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WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR p-EVOLUTION
SYSTEMS OF PSEUDO-DIFFERENTIAL OPERATORS

ALESSIA ASCANELLI AND CHIARA BOITI

ABSTRACT. We study p—evolution pseudo-differential systems of the first order with coeffi-
cients in (¢,x) and real characteristics. We find sufficient conditions for the well-posedness of
the Cauchy problem in H*°. These conditions involve the behavior as x — oo of the coefficients,
requiring some decay estimates to be satisfied.

1. Introduction and main results

We consider, in [0, 7] x R, systems of pseudo-differential operators of the form

M1 (tu xz, Da:)
(1.1) L=D,+ + R(t,z, D,),

fm (L, 2, Dy)

where D, stands for Dy - I, ug(t,z, D,), for 1 < k < m, are pseudo-differential operators with
symbol in C([0,T7]; S?), for a given p > 2, and R(t,z, D,) is a matrix of pseudo-differential
operators with symbol in C([0,T]; S°). Here D = %0, and S™ is the classical class of symbols
a(x,§) defined by

|8§‘Dfa(m,§)| < Capnl)y™® Va,8 €N, h>1,
for some Cy g5, > 0, with (€)y, :== \/h% + £2.

System (1.1) will be called a p-evolution system of the first order. We shall assume, in the
following, that

p—1
(12) p(t 2, Dy) = (¢, Dy) + > (¢, D)
j=1

with symbols ,ul(j) € C([0,T]; 87 forall 1 <k <mand 1 <j <p.
According to the necessary condition of the Lax-Mizohata theorem for well-posedness of the
Cauchy problem for scalar differential equations in Sobolev spaces, we assume that

(1.3) pPt ) eR Y e[0,T) xR, 1<k <m,

while ,u,(j)(t,:v,é) ceCfor1<j<p-—1landl1<k<m.
When all the coefficients ,u,(cj ) (and not only ,u,(f )) are real, well-posedness results for p > 2-
evolution equations are known (cf., for instance, [A1], [A2], [AZ], [AC]). In the case of complex
coefficients, some unavoidable decay conditions in x are needed, as shown by [I1]; this leads us
to conditions (1.5)-(1.7) below. Well posedness of first order p-evolution differential equations
with complex coefficients has been studied, for instance, in [I2] and [KB] for the case p = 2,

[CC] for p = 3, [ABZ] for p > 4. Second order equations with complex coefficients have
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been considered, for example, in [CC], [ACC], [CR], for p = 2,3. Higher order equations with
complex coefficients have been studied, for instance, in [T] for p = 2 and will be studied in the
forthcoming paper [AB] for p > 4.

In this paper we focus on p > 2-evolution pseudo-differential systems of the first order. The
main result of this paper, Theorem 1.1, will be crucial in [AB].
We thus consider the operator (1.1)—(1.3) and assume that

(1.4 P (1,6) > Coel V(6 €T xR, 1<k<m
for some C, > 0, and moreover that for all (t,2,£) € [0,T] x R?, 1 <k <m and « € N:

(1.5) \Imagu;j)(t 2,8)] < Culz) 77 (€)
(1.6) |ImdgD,p(t,2,€)| < Cala) 7

[0}

i 7j 7"'7p_1
<§> 7j_27"'7p_1
/2

]<€>€l_a7 |:§:| :17"'7j_17 j:377p_1

[

(A7) [m g D)t ,6)| < Cala)™ :

for some C,, > 0, where [$/2] denotes the integer part of /2 and (-) := (-);.
Under the above assumptions, we prove the following

Theorem 1.1. Let L be a system of the form (1.1) satisfying (1.2)-(1.7). Then there exists a
constant o > 0 such that for every U € C([0,T]; H*™) N CY([0,T]; H*) the following estimate
holds:

t
(1.8) U, i, < (v, )2+ / LU, ), vee 0,71,
for some C > 0, where for a given vector V.= (V1,--- ,V,,) we denote ||V|||? := Z 1V;l12.

