

the pulmonary vessels are affected, the bronchioles are obstructed and present with fibrosis. 

In COPD, the typical inflammatory cascade is triggered by noxious air-borne particles, 

mainly by oxidants derived from cigarette smoke, that activate macrophages to release IL-8, 

TNF-α and matrix metalloproteinase. The release of these factors is promoted by the 

inactivation of histone deacetylase (HDAC) leading to the transcription of NF-кB inducible 

cytokines [108]. Oxidative stress is defined as an excess of reactive oxygen species (ROS) 

that cannot be neutralized by the antioxidant defense mechanisms and thus leading to cell 

damage. There is evidence that oxidative stress plays a major role in the pathogenesis of 

COPD [109]. On one side, inflammatory cells are able to generate ROS, but also cigarette 

smoke itself contains ROS at high concentrations. ROS activate NF-кB, which induces the 

transcription of multiple inflammatory genes leading to an inflammatory response in the 

lung  [104, 110]. Interestingly, oxidative stress in COPD may be also linked to the poor 

response to corticosteroids in COPD patients. Oxidative stress impairs the translocation of 

the glucocorticoid receptors to the nucleus and the binding to its corresponding target DNA 

sequence [111, 112]. 

 

Adenosine receptors in COPD 

 

Adenosine has been suggested to play a role in COPD [113]. Patients with COPD are 

significantly more responsive to AMP than healthy smoking volunteers and smokers have 
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significantly increased concentrations of adenosine in the airway lining fluid [114]. 

Adenosine is released during tissue hypoxia and inflammation, and all inflammatory cells 

express ARs [115]. Indeed, adenosine-based approaches are currently being developed for 

the treatment of various disorders where inflammatory modulation is a key component 

[116]. It has both pro- and anti-inflammatory features, which are mediated by ARs [117]. 

Activation of ARs can have different effects, with respect to the cell types involved, 

activation of A1AR on neutrophils promotes adherence to endothelial cells and chemotaxis, 

indicating a pro-inflammatory response [117], whereas activation of A1AR on cells from 

the monocytes/macrophage lineage inhibits the production of several pro-inflammatory 

cytokines (TNF-α, IL-8, and IL-6) and enhances the release of the anti-inflammatory 

cytokine IL-10, displaying an anti-inflammatory response [118]. Therefore, each receptor 

can be either beneficially and/or detrimentally implicated in the inflammatory process of 

COPD [119]. Since activation of ARs can influence the secretion of mediators from 

inflammatory cells, we related changes in adenosine and its receptors with changes in 

growth factors such as VEGF and chemokines (monocyte chemoattractant protein 1) related 

to remodeling and inflammation that may underlie lung function loss in COPD. The effect 

of adenosine on cytokine production by macrophages has attracted considerable attention, 

because macrophage-derived cytokines are crucial initiators and orchestrators of immune 

responses [113]. As TNF-α was one of the first cytokines to be discovered, a substantial 

body of information has accumulated regarding the ability of ARs activation to limit TNF-α 

production following macrophage activation [120, 121].  

Until recently, the limited specificity of available selective agonists and antagonists has 

made it difficult to identify the expression of the different ARs. However, in the last few 

years significant advances in A1 and A2AARs pharmacology have been made through the 

use of highly potent and selective agonist and/or antagonist radioligands such as [3H]-1,3-

dipropyl-8-cyclopentyl-xanthine ([3H]-DPCPX) and [3H]-4-(2-[7-amino-2-(2-

furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol ([3H]-ZM 241385), 

respectively [122, 123]. More recently, the pharmacological characterization of a new, 

high-affinity, potent and selective radioligand ([3H]-N-benzo[1,3[dioxol-5-yl-2-[5-(2,6-

dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yl-oxy]-

acetamide, [3H]-MRE 2029F20) that is able to bind human A2BARs has allowed a better 

characterization of this receptor subtypes in different human tissues [124]. In addition, the 

discovery of the new, high-affinity, and selective radioligand, [3H]-5N-(4-

methoxyphenylcarbamoyl) amino-8-propyl-2-(2-furyl) pyrazolo [4,3-e]-1,2,4-triazolo[1,5-
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c]pyrimidine ([3H]-MRE 3008F20) that is able to bind the human A3AR with high affinity 

has allowed its pharmacological characterization [66, 125].  

Combined immunohistochemical and radioligand binding studies could be very useful to 

clarify the specific effects determined by differential expression of A1, A2A, A2B and 

A3ARs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ADENOSINE RECEPTORS IN COPD PATIENTS 
_________________________________________________________________________ 

25 
 

Materials and methods 

Subjects 

 

We recruited thirty-four subjects undergoing lung resection for a solitary peripheral 

carcinoma, all subjects were recruited from the Section of Respiratory Diseases of the 

University Hospital of Ferrara, Italy. For the immunohistochemistry study six subjects were 

smokers with COPD and twelve were smokers with normal lung function (Table 1A). In 

addition, eight smokers with COPD and eight smokers with normal lung function were 

selected for the binding and RT-QPCR experiments (Table 1B). Seven smokers with COPD 

and six smokers with normal lung function were recruited for the western blot assays and 

immunocytochemistry experiments on the BAL from the Section of Respiratory Diseases of 

the University Hospital of Ferrara and the Section of Respiratory Diseases of the University 

Hospital of Katowicach, Poland (Table 1C). All former smokers had stopped smoking for 

more than one year. COPD and chronic bronchitis were respectively defined, according to 

international guidelines, as the presence of post-bronchodilator FEV1/FVC ratio <70% or 

the presence of cough and sputum production for at least three months in each of two 

consecutive years. None of the study subjects had suffered a recent exacerbation, defined as 

increased dyspnea associated with a change in quality and quantity of sputum that would 

have led them to seek medical attention during the month previous the study. All subjects 

were free of acute upper respiratory tract infections and none had received glucocorticoids, 

theophylline, anti-oxidants or antibiotics within the preceding month. They were also 

nonatopic (i.e. they had negative skin tests for common allergen extracts) and had no past 

history of asthma or allergic rhinitis. All subjects were free from preoperative 

chemotherapy and/or radiotherapy. BAL was performed according to the local Ethics 

Committee Guidelines. Pulmonary function tests were performed as previously described 

[126] according to published guidelines. Predicted values for the different measures were 

calculated from the regression equations published by Quanjer [127]. The study was 

approved by the local Ethic Committee of the University Hospital of Ferrara and informed 

consent was obtained from each participant in accordance with the principles outlined in the 

Declaration of Helsinki.  

 

 

 

 



ADENOSINE RECEPTORS IN COPD PATIENTS 
_________________________________________________________________________ 

26 
 

Lung tissue processing 

 

Two to four randomly selected tissue blocks were taken from the subpleural parenchyma of 

the lobe obtained at surgery, avoiding areas invaded by tumor. Tissue specimens were cut 

for immunohistochemical analysis and were placed on charged slides as previously reported 

[128]. Another piece of lung parenchyma was also taken and used in radioligand binding 

and RT-QPCR experiments. 

 

Fiberoptic bronchoscopy, collection and processing of BAL  

 

All subjects attended the bronchoscopy suite at 8.30 am after having fasted from midnight 

and were pre-treated with atropine (0.6 mg IV) and midazolam (5-10 mg IV). Oxygen (3 

l/min) was administered via nasal prongs throughout the procedure and oxygen saturation 

was monitored with a digital oximeter. Using local anesthesia with lidocaine (4%) to the 

upper airways and larynx, a fiberoptic bronchoscope (Olympus BF10 Key-Med, UK) was 

passed through the nasal passages or mouth into the trachea. Further lidocaine (2%) was 

sprayed into the lower airways. BAL was performed from the right middle lobe using four 

successive aliquots of 60 ml of 0.9% NaCl. BAL cells were spin (500 g, 10 min) and 

washed twice with Hanks' buffered salt solution (HBSS). Cell Cytospin (Cytospin II; 

Shandon, UK) slides were prepared with native pellet, and one of them stained with May-

Grunwald Giemsa to determine the leukocyte differential cell count. A total of at least 500 

cells (excluding epithelial cells) per slide was examined at x1000 magnification. Cell 

viability was assessed using the trypan blue exclusion method. The remaining cell pellet 

was frozen at -80°C until its analysis [127]. 

 

Immunostaining for A1, A2A, A2B and A3ARs in lung sections 

 

After deparaffinization and rehydration to expose the immunoreactive epitopes of ARs, the 

sections to be stained, immersed in citrate buffer 5 mM at pH 6.0, were incubated in a 

microwave oven (model NN S200W; Panasonic, Italy) on high power for 40 min or treated 

with trypsin. Endogenous peroxidase activity was blocked by incubating slides in 3% 

hydrogen peroxide (H2O2) in phosphate-buffered saline (PBS) followed by washing in PBS. 

Non-specific labeling was blocked by coating with blocking serum (5% normal rabbit or 

goat serum) for 20 min at room temperature. After washing in PBS the sections were 
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incubated for 1 h at room temperature with goat or rabbit anti-human A1, A2A, A2B and 

A3ARs at dilution of 1:100 of a 200 µg/ml solution. The primary antibodies were purchased 

from Alpha Diagnostics (rabbit polyclonal anti-human A2BR code A2BR23-A) and Santa 

Cruz Biotechnology (goat polyclonal anti-human A1R code sc-7500; goat polyclonal anti-

human A2AR code sc7502; rabbit polyclonal anti-human A3R code sc-13938). For the 

negative control slides normal goat or rabbit non-specific immunoglobulins (Santa Cruz 

Biotechnology, CA) were used at the same protein concentration as the primary antibody. 

After repeated washing steps with PBS, the sections were subsequently incubated with anti-

goat or anti-rabbit biotinylated antibody (Vector ABC Kit, Vector Laboratories, UK) for 30 

min at room temperature. After further washing the sections were subsequently incubated 

with ABC reagent (Vector ABC Kit, Vector Laboratories, UK) for 30 min at room 

temperature. Slides were then incubated with chromogen-fast diaminobenzidine (DAB), 

with or without cobalt enhancement, for 1-5 min or 3-amino-9 ethylcarbazole (AEC) as 

chromogenic substances. After which they were counterstained in haematoxylin and 

mounted on permanent mounting medium [128]. 

 

Immunoperoxidase double staining in lung sections  

 

Some sections were stained for A2A or A2BARs as described above except that sections 

were stained for either CD68, tryptase or actin (smooth muscle specific) prior to 

counterstaining with haematoxylin. Non-specific labeling was again blocked by coating 

with blocking serum (5% normal horse serum) for 20 min at room temperature. After 

washing in PBS the sections were incubated for 1 h at room temperature with mouse anti-

human CD68 (Dako, UK, 1:50 dilution of a 160 µg/ml solution) or with mouse anti-human 

tryptase (Dako, UK, 1:150 dilution of a 105 µg/ml solution) or with mouse anti-human 

actin (smooth muscle specific) (Dako, UK, 1:50 dilution of a 70 µg/ml solution). For the 

negative control slides, normal mouse non-specific immunoglobulins (Santa Cruz 

Biotechnology, CA) were used at the same protein concentration as the primary antibody. 

After repeated washing steps with PBS, the sections were subsequently incubated with anti-

mouse biotinylated antibody (Vector Alkaline Phosphatase Kit, Vector Laboratories, UK) 

for 30 min at room temperature. After further washing the sections were subsequently 

incubated with ABC reagent (Vector Alkaline Phosphatase Kit, Vector Laboratories, UK) 

for 30 min at room temperature. Slides were then incubated with chromogen fast red for 10-
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20 min, after which they were counterstained in haematoxylin and mounted on permanent 

mounting medium [128]. 

 

Immunocytochemical staining for A2BAR in BAL cytospins  

 

BAL macrophage cytospins were allowed to warm at room temperature, were fixed in cold 

acetone at -20°C for 5 min, and air-dried for 10 min. Endogenous peroxidase activity was 

blocked by incubating sections with methanol containing 3% hydrogen peroxide (H2O2) for 

1 h followed by washing in PBS. Immunostaining procedures were performed using the 

Vector ABC Kit (Vector Laboratories, UK). Non-specific labeling was blocked by coating 

with blocking serum (5% normal goat serum) for 20 min at room temperature. After 

washing in PBS the cytospins were incubated for 1 h at room temperature with rabbit anti-

human A2BAR at a dilution of 1:100 of a 200 µg/ml solution (Alpha Diagnostics, TX, code 

A2BR23-A). For the negative control slides normal rabbit non-specific immunoglobulins 

(Santa Cruz Biotechnology, CA) were used at the same protein concentration as the primary 

antibody. After repeated washing steps with PBS, the slides were subsequently incubated 

with anti-rabbit biotinylated antibody (Vector ABC Kit, Vector Laboratories, UK) for 30 

min at room temperature. After further washing the sections were subsequently incubated 

with ABC reagent for 30 min at room temperature. Slides were then incubated with 

chromogen-fast diaminobenzidine (DAB) as chromogenic substance after which they were 

counterstained in haematoxylin and mounted on permanent mounting medium [128]. 

 

Saturation binding experiments for A1, A2A, A2B and A3ARs in peripheral lung 

parenchyma 

 

Peripheral lung parenchyma, was homogenized and filtered through two layers of gauze 

using a tris HCl 50 mM buffer pH 7.4. The homogenate was centrifuged at 40000 g for 10 

min and the pellet was suspended in the same buffer described above containing 2 UI/ml 

ADA and incubated for 30 min at 37°C. After the incubation the suspension was 

centrifuged again at 40000 g for 10 min. The final pellet was suspended and used for 

radioligand binding assays [122-124]. Saturation binding experiments to A1ARs were 

performed according by the method described previously using [3H]-1,3-dipropyl-8-

cyclopentyl-xanthine ([3H]-DPCPX, specific activity 120 Ci/mmol; NEN-Perkin Elmer 

Life and Analytical Sciences, USA) as radioligand [122]. The lung parenchyma membranes 
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(100 µg of protein/assay) with 8 to 10 concentrations of the radioligand [3H]-DPCPX 

(0.01-30 nM) were incubated for 90 min at 25°C. Non specific binding was determined in 

the presence of DPCPX 1 µM. Saturation binding experiments to A2AARs were performed 

according by the method described previously using [3H]-4-(2-[7-amino-2-(2-

furyl)[1,2,4]triazolo[2,3-a] [1,3,5]triazin-5-ylamino] ethyl ([3H]-ZM 241385, specific 

activity 17 Ci/mmol; Tocris Cookson Ltd, UK) as radioligand [123]. The lung membranes 

(100 µg of protein/assay) were incubated for 60 min at 4°C with 8 to 10 concentrations of 

the radioligand [3H]-ZM 241385 (0.01-50 nM). Non specific binding was determined in the 

presence of ZM 241385 1 µM. Saturation binding experiments to A2BARs were performed 

using [3H]-N-benzo[1,3[dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-

purin-8-yl)-1-methyl-1H-pyrazol-3-yl-oxy]-acetamide ([3H]-MRE 2029F20, specific 

activity 123 Ci/mmol; Amersham International Chemical Laboratories, UK) as radioligand 

E5. The membranes (100 µg of protein/assay) with 8 to 10 concentrations of [3H]-MRE 

2029F20 in the range 0.01-20 nM were incubated for 4°C at 60 min. Non specific binding 

was determined in the presence of MRE 2029F20 1 µM. Saturation binding experiments to 

A3ARs were performed using [3H]-5N-(4-methoxyphenylcarbamoyl)amino-8-propyl-2-(2-

furyl)pyrazolo[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine ([3H]-MRE 3008F20, specific 

activity 67 Ci/mmol; Amersham International Chemical Laboratories, UK) as radioligand 

[122]. The membranes (100 µg of protein/assay) with 8 to 10 concentrations in the range 

0.01-50 nM of [3H]-MRE 3008F20 were incubated for 4°C at 150 min. Non specific 

binding was determined in the presence of MRE 3008F20 1 µM. In saturation binding 

experiments at the end of the incubation time, bound and free radioactivity were separated 

by filtering the assay mixture through Whatman GF/B glass fiber filters by use of a Brandel 

cell harvester. The filter bound radioactivity was counted using a 2500 TR liquid 

scintillation counter Packard with an efficiency of 58%.  

 

Real time quantitative polymerase chain reaction on peripheral lung parenchyma 

 

Total messenger RNA was extracted by the acid guanidinium thiocyanate phenol method. 

RT-QPCR was carried out using gene-specific double fluorescent labeled TaqMan MGB 

probe (minor groove binder) in a ABI Prism 7700 Sequence Detection System (Applied 

Biosystems, UK) [129]. For the RT-QPCR of mRNA of A1, A2A, A2B and A3AR-the assays-

on demand ™ Gene expression Products NM 000674, NM 000675, NM 000676 and NM 

000677 were used respectively. As an internal control for loading the human 
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH) kit was used, and the fluorescent-

labeled probe was VICTM (Applied Biosystems, UK). The mRNA content of each 

adenosine receptor was expressed as adenosine receptor mRNA/GAPDH mRNA. Similar 

results were obtained by using β-actin mRNA as internal control and the probe was 

fluorescent labeled with VICTM (Applied Biosystems, UK) [130].  

 

Western blotting analysis of ARs expression in BAL macrophages 

 

Whole cell proteins were extracted from human bronchoalveolar cell pellet (more of 95% 

cells were macrophages). Cells were suspended with mechanical disruption in RIPA lysis 

buffer with a protease inhibitors cocktail immediately frozen to –70° C and thawed after at 

least 60 min. Particulate matter was removed by centrifugation at 12000 g for 10 min at 

4°C. Protein concentration was measured in the supernatant by the Bradford method 

according to the manufacturer’s instructions (Bio-Rad Laboratories, UK). An equal volume 

of Laemmli sample buffer 2X concentrate was added to the final volume of the sample. At 

least 50 µg/lane of whole-cell proteins were subjected to 10% SDS-polyacrylamide gel 

electrophoresis, and transferred to nitrocellulose filters (Hybond-ECL, GE Healthcare, UK) 

by blotting. Filters were blocked for 45 min at room temperature in Tris-buffered saline 

(TBS), 0.05% Tween 20, 5% non-fat dry milk. The filters were then incubated with rabbit 

anti-human A2BAR (Alpha Diagnostic, TX, code A2BAR23-A; dilution 1:1000) antibodies 

for 1 h at room temperature in TBS, 0.05% Tween 20, 5% non-fat dry milk at dilution of 

1:1000. Filters were washed three times in TBS, 0.5% Tween 20 and then incubated for 45 

min at room temperature with secondary antibody conjugated to horseradish peroxidase 

(Dako, UK) in TBS, 0.05% Tween 20, 5% non-fat dry milk, at a dilution of 1:4000. After 

further three washes in TBS, 0.05% Tween 20, visualization of the immunocomplexes was 

performed using the ECL as recommended by the manufacturer (GE Healthcare, Chalfont 

St. Giles, UK). As an internal control we reprobed each filter with an anti-human actin 

antibody (Santa Cruz Biotechnology, CA). The 43kDa (actin) and 55kDa (A2BAR) bands 

intensities were quantified using densitometry with Grab-It and VisionWorks LS software 

(UVP, Cambridge, UK) and expressed as the ratio with the corresponding β-actin optical 

density value of the same lane [129]. 
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Cell culture and treatment conditions 

 

A549 (American Type Culture Collection number CCL185), epithelial, human lung type 2 

alveolar-like cells were grown in Dulbecco’s modified Eagle’s medium containing 10% 

fetal calf serum before incubation for 48 h in serum-free media [131]. At the onset of each 

experiment, cells were placed in fresh medium and then cultured in the presence of IL-1β 

(1 ng/ml) or TNF-α (10 ng/ml) (R&D Systems, UK). The IKK2 inhibitor (AS602868) was 

kindly provided by Dr Michel Dreano (Basle, Switzerland). Cells were treated with 

AS602868 for 0.5 h before stimulation with IL-1β or TNF-α for 6 h. 

U937 cells were grown in RPMI 1640 medium containing 10% fetal calf serum, 100 IU/ml 

penicillin and 100 µg/mg streptomycin before incubation for 48 h in serum-free media. At 

the onset of each experiment, cells were placed in fresh medium and cultivated with or 

without the addition (in various combinations) of: a) IL-1β (1 ng/ml) or TNF-α (10 ng/ml) 

(R&D Systems, UK); b) hydrogen peroxide (H2O2) or SIN-1 at different concentrations 

from 1 to 100 µM; c) N-acetylcysteine (NAC) 100 µM prior to the beginning of the 

experiments. Cell viability was assessed after the addition of the solutions by trypan blue 

staining and viability was at least 90% at the beginning and at the end of each experiment. 

For the membrane preparation the cell suspension was centrifuged at 1000 g for 10 min and 

the cell pellet was suspended in hypotonic buffer. The suspension was then homogenized, 

centrifuged at 40000 g for 30 min and the membrane pellet was frozen at −80°C until the 

use in saturation binding experiments. Analogous experiments were also performed in the 

same experimental conditions on phorbol 12-myristate 13-acetate (PMA)-transformed 

U937 cells. In addition, in the same cell lines the capability of NAC to reduce H2O2 or SIN-

1 effects was also investigated. 

HMC-1 cells (Prof. Massimo Triggiani, University of Naples, Italy) were originally 

obtained from a patient with mast cell leukemia [132]. Cells were grown at 37°C with 5% 

CO2 in MEM without phenol red supplemented with 10% dialyzed fetal calf serum (FCS) 

from Gibco BRL (Invitrogen, France). Experiments analogous to the U937 cells were also 

carried out in the same experimental conditions in HMC-1 cells. In addition the capability 

of NAC to reduce the H2O2 or SIN-1 effects was also investigated. 
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Saturation Binding Assays of ARs in A549, in untreated or PMA treated U937 and 

HMC-1 membranes  

 

Saturation binding experiments to ARs were performed in U937 or HMC-1 membranes (60 

µg of protein/assay) with 8 to 10 concentrations of the radioligands and were incubated. At 

the end of the incubation time, bound and free radioactivity were separated by filtering the 

assay mixture, and the filter bound radioactivity was counted using a 2500 TR liquid 

scintillation counter Packard. A detailed description of the methods utilized is as previously 

described (see: Saturation binding experiments for ARs in peripheral lung parenchyma). 

Analogous binding experiments were performed using A549 cells membranes to evaluate 

the presence and the effect of pro-inflammatory cytokines IL-1β (1 ng/ml) or TNF-α (10 

ng/ml) with or without NF-κB inhibitor (AS602868) on A1, A2A, A2B and A3ARs density 

and affinity. 

 

Real time quantitative polymerase chain reaction on A549 and U937 cell lines 

 

RNA extraction from A549 cells and from U937 cells was performed using an RNeasy 

Mini Kit according to the manufacturer’s instructions (Qiagen, UK). RT-QPCR assay was 

performed using specific primers for A1, A2A, A2B and A3 receptor mRNAs. Relative levels 

of cDNAs were established using the ∆Ct methods against the housekeeping gene: β-actin 

for A549 (Ambion Ltd, UK), and GAPDH for U937 (Qiagen, UK). Thermal cycling 

conditions were 15 min at 95°C, followed by 45 cycles of 15 s at 94°C, 25 s at 60°C, 25 s at 

72°C and 5 s at 86°C. After normalization the value of ∆Ct was subtracted from 45 (total 

number of RT-PCR cycles), thus higher ∆Ct levels indicate higher mRNA levels. Also 

relative levels of mRNAs were expressed as the ratio of the Ct value for the gene of interest 

Ct/housekeeping gene. A non-template control was run with every assay and all 

determinations were performed at least in duplicates to achieve reproducibility [131].  

 

Western blotting for ARs in U937 cells and in A549 cells 

 

Whole cell proteins were extracted from U937 and A549. A549 cells were suspended with 

mechanical disruption in RIPA lysis buffer with a protease inhibitors cocktail immediately 

frozen to –70° C and thawed after at least 60 min. Particulate matter was removed by 
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centrifugation at 12000 g for 10 min at 4°C. Protein concentration was measured in the 

supernatant by the Bradford method according to the manufacturer’s instructions (Bio-Rad 

Laboratories, UK). An equal volume of Laemmli sample buffer 2X concentrate was added 

to the final volume of the sample. At least 50 µg/lane of whole-cell proteins were subjected 

to a 10% SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose filters 

(Hybond-ECL, Amersham Pharmacia Biotech) by blotting. Filters were blocked for 45 min 

at room temperature in Tris-buffered saline (TBS), 0.05% Tween 20, 5% non-fat dry milk. 

The filters were then incubated with anti-human antibody: for detecting A2AARs in whole 

cell protein from A549 we used goat anti-human A2AAR antibody (sc-7502; from Santa 

Cruz Biotechnology, USA) and for detecting A2BARs in whole cell protein from U937 we 

used goat anti-human A2BAR antibody (Alpha Diagnostic, TX, code A2BAR23-A; dilution 

1:1000). The filters were then incubated for 1h at room temperature in TBS, 0.05% Tween 

20, 5% non-fat dry milk at dilution of 1:500. These antibody are specifics does not cross-

react with other adenosine receptors family proteins. Filters were washed three times in 

TBS, 0.5% Tween 20 and after incubated for 45 min at room temperature with rabbit anti-

goat antibody conjugated to horseradish peroxidase (Dako, UK) in TBS, 0.05% Tween 20, 

5% non-fat dry milk, at dilution of 1:4000. After further three washes in TBS, 0.05% 

Tween 20, visualization of the immunocomplexes was performed using the ECL as 

recommended by the manufacturer (Amersham Pharmacia Biotech). As an internal control 

we reprobed each filter with an anti-human actin antibody (Santa Cruz Biotechnology). The 

43 kDa (actin), 55kDa (A2BAR) or 45 kDa (A2AAR) bands were quantified using 

densitometry with Grab-It and GelWorks software (UVP, UK) and expressed as the ratio 

with the corresponding β-actin optical density value of the same lane [129].  

 

Cyclic AMP production of U937 cells  

 

U937 cells (before and after PMA-treatment) were suspended in 0.5 ml incubation mixture 

containing NaCl 150 mM, KCl 2.7 mM, NaH2PO4 0.37 mM, MgSO4 1 mM, CaCl2 1 mM, 

glucose 5 mM, Hepes 5 mM, MgCl2 10 mM, pH 7.4 at 37°C. Then adenosine deaminase (2 

units/ml) and Ro20-1724 (0.5 mM), a phosphodiesterase inhibitor, were added and pre-

incubated for 10 min in a shaking bath at 37°C. A typical adenosine agonist 5’-N-

ethylcarboxamidoadenosine (NECA, 1 nM-10 µM, Sigma Aldrich, St Louis, MO) was 

incubated for 10 min with the aim of evaluating its ability to stimulate adenylyl cyclase 

activity in the absence and in the presence of MRE 2029F20 (1 µM). The reaction was 
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terminated by the addition of cold 6% trichloroacetic acid (TCA). The final aqueous 

solution was tested for cAMP levels by competition protein binding assays [37]. At the end 

of the incubation time (150 min at 4° C) and after the addition of charcoal the samples were 

centrifuged at 2000 g for 10 min. The clear supernatant was mixed with 4 ml of liquid 

scintillant (Atomlight, Perkin-Elmer, MA) and counted in a TriCarb Packard 2500 TR 

scintillation counter. 

 

Cell proliferation assay of U937 cells  

 

U937 cells (before and after PMA-treatment) were seeded in fresh medium with 1 µCi/ml 

[3H]-Thymidine in Dulbecco’s modified Eagle’s medium containing 10% fetal calf serum, 

penicillin (100 units/ml), streptomycin (100 µg/ml), L-glutamine (2 mM) and 

simultaneously treated with NECA in the absence or in the presence of MRE 2029F20 (1 

µM) [86]. After 24 h of labeling, cells were trypsinized, dispensed in four wells of a 96-

well plate, and filtered through Whatman GF/C glass fiber filters using a Micro-Mate 196 

cell harvester (Perkin Elmer, MA). The filter-bound radioactivity was counted on Top 

Count Microplate Scintillation Counter with Micro Scint 20. 

 

A2BAR siRNA transfection of U937 cells  

 

U937 cells were plated in flasks and grown to 50-70% confluence before transfection. 

siRNA transfection was performed via Nucleofector technology by using 106 cells in 100 µl 

Cell Line Nucleofector Solution C (Amaxa Inc, MD) and nucleofected with 0.3 µM of 

siRNA directed against human A2BAR (Santa Cruz Biotechnology, CA) by using the 

preloaded W001 program in the Nucleofector II device (Amaxa Inc, MD) [133]. Using the 

same conditions, U937 cells were nucleofected with 0.3 µM of siRNA scramble as negative 

control (Dharmacon, UK) and 0.3 µM of siRNA cyclophillin as positive control (Ambion, 

TX). To evaluate transfection efficiency U937 cells were also transfected with a siRNA 

control labeled with fluorescein and by flow cytometry a transfection efficiency of 90±10% 

was observed. Following nucleofection the cells were immediately mixed with 500 µl of 

pre-warmed RPMI 1640 medium and transferred into well plates containing 1.5 ml RPMI 

1640 medium per well. Cells were incubated at 37° C for 0, 2, 4, 8, 16 and 24 h and total 

RNA was isolated for real time PCR analysis of A2BAR mRNA. Aliquots of cells were also 
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incubated at 37° C for 0, 24 and 48 h for Western blot analysis to A2BAR protein. Cell 

proliferation and cAMP content of the cells were measured with the techniques described 

above.  

 

Statistical analysis of the data  

 

Protein concentrations were determined by Bio-Rad assay [134] with bovine albumin as 

reference standard (Bio-Rad, CA). Dissociation equilibrium constants for saturation 

binding, KD, as well as the maximum densities of specific binding sites, Bmax, were 

calculated for a system of one or two-binding site populations by non-linear curve fitting 

using the program Ligand [135] (Kell Biosoft, MO). Functional experiments were 

calculated by non linear regression analysis using the equation for a sigmoid concentration-

response curve (PRISM GraphPAD, CA). Analysis of data was performed by one-way 

analysis of variance (ANOVA). Differences between control group and COPD subjects 

were analyzed with Dunnett’s test and were considered significant at a value of p<0.05. All 

data are reported as mean ± SEM (n = 3-6). 
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Results 

 

Clinical parameters and pulmonary function of the patients are summarized in Tables 1. 

The two groups of subjects were similar with regard to age and gender and there was no 

significant difference in the smoking history (pack/years) between COPD and smokers 

with normal lung function. Moreover, no difference was found in the prevalence of chronic 

bronchitis between groups. As expected from the selection criteria, smokers with COPD 

had a significantly lower forced expiratory volume in one second (FEV1) and FEV1/ FVC 

ratio as compared to control smokers.  

 

Immunohistochemical localization of A1, A2A, A2B and A3ARs in peripheral lung 

parenchyma 

 

Peripheral lung parenchyma is a mixture of many cell types including bronchiolar and 

alveolar epithelial cells, endothelial, smooth muscle cells (localized in bronchiolar and 

vessel walls), fibroblasts, mast cells, neutrophils, macrophages and lymphocytes. 

Immunohistochemical analysis with anti-A2AAR antibody demonstrated staining of the 

bronchiolar and alveolar epithelial cells, bronchiolar smooth muscle cells, endothelial cells 

and infiltrating cells with no significant difference seen between COPD patients and the 

control group (Figure 2). A1AR was expressed only in few alveolar macrophages (Figure 3) 

whereas the staining seen for the A3AR, show that this receptor was expressed in  alveolar 

septa and bronchiole (Figure 4). In contrast, A2BAR was expressed only in mast cells and 

macrophages (Figure 5). 

 

Density and affinity of  A1, A2A, A2B and A3ARs in peripheral lung parenchyma 

 

The affinity and density of A1, A2A, A2B and A3ARs in membranes of peripheral lung from 

control group and COPD subjects are shown in Figures 6. 

The affinity of A1AR was significantly decreased in COPD patients compared with control 

group (KD 3.15±0.19* vs 1.70±0.14 nM; *, p<0.01; Figure 6A). However, A1AR density 

was significantly increased in COPD patients compared with control group (Bmax 53 ± 4* 

vs 32 ± 3 fmol/mg protein; *, p<0.01; Figure 6A). Similarly, the affinity of A2A and A1ARs 

was significantly decreased in COPD patients compared with control group whereas their 



ADENOSINE RECEPTORS IN COPD PATIENTS 
_________________________________________________________________________ 

37 
 

density was increased (KD 7.88±0.68* vs 1.87±0.09 nM for A2AAR (Figure 6B) and 

9.34±0.27* vs 4.41±0.25 nM for A3AR (Figure 6D); Bmax 852±50* vs 302±12 fmol/mg 

protein for A2AAR (Figure 6B) and 2078±108* vs 770±34 fmol/mg protein for A3AR 

(Figure 6D), respectively; *, p<0.01). In comparison, the affinity of A2B receptors was not 

significantly different between the control group and COPD patients (KD 2.46±0.45 vs 

2.10±0.26 nM, Figure 6C). However, the density of A2BAR was significantly decreased in 

COPD patients compared with the control group (Bmax 66±5* vs 189±16 fmol/mg protein; 

*, p<0.01; Figure 6C).  

 

Expression of A1, A2A, A2B and A3ARs mRNA in peripheral lung parenchyma 

 

Using RT-QPCR we examined the expression of mRNA for all four adenosine receptors in 

the peripheral lung from both groups of subjects (Figure 7). GAPDH mRNA was used as an 

internal control for loading. The fold increase in ratio between A2AAR/GAPDH (2.46±0.25; 

*, p<0.01) and A3AR/GAPDH mRNA (1.71±0.18; *, p<0.01) was significantly increased in 

COPD patients (Figure 7). In contrast, the A2BAR/GAPDH mRNA ratio was significantly 

decreased (0.47±0.05* vs 1.03±0.12; *, p<0.01) in COPD patients (Figure 7). No 

differences in A1AR mRNA expression was seen between groups (Figure 7).  

 

A2BAR expression in human alveolar macrophages of control smokers and COPD 

patients  

 

Immunocytochemical analysis of BAL macrophages demonstrated a similar level of A2BAR 

expression in COPD patients and control smokers with normal lung function. The number 

of BAL macrophages expressing A2BARs was 59±5% in COPD patients and 63±9% of total 

macrophages in healthy smokers (Figure 8A-C). Western blotting and densitometric 

analysis in BAL macrophages indicates a significant 68% decrease in A2BAR expression in 

COPD patients compared to control smokers with normal lung function (A2BARs/β-actin 

ratio: 3.52±0.84* vs 1.08±0.13; *, p<0.01) (Figure 8D and E).  
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Correlation between binding and clinical parameters 

 

A direct correlation was found between FEV1/FVC ratio and A2AAR (Figure 9A) and A3AR 

(Figure 9B) receptor affinity (KD) and density (Bmax). Furthermore an inverse correlation 

was found between the affinity and density of A2BAR and FEV1/FVC ratio (Figure 9C). No 

other significant correlation were found between the affinity and/or density of A1AR and 

any clinical parameters. 

 

Effect of inflammatory stimuli on adenosine receptor expression in A549 cells 

 

Saturation binding experiments on A549 membranes revealed the presence of A1, A2A and 

A3ARs. However, A2BAR were not detectable on A549 membranes. IL-1β (1 ng/ml) and 

TNF-α (10 ng/ml) both significantly induced A2AAR expression (Bmax) 1.5–fold without 

affecting binding affinity (Table 2). Upregulation of A2AAR expression was attenuated by 

pre-treatment of cells with the NF-κB inhibitor AS602868. Similar data was seen for the 

induction of A2AAR mRNA and protein as determined by RT-QPCR and western blotting 

analysis (Figure 10). In contrast, neither IL-1β not TNF-α were not able to modify the 

affinity and the density of the A1 and A3AR (Table 2). 