The energy estimate (1.8) leads to H* well-posedness of the Cauchy problem

(1.9)

LU(t,x) = F(t,z) (t,x)€[0,T] xR
U(0,x) = G(x) reR

with loss of o derivatives.
In order to prove Theorem 1.1 we have to consider first the scalar case, for a pseudo-differential
operator P of the form

p—1

(1.10) P(t,x, Dy, Dy) = Dy + ay(t, Dy) + Y _ a;(t, x, D)
j=0

with a; € C([0,T]; 57), 0 < j < p,

(1.11) a,(t,&) €R V(t,€) €[0,T] xR

and a;(t,z,&) € CV(t,z,&) € [0,T] x R?, 0 < j < p— 1. For the scalar operator (1.10) we
prove the following:

Theorem 1.2. Let us consider an operator of the form (1.10) satisfying (1.11) and
(1.12) Oeap(t,&) > Cp<£>iil
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for some C,, > 0. Assume that

(1.13) Hm%%@w£NSQA>P1@ Sl<j<p-1

)
(1.14)  [Im ¢ Dyay(t, 2, €)| < Colz) 51

J—
h
€ 2<j<p-1
”W@i%lé{g}Sj—L3§j§p—1

for all (t,z,£) € [0,T] x R? and for some C, > 0.
Then, the Cauchy problem

{HE%QJ%M@@:f@@ (t,2) € [0,T] x R

(1.15)  [Im &g Dla;(t,z,€)| < Colx)™

(1.16) u(0,z) = g(x) reR

is well-posed in H* (with loss of derivatives). More precisely, there exists a constant o > 0
such that for all f € C([0,T]; H*) and g € H® there is a unique solution u € C([0,T]; H*~7)
which satisfies the following energy estimate:

(1.17) lut, )E-o < S(MM§+lA WﬂTwHEdT) vt € [0,T],

for some Cy > 0.

Theorem 1.2 is a generalization of Theorem 1.1 of [ABZ] where a,(t, D,) = a,(t)D? with
a, € C([0,T);R*Y), and a;(t,z,D,) = a;(t,z)DI were differential operators with uniformly
bounded complex valued coefficients. In particular, the assumption a,(t) € R of [ABZ] is here
replaced by the assumption (1.12) that J¢a, is a real elliptic symbol (cf. (3.35) in the proof of
Theorem 1.2).

Remark 1.3. Formula (1.17) states that a loss of derivatives appears in the solution of (1.16).
In the following, it will be clear that the loss comes from (2.6), more precisely from (2.8). If
condition (1.13) for j=p—1

C o
[T 0y (1,2, )] < (€7
is substituted by the slightly stronger condition
1% O (0%
| Im 85 ap—1(t,x,8)| < B <£>]li 1

for some 7 > 0, then, by defining

- [ ()

(cfr. (2.5)), our method gives well-posedness of (1.16) in Sobolev spaces without any loss of
derivatives.

The same considerations hold for formula (1.8), which shows a loss of derivatives in the energy
estimate for systems of pseudo-differential p-evolution operators. The loss can be avoided by
modifying the assumptions

[T 92 ™V (t, 2, €)| < Cofr) HE™, 1<k <m

into
[ Tm 0g ™ (8,2, €) < Cafa) O 1<k <m

for some n > 0.
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2. Preliminary results

We need first to prove Theorem 1.2. To this aim, by the energy method we write
p—1

(2.1) iP =0, +iay(t, D) + Y iaj(t,x, Dy) =: 0, + A(t,z, Dy)
j=0

and compute, for a solution u(t, z) of (1.16),

d
aﬂuH% = 2Re(Ou, u) = 2Re(iPu,u) — 2 Re(Au, u)
(2.2) < A1 + lull§ — 2 RefAu, u),

where || - || and {-,-) denote, respectively, the norm and the scalar product in L?(R).
We would like to obtain an estimate from below for Re(Au, u) of the form

Re(Au,u) > —cllul/§
for some ¢ > 0, but such an estimate does not hold true, in general, since
2Re(Au,u) = ((A+ A")u,u)

and A + A* is an operator with symbol in SP~! (A* is the formal adjoint of A). To overcome
the obstacle, throughout the paper we work as follows:

(1) we construct an appropriate transformation that changes 0, + A into 9; + A, where Ay
is an operator of the form A, := (e*)~'Ae® for some pseudo-differential operator A;

(2) we use sharp-Garding Theorem and Fefferman-Phong inequality to obtain the estimate
from below

Re(Anu, u) > —cflullg

for some ¢ > 0;
(3) we produce the energy estimate for the transformed equation (0; + Ax)v = fa; by this,
we obtain the energy estimate (1.17) for the equation Pu = f.

This section is devoted to the construction of the transformation in (1) and to his main fea-
tures. We look for a transformation of the form e*@P+) where A(x, D,) is a pseudo-differential
operator of symbol A(z, &) such that:

- A(z,€) is real valued;

-er e §% §>0,s0that e : H® — H>;
- e is invertible;

- (e*)~! has principal part e™*.