 

Presence of ARs in untransformed or PMA-transformed U937 membranes  

 

Saturation binding experiments in U937 membranes were used to investigate mechanisms 

that may underlie this reduction in A2BAR expression demonstrated in BAL of COPD by 

western blotting. Affinity values (KD, nM) and receptor density (Bmax, fmol/mg protein) of 

A1, A2A, A2B and A3ARs in untransformed U937 cell (monocyte-like) or PMA-transformed 

cell (macrophage-like) membranes are shown (Figure 11A and B, Table 3). ARs are present 

in U937 membranes with affinity values in the nanomolar range and with a receptor density 

from 10 to 186 fmol/mg protein. The affinity (KD, nM) of A1, A2A, A2B and A3ARs did not 

change in PMA-transformed U937 cells as compared to untreated cells. No differences 

were found after PMA treatment for A1 or A2BAR density. After PMA transformation A2A 

and A3ARs were significantly increased by 1.98 and 1.74-fold as compared to 

untransformed U937 cells (Table 3). Saturation curves of A2A and A3ARs are shown and 
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the linearity of the Scatchard plots indicates the presence of one high affinity binding site 

(Figure 11C-F). 

 

Time course and concentration-dependent effect of H2O2 on ARs in untransformed or 

PMA-transformed U937 membranes  

 

No differences in A1, A2A and A3AR binding parameters in either untransformed or PMA-

transformed U937 cells were found following exposure of cells to H2O2 (Tables 3, 4). The 

treatment of H2O2 (100 µM) for 12, 24 and 48 h reduced A2BAR density without affecting 

the affinity values (Figure 12A). The maximum effect was obtained after 48 h of H2O2 (100 

µM) in both untransformed or PMA-transformed U937 cells showing a reduction of 76% 

and 71%, respectively. The effect of H2O2 on A2BAR density (Bmax values) at various 

times (0, 12, 24 and 48 h) and at different concentrations (from 1 to 100 µM) in 

untransformed or PMA-transformed U937 cells has been reported in Figure 12A and B, 

respectively. The effect of H2O2  involved only A2BARs mediating a reduction on their 

Bmax values which was strictly dependent to time and concentration of H2O2  used. Similar 

results were obtained in untransformed or PMA-transformed U937 cells (Tables 3, 4). [3H] 

MRE 2029F20 saturation binding curves following exposure of cells to H2O2 for different 

incubation times and concentrations are reported in Figure 13A and C, respectively. The 

relative Scatchard plots are shown in Figure 13B and D, respectively. H2O2 (100 µM) also 

reduced A2BAR mRNA levels from 2 to 24 h (Figure 14A) in U937 cells which was 

matched by a similar reduction in A2BAR protein expression as measured by western blot 

analysis (Figure 14C and E). 

 

Time course and dose-dependent effect of SIN-1 on ARs in U937 cell membranes  

 

Treatment with 3-morpholinosydnonimine, a peroxynitrite generator (SIN-1), at the 100 

µM concentration for 2, 4, 6 and 12 h, reduced A2BAR density without affecting the affinity 

values (Figure 12C, Table 5). No differences in binding parameters of A1, A2A and A3ARs 

were found in untransformed U937 cells treated with SIN-1 when compared with controls 

(Table 5). [3H] MRE 2029F20 saturation binding curves in the absence and in the presence 

of SIN-1 over a 12 h time-course indicate a loss of A2BAR binding (Figure 13E). Scatchard 

analysis of [3H] MRE 2029F20 binding indicates that SIN-1 causes a significant time-

dependent reduction in A2BAR density without affecting receptor affinity (Figure 13F, 
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Table 5). The effect of SIN-1 is concentration-dependent (Figure 12D, Table 6) resulting in 

a 70% reduction of Bmax from 81±4 to 26±2* fmol/mg protein; *, p<0.01. Analogous 

results were also obtained in PMA-transformed U937 cells (Figure 13G and H, Table 6). 

The maximum effect was obtained after 12 h of 100 µM SIN-1 exposure in both 

untransformed and PMA-transformed U937 cells (Figure 12C). SIN-1 treatments (100 µM) 

for 0, 2, 4, 8, 16 and 24 h induced a decrease of A2BAR mRNA levels as shown in Figure 

14B. Similarly 6 and 12 h treatment of SIN-1 mediated a significant reduction (p<0.01) of 

A2BAR protein expression as reported in Figure 14D and confirmed by the relative 

densitometric analysis (Figure 14F). 

 

Effect of NAC on ARs in U937 cell membranes 

 

The effect of both H2O2 (100 µM) and SIN-1 (100 µM) at 24 and 6 h respectively was 

blocked by the antioxidant NAC (100 µM) (Figure 12E). NAC was able to normalize 

A2BAR density reaching values similar to control conditions: H2O2, A2BAR Bmax=19±2 

fmol/mg protein; H2O2+NAC, A2BAR Bmax=79±6 fmol/mg protein; SIN-1, A2BAR 

Bmax=22±2 fmol/mg protein; SIN-1+NAC, A2BAR Bmax=81±7 fmol/mg protein. No 

differences were found in affinity values of A2BARs in the absence or in the presence of 

NAC. An equivalent effect was seen in both untransformed and PMA-transformed U937 

cell membranes (Figure 12E).  

 

Effect of pro-inflammatory cytokines on ARs expression in U937 cells  

 

In contrast to the reduction in A2BAR expression seen with H2O2 and SIN-1, the effect of 

typical pro-inflammatory cytokines IL-1β (1 ng/ml) and/or TNF-α (10 ng/ml) on A1 and 

A2BAR binding parameters in untransformed or PMA-transformed U937 cell membranes 

were shown (Figure 12F, Table 7). IL-1β and TNF-α alone induced an increase in A2A and 

A3AR Bmax without affecting the receptor affinity. Co-stimulation with IL-1β and TNF-α 

produced an additional increase in A2A and A3AR Bmax. Analogous results were also 

obtained in PMA-transformed U937 cells. Addition of 100 µM H2O2 to U937 cells 

incubated with IL-1β and TNF-α resulted in a decrease in A2BAR Bmax and an increase in 

A2A and A3AR Bmax (Figure 12F, Table 7).  
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ARs binding parameters in HMC-1 cell membranes  

 

Saturation binding experiments of A1, A2A, A2B and A3ARs were also performed in HMC-1 

membranes obtained by cells incubated in the absence or in the presence of 

oxidative/nitrosative stress. A2A, A2B and A3ARs were present in these cells with KD values 

in the nanomolar range (from 1.67 to 2.60 nM) and with a receptor Bmax of 75, 120 and 

315 fmol/mg protein, respectively. In these cells, A1ARs were undetectable and the 

treatment with H2O2 or SIN-1 did not modify binding parameters of A2A, A2B and A3ARs 

(Table 8). These data suggest that the reduction in A2BAR expression by 

oxidative/nitrosative stress is cell-type specific. 

 

A2BAR-silencing in U937 cells   

 

To evaluate the direct involvement of the A2BARs, siRNA directed against A2BAR was 

transfected in U937 cells. Transfection efficiency in these cells was 90±10% as determined 

by transfection with a fluorescein-labeled siRNA and flow cytometry. After transfection, 

the cells were cultured in complete media and total RNA was isolated at 0, 2, 4, 8, 16 and 

24 h and RT-PCR analysis for A2BAR mRNA was performed. In untransformed U937 cells 

A2BAR mRNA was almost completely suppressed by 4 h (Figure 15A). A time-course of 

A2BAR expression using western blot analysis confirmed that A2BAR protein expression 

was strongly attenuated in A2BAR siRNA-treated but not in control cells (Figure 15B and 

C). 

 

Effect of NECA on cAMP and proliferation assays in U937 cells 

 

The functional effect of A2BARs in U937 cells was determined by examining the effect of 

NECA on cAMP production and cell proliferation assays. NECA stimulated cAMP levels 

in a concentration-dependent manner, with an EC50 in the nanomolar range (Figure 16A). In 

the presence of H2O2 100 µM, NECA demonstrated a marked decrease in potency 

(EC50=5.6±0.4* vs 0.52±0.04 µM; *, p<0.01) probably due to the loss of A2BAR 

expression. Similarly, nitrosative stress induced by SIN-1 (100 µM) mediated a reduction in 

NECA potency (EC50=5.3±0.4 µM) (Figure 16A). The effect of H2O2 or SIN-1 was blocked 

by the antioxidant agent NAC (100 µM) in untransformed or PMA-transformed U937 cells 
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(Figure 16A). Interestingly, 100 nM MRE 2029F20, a potent and selective A2BAR 

antagonist, was also able to decrease the potency of NECA towards increasing intracellular 

cAMP levels (EC50=6.7±0.5* µM, vs controls; *, p<0.01) (Figure 16C). siRNA-mediated 

knockdown of A2BAR expression resulted in a significant reduction in the ability of NECA 

to induce cAMP production in untransformed U937 cells (EC50=7.4±0.6* µM, vs controls; 

*, p<0.01) (Figure 16C). Analogous results were obtained in PMA-transformed U937 cells 

although the potency of NECA appears to be slightly modified (Figure 16A and D). 

Untransformed U937 cells were also stimulated for 24 h in the presence of increasing 

concentrations of NECA (1-10 µM) and [3H]-Thymidine incorporation was evaluated as a 

measure of cell proliferation. NECA stimulated [3H]-Thymidine incorporation in a 

concentration-dependent manner, with an EC50=4.2±0.5 µM (Figure 16B). In the presence 

of 100 µM H2O2 the potency of NECA was increased (EC50=185±14 nM) probably due to 

the A2BAR reduction. Interestingly, also SIN-1 (100 µM) mediated an increase in NECA 

potency (EC50=226±19 nM). NAC was able to normalize A2BAR function showing EC50 

values similar to control conditions (Figure 16B). In addition, 100 nM MRE 2029F20 was 

able to increase NECA potency (EC50=125±11 nM) (Figure 16E). Furthermore, siRNA-

mediated knockdown of A2BAR expression resulted in a significant reduction in the ability 

of NECA to induce cell proliferation in untransformed and PMA-transformed U937 cells 

(Figure 16E and F). 
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TABLE  1 – Characteristics of smokers with normal lung function and COPD patients 

B 
Subjects for 
binding and 
RT-QPCR 

n Age Sex Smoking 
history 

Pack-
years 

Chronic 
Bronchitis 

FEV1 

%pred  
FEV1/FVC 

%  

Smokers 8 66.3±4.6 6M/2F 

4 ex-
smokers     
4 current 
smokers 

33.8 ± 6.6 

2 with and     
6 without 
chronic 

bronchitis 

99.8±7.8 76.1±2.1 

COPD 8 71.0±2.8 8M 

7 ex-
smokers   
1 current 
smoker 

40.5 ± 9.5 

2 with and       
6 without 
chronic 

bronchitis 

73.2±8.0* 57.0±4.2* 

C 
Subjects for 

Bal 
experiments 

n Age Sex Smoking 
history 

Pack-
years 

Chronic 
Bronchitis 

FEV1 

%pred  
FEV1/FVC 

%  

Smokers  6 61.8±3.1 6M 

3 ex-
smokers 
3 current 
smokers 

38.3±8.4 

2 with and     
4 without 
chronic 

bronchitis 

94.1±6.1 76.4±2.3 

COPD 7 65.0±3.7 6M/1F 

4 ex-
smokers 
3 current 
smokers 

37.8±4.5 

1 with and       
6 without 
chronic 

bronchitis 

62.2±7.5** 54.9±6.0** 

 

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; M: Male; F: Female; FEV1 = 
forced expiratory volume in 1 second; FVC = forced vital capacity.  For COPD and smokers with normal lung 
function subjects FEV1 % predicted and FEV1/FVC% are post-bronchodilator values. Data are expressed as 
mean ± SEM; *, p<0.05; **, p<0.01 versus smoking subjects. 
 
 

A 
Subjects for 

the 
immuno-
histology 

study 

n Age Sex Smoking 
history 

Pack-
years 

Chronic 
Bronchitis 

FEV1 

%pred  
FEV1/FVC

%  

Smokers 12 68.7±2.0 11M/1F 

 9 ex-
smokers       
3 current 
smokers 

46.2±12.1 

2 with and   
10 without 

chronic 
bronchitis 

95.2±5.1 77.0±1.4 

COPD 6 69.2±3.1 5M/F 
6 ex-

smokers 
41.2±8.2 

2 with and       
4 without 
chronic 

bronchitis 

78.2±6.7* 60.4±3.7* 
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TABLE 2 – Radioligand binding assay for adenosine receptors in A549 cell 
membranes 

 

A549 
membranes 

[3H]-DPCPX 
A1AR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-ZM 241385 
A2AAR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM)  
Bmax (fmol/mg 

protein) 
 

Controls 
 

3.04±0.35 
230 ± 25 

2.99±0.31 
110 ± 9 

ND 
3.65±0.38 
220 ± 26 

+ TNF-αααα 
(10 ng/ml) 

2.88 ± 0.3 
215 ± 27 

3.03±0.32 
167 ± 12* 

ND 
3.55±0.36 
212 ± 24 

+ IL-1ββββ 
(1 ng/ml) 

2.82±0.27 
210 ± 23 

2.89±0.27 
173 ± 14* 

ND 
3.70±0.35 
223 ± 22 

+ TNFαααα 
(10 ng/ml) 
AS 602868 
(0.5 µM) 

2.95±0.28 
220 ± 29 

3.01±0.29 
104 ± 11 

ND 
3.44±0.35 
217 ± 25 

+ IL1ββββ 
(1 ng/ml) 

AS 602868 
(0.5 µM) 

2.93±0.25 
227 ± 26 

3.02±0.33 
108 ± 10 

ND 
3.52±0.37 
225 ± 20 

 

Definition of abbreviations: ND not detectable; Data are expressed as mean ± SEM; *, p<0.01 versus 

controls. 
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TABLE 3 - Time course of the effect of H2O2 on adenosine receptors in 

untransformed and PMA-transformed U937 cell membranes 

 

 

Data are expressed as mean ± SEM ; n= 3-6 experiments; *, p<0.01 vs untransformed or PMA-treated U937 

cells in control conditions. 

 

 

 

 

 

 

 

 

 

 

Cell 
membranes 

Time 
treatment 

H2O2 (100 µµµµM) 

[3H]-DPCPX 
A1AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-ZM 241385 
A2AAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

 0 h 
2.34 ± 0.14 
10.4 ± 0.8 

1.69 ± 0.12 
49 ± 2 

3.28 ± 0.13 
80 ± 4 

3.86 ± 0.28 
186 ± 12 

U937 PMA- 
untreated 

12 h 
2.32 ± 0.11 
9.5 ± 0.8 

1.57 ± 0.11 
46 ± 3 

3.10 ± 0.12 
50 ± 3* 

3.52 ± 0.27 
172 ± 13 

 
 

24 h 
 

2.41 ± 0.18 
9.7 ± 0.9 

1.71 ± 0.09 
47 ± 2 

3.41 ± 0.10 
22 ± 2* 

3.60 ± 0.19 
178 ± 13 

 
 

48 h 
 

2.37 ± 0.10 
9.2 ± 0.9 

1.62 ± 0.14 
48 ± 3 

3.26 ± 0.19 
19 ± 2* 

3.67 ± 0.32 
181 ± 15 

 0 h 
2.21 ± 0.12 
10.6 ± 0.8 

1.74 ± 0.15 
97 ± 8 

3.11 ± 0.12 
82 ± 3 

3.65 ± 0.31 
325 ± 32 

U937 PMA-
treated 

12 h 
2.32 ± 0.13 
10.1 ± 0.9 

1.67 ± 0.12 
93 ± 6 

3.05 ± 0.13 
57 ± 4* 

3.57 ± 0.29 
316 ± 32 

 
 

24 h 
 

2.27 ± 0.11 
10.5 ± 0.9 

1.71 ± 0.13 
95 ± 7 

3.08 ± 0.12 
28± 3* 

3.55 ± 0.34 
317 ± 28 

 
 

48 h 
 

2.19 ± 0.12 
10.5 ± 0.9 

1.76 ± 0.14 
95 ± 7 

3.14 ± 0.14 
24± 2* 

3.61 ± 0.32 
304 ± 30 
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TABLE 4 - Concentration-dependent effect of H2O2 on adenosine receptors  in 

untransformed and PMA-transformed U937 cell membranes 

 

Data are expressed as mean ± SEM ; n= 3-6 experiments, **, p<0.05 and *, p<0.01, vs untransformed or 

PMA-transformed U937 cell membranes in control conditions. 

 

 

 

 

 

 

 

Cell 
membranes 

Treatment 
H2O2  (24 h) 

[3H]-DPCPX 
A1AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-ZM 241385 
A2AAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

 - 
2.34±0.14 
10.4±0.8 

1.69±0.12 
49±2 

3.28±0.13 
80±4 

3.86±0.28 
186±12 

 1 µM 
2.31±0.10 
9.7±0.6 

1.59±0.11 
47±3 

3.38±0.15 
62± 4** 

3.55±0.23 
170±10 

U937 PMA- 
untreated 10 µM 

2.37±0.15 
9.9±0.9 

1.65±0.12 
48± 2 

3.43±0.12 
55± 4* 

3.57±0.15 
174±11 

 
 

50 µM 
 

2.35±0.13 
9.6±0.7 

1.55±0.13 
46±3 

3.15±0.14 
38± 3* 

3.54±0.25 
178±12 

 
 

100 µM 
 

2.41±0.18 
9.7±0.9 

1.71±0.09 
47± 2 

3.41±0.10 
19±2* 

3.60±0.19 
178±13 

 - 
2.20 ± 0.12 
10.6 ± 0.8 

1.74 ± 0.15 
97 ± 8 

3.11 ± 0.12 
82 ± 3 

3.65 ± 0.31 
325 ± 32 

 1 µM 
2.23 ± 0.11 
10.1 ± 0.7 

1.70 ± 0.11 
95 ± 7 

3.09 ± 0.13 
68 ± 6** 

3.72 ± 0.34 
320 ± 28 

U937 PMA-
treated 10 µM 

2.21 ± 0.12 
10.4 ± 0.5 

1.73 ± 0.12 
99 ± 6 

3.13 ± 0.11 
58 ± 4* 

3.84 ± 0.27 
319 ± 27 

 
 

50 µM 
 

2.19 ± 0.13 
10.2 ± 0.5 

1.72 ± 0.12 
98 ± 6 

3.11 ± 0.12 
45 ± 4* 

3.82 ± 0.26 
322 ± 30 

 
 

100 µM 
2.27 ± 0.11 
10.5 ± 0.9 

1.71 ± 0.13 
95 ± 7 

3.08 ± 0.12 
27± 3* 

3.53 ± 0.28 
317 ± 28 
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TABLE 5 - Time course of the effect of SIN-1 on adenosine receptors in 

untransformed or PMA-transformed U937 cell membranes 

 

 

Data are expressed as mean ± SEM; n= 3-6 experiments; *, p<0.01, vs untransformed or PMA-transformed 

cell membranes in control conditions. 

 

 

 

 

 

 

 

Cell 
membranes 

Time 
treatment 

SIN-1 (100 µµµµM) 

[3H]-DPCPX 
A1AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-ZM 241385 
A2AAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

 0 h 
2.34 ± 0.14 
10.4 ± 0.8 

1.69 ± 0.12 
49 ± 2 

3.28 ± 0.13 
80 ± 4 

3.86 ± 0.28 
186 ± 12 

 2 h 
2.30 ± 0.09 
9.6 ± 0.7 

1.51 ± 0.13 
48 ± 3 

3.04 ± 0.11 
76 ± 4 

3.51 ± 0.25 
171 ± 14 

U937 PMA- 
untreated 

4 h 
2.28 ± 0.12 
9.7 ± 0.8 

1.55 ± 0.12 
47 ± 3 

3.10 ± 0.12 
48 ± 3* 

3.51 ± 0.25 
171 ± 14 

 
 

6 h 
 

2.39 ± 0.17 
9.5 ± 0.9 

1.69 ± 0.10 
48 ± 2 

3.28 ± 0.10 
25 ± 3* 

3.63 ± 0.18 
173 ± 12 

 
 

12 h 
 

2.33 ± 0.11 
9.3 ± 0.8 

1.63 ± 0.13 
45 ± 3 

3.26 ± 0.19 
22 ± 2* 

3.64 ± 0.26 
175 ± 16 

 0 h 
2.21 ± 0.12 
10.6 ± 0.8 

1.74 ± 0.15 
97 ± 8 

3.11 ± 0.12 
82 ± 3 

3.65 ± 0.31 
325 ± 32 

 2 h 
2.31 ± 0.10 
9.7 ± 0.8 

1.51 ± 0.13 
48 ± 3 

3.04 ± 0.11 
77 ± 4 

3.51 ± 0.25 
171 ± 14 

U937 PMA-
treated 

4 h 
2.31 ± 0.11 
10.2 ± 0.9 

1.67 ± 0.12 
95 ± 6 

3.06 ± 0.11 
52 ± 3* 

3.57 ± 0.29 
315 ± 28 

 
 

6 h 
 

2.25 ± 0.10 
10.4 ± 0.8 

1.71 ± 0.13 
96 ± 7 

3.11 ± 0.10 
23 ± 3* 

3.55 ± 0.34 
314 ± 26 

 
 

12 h 
 

2.17 ± 0.11 
10.3 ± 0.9 

1.76 ± 0.14 
98 ± 7 

3.25 ± 0.12 
21 ± 2* 

3.61 ± 0.32 
317 ± 29 
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TABLE 6 - Concentration-dependent effect of SIN-1 on adenosine receptors in 

untransformed or PMA-transformed U937 cell membranes 

 

Data are expressed as mean ± SEM; n=3-6 experiments; *, p<0.05; *, p<0.01 vs untransformed or PMA-

transformed cell membranes in control conditions. 

 

 

 

 

 

 

 

Cell 
membranes 

Treatment 
SIN-1  (6 h) 

[3H]-DPCPX 
A1AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-ZM 241385 
A2AAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

 - 
2.34±0.14 
10.4±0.8 

1.69±0.12 
49±2 

3.28±0.13 
81±4 

3.86±0.28 
186±12 

 1 µM 
2.30±0.11 
9.7±0.6 

1.59±0.11 
48±3 

3.38±0.15 
62± 4** 

3.54±0.22 
172±10 

U937 PMA- 
untreated 5 µM 

2.37±0.15 
9.8±0.9 

1.65±0.12 
46± 2 

3.43±0.12 
45± 4* 

3.56±0.14 
175±10 

 
 

10 µM 
 

2.36±0.13 
9.6±0.7 

1.55±0.13 
47±3 

3.15±0.14 
26± 3* 

3.53±0.24 
177±13 

 
 

100 µM 
 

2.29±0.18 
10.1±0.9 

1.71±0.09 
48± 2 

3.41±0.10 
26±2* 

3.60±0.19 
178±13 

 - 
2.21 ± 0.12 
10.6 ± 0.8 

1.74 ± 0.15 
97 ± 8 

3.11 ± 0.12 
82 ± 3 

3.65 ± 0.31 
325 ± 32 

 1 µM 
2.23 ± 0.11 
10.2 ± 0.7 

1.66 ± 0.12 
96 ± 7 

3.08 ± 0.11 
65 ± 4** 

3.71 ± 0.33 
325 ± 32 

U937 PMA-
treated 5 µM 

2.21 ± 0.12 
10.5 ± 0.5 

1.74 ± 0.13 
97 ± 8 

3.12 ± 0.12 
46 ± 4* 

3.83 ± 0.26 
325 ± 32 

 
 

10 µM 
 

2.19 ± 0.13 
10.3 ± 0.5 

1.63 ± 0.11 
98 ± 7 

3.10 ± 0.10 
29 ± 3* 

3.81 ± 0.27 
322 ± 30 

 
 

100 µM 
2.27 ± 0.11 
10.4 ± 0.9 

1.72 ± 0.12 
96 ± 8 

3.09 ± 0.11 
27± 3* 

3.52 ± 0.26 
317 ± 28 
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TABLE 7- Effect of various inflammatory stimuli on adenosine receptors in 

untransformed or PMA-transformed U937 cell membranes 

 

Doses of different treatments: H2O2 (100 nM), IL-1β (1 ng/ml), TNF-α (10 ng/ml). Data are expressed as 

mean ± SEM. *, p<0.01 vs untransformed or PMA-transformed U937 cell membranes, respectively; °, p<0.05 

vs untransformed or PMA-transformed U937 cell membranes in the presence of IL-1β or TNF-α; §, p<0.01 vs 

untransformed or PMA-transformed U937 cell membranes in the presence of IL-1β or TNF-α.  

 

 

 

 

 

 

 

Cell 
membranes 

Treatment 

[3H]-DPCPX 
A1AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-ZM 
241385 A2AAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM) 
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM) 
Bmax (fmol/mg 

protein) 

 - 
2.34±0.14 
10.4±0.8 

1.69±0.12 
49±2 

3.28±0.13 
80±4 

3.86±0.28 
186±12 

 + IL-1β 
2.35±0.10 
9.8±0.8 

1.57±0.14 
97±5* 

3.38±0.22 
74±6 

3.77±0.35 
285±17* 

U937 PMA- 
untreated + TNF-α  

2.37±0.13 
10.2±0.9 

1.61±0.15 
102±5* 

3.21±0.19 
75±7 

3.81±0.24 
305±22* 

 
+IL-1β  
+TNF-α  

2.36±0.11 
10.5±0.7 

1.71±0.16 
116±8*° 

3.16±0.25 
78±9 

3.92±0.29 
906± 82*§ 

 
+ H2O2  
+IL-1β  
+TNF-α  

2.38±0.15 
10.7±0.8 

1.75±0.13 
120±10*° 

3.27±0.17 
18.7±1.5* 

3.95±0.31 
1050±95*§ 

 - 
2.21 ± 0.12 
10.6 ± 0.8 

1.74 ± 0.15 
97 ± 8 

3.11 ± 0.12 
82 ± 3 

3.65 ± 0.31 
325 ± 32 

 + IL-1β  
2.17 ± 0.10 
10.4 ± 0.7 

1.74 ± 0.15 
146 ± 10* 

3.15 ± 0.11 
81 ± 4 

3.46 ± 0.29 
475 ± 28* 

U937 PMA-
treated + TNF-α  

2.19 ± 0.11 
10.3 ± 0.6 

1.74 ± 0.15 
163 ± 11* 

3.12 ± 0.10 
84 ± 5 

3.52 ± 0.34 
512 ± 34* 

 
+IL-1β  
+TNF-α  

2.35±0.13 
10.6±0.7 

1.67±0.14 
193±11*° 

3.27±0.15 
80±5 

3.63±0.32 
1225± 105*§ 

 
+ H2O2  
+IL-1β  
+TNF-α  

2.29±0.13 
10.3±0.7 

1.69±0.14 
217±15*° 

3.22±0.16 
35±3* 

3.75±0.31 
1307± 112*§ 
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TABLE 8 – Adenosine receptors in HMC-1 cell membranes 
 

HMC-1cell 
membrane 
treatments 

[3H]-DPCPX 
A1AR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-ZM 241385 
A2AAR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM)  
Bmax (fmol/mg 

protein) 
 
- 
 

N.D. 
1.92±0.18 

75±8 
2.60±0.22 
120±11 

1.67±0.13 
315±28 

24 h H2O2 

(100 µµµµM)  
N.D. 

1.85±0.16 
72±7 

2.72±0.25 
116±10 

1.55±0.16 
331±26 

6 h SIN-1 
(100 µµµµM)  

N.D. 
1.78±0.17 

77±8 
2.53±0.21 
127±12 

1.63±0.14 
322±31 

 

Data are expressed as mean ± SEM. n=3 experiments. 
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Figure 2 - Immunolocalization of A2A adenosine receptor in peripheral lung sections 

from a COPD patient 

 

 

 

 

 

A2AARs immunostaining (red) in the bronchiole of  COPD patient (A). Negative control section stained with 

the same concentration of non-specific isotype control antibody (B). Red immunostaining of cells in the 

alveolar septa (C) and a peripheral lung vessel (D). Magnification x400. Results are representative of those 

from 12 smokers with normal lung function and 6 mild to moderate stable COPD. Immunolocalization of 

A2AAR in peripheral lung sections from a COPD patient. (E) bronchiolar wall double immunostained for 

smooth muscle specific actin (red), a marker of smooth muscle cells, and A2A receptor (dark brown), x1000; 

(F) vessel double immunostained for smooth muscle specific actin (red) and A2AAR (dark brown), x1000. 

Results are representative of those from 6 smokers with normal lung function and 6 mild to moderate stable 

COPD. 
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Figure 3 - Immunolocalization of A1 adenosine receptor in peripheral lung sections 

from smoker healthy subject and COPD patient 

 

 

 

 

 

 

 

 

 

 

Alveolar septa in peripheral lung sections immunostained (red) for A1ARs from a smoker with normal lung 

function (S) and a COPD patient (C) both at x1000. Alveolar septa in the negative control (NC) section 

stained with the same concentration of non-specific isotype control antibody, x1000. Results are 

representative of those from 12 smokers with normal lung function and 6 mild to moderate stable COPD. 

 

 

 

 

Figure 4 - Immunolocalization of A3 adenosine receptor in peripheral  

lung sections from a COPD patient 

 

 

 

 

 

 

 

 

 

A bronchiole immunostained (red) for A3AR, x200 (A); the same bronchiole in the negative control section 

stained with the same concentration of non-specific isotype control antibody, x200 (B); cells in the alveolar 

septa immunostained for A3AR (red), x200 (C). Results are representative of those from 12 smokers with 

normal lung function and 6 mild to moderate stable COPD. 
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Figure 5 - Immunolocalization of A2B adenosine receptor in peripheral lung sections 

from a COPD patient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cells inside the lumen of a bronchiole are double immunostained (black arrow) for CD68 (red), a marker of 

alveolar macrophages, and A2BAR (dark brown). Magnification x400 (A) and x1000 (B). Cells inside the 

lumen of a bronchiole double immunostained (black arrow) for tryptase (red), a marker of mast cells, and 

A2BAR (dark brown). Magnification x400 (C) and x1000 (D). A bronchiole immunostained for smooth 

muscle specific actin (red), a marker of smooth muscle cells, and A2BAR (dark brown), x200 (E) and x400 

(F) showing the absence of co-localization of A2BAR in smooth muscle cells. (G) the same bronchiole in the 

negative control section stained with the same concentration of non-specific isotype control antibody, x200. 

Results are representative of those from 6 smokers with normal lung function and 6 mild to moderate stable 

COPD. 

 

 

B A 

C D 
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Figure 6 - Density and affinity of A1, A2A, A2B and A3 adenosine receptors in 

peripheral lung parenchyma 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Saturation curves of [3H]DPCPX binding to human A1ARs (A) and of [3H]ZM 241385 binding to human 

A2AARs (B), of [3H]MRE 2029F20 binding to human A2BARs (C) and of [3H]MRE 3008F20 binding to 

human A3ARs (D) on lung parenchyma membranes from COPD patients and control group. Scatchard plots 

of the same data are shown in the right. Results are reported as the mean ± SEM from 8 smokers with normal 

lung function and 8 mild to moderate stable COPD (*, p<0.01 versus control smokers). 
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Figure 7 - Expression of A1, A2A, A2B and A3 adenosine receptors mRNA in 

 peripheral lung parenchyma 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relative adenosine receptor/GAPDH mRNA ratio for each adenosine receptor is expressed as fold of 

change in COPD patients compared to the control group of smokers with normal lung function. A2AR and A3R 

mRNAs are significantly increased in COPD compared with control group (*, p<0.01). A2BR mRNA is 

significantly decreased in COPD compared with controls (*, p<0.01). A1R mRNA is not significantly changed 

between the 2 groups. Results are representative of 8 smokers with normal lung function and 8 mild to 

moderate stable COPD. 
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Figure 8 - A2B adenosine receptor  expression in human alveolar macrophages of 

control smokers and COPD patients 

D 

 

 

 

 

 

 

 

 

 

 

 

Representative immunocytochemical analysis of A2BAR expression in bronchoalveolar lavage macrophages 

from a control smoker with normal lung function (A) and a smoker with COPD (B). (C) Negative control 

(non-specific Ig).  Results are representative of those seen in 13 individual patients (6 healthy smokers/7 

smokers with COPD). Western blotting analysis of A2BAR expression in bronchoalveolar macrophages 

obtained from COPD (D) patients and control smokers (S) with normal lung function. Whole cell extracts 

from BEAS-2B, U937 and peripheral blood mononuclear cells (PBMCs) are used as positive controls (D).  

(E) Densitometric analysis of A2BAR expression as a ratio of β-actin as a loading control.  The median and 

interquartile ranges for each treatment are  presented as a box and whiskers plot (n = 3-6).  
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Figure 9 - Correlation between binding parameters of  

adenosine receptors and clinical features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlation between the affinity and density of A2A, A3 , and A2BARs and forced expiratory volume in one 

second (FEV1)/forced vital capacity (FVC) ratio. Results are representative of 8 smokers with normal lung 

function (black circles) and 8 mild to moderate stable COPD (black squares). 
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Figure 10 - Effect of inflammatory stimuli on adenosine receptor expression  

in A549 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IL-1β (1 ng/ml) and TNF-α (10 ng/ml) increase A2AAR mRNA expression (A) in A549 cells. The effect of 

IL-1β and TNF-α is blocked by pre-treatment with NF-κB inhibitor AS602868 (0.5 µM). A2AAR mRNA 

expression is expressed relative to that of β-actin. *, p<0.05 and **, p<0.01 versus unstimulated cells and #, 

p<0.05 versus TNF-α stimulated cells and ##, p<0.01 versus  IL-1β stimulated cells. Similar effects of IL-1β 

and TNF-α on A2AAR expression were observed by Western blot analysis (B). Results are representative of 3 

independent experiments. 
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A1, A2A, A2B and A3 ARs affinity (KD, nM; A) and density (Bmax, fmol/mg protein; B) in untrasformed or 

PMA-trasformed U937 membranes. Saturation curves of A2AAR (C) and A3AR (E) in untransformed or 

PMA-transformed U937 membranes. Scatchard plot of the same data are represented (D and F). Binding 

parameters such as affinity (KD, nM) and density (Bmax, fmol/mg protein) are also reported. The data are 

expressed as mean ± SEM; *, p<0.01 versus untreated U937 membranes. 
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Figure 12 – Effect of H2O2, SIN-1 and cytokines on A2B adenosine receptors in 

untransformed or PMA-transformed U937 membranes 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2BAR density (Bmax, fmol/mg protein) at various incubation times (12, 24, 48 h) (A) and at different doses 

(1, 10, 50, 100 µM) (B) of H2O2. A2BAR density was also evaluated after 2, 4, 6, 12 h (C) and by using 1, 5, 

10, 100 µM (D) of SIN-1. Effect of H2O2 (100 µM) and SIN-1 (100 µM) in the absence or in the presence of 

NAC (100 µM) (E). Effect of IL-1β (1 ng/ml), TNF-α (10 ng/ml), IL-1β + TNF-α, H2O2 (100 µM) + IL-1β + 

TNF-α on A2BAR density (F). The data are expressed as mean ± SEM; **, p<0.05; *, p<0.01 vs untreated 

U937 membranes. 
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Figure 13 - Effects of H2O2 and SIN-1 of A2B adenosine receptors  

binding parameters on U937 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [3H] MRE 2029F20 saturation curves of A2BARs in the absence and in the presence of  H2O2 (A and C) and 

SIN-1 (E and G) at different times and concentrations. Scatchard plot of the same data are shown after H2O2 

(B and D) and SIN-1 (F and H) treatments. Binding parameters such as affinity (KD, nM) and density (Bmax, 

fmol/mg protein) are also reported. The data are expressed as mean ± SEM;  **, p<0.05; *, p<0.01 vs U937 

membranes. 