Then, in Section 3, we consider the Cauchy problem

Piv —
(2.3) AV = fa
U(Oa 37) = 9a
for Py := (e)71Pe?, fr := ()71 f and gp := (e*)~!g. There we show that (2.3) is well posed
in Sobolev spaces; since well-posedness of (2.3) is equivalent to that of (1.16) for
u(t,z) = e*@Py(t x),

from the energy estimate for v we gain the desired energy estimate (1.17) for w which proves
Theorem 1.2. In the energy estimate for u a loss of o = 20 derivatives will appear, due to the
fact that the transformations e** are of positive order 4.

Finally, in Section 4 we prove our main Theorem 1.1 by applying Theorem 1.2.
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Let us now construct the operator A(x, D,) by defining its symbol

(2.4) Az, &) == N1 (2, 8) + Mo (2, 6) + ... + Mi(x,§)
with

_ fonet o (y) k1 B
@5 Aale® = [ 7 <ml) WO, 1<k <p-1,

where the constants M,_; > 0 will be chosen later on and ¢ € C{°(R) satisfy:

0<¢(y)y <1 WyeR
1
w<y)={1 <

0 [y[=1.

The construction (2.4), (2.5) is similar to the one in [ABZ]. In what follows we list some
properties of the just constructed function A, that will be used in §3 to prove Theorem 1.2;
proofs of these properties heavily use the following immediate features of A:

o U((y)/(€)P7") is zero outside
Ey:={yeR: (y) < () '}
e the derivatives v® ((y)/(€)2~1), k > 1 are zero outside

Byi={yeR: S(©F <)< (O

This is very useful to give estimates of the derivatives of A(x,&).

Lemma 2.1. There exist positive constants C,0 and 6, p, independent on h, such that

(2.6) A, €)] < C + Slog(©)s
(2.7) 02DEA,©)] < Gasl)i®,  Va+B> 1.

Remark 2.2. We remark that the positive constant § in (2.6) is explicitly determined; this is
very important since we are going to show that the loss of derivatives is exactly o = 20. The
precise value of § is obtained in formula (2.10).

Proof. Direct computations give

(2.8) [Ap-1(, )| < Mp_11log 2+ My,—1(p — 1) log(§)n,
(2.9 12,6 < My P (@, (0) < M,

for M];_k = Mp,k%, and g, the characteristic function of Ey. Since

p—1
A, < Ppr (@) + D Pp-i(, )],
k=2
estimates (2.8) and (2.9) give (2.6) for
(210) 5= (p—1)M,

and C' = M,_ylog2+ 30", M, _,.
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Now, with the aim to prove (2.7), we derive some useful estimates for the functions A\, y,

1 <k <p-—1. We first give estimates of the derivatives of the function ¥ ((y)/(¢)?~'). For
B > 1 we have:

w o e _ Cot® (LY op g
(2.11) M(@zl)‘ M.;q:ﬁ ¥ ((@i ) ) (9
r;€N\{0}
< cplx)™”

since we are in the region (z) < (£)?~"; similarly, for o > 1:

op ( < é;?)] < cale)™

finally, for « > 1 and g > 1, by (2.11) and (2.12):

agafw( <“">_1)‘§ Y e Y. Ca
n

ag+...aq=a ri+...+rq=0
r,€N\{0}

(2.12)

o (v ()|

oprop Lo 0L
o 0
(2.13) < casle) ()

In order to prove (2.7), let us first consider the case « = 0. For f > 1 and 1 <k <p-—1

DNy (@,6) = My~ {< )5ty (<€<>$> 1)] ()

- {(861 A §>$>1)

+:1Z_11(5 5 e ez <‘””>_1)] €.