0 5 10 15 20 25 30
0

20

40

60

80

100
U937 cells + 12 h (H202)

+ 24 h (H202) + 48 h (H202)

A

[3H]-MRE 2029F20 free (nM)

[3 H
]M

R
E

 2
02

9F
20

 b
ou

nd
(f

m
ol

/m
g 

pr
ot

ei
n)

0 5 10 15 20 25 30
0

20

40

60

80

100
U937 cells + 1 µM (H2O2)
+ 10 µM (H2O2) + 50 µM (H2O2)

+ 100 µM (H2O2)

C

[3H]-MRE 2029F20 free (nM)

[3 H
]-

M
R

E
 2

02
9F

20
 b

ou
n

d
(f

m
ol

/m
g 

pr
ot

ei
n)

0 20 40 60 80 100
0

5

10

15

20

B

+ 48 h (H202) - KD=3.26±0.19 nM
Bmax=19±2∗ fmol/mg protein
       *, P<0.01

+ 24 h (H202) - KD=3.41±0.10 nM
Bmax=22±2∗ fmol/mg protein

+ 12 h (H202) - KD=3.10±0.12 nM
Bmax=50±3∗ fmol/mg protein

U937 cells - KD=3.28±0.13 nM
Bmax=80±4 fmol/mg protein

Bound

B
o

un
d

/F
re

e

0 20 40 60 80 100
0

5

10

15

20

U937 cells - KD=3.28±0.13 nM
Bmax=80±4 fmol/mg protein

U937 cells - KD=3.38±0.15 nM

Bmax=62±4** fmol/mg protein

U937 cells - KD=3.43±0.12 nM
Bmax=55±4* fmol/mg protein

U937 cells - KD=3.15±0.14 nM

Bmax=38±3* fmol/mg protein
U937 cells - KD=3.41±0.10nM
Bmax=19±2* fmol/mg protein

D

**, P<0.05; *, P<0.01

Bound

B
o

un
d

/F
re

e

0 5 10 15 20 25 30
0

25

50

75

100
U937 cells

+ 4 h (SIN-1) + 6 h (SIN-1)

+ 12 h (SIN-1)

E
+ 2h (SIN-1)

[3H]-MRE 2029F20 free (nM)

[3 H
]M

R
E

 2
02

9F
20

 b
ou

nd
(f

m
ol

/m
g 

pr
ot

ei
n)

0 20 40 60 80 100
0

5

10

15

20

F

+ 12 h (SIN-1) - KD=3.26±0.19 nM
Bmax=22±2∗ fmol/mg protein
       *, P<0.01

+ 6 h (SIN-1) - KD=3.28±0.10 nM
Bmax=25±3∗ fmol/mg protein

+ 4 h (SIN-1) - KD=3.10±0.12 nM
Bmax=48±3∗ fmol/mg protein

U937 cells - KD=3.28±0.13 nM
Bmax=80±4 fmol/mg protein

+ 2 h (SIN-1) - KD=3.04±0.11 nM
Bmax=76±4 fmol/mg protein

Bound

B
o

u
n

d
/F

re
e

0 20 40 60 80 100
0

5

10

15

20

U937 cells - KD=3.28±0.13 nM

Bmax=81±4 fmol/mg protein
U937 cells - KD=3.38±0.15 nM
Bmax=62±4* fmol/mg protein

U937 cells - KD=3.43±0.12 nM

Bmax=45±4* fmol/mg protein

U937 cells - KD=3.15±0.14 nM

Bmax=28±3* fmol/mg protein
U937 cells - KD=3.41±0.10nM
Bmax=26±2* fmol/mg protein

H

**,P<0.05 and *,P<0.01 vs control

Bound

B
o

u
n

d
/F

re
e

0 5 10 15 20 25 30
0

20

40

60

80

100
U937 cells + 1 µM (SIN-1)
+ 5 µM (SIN-1) + 10 µM (SIN-1)

+ 100 µM (SIN-1)

G

[3H]-MRE 2029F20 free (nM)

[3 H
]-

M
R

E
 2

02
9F

20
 b

ou
nd

(f
m

ol
/m

g 
pr

ot
ei

n)



ADENOSINE RECEPTORS IN COPD PATIENTS 
_________________________________________________________________________ 

62 
 

Control 12 h 24 h 48 h
0.0

0.2

0.4

0.6

0.8

*
*

E
*, P<0.01 vs control

A
2B

A
R

/ ββ ββ
-a

ct
in

 r
at

io

Figure 14 - Time course effect of H2O2 and SIN-1 on A2B adenosine receptors  

in U937 cells  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A2BARs mRNA was quantified, relative to β-actin mRNA, by Real-Time RT-PCR (A and B). Western 

blotting analysis of A2BAR protein expression following treatment of U937 cells with H2O2 or SIN-1 (100 

µM) by using typical anti-adenosine receptor polyclonal antibodies of protein extracts (C and D) and the 

relative densitometric analysis (E and F). *, p <0.01 vs control. 
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Figure 15 - Effect of A2B adenosine receptor-silencing on relative A2B adenosine  

receptor mRNA and protein expression in U937 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of A2BAR siRNA on relative A2BAR mRNA as determined by RT-PCR (A) and protein expression 

as measured by western blotting (B). Chinese hamster ovary (CHO) cells expressing human A2BAR are used 

as a positive control (hA2BCHO). The relative densitometric analysis for protein expression is quantified in 

(C) against β-actin as a loading control. Data are expressed as mean ± SEM of 3-6 independent experiments. 

*, p<0.01 with respect to control siRNA transfected cells. 
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Figure 16 - Effect of NECA on cAMP and proliferation assays in U937 cells 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of the adenosine receptor agonist NECA on cAMP (A) and cell proliferation (B) assays in 

untransformed and PMA-transformed U937 cells. Histograms represent the potency of NECA (EC50) 

following exposure of cells to H2O2 (100 µM) and SIN-1 (100 µM) in the presence and absence of NAC (100 

µM). Concentration-response curves of NECA (1 nM-100 µM) on inducing cAMP (C and D) and cell 

proliferation (E and F) in the absence and in the presence of MRE 2029F20 (1 µM) and after A2BAR 

expression was reduced by siRNA transfection of untransformed (C and E) and PMA-transformed U937 cells 

are shown (D and F).  Results are presented as means±SEM of 3-6 independent experiments. *, p<0.01 

compared with control. 
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Discussion 

 

In this study, we report the localization, mRNA expression, affinity and density of A1, A2A, 

A2B and A3ARs in peripheral lung parenchyma from age-matched smokers with normal 

lung function (control group) and COPD patients. We have examined the peripheral lung 

because this is the major site of airflow obstruction in COPD patients and histopathological 

studies have demonstrated that most of the airway inflammation in COPD is localized in the 

small airways and lung parenchyma [136].  

Radioligand binding and RT-QPCR experiments have demonstrated a significant decrease 

of the affinity, associated with an increased density of the A2A and A3ARs protein and 

mRNA in COPD patients compared with the control group.  

In vitro studies have demonstrated that the long-term exposure of target cells to adenosine 

cause desensitization of adenosine receptors [9]. We hypothesize that high concentrations 

of adenosine in the peripheral lung of COPD patients might mediate desensitization of the 

A2A and A3ARs. Consequently the up-regulation of the A2A and A3ARs may represent a 

compensatory response mechanism and may contribute to the anti-inflammatory effects 

mediated by the stimulation of these receptors. This is in keeping with the increased 

expression in vitro of A2AAR after exposure of human lung type 2 alveolar-like cells A549 

to the pro-inflammatory cytokines IL-1β and TNF-α, through the activation of the key pro-

inflammatory NF-κB pathway. Radioligand binding experiments show the presence of A1, 

A2A and A3ARs on A549 membranes. The pro-inflammatory cytokines IL-1β and TNF-α 

are able to increase the A2AARs density but not that of A1 and A3ARs. On the contrary 

A2BARs are not detectable on A549 membranes.  

In the lower airways of patients with COPD compared to smokers with normal lung 

function both IL-1β and TNF-α  expression are increased [137] and the NF-κB pathway is 

activated [128]. Consistent with this hypothesis, stimulation of the A2A and A3ARs in vitro 

has anti-inflammatory effects [60, 125]. Interestingly, we have also find a direct correlation 

between KD and Bmax and FEV1/FVC ratio and of A2A, and A3ARs indicating that may be 

involved in the pathogenesis of airflow obstruction in COPD. However, as with all 

association studies it is necessary to confirm the data in other groups of COPD and until 

selective agonists or antagonists are used clinically in patients with COPD we are unlikely 

to be able to resolve whether specific subsets of adenosine receptors have distinct roles in 

the pathogenesis or progression of COPD. 
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There is also a significant decrease of the affinity, associated with an increased density of 

the A1ARs in COPD patients compared with the control group. However, both the 

radioligand binding and immunohistochemical studies demonstrate a low A1ARs density in 

the peripheral lung parenchyma suggesting a secondary role for this receptor in the 

pathogenesis of COPD in contrast to the protective role of A1ARs in the pulmonary 

inflammation and injury seen in ADA-deficient mice [45].  

We have demonstrated that A2BARs are expressed only in mast cells and macrophages and 

that there is reduced expression of their protein (Bmax) and mRNA in peripheral lung 

parenchyma from COPD patients compared with the control group. This data suggests that 

there may be a compensatory feedback mechanism regulating A2BARs expression. Such 

reduction could be explained as the consequence of an increased adenosine concentration in 

peripheral lung with secondary down regulation of the A2BARs. The role of mast cells in 

the pathogenesis of COPD is controversial [136] but, in vitro, A2BARs stimulation has 

shown to enhance the release of pro-inflammatory mediators from human lung mast cells 

[48, 138]. On the contrary, the number of alveolar macrophages is highly increased in the 

peripheral lung of COPD patients compared with control smokers and they seem to 

represent the key inflammatory cells in the pathogenesis of COPD [137]. Furthermore, 

there is a significant inverse correlation between binding parameters of the A2BARs and 

FEV1/FVC ratio suggesting a potential role of this receptor in the pathogenesis of airflow 

obstruction in COPD. A significant decrease of A2BARs in BAL from patients with COPD 

compared to an age-matched group of control smokers with normal lung function was 

reported.  Using the U937 cell line as a model of a monocyte/macrophage-like cells the 

oxidative (H2O2) and nitrosative (SIN-1) stress cause a selective decrease (~70%) in A2BAR 

mRNA and protein expression without affecting receptor affinity.  This reduction in A2BAR 

expression by H2O2 and SIN-1 was blocked by the anti-oxidant NAC.  In contrast, no effect 

of oxidative stress nor nitrosative stress on A2BAR expression was observed in the mast cell 

line HMC-1. The expression of A2BAR was not affected by pro-inflammatory cytokines.  

The attenuation of A2BAR expression or activity by H2O2 or SIN-1, by a specific antagonist 

or by using A2BAR specific siRNA affected both cell activation and proliferation. U937 

proliferation is increased under these conditions and this may contribute to the increased 

proliferation of alveolar macrophages of smokers as previously demonstrated [139]. These 

data together with the prolonged survival of these cells in the lungs of smokers may 

contribute to the increased accumulation of alveolar macrophages present in the COPD lung 

[136, 140]. Undifferentiated U937 cells express all four adenosine receptor subtypes (A1, 
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A2A, A2B and A3ARs) with different affinity and density values. Differentiation of U937 

cells towards a more mature macrophage-like phenotype induces an increase of A2A and 

A3ARs without affecting the expression of A1 and A2BARs.  The induction of A2A and 

A3AR expression may account for the altered sensitivity of these cells to NECA 

stimulation. 

Increased levels of many pro-inflammatory cytokines, including IL-1β and TNF-α, have 

been reported in COPD and are known to regulate in vitro the expression of ARs in many 

cell types [141, 142]. It has been demonstrated that both IL-1β and TNF-α were able to 

induce A2AAR mRNA and protein expression in epithelial cells through an NF-κB 

mediated process [143]. In untransformed U937 cells, IL-1β and TNF-α were both able to 

significantly increase A2A and A3ARs density to a similar extent and the co-stimulation 

resulted in a further enhancement of A2A and A3ARs expression. Similar results were 

obtained in PMA-transformed U937 cells even though the basal expression of these 

receptors is enhanced during the PMA-induced differentiation process. The addition of 

H2O2 to the pro-inflammatory stimulus, which may reflect a plausible condition present in 

the COPD lung, did not affect A2A or A3AR expression although it induced a significant 

reduction in A2BAR expression. The in vitro effects of some pro-inflammatory cytokines 

and oxidative/nitrosative stress on the expression of ARs may explain the altered receptor 

expression in peripheral lung parenchyma from COPD patients compared with smokers 

with normal lung function as previously reported. In A549 cells the mechanism by which 

IL-1β and TNF-α enhanced A2AAR mRNA expression relied upon differential use of 

alternative promoters or of distinct NF-κB binding sites in the A2AAR promoter to regulate 

mRNA expression [143]. The mechanisms by which PMA and inflammatory mediators 

control A2AAR expression in these U937 cells is unknown but clearly indicates distinct 

pathways compared to those operating for the A2BAR. H2O2 and SIN-1 both induced a 

significant time- and concentration-dependent decrease in A2BAR mRNA and protein 

expression which was reversed by NAC. The effect of oxidative/nitrosative stress on 

mRNA transcription is similar to that seen with HDAC2 expression in these cells [144]. It 

would be interesting to investigate whether similar mechanisms of transcriptional control 

occur for both A2BARs and HDAC2 protein and mRNA. HDAC2 protein loss is mediated 

through post-translational modification and subsequent degradation in the proteosome 

[145]. In contrast, HDAC2 mRNA degradation may be linked to changes in the activity of 

the hypoxia-related transcription factor HIF-1α or possibly to effects on mRNA stability 
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induced by oxidative stress [146]. The functional role of the A2BAR expressed in U937 

cells in regulating their proliferation and cAMP production was well established. The 

potency of NECA, a pan-adenosine receptor agonist, on cAMP stimulation and cell 

proliferation was modulated after the treatment with oxidative/nitrosative stress to the same 

extent obtained when incubating these cells with the A2BAR antagonist MRE 2029F20 and 

in cells pre-treated with A2BAR siRNA to reduce A2BAR expression. NECA-induced effects 

on cAMP accumulation were abolished in cells in which A2BAR was knocked-down using a 

selective anti-human A2BAR siRNA compared with scramble-transfected cells. The reduced 

content of cAMP of alveolar macrophages can be considered an index of increased cell 

activation, because in vitro the treatment of alveolar macrophages with both β2-receptor 

agonists or selective inhibitors of the phosphodiesterase (PDE)4 enzyme isoform increases 

the content of cAMP inside these cells and decreases their release of pro-inflammatory 

mediators representing effective treatment of COPD patients [147, 148]. Differential effects 

of A2BAR signalling were reported in several cellular and animal models suggesting a dual 

role of this receptor in airway inflammation [149]. In particular A2BAR activation mediated 

the increase of typical pro-inflammatory cytokines demonstrating that A2BAR antagonism 

can attenuate lung inflammation [49, 150]. In conclusion, these novel data highlight that 

A2BARs are significantly reduced in BAL macrophages from COPD patients compared to 

control healthy smokers. We also demonstrated in U937 cells that A2BAR mRNA and 

protein expression is selectively decreased by oxidative/nitrosative stress, but not by 

inflammatory mediators. This is associated with increased proliferation and decreased 

cAMP content, a marker of cell activation. These data support the potential for modulating 

A2BAR function in alveolar macrophages as a novel pharmacological treatment for COPD. 
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Malignant pleural mesothelioma 

 

Malignant pleural mesothelioma (MPM) is an aggressive, treatment-resistant tumor, and 

there is no approved targeted therapy for this disease [151]. The pathogenesis of MPM has 

remained obscure due to the long latency time until development of disease, up to 20 years 

[152]. Asbestos is linked to MPM pathogenesis, and the mechanisms of asbestos 

carcinogenesis are still under investigation [153]. There are also other factors relevant for 

the development of MPM, including other mineral fibers, genetic predisposition and 

presence of SV40 (a DNA tumor virus) [154]. In Western Europe, the incidence of MPM 

appears to be leveling, probably due to the actions taken to restrict asbestos exposures 

[155]. Worldwide, however, the incidence of MPM is expected to continue to increase for 

some time [155]. Most mesothelioma have abnormal karyotypes, aneuploidy and structural 

rearrangements. Chromosomal losses are more common than gains [156]. One of the most 

common deletions is at the 9p21 locus encoding two critical inhibitors of cyclin dependent 

kinases, and the p53 regulator [157]. The loss of these proteins results in loss of cell cycle 

control and neoplastic transformation. Inhibitor of apoptosis proteins and also numerous 

defects in the apoptotic machinery are suggested to have an important role in the apoptosis-

resistance of MPM. Elevated levels of pro-survival B-cell lymphoma Bcl-xL is found in 

most MPM cell lines and tumor tissues investigated [158, 159], and down-regulation of 

Bcl-xL expression increases apoptosis per se [160]. There is less known about the role of 

the pro-apoptotic Bcl-2-family proteins in MPM resistance to apoptosis. It has been 

suggested that the pro-apoptotic Bcl-2–associated x protein Bax is either dysfunctional or 

antagonized downstream of its interaction with the outer mitochondrial membrane in MPM 

cells [161]. The epidermal grow factor receptor has been held as an attractive therapeutic 

target in MPM, however, it is not clear to what extent the epidermal grow factor receptor 

expression contributes to the resistance phenotype [162]. A more investigated target is 

akt/PKB signalling, which is frequently up-regulated in MPM, and can be targeted for 

inhibition to increase apoptosis [163, 164].  

Patients suffering from MPM can present with any number of general symptoms; dull chest 

pain, dyspnea, cough, and/or weight loss and diagnosis can be difficult, especially in non-

endemic regions [165, 166]. Although routine chest radiography will often reveal pleural 

effusion and occasional pleural masses evident of disease, histologic diagnosis is required 

to verify suspected MPM (differentiating MPM from lung adenocarcinoma, among other 
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entities can be difficult) and to identify the tumor's histology which affects prognosis and, 

in some cases, treatment decisions [167, 168]. Upon MPM diagnosis, aggressive therapy 

including surgery and chemotherapy has become the standard among eligible patients 

[169]. The median survival after diagnosis is less than 12 months, and during the 

progression of the disease the patient suffers increased dyspnea and pain that can become 

chronic [170, 171]. The best overall objective response rate (28%) was achieved by 

combining cisplatin and doxorubicin [172]. To delay symptom progression, chemotherapy 

should be started as soon after diagnosis as the performance status of the patient allows. 

Radical surgical approaches in treatment of this disease can include pleurectomy and 

decortication, and extrapleural pneumonectomy, and these are the most widely used 

treatments for MPM [170].  

The single most important risk factor for MPM, asbestos exposure, is known (primarily as a 

result of epidemiologic studies employing patient self-reports of occupational and 

environmental history) to occur in 70-80% or more of MPM patients [173]. Although 

asbestos use has been declining in the United States and Europe for decades, the 20-50 year 

latency of MPM is responsible for the continued worldwide increasing disease incidence 

[155]. In contrast to the long latency period following asbestos exposure, MPM is a rapidly 

fatal cancer with a median survival time of less than one year upon diagnosis [168]. Further 

influencing survival is disease histology; patients with biphasic and sarcomatoid tumors 

have reduced survival compared to patients with epithelioid tumors [174]. Importantly, 

since asbestos exposure is often occupationally related, and men are more often employed 

in these positions, disease occurs three to five times more often in men than women [175].  

The burden of both exposure and disease is heavier among men. Further, men are 

significantly more likely to have reduced survival compared to women with MPM [176]. 

Hence, while asbestos exposure burden could influence disease outcome, the relationship 

between asbestos exposure patterns and prognosis has been very poorly studied and is 

incompletely understood. 

Asbestos is a group of crystalline-hydrated silicate minerals that occur in a naturally fibrous 

form. Derived from the Greek word for inextinguishable, asbestos was used centuries ago 

as a textile for clothing, and in oil lamp wicks [177]. There are two main groups of asbestos 

fibers; serpentine asbestos, also known as chrysolite, is comprised of shorter, curved fibers; 

and amphiboles, which are long and straight and have several forms such as crocidolite, 

amosite, anthophylite, tremolite, and actinolite [178]. Although those who have studied 

mesothelioma have formed a general consensus that amphibole fibers are more pathogenic 
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than serpentine fibers, evidence indicates that all types of asbestos fibers are carcinogenic 

[179]. Inhalation of asbestos fibers leads to deposition at alveolar duct bifurcations and 

eventual migration to the pleural membranes [180]. Unfortunately, the process of fiber 

translocation is not well understood, but redistribution through airspaces, tissue spaces, or 

travel via lymphatics are among popular hypotheses [181]. 

Importantly, animal models of mesothelioma have been very helpful in advancing the 

understanding of the pathogenic mechanisms of asbestos, revealing that heterozygosity at 

particular genes such as NF2 and the CDKN2 locus can accelerate the induction of disease 

in the context of asbestos exposure [182].  

 

Adenosine receptors and MPM 

 

Adenosine is present at high concentrations in cancer tissues and in the interstitial fluid of 

several tumors, at concentrations sufficient to interact with ARs, but no data are present on 

the involvement of ARs in MPM. Several evidence of a correlation between A3ARs and 

cancer are presents in literature [183]. Nb2 rat lymphoma [64], A375 human melanoma 

[184], PGT-beta mouse pineal gland tumor cells [185], human glioblastoma [186, 187], and 

human prostatic cells [65]. This thesis describes an up-regulation of A3ARs in human MPM 

in comparison with healthy mesothelial pleura (HMP). Similar results were also obtained in 

healthy mesothelial cells (HMC) treated with crocidolite asbestos and in malignant 

mesothelioma cells (MMC) respect to untreated HMC.  A3ARs mediated a reduction of 

Akt/PKB phosphorylation and NF-kB activation in tumor cells. Furthermore, A3AR 

stimulation decreased proliferation and increased apoptosis in MMC and in HMC exposed 

to asbestos and TNF-α, but not in untreated HMC, suggesting that A3AR could represent a 

novel target for therapeutic intervention in MPM. 
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Materials and methods 

Subjects  

 

The patients enrolled in this research were recruited from the Department of 

Anesthesiology and Radiological Sciences, Section of General and Thoracic Surgery, 

University of Ferrara, Ferrara, Italy. The study was approved by the local Ethic Committee 

of the University of Ferrara and informed consent was obtained from each participant in 

accordance with the principles outlined in the Declaration of Helsinki.  

 

Surgical Technique 

 

The mesothelial tissue was obtained with surgical biopsy performed without use of 

electrosurgery devices. The pathological pleural specimens were obtained from patients 

with previous diagnosis of MM who underwent open surgery (13 extend extrapleural 

pneumonectomies, 4 explorative thoracotomies). Healthy pleural specimens were taken 

from patients who underwent video-assisted-thoracoscopy (VATS) for spontaneous 

pneumothorax (11 cases treated with apicectomy and pleurodesis) and for hyperhidrosis (5 

cases treated with bilateral sympathectomy) without clinical evidence of oncological 

disease. 

 

Human Pleura and Cell Lines  

 

Human pleura tissues derived from examined patients were washed twice with PBS and 

fragmented into small pieces. The fragments were homogenized in 50 mM Tris HCl buffer, 

pH 7.4 with a Polytron (Kinematica Inc, NY), filtered through two layers of gauze and 

centrifuged for 10 min, 1000 g at 4°C. The supernatant was centrifuged again for 30 min, 

40000 g at 4°C. To study adenosine receptor expression through binding assays, the 

membrane pellet was resuspended in the following buffers: a) 50 mM Tris HCl, pH 7.4 for 

A1ARs; b) 50 mM Tris HCl, pH 7.4 containing 10 mM MgCl2 for A2AARs; c) 50 mM Tris 

HCl, pH 7.4 containing 10 mM MgCl2 and 1 mM EDTA for A2B and A3ARs. Membrane 

suspensions were incubated with 2 IU/ml adenosine deaminase for 30 min at 37°C and used 

for radioligand binding assays [188]. Primary cell lines derived from human pleura 

specimens were obtained by enzymatic digestion incubating the tissues overnight at 37°C in 

RMPI 1640 medium containing 1.5 mg/ml of type II collagenase (Worthington 
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Biochemical Corporation). After digestion cells were recovered by centrifugation and 

plated in T75 culture flask in RPMI 1640 medium supplemented with 10% fetal bovine 

serum, 100 U/ml penicillin, 100 µg/ml streptomycin and grown at 37°C in 5% CO2 

atmosphere [189]. Cells were passed when reaching confluence and used at the 8th passages 

for in vitro experiments. For membrane preparation the culture medium was removed and 

the cells were washed with PBS and scraped off T75 flasks in ice-cold hypotonic buffer (5 

mM Tris HCl, 2 mM EDTA, pH 7.4). The cell suspension was homogenized with Polytron 

and centrifuged for 30 min at 40000 x g. The membrane pellet was resuspended in 50 mM 

Tris HCl buffer pH 7.4 for A1ARs, 50 mM Tris HCl, 10 mM MgCl2 for A2AARs and 50 

mM Tris HCl, 10 mM MgCl2 1 mM EDTA for A2B and A3 ARs and incubated with 2 UI/ml 

of adenosine deaminase for 30 min at 37°C and used for radioligand binding assays.  

 

Asbestos Preparation  

 

Crocidolite asbestos fibers were obtained from the Union Internationale Contre le Cancer 

(average length, 3.2±1.0 µm; average diameter, 0.22±0.01 µm). Fibers were baked at 150°C 

for 18 h, suspended in Hanks’ balanced salt solution at 2 mg/ml, triturated 10 times through 

a 22-gauge needle, and autoclaved. Crocidolite fibers from Union Internationale Contre le 

Cancer also were characterized previously and shown to be carcinogenic, to cause the 

release of reactive oxygen species, and to cause DNA damage [190]. 

 

Healthy mesothelial cells (HMC) and malignant mesothelioma cells (MMC). 

Treatment Conditions  

 

At the onset of each experiment, cells were placed in fresh medium and cultivated with or 

without the addition (in various combinations) of: a) 2-chloro-N6-(3-iodobenzyl)adenosine-

5′-N-methylcarboxamide (Cl-IB-MECA, 1 nM-1 µM); b) 5N-(4-methoxyphenylcarbamoyl) 

amino-8-propyl-2-(2-furyl) pyrazolo [4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine (MRE 

3008F20, 1 µM); c) TNF-α (10 ng/ml); d) crocidolite asbestos (5 µg/cm2).  

 

Real-Time RT-PCR 

 

Total cytoplasmic RNA was extracted from MPM, healthy mesothelial pleura (HMP), 

HMC and MMC by the acid guanidinium thiocyanate phenol method. Quantitative real-
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time RT-PCR assay [45] of A1, A2A, A2B and A3ARs mRNAs was carried out using gene-

specific fluorescently labelled TaqMan MGB probe (minor groove binder) in a ABI Prism 

7700 Sequence Detection System (Applied Biosystems, CA). For the real-time RT-PCR of 

A1, A2A, A2B and A3ARs the assays-on-demandTM Gene expression Products NM 000674, 

NM 000675, NM 000676 and NM 000677 were used respectively. For the real-time RT-

PCR of the reference gene the endogenous control human β-actin kits was used, and the 

probe was fluorescent-labeled with VICTM (Applied Biosystems, CA). 

 

Western blotting 

 

Human pleura fractions, HMC and MMC were washed with ice-cold PBS containing 1 mM 

sodium orthovanadate, 104 mM 4-(2-aminoethyl)-benzenesulfonyl fluoride, 0.08 mM 

aprotinin, 2 mM leupeptin, 4 mM bestatin, 1.5 mM pepstatin A, 1.4 mM E-64. Then cells or 

tissues were lysed in Triton lysis buffer and the protein concentration was determined using 

BCA protein assay kit (Pierce). Aliquots of total protein sample (50 µg) were analyzed 

using antibodies specific for human ARs (1 µg/ml dilution, Alpha Diagnostics Inc, TX) 

[45]. Filters were washed and incubated for 1 h at room temperature with peroxidase-

conjugated secondary antibodies (1:2000 dilution). Specific reactions were revealed with 

Enhanced Chemiluminescence Western blotting detection reagent (GE Healthcare, UK).  

 

Immunocytochemistry 

 

HMC and MMC grown on coverslips incubated in polylysine-treated chambers were fixed 

with 4% formalin in PBS, pH 7.4 for 15 min at room temperature. After two 5-min washes 

with ice cold PBS, potential sites for nonspecific antibody binding were blocked by 30  min 

incubation with 1% BSA in PBST pH 7.4. The cells were then incubated with specific 

antibody with 1:50 dilution of the polyclonal primary antibody overnight at 4°C. 

Subsequently, they were incubated with secondary antibody (1:80) conjugated to 

fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG for 1 h at room 

temperature and nuclear stain with 4′,6-diamidino-2- henylindole (DAPI, Sigma-Aldrich, 

MO) 1 µg/ml for 20 min. After washing with PBS, pH 7.4, the cells were mounted for 

microscopy with DABCO (1,4-Diazabicyclo (2.2.2) octane, Sigma-Aldrich, MO) and 

visualized by a microscopy Nikon Eclipse 50i. The antibody (Alpha Diagnostics Inc, TX) 

concentrations were: 1:50 polyclonal rabbit anti-rat A1AR antibody; 1:50 polyclonal rabbit 
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anti-canine A2AAR antibody; 1:50 polyclonal rabbit anti-human A2BAR antibody; 1:50 

polyclonal rabbit anti-human A3AR antibody [191]. 

 

Saturation Binding Experiments to ARs  

 

MPM and HMP membranes (100 µg protein/assay) with [3H]-1,3-dipropyl-8-cyclopentyl-

xanthine ([3H]-DPCPX, 0.01-20 nM) as radioligand (specific activity, 120 Ci/mmol, Perkin 

Elmer Life and Analytical Sciences, MA) were incubated for 90 min  at 25°C to study 

A1ARs [122]. Non specific binding was determined in the presence of DPCPX 1 µM.  

Saturation binding experiments to A2AARs in human pleura membranes (100 µg 

protein/assay) were carried out by using [3H]- 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo 

[2,3-a][1,3,5] triazin-5-ylamino] ethyl) phenol ([3H]-ZM 241385, 0.01-20 nM) (specific 

activity, 27 Ci/mmol, Biotrend, Germany) as radioligand and were incubated for 60 min at 

4°C [123]. Non specific binding was determined in the presence of ZM 241385 1 µM. 

Saturation binding experiments to A2BARs were performed incubating membranes (80 µg 

protein/assay) and [3H]-N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-

tetrahydro-1H–purin-8-yl)-1-methyl-1H-pyrazol-3-yl-oxy] acetamide ([3H]-MRE 2029F20, 

0.01-30 nM) as radioligand (specific activity, 123 Ci/mmol, GE Healthcare, UK) for 60 min 

at 4°C [37]. Non specific binding was determined by using MRE 2029F20 1 µM. Saturation 

binding experiments to A3ARs were conducted in membranes (80 µg protein/assay) and 

[3H]-5N-(4-methoxyphenylcarbamoyl) amino-8-propyl-2-(2-furyl) pyrazolo [4,3-e]-1,2,4-

triazolo [1,5-c]pyrimidine ([3H]-MRE 3008F20, 0.01-30 nM) as radioligand (specific 

activity, 67 Ci/mmol, GE Healthcare, UK) at 4°C for 150 min [122].  Non specific binding 

was determined in the presence of MRE 3008F20 1 µM. At the end of the incubation time, 

bound and free radioactivity were separated by filtering the assay mixture through 

Whatman GF/B glass fiber filters in Brandel cell harvester (Brandel Instruments, MD). 

Filter bound radioactivity was counted in Perkin Elmer Tri Carb 2810 TR liquid 

scintillation counter (Perkin Elmer Life and Analytical Sciences, MA). Similar 

experimental conditions were also carried out in HMC and MMC with the aim of verifying 

the affinity and density of ARs.  
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Competition Binding Experiments to ARs 

 

In competition experiments, 2 nM [3H]-MRE 3008F20 was incubated in duplicate with at 

least 10-12 different concentrations of Cl-IB-MECA and MRE 3008F20 from 0.01 nM to 1 

µM [122]. In binding assays, membrane homogenate (100 µg/100 µl) were obtained from 

HMC untreated or pre-treated for 24 h with crocidolite asbestos and MMC. Incubation time 

was 150 min at 4°C to allow equilibrium to be reached. Non specific binding was 

determined in the presence of MRE 3008F20 1 µM. Bound and free radioactivity were 

separated by filtering the assay mixture through Whatman GF/B glass fibre filters in 

Brandel cell harvester (Brandel Instruments, MD). Filter bound radioactivity was counted 

in Perkin Elmer Tri Carb 2810 TR liquid scintillation counter (Perkin Elmer Life and 

Analytical Sciences, MA). 

 

cAMP Levels in HMC and MMC  

 

HMC and MMC (106 cells/sample) were suspended in Krebs Ringer phosphate buffer, 

containing 1.0 IU/ml adenosine deaminase and preincubated for 10 min in a shaking bath at 

37°C. To evaluate the adenylyl cyclase activity and cAMP production the cells were 

incubated with forskolin (10 µM) and/or 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone 

(Ro 20-1724) (0.5 mM) as phosphodiesterase inhibitor [122]. The effect of Cl-IB-MECA at 

different concentrations (1 nM-1 µM) and the effect of selective A3 adenosine antagonist 

(MRE3008F20, 1 µM)  were investigated. The final aqueous solution was tested through a 

competition protein binding assay by using [3H]-cyclic AMP (specific activity, 21 Ci/mmol, 

GE Healthcare, UK), trizma base 0.1 M, aminophylline 8.0 mM, mercaptoethanol 6.0 mM. 

 

Akt Assays in HMC and in MMC  

 

Akt phosphorylation was evaluated by using a commercial FACE AKT kit (Active Motif, 

CA) following the manufacturer’s instructions. HMC and MMC were seeded in 96-well 

plates and treated with Cl-IB-MECA and crocidolite asbestos for 24 h. Cells were fixed by 

replacing the medium with 100 µl of 4% formaldehyde in PBS. Then, cells were incubated 

with primary Akt antibody overnight at 4°C. After washing the cells, HRP-conjugated 

secondary antibody was added and incubated one hour at room temperature, the adsorbance 

was read on spectrophotomer at 450 nm with a reference wavelength of 655 nm [192]. 
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NF-kB Activation in HMC and in MMC  

 

Nuclear extracts from the examined cells were obtained by using a nuclear extract kit 

(Active Motif, CA) following the manufacturer’s instructions. The NF-kB activation was 

evaluated by detecting phosphorylated p65 protein in nuclear extracts by using the 

TransAM NF-kB kit (Active Motif, CA). Phosphorylated NF-kB P65 subunit specifically 

bind to the immobilized oligonucleotides containing the NF-kB consensus site (5’-

GGGACTTTCC-3’). The primary antibody used to detect NF-kB recognized an epitope on 

P65 subunit that is accessible only when activated and bound to its DNA target. A 

horseradish peroxidase (HRP)-conjugated secondary antibody provided a sensitive 

colorimetric readout that was quantified by spectrophotometry at 450 nm [45]. 

 

Cell Proliferation Assay in HMC and MMC   

 

HMC cells were treated with Cl-IB-MECA (1 nM-1 µM) in the presence and in the absence 

of crocidolite asbestos (5 µg/cm2) and/or TNF-α (10 ng/ml). Moreover, MMC were treated 

with Cl-IB-MECA (1 nM-1 µM) in the absence or in the presence of MRE 3008F20 (1 

µM). The cells were seeded in fresh medium with 1 µCi/ml [3H]-Thymidine for 24 h in 

Dulbecco’s modified Eagle’s medium containing 10% fetal calf serum, penicillin (100 

units/ml), streptomycin (100 µg/ml). After 24 h of labeling, cells were trypsinized, 

dispensed in four wells of a 96-well plate, and filtered through Whatman GF/C glass fiber 

filters using a Micro-Mate 196 cell harvester (Perkin Elmer Life and Analytical Sciences, 

MA). The filter-bound radioactivity was counted on Top Count Microplate Scintillation 

Counter with Micro Scint 20 [193]. 

 

Apoptosis Assay in HMC and in MMC  

 

Apoptosis assay was performed evaluating active caspase-3 levels after the treatment of the 

cells with Cl-IB-MECA (1 nM-1 µM) for 24 h in the presence and in the absence of 

crocidolite asbestos (5 µg/cm2) and/or TNF-α (10 ng/ml). Moreover, the effect of Cl-IB-

MECA was also investigated in the presence of MRE 3008F20 (1 µM). After 24 h, the cells 

were treated with biotin-ZVKD-fmk inhibitor (10 µM) for one hour at room temperature. 

After discarding the culture media, cells were rinsed with PBS and the extraction buffer 
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containing protease inhibitors was added to prepare cell extracts.  After two hours of 

incubation at room temperature 100 µl of samples were transferred into a microplate pre-

coated with a monoclonal antibody specific for caspase-3. After washing, 100 µl of 

streptavidin caspase-3 conjugated to horseradish peroxidases that binds to the biotin of the 

inhibitor were added. Following the wash, the substrate solution was added to the wells for 

30 min and stop solution was used to block the reaction. The optical density was 

determined using a microplate reader set to 450 nm. 

 

LDH Cytotoxicity Assay in HMC and in MMC   

 

Cytotoxicity was assessed with an LDH detection kit (Biovision, Mountain View, CA), 

which measures LDH activity released from the cytosol of damaged cells. HMC cells were 

treated with Cl-IB-MECA (1 nM-1 µM) for 24 h in the presence and in the absence of 

crocidolite asbestos (5 µg/cm2) and/or TNF-α (10 ng/ml). Moreover, MMC were treated for 

24 h with Cl-IB-MECA (1 nM-1 µM) in the absence or in the presence of MRE 3008F20 (1 

µM). After 24 h, 100 µl of supernatant per well was harvested and transferred into a new 

96-well, flat-bottom plate. LDH substrate (100 µl) was added to each well and incubated 

for 30 min at room temperature protected from light. The absorbance of the samples was 

measured at 490 mm on spectrophotomer [190]. 

 

Statistical Analysis  

 

Protein concentrations were determined by Bio-Rad assay with bovine albumin as reference 

standard (Bio-Rad Laboratories, CA). Dissociation equilibrium constants for saturation 

binding, affinity or KD values, as well as the maximum densities of specific binding sites, 

Bmax were calculated for a system of one or two-binding site populations by non-linear 

curve fitting using the program Ligand (Kell Biosoft, MO).  Functional experiments were 

calculated by non linear regression analysis using the equation for a sigmoid concentration-

response curve (GraphPAD Prism, CA). Analysis of data was performed by one-way 

analysis of variance. Differences between the groups were analyzed with Dunnett’s test and 

were considered significant at a value of p<0.01. All experimental data are reported as 

mean±SEM of independent experiments as indicated in Results section. 
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Results 

 

The diagnosis and stage of MPM was based from surgical pleural biopsy according to the 

international tumor, node and metastasis (TNM) classification system proposed by the 

International Mesothelioma Interest Group (IMIG) (31). Clinical information including 

histological diagnosis was obtained from pathology reports. All patients were free from pre-

operative chemotherapy and radiotherapy. Thirty-three subjects who underwent surgical 

resection were included in the study. Seventeen subjects (13 men and 4 women) were 

affected by MPM including epithelial mesothelioma and biphasic subtype. IMIG stage was 

II in 8 patients, III in 5 patients and IV in 4 patients. Mean age of the MPM patients was 

61.7±10.8 years (± SD). Healthy pleura specimens were obtained from sixteen patients (10 

men and 6 women) who underwent thoracic surgery for reasons other than MPM or pleural 

disease (11 for spontaneous pneumothorax, 5 for primary hyperhidrosis). Mean age of the 

patients with healthy pleura was 42.3±10.2 years (± SD). Some of the pleura specimens 

derived from 9 patients affected by MPM and 8 patients with no pleural disease) were 

immediately frozen at -80°C until use in the experimental assays and the other samples (8 

from MPM patients and 8 with no pleural disease) were used to obtain primary cell cultures 

as MMC and HMC, respectively.  

 

A3ARs overexpression in MPM patients  

 

The relative levels of mRNAs of ARs expressed as ratio between MPM and HMP are 

represented in Figure 1A. No differences were found in mRNA expression of A1, A2A and 

A2BARs from MPM and healthy pleura. In contrast, A3AR mRNA expression in MPM was 

significantly increased in comparison with HMP (Figure 17A). Western blotting and 

densitometric analysis in pleura specimens indicates a significant 61% increase in A3AR 

expression in MPM compared to HMP (A3AR/β-actin ratio: 1.42±0.09* vs 0.88±0.06; *, 

p<0.01). No differences were found in A1, A2A and A2BARs protein expression in HMP and 

MPM (Figure 17B and 17C). The overexpression of A3ARs in MPM was confirmed by 

saturation binding experiments (Table 9, Figure 18). All ARs are expressed in human 

pleura and no differences were found in binding parameters (KD and Bmax) of A1, A2A and 

A2BARs in MPM membranes compared with those obtained in HMP. Interestingly, A3ARs 

density was significantly increased in MPM membranes compared with HMP membranes 

(Figure 18B) while affinity values were closely similar (Figure 18A). Figure 18C and D 
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shows saturation curves and relative Scatchard plot of [3H]MRE 3008F20 in MPM and 

HMP membranes. The linearity of the Scatchard plot indicates the presence of one high 

affinity binding site with Bmax values of 113± 14 fmol/mg protein and 282±24* fmol/mg 

protein for HMP and MPM membranes, respectively (Figure 18C and D; *, p<0.01).  

 

A3AR expression and function are increased in MMC  

 

Immunocytochemical analysis of HMC and MMC demonstrated a similar level of 

expression for A1, A2A and A2BARs in normal and tumoral mesothelial cells. From this 

analysis, only A3ARs appear to be over-expressed in MMC compared with HMC (Figure 

19). Western blotting and densitometric analysis further confirmed the similar expression of 

A1, A2A and A2BARs in HMC and MMC and an high level of expression of A3AR in the 

mesothelioma cell line (Figure 20A and B). To evaluate the affinity and density of ARs in 

control and MM cells, saturation binding experiments were carried out in HMC and MMC 

(Table 9). No differences were found in affinity values for ARs and in receptor density of 

A1, A2A and A2BARs. The saturation curves and the relative Scatchard plot highlight a 

marked difference in A3AR expression between HMC and MMC (Figure 20C and D). In 

figure 20E are reported the histograms of receptor density, expressed as Bmax, of ARs in 

membranes from HMC and MMC. Interestingly, in MMC membranes A3ARs were 

significantly increased by 3.5 fold as compared to HMC. The quantification of AR mRNA 

levels in HMC and MMC confirmed the increase of the A3AR at a transcriptional level by 

3.2 fold in the MMC compared with HMC while mRNA levels for A1, A2A and A2BARs are 

similar in the cell examined (Figure 20F). To evaluate the affinity of the well known A3 

adenosine agonist and antagonist used in functional experiments, competition binding 

experiments were performed in HMC and MMC (Table 9). As expected, Cl-IB-MECA 

showed a biphasic competition binding curve versus A3ARs, as suggested by a significantly 

better fit to a two site binding model and by an Hill coefficient less than unity (0.52). In 

HMC membranes, Cl-IB-MECA showed a KH value of 0.95±0.10 nM and a KL value of 

82±9 nM. Similar results were obtained in MMC membranes. The Ki values of the A3AR 

antagonist MRE 3008F20 in HMC and MMC show an a high affinity in the nanomolar 

range. The functional effect of A3ARs in HMC and MMC was determined by examining 

the effect of Cl-IB-MECA and MRE 3008F20 on cAMP production. In HMC, the A3AR 

agonist Cl-IB-MECA inhibited forskolin-stimulated cAMP levels in a concentration-

dependent manner, with an EC50 in the nanomolar range (Table 10). In MMC, Cl-IB-
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MECA demonstrated a marked increase in potency (EC50=12±1* vs 34±3 nM; *, p<0.01) 

most likely due to the overexpression of A3AR (Figure 21A). Forskolin 10 µM was able to 

stimulate cAMP levels in both HMC and MMC by 10 fold of increase respect to basal 

condition suggesting a similar activity of adenylyl cyclase. Cl-IB-MECA inhibited 

forskolin-stimulated cAMP levels with a major significant effect (p<0.01) in MMC than in 

HMC (Figure 21B). The selective A3AR antagonist MRE 3008F20 showed a potency value 

in the nanomolar range with an IC50 of 10±1 nM in HMC and of 3.45±0.28 nM in MMC. 

MRE 3008F20 1 µM fully antagonized the effect of Cl-IB-MECA (100 nM) suggesting the 

involvement of A3ARs (Figure 21B). 

 

Crocidolite asbestos exposure up-regulates A3ARs in HMC 

 

The effect of crocidolite asbestos exposure in HMC on A3AR was evaluated by means of 

binding experiments and cAMP assays (Table 10). Saturation binding experiments to A3AR 

showed an affinity value in the nanomolar range (KD= 2.25±0.21 nM) and a receptor 

density, Bmax of 260±24 fmol/mg protein suggesting a statistically significant increase of 

A3ARs after 24 h of asbestos treatment. The affinity and density of A3ARs in HMC treated 

with asbestos were closely associated to those obtained in MMC (Table 9). 

Competition binding experiments revealed an affinity value for Cl-IB-MECA and MRE 

3008F20 similar to those found in untreated HMC or MMC. Interestingly, in cAMP assays 

the potency of Cl-IB-MECA and MRE 3008F20 was higher than untreated HMC and 

analogous to those obtained in MMC (Table 10). 

 

Cl-IB-MECA de-regulates Akt/NF-kB pathway  

 

In HMC, Cl-IB-MECA at 10 and 100 nM concentration did not modify phospho Akt levels 

in comparison with control condition. The presence of asbestos (5 µg/cm2) significantly 

increased (p<0.01) phospho Akt levels by 1.4 fold, an effect inhibited by Cl-IB-MECA at 

10 and 100 nM concentration by 42 and 74%, respectively (Figure 21C). In MMC, Cl-IB-

MECA at the same concentrations decreased the basal levels of phospho Akt by 25 and 

38%, respectively (Figure 21D). MRE 3008F20 (1 µM) in HMC and in MMC was able to 

block the effect of Cl-IB-MECA suggesting the involvement of A3ARs. 

In HMC, treatment with TNF-α (10 ng/ml) significantly increased NF-kB p65 subunit 

activation. This effect was inhibited by the A3AR agonist Cl-IB-MECA at the concentration 
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of 10 nM and 100 nM with a reduction of 45% and 68%, respectively (Figure 22A, 

p<0.01). Interestingly, also asbestos treatment (5 µg/cm2) was able to markedly increase 

NF-kB activation after 24 hours in HMC. The presence of Cl-IB-MECA 10 nM or 100 nM 

significantly abolished the asbestos-induced p65 activation (Figure 22B). Furthermore, the 

evaluation of p65 subunit activation in MMC revealed a significantly higher basal level 

than HMC. In MMC, Cl-IB-MECA was able to reduce the basal level of NF-kB activation 

by 35% at 10 nM and by 58% at 100 nM concentration (Figure 22C). In these experiments, 

the involvement of A3ARs in the Cl-IB-MECA-induced reduction of NF-kB p65 activation 

was demonstrated by using MRE 3008F20 1 µM that abolished the effect of Cl-IB-MECA 

10 nM or 100 nM.  

 

Dual effect of Cl-IB-MECA on cell proliferation and death  

 

Cl-IB-MECA did not affect cell proliferation in HMC whilst mediated a reduction in MMC 

(Figure 22D and 22E). As expected asbestos exposure (5 µg/cm2) caused a significant 

reduction of cell proliferation and this effect was not modified by Cl-IB-MECA 10 and 100 

nM. The co-presence of asbestos and TNF-α (10 ng/ml) was able to increase cell 

proliferation reaching a level higher than control. In these experimental conditions Cl-IB-

MECA was able to reduce cell proliferation abolishing the pro-survival effect of TNF-α on 

HMC exposed to asbestos. In both cell lines examined, MRE 3008F20 counteracted the 

effect of the A3ARs agonist, Cl-IB-MECA.  

In HMC, Cl-IB-MECA 10 nM and 100 nM did not modify the caspase-3 activation in 

comparison with the control condition in the absence or in the presence of asbestos (5 

µg/cm2). Asbestos treatment showed a marked increase in the active caspase-3 levels by 2.4 

fold and the presence of TNF-α (10 ng/ml) was able to significantly reduce asbestos-

induced caspase-3 activation. The co-presence of Cl-IB-MECA (10 nM and 100 nM) with 

asbestos and TNF-α significantly increased caspase-3 activation (Figure 23A). In MMC, 

Cl-IB-MECA at 10 nM was ineffective whilst at 100 nM was able to increase active 

caspase-3 levels by 29% (Figure 23B). MRE 3008F20 at 1 µM concentration counteracted 

the effect of A3AR agonist Cl-IB-MECA in both cells examined. 

In HMC, Cl-IB-MECA 10 nM and 100 nM was not cytotoxic as demonstrated by the 

similar levels of LDH release in the culture media or in the presence of asbestos. In 

addition, asbestos treatment (5 µg/cm2) showed a marked cytotoxicity in HMC increasing 

the release of LDH by 2.1 fold. Interestingly, TNF-α (10 ng/ml) significantly reduced 
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asbestos-induced cytotoxicity, an effect abolished by the treatment with Cl-IB-MECA 10 

and 100 nM (Figure 23C). In MMC, Cl-IB-MECA was able to increase LDH release 

suggesting a cytotoxicity effect mediated by A3AR stimulation in these tumor cells (Figure 

23D). MRE 3008F20 reduced the effect of A3AR agonist Cl-IB-MECA in both cells 

examined. 
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TABLE 9 – Affinity and density of adenosine receptors in HMP and MPM specimens 

in comparison with HMC and MMC  

 

membranes 

[3H]-DPCPX 
A1AR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-ZM 241385 
A2AAR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-MRE2029F20 
A2BAR 

K D (nM)  
Bmax (fmol/mg 

protein) 

[3H]-MRE3008F20 
A3AR 

K D (nM)  
Bmax (fmol/mg 

protein) 

HMP  2.48 ± 0.31 
36 ± 4 

3.02 ± 0.30 
106 ± 10 

1.97 ± 0.16 
106 ± 9 

2.17± 0.23 
113 ± 14 

MPM  2.19 ± 0.23 
43 ± 5 

2.86 ± 0.27 
118 ± 14 

1.95 ± 0.20 
111 ± 12 

2.21 ± 0.21 
282 ± 24* 

HMC  1.35 ± 0.12 
32 ± 3 

2.07 ± 0.18 
95 ± 8 

1.78 ± 0.15 
102 ± 10 

1.83 ± 0.16 
93 ± 8 

MMC  1.28 ± 0.11 
38 ± 3 

2.45 ± 0.16 
104 ± 9 

1.65 ± 0.15 
108 ± 11 

2.12 ± 0.17 
325 ± 28** 

 

KD and Bmax were obtained from saturation binding experiments. The data are expressed as mean ± SEM. *, 

p<0.01 vs HMP; **, p<0.01 vs HMC 

 

TABLE 10 - Affinity and potency of a selected A3 adenosine receptor agonist, Cl-IB-

MECA and antagonist, MRE 300f20 in HMC and MMC 

 

 HMC MMC HMC  treated with asbestos 

Compounds 
binding A3 AR 

Affinity 
nM 

cAMP assay 
Potency 

nM 

binding A3AR 
Affinity 

nM 

cAMP assay 
Potency 

nM 

binding A3AR 
Affinity 

 nM 

cAMP assay 
Potency 

nM) 
 

Cl-IB-MECA 
 

KH=0.95±0.10  
KL=82±9  

EC50 = 34±3 
KH=0.83±0.09  

KL=75 ±8 
EC50 = 12±1* 

KH=0.89±0.09  
KL=80±9  

EC50 = 14±2* 

MRE 3008F20 Ki=2.13±0.16 IC50 = 10±1 Ki=2.18±0.17 
IC50= 

3.45±0.28** 
Ki=2.27±0.03 

IC50= 
3.14±0.29**  

 

Affnity values expressed as KH , KL and Ki (nM) were obtained from competition binding experiments. 

Potency values expressed as EC50 or IC50 (nM) were performed as described in cAMP assays. The data are 

expressed as mean ± SEM (N=4 independent experiments). *, p<0.01 vs HMC for Cl-IB-MECA; **, p<0.01 vs 

HMC for MRE 3008F20 

 

 



 ADENOSINE RECEPTORS IN MPM PATIENTS 
_________________________________________________________________________ 

86 
 

A1AR A2AAR A2BAR A3AR
0

1

2

3

*

A

MPM

A
d

en
o

si
n

e 
re

ce
p

to
rs

m
R

N
A

 (
fo

ld
 o

f 
in

cr
ea

se
)

A1AR A2AAR A2BAR A3AR
0.0

0.4

0.8

1.2

1.6
HMP
MPM *

C

A
R

s/
ββ ββ

-a
ct

in
 r

at
io

(a
rb

it
ra

ry
 u

ni
ts

)

Figure 17 - mRNA and protein expression of A3 adenosine receptors in MPM patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Relative mRNA expression in MPM versus HMP (A), western blotting and densitometric analysis of ARs (B, 

C). Data were normalized, HMP was set to 100%. The error bars give SE of three independent experiments. 

*, p<0.01 respect to HMP. 
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Figure 18 - Binding parameters of A1, A2A, A2B and A3 adenosine receptors 

 in MPM patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affinity (A) and density (B) of the ARs in MMP and HMP. Saturation curves (C) and Scatchard plot (D) of 

[3H]MRE 3008F20 to A3ARs in MMP and HMP tissues. Values are the mean and vertical lines SE of the 

mean of 6 separate experiments performed in duplicate. *, p<0.01 respect to HMP.  
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Figure 19 - Immunocytochemical analysis of adenosine receptors  

in HMC and in MMC  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Immunocytochemical analysis of ARs in HMC (A,C,E,G) and MMC (B,D,F,H). DAPI was used for 

counterstaining of nuclei. Specific antibodies were used to label A1 (A,B), A2A (C,D), A2B (E,F) and A3 (G,H) 

ARs.  
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Figure 20 – Western blotting and binding experiments of 

adenosine receptors in MMC and HMC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Western blotting and densitometric analysis of ARs in MMC versus HMC (A, B). Saturation curves (C) and 

Scatchard plot (D) of [3H]MRE 3008F20 to A3ARs in HMC and MMC. Values are the mean and vertical 

lines SE of the mean of 8 separate experiments performed in duplicate. Density (E) of the ARs in HMC and 

MMC. Relative mRNA expression: data were normalized, HMC was set to 100% and the error bars give SE 

of three independent experiments (F). *, p<0.01 respect to HMC.   
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Figure 21 - Effect of Cl-IB-MECA, asbestos and MRE 3008F20  

on A3ARs in HMC and MMC 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of Cl-IB-MECA on cAMP accumulation in HMC and MMC (A). Effect of forskolin (1 µM) in the 

absence and in the presence of Cl-IB-MECA (100 nM) and A3AR antagonism by MRE 3008F20 (1µM) (B). 

Effect of Cl-IB-MECA, asbestos and MRE 3008F20 on phospho-Akt levels in HMC (C) and MMC (D). 

Results are presented as the mean ± SE of 4 independent experiments. #, p<0.01 respect to forskolin 1 µM; 

##, p<0.01 versus HMC treated with Cl-IB-MECA. *, p<0.01 respect to control condition; **, p<0.01 versus 

HMC treated with asbestos (5µg/cm2).  
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Figure 22 - Effect of Cl-IB-MECA, MRE 3008F20, asbestos and TNF- α on cell 

proliferation 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of Cl-IB-MECA and MRE 3008F20 in HMC treated with TNF-α (A) or asbestos (B) and in MMC (C) 

on NF-kB p65 subunit activation. Effect of Cl-IB-MECA, asbestos, TNF-α and MRE 3008F20 on [3H]-

Thymidine incorporation in HMC (D) and MMC (E). Results are presented as the mean ± SE of 4 

independent experiments. *, p<0.01 respect to HMC control condition; **, p<0.01 versus HMC treated with 

TNF-α (A) or versus asbestos treated-HMC (B) or MMC control condition (C). #, p<0.01 versus HMC 

treated with asbestos (5µg/cm2) (D); ##, p<0.01 versus HMC treated with asbestos and TNF-α (D).  

Figure 23 - Effect of Cl-IB-MECA, MRE 3008F20, asbestos and TNF- α on apoptosis 
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Effect of Cl-IB-MECA, asbestos, TNF-α and MRE 3008F20 on active caspase-3 levels in HMC (A) and 

MMC (B). Effect of Cl-IB-MECA, asbestos, TNF-α and MRE 3008F20 on LDH levels in HMC (C) and 

MMC (D). Results are presented as the mean ± SE of 4 independent experiments. *, p<0.01 respect to control 

condition; #, p<0.01 versus HMC treated with asbestos (5µg/cm2); ##, p<0.01 versus HMC treated with 

asbestos and TNF-α. 
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Discussion 

 

A large body of literature attributed to A3ARs a pivotal role in the development of cancer 

highlighting the receptor as a potential target in the pharmacological treatment of tumors 

[59]. In particular, A3AR overexpression has been demonstrated in various cancer tissues or 

cells such as colon carcinoma, melanoma, breast, small-cell lung and pancreatic carcinoma 

tissues [194]. A substantial amount of work has cleared that adenosine could be implicated 

in developing airway chronic inflammation [195]. In addition, ARs are present in many cell 

types involved in airway inflammation and airways are highly responsive to adenosine 

[113]. It has been also reported that elevated adenosine deaminase levels are present in 

some malignancies such as lymphoma and MPM [196]. No data are reported in the 

literature on the expression and/or the function of the ARs in human MPM. 

The present study was undertaken to investigate the presence of ARs in human MPM and 

HMP. Interestingly, mRNA and protein expression of A3ARs was statistically increased in 

MPM respect to HMP. In particular, the density of A3ARs in MPM was increased by 2.5 

fold in comparison with HMP. To evaluate the functionality of A3ARs  it has been studied a 

cellular in vitro model represented by normal HMC and tumoral MMC obtained from 

human healthy and MPM. No differences were found for A1, A2A and A2BARs in HMC and 

MMC whilst A3ARs were overexpressed in tumoral cells respect to the controls. Saturation 

binding experiments in MMC revealed a significantly increase in Bmax by 3.5 fold in 

comparison with HMC suggesting that the tumor could influence receptor characteristics. 

These data confirmed the A3AR overexpression in cancer tissues or cells previously found 

in other tumors [59]. A comparison between A3AR expression in tumor versus normal 

tissues supported the assumption that the receptor is up-regulated in different types of 

malignancies such as breast carcinoma, colon carcinoma and thyroid cancers [66, 194, 197]. 

In the present thesis, cAMP production assays revealed an increase of potency of Cl-IB-

MECA and MRE 3008F20 in MMC in comparison with HMC suggesting that the 

overexpression of A3ARs was correlated with an high functionality of these receptors.  

Because asbestos is the main cause of human MPM, we evaluated the effect of crocidolite 

asbestos exposure on A3ARs in HMC. Saturation binding assays showed that asbestos 

treatment induced an increase in A3AR density suggesting an involvement of asbestos in 

the receptor overexpression. Competition binding experiments revealed that A3AR affinity 

did not change in the presence of asbestos. The potency in cAMP production of Cl-IB-

MECA and MRE 3008F20 was significantly increased after asbestos treatment obtaining 
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similar values to those found in MMC. It is well known that activation of A3ARs inhibits 

adenylate cyclase activity, thereby leading to the decrease in the cAMP level. The latter 

modulates the level and activity of PKA that phosphorylates elements of the MAPK and 

Akt/PKB signalling pathways [198]. Both PKA and Akt/PKB regulate the NF-kB 

signalling pathway by phosphorylating the IKB kinase (IKK). As a consequence NF-kB 

induces the transcription of genes such as cyclin D1 and c-Myc that control cell cycle 

progression [199]. These data have suggested to investigate the effect of Cl-IB-MECA on 

cell growth regulatory proteins in HMC and MMC. Interestingly, the level of the cell 

survival protein Akt/PKB was reduced on asbestos-treated HMC and MMC by Cl-IB-

MECA suggesting a key role of A3ARs in the inhibition of Akt phosphorylation. The down 

regulation of Akt activation by A3ARs has been also demonstrated in other tumor cells such 

as melanoma, colon, prostate and hepatocellular carcinomas [69, 200-202]. Because of the 

close association between Akt and NF-kB activation the role of A3ARs on NF-kB signal 

transduction pathway was analized. It has been demonstrated that asbestos activates the NF-

kB pathway, which leads to the transcription of multiple pro-survival genes that promote 

tumor development. In particular, the activation of NF-kB by TNF-α allows, to the 

mesothelial cells with asbestos-induced DNA damage, eventually to develop into cancer 

cells [203]. We found that in HMC, Cl-IB-MECA was able to inhibit NF-kB p65 subunit 

activation induced by TNF-α or crocidolite asbestos, suggesting the role of the A3AR 

agonist in the inhibition of the survival pathway and thus potentially blocking the asbestos-

induced tumor development. Interestingly in MMC, p65 subunit was constitutively more 

activated than in HMC and was down-regulated by Cl-IB-MECA, suggesting its capability 

to inhibit NF-kB survival pathway also in this tumor cells. NF-kB signal transduction 

pathways are involved in modulating a wide range of cellular processes including 

proliferation, surviving and apoptosis. The inhibitory effect of Cl-IB-MECA on cell 

proliferation was evident in HMC treated with asbestos and TNF-α and in MMC 

confirming the involvement of A3AR activation in blocking tumor development or 

proliferation. At the present, the anti-proliferative effect of Cl-IB-MECA has been 

extensively investigated with opposite results depending on the tissues or cells examined. 

Recently, it has been demonstrated that Thio-Cl-IB-MECA mediates the inhibition of cell 

proliferation through cell cycle arrest in A549 human lung cancer cells [72]. A similar 

effect of A3AR agonists was also reported in murine NB2-11C lymphoma cells, human 

A375 melanoma cells, human MCF-7 breast carcinoma cells [86, 200, 201].  
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Several papers have reported that asbestos exposure caused apoptosis in mesothelial and 

alveolar epithelial cells mainly through the generation of reactive oxygen species that lead 

to caspase-3 activation [204-206]. In our experimental conditions in HMC the presence of 

TNF-α inhibited asbestos-induced apoptosis and this effect was counteracted by Cl-IB-

MECA. In MMC the A3AR agonist was able to increase caspase-3 activation that is 

blocked by the presence of MRE 3008F20. It is well reported that A3AR agonists mediate 

the induction of apoptosis in various tumor cells such as human HL-60 promyeolocytic 

leukemia cells and human NPA papillary thyroid carcinoma cells [207, 208]. Literature data 

report a possible mechanistic rationale for asbestos mediated HMC transformation. It was 

found that the TNF-α treatment significantly reduced crocidolite asbestos cytotoxicity 

mediating NF-kB activation which in turn inhibited asbestos-induced cytotoxicity and 

increased the number of HMC that survived asbestos exposure and thus the percentage of 

cells that could become transformed [190]. Our results indicate that Cl-IB-MECA is able to 

prevent the surviving effect of TNF-α on HMC exposed to asbestos suggesting a potential 

use of A3AR agonists as blocking agents for the malignant transformation of asbestos-

exposed HMC. Furthermore, while Cl-IB-MECA is not cytotoxic for control HMC, it has a 

significant citotoxic effect on MMC as demonstrated by the increase of LDH released in the 

culture medium. These results are consistent with those previously reported demonstrating 

that an A3AR agonist, CF101, potentiates the cytotoxic effect of the chemotherapic agent 5-

FU in HTC-116 colon carcinoma cells [209]. In conclusion, this is the first study reporting 

the up-regulation of A3AR in pleura from MPM patients when compared with healthy 

pleura. A3AR mRNA and protein expression was significantly increased in MMC and in 

asbestos-treated HMC respect to untreated HMC. Furthermore, the A3AR agonist Cl-IB-

MECA decreases proliferation and exerts cytotoxic and pro-apoptotic effect on HMC 

exposed to asbestos and TNF-α and on tumoral MMC, but not in control HMC. These 

effects appear to be related to the de-regulation of the Akt/NF-kB cell survival pathways 

contributing to the processes that lead to the malignant transformation of asbestos-exposed 

mesothelial cells. Taken together, these new findings suggest that A3AR could represent a 

possible target for pharmacological intervention to prevent mesothelial tumor development 

after asbestos exposure and to treat full blown MPM. 
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Chronic obstructive pulmonary disease (COPD) and malignant pleural mesothelioma 

(MPM) are degenerative pathology in which environmental factors interact with multiple 

polymorphic genes to influence susceptibility to disease [210, 211]. In both, COPD and 

MPM, the inhalation of exogenous particles, smokes of cigarette for COPD and asbestos for 

MPM, may lead to the activation of many intracellular pathways including kinases, 

transcription factors and epigenetic events that modulate the inflammatory response and 

cell cycling/proliferation [74]. The transcription factor NF-kB, is activated by inflammatory 

mediators and by oxidative stress and may provide a molecular link between inflammation 

and cancer. COPD has been described as a pulmonary disease characterized by airflow 

limitation that is not fully reversible. The airflow limitation is usually progressive and 

associated with an abnormal inflammatory response of the lung to noxious particles or 

gases [88]. The inflammation of COPD is characterized by an accumulation of neutrophils, 

macrophages, B cells, lymphoid aggregates and CD4+ and CD8+ T cells particularly in the 

small airways [99] and the degree of inflammation increases with the disease severity as 

classified by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) [88]. 

Neutrophils and activated macrophages release oxygen radicals, elastase, and cytokines that 

are essential to the pathogenesis of COPD, with effects on goblet cells and submucosal 

glands, and on the induction of emphysema and inflammation. Monocytes/macrophages are 

important effector cells in COPD due to the release of reactive oxygen species, extracellular 

matrix proteins, lipid mediators, cytokines, chemokines and matrix metalloproteinases and 

their numbers increase with increasing severity [99]. 

Adenosine is a signalling molecule, that is generated at sites of organ damage and tissue 

injury, and engage cell surface adenosine receptors (ARs) to regulate numerous 

pathological processes. ARs signalling can influence cellular physiology through a variety 

of mechanisms and access multiple intracellular signalling pathways including transcription 

factors, inflammatory mediators, and  cell cycling/proliferation. 

The first part of the present research, report the localization, mRNA expression, affinity and 

density of A1, A2A, A2B and A3ARs in peripheral lung parenchyma and bronchoalveolar 

lavage (BAL) macrophages from age-matched smokers with normal lung function (control 

group) and COPD patients. We have examined the peripheral lung because this is the major 

site of airflow obstruction in COPD patients and histopathological studies demonstrated 

that most of the airway inflammation in COPD is localized in the small airways and lung 

parenchyma [136]. 
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These results suggest that A1, A2A, A2B and A3ARs are differentially expressed in peripheral 

lung parenchyma and the affinity and/or density of these receptors are altered in COPD 

patients compared with control smokers with normal lung function, with a significant 

correlation between the density and affinity of A2A, A2B and A3ARs and the FEV1/FVC 

ratio, an established index of airflow obstruction. Furthermore our data highlight that 

A2BARs are significantly reduced in BAL macrophages from COPD patients compared to 

control healthy smokers. Also was demonstrated that in U937 cells, A2BAR mRNA and 

protein expression is selectively decreased by oxidative/nitrosative stress, but not by 

inflammatory mediators. This is associated with increased proliferation and decreased 

cAMP content, a marker of cell activation. As a consequence, A2BAR activation mediated 

the increase of typical pro-inflammatory cytokines demonstrating that A2BAR antagonism 

can attenuate lung inflammation [49, 150]. 

More than two centuries ago, it was recognized a close relationship between inflammation 

and tumorigenesis, because the tumors arise more easily where there are foci of 

inflammation. The inflammatory cells are present in tumors and the overexpression of 

cytokines and chemokines may lead to the onset of tumors. Several studies in literature and 

obtained in our laboratory have shown that adenosine exert important modulatory function 

in the growth of tumors, giving an essential role in this to the A3ARs.  

MPM is an insidious tumor historically associated historically with occupational exposure 

to asbestos [190, 203]. The average survival of patients with MPM is less than 1 year after 

initial diagnosis, and no successful treatment options exist. Although the mechanisms of 

development of MPM are obscure, the initiation of signalling events after interaction with 

asbestos fibers may govern transactivation of genes governing cell proliferation and 

transformation [151, 212]. 

The second part of the study was undertaken to investigate the presence of ARs in human 

MPM and healthy mesothelial pleura, reporting the up-regulation of A3AR in pleura from 

MPM patients when compared with healthy pleura. A3AR mRNA and protein expression 

was significantly increased in malignant mesothelial cells and in asbestos-treated healthy 

mesothelial cells respect to untreated cells. Furthermore, the A3AR agonist Cl-IB-MECA 

decreases proliferation and exerts cytotoxic and pro-apoptotic effect on healthy mesothelial 

cells exposed to asbestos and TNF-α and on tumoral mesothelial cells, but not in control 

healthy mesothelial cells. These effects appear to be related to the de-regulation of the 

Akt/NF-kB cell survival pathways contributing to the processes that lead to the malignant 

transformation of asbestos-exposed mesothelial cells.  
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Overall these studies suggest the modulation of ARs as molecular targets of early 

inflammatory and carcinogenesis processes and may render the early diagnosis and 

treatment of COPD and MPM a reality. The data of the first part of the study, suggest a 

potential role of ARs in the pathogenesis of COPD, and support the potential for 

modulating A2BAR function with antagonists, in alveolar macrophages as a novel 

pharmacological treatment for this disease. While the new findings of the second part of 

the research, suggest that use of A3AR agonist could represent a possible pharmacological 

intervention to prevent mesothelial tumor development after asbestos exposure and to treat 

full blown MPM. 

By understanding the ARs signalling pathways involved in COPD and MPM the hope is to 

treat the disorders associated with inflammation and cancer.  
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