(&
By (2.11) there exist positive constants ¢z and Cj 3 such that for § > 1and 1 <k <p—1:
p=k _
(0701 (2, €) < Mygcg{a) v 77FHE  xp, (2)
k=1 _
(2.14) < Crpla) 1€)X, () < Crple)™ < Crp

For the case « > 1 and 1 < k < p — 1, let us compute (for 5 = 0):

st £ ) Lo e

a;=1

(2.15) M [ <y>—’é—‘fw( <€<>h> ) YR (e);+
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Now, for k = 1, since (y)51(@ (y) is bounded for every ¢ > 0, we obtain that:

|0¢ Ap—1(,§)| < My /JCL % [w (<§<>%>‘1)”dy
(y)

o ()
<M Y G /:é‘w@)(m_l)‘mady

R (<f<>y,f;>—1)

r;€N\{0}

X, (y) dy - (€777

< Myorclfe) =X, (2) (€57
(2.16) < Mp16,(6),"
For 2 <k <p—1, by (2.15) and (2.12):

’ag)\p*k(mafﬂ < Mpkca/o <y>_§;—llcdy XEw($)<£>’:k+1—a

(2.17) < CoMy i (@) r=1 (€)X, (2)
< CoaMpi (61"

Let us finally assume «, 8 > 1 and compute:

0N (1,6 = My 3 (O‘> (5 6_1 1) o ()~ o ey ( <‘Z>_1) oe= ()41

a1taz=a n <€>h
B1+B2=P6—1
a1-B2>0
My 1) (%) R
h

From (2.13), for o, 5 > 1

(2.18) 102022 #(2, )] < Capla) s ()72 X, () < Ca sl
Summing up, estimates (2.14), (2.16), (2.17) and (2.18) give
(2.19) 08020 1(2. )| < CopMymi(w) () X, (2)
<0apl),* VI<E<p-1l,a+f>1,
that is (2.7) by construction (2.4). O
In the sequel we shall need also the following Lemmas; for their proofs please refer to [ABZ].

Lemma 2.3. Let A(z,§) satisfy (2.6) and (2.7). Then there exists hg > 1 such that for h > hg
the operator eM®P=) with symbol eM*8) € S% is invertible and

(2.20) (M '=eMI+R)
where I is the identity operator and R is of the form R = Z:ﬁ r™ with principal symbol
roa(z,§) = 0w, ) DAz, €) € 57
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Lemma 2.4. Let A(z,§) satisfy (2.7) and h > 1 be fized large enough to get (2.20). Then

(2.21) 0= < Cu(€) e Yo €N
(2.22) | DA < Oy () ~PetA @) V3 e N.
Lemma 2.5. Let A(t,x,D,) be the operator in (2.1), A satisfying (2.7), h > ho and R as in
(2.20).

Then the operator
(2.23) Ap (t z,D ) ( Az, D) ) 1A(t’I’Dx)€A(x,Dm)

can be written as
Ap(t,z,D,) = —A@vDr)A(t x, D)D)

p—1—-m

(2.24) +Z Z A@Da) gnm (¢ 02 D )eM®Pa) 4 A(t, 2, D),

where Ay(t,z, D,) has symbol Ao(t,x,f) € SY and
(2.25) o(A™™(t,x, D,)) = of'r"(x, §) Dy At z,§) € ST~
Lemma 2.6. Let A be defined by (2.4), with A,y satisfying (2.19). Then, for m > 1,

(2.26) e ADmet = Zf_s ptre s Apese1) F fopriApo1s ooy A1)

for some f_,11 € STPY depending on N\,_1,..., 1 and f_s € S™° depending only on \,_1, ...,
Ap—s—1, and not on \,_s, ..., A1, such that

2.27 QP f_ | < C, SL Yo, 5 >0,
&Y B,

)T P

for some Cyp 5.5 > 0.
We conclude this Section by recalling the sharp-Garding Theorem and the Fefferman-Phong

inequality, the two main tools we are going to use in proving Theorem 1.2, referring respectively
to [KG] and [FP] for proofs.

Theorem 2.7 (Sharp-Garding). Let A(z,§) € S™ with Re A(z,£) > 0. There exist pseudo-
differential operators Q(x,D,) and R(x,D,) with symbols, respectively, Q(x,&) € S™ and
R(x,&) € S™ 1 such that

A(x,D,) = Q(z,D,) + R(x, D,)
Re(Q(z, Dy)u,u) >0 Yue H™

(2.28) R(x,€) ~ 01(§)DeA(z,€) + Y Yas(€)0 D A(x, ),

a+5>2

with 1,v%a 5 real valued functions, vy € S™' and a5 € S@=B)/2 " As a consequence, there
exists ¢ > 0 such that it holds the well-known sharp-Garding inequality

(229) R€<A($,DI)U,U> > _C”uH%m—l)/?

Theorem 2.8 (Fefferman-Phong inequality). Let A(z,§) € S™ with A(x,§) > 0. There
exists ¢ > 0 such that

(230) R6<A(IL‘,DI)U,U> > _C||u||?m—2)/2’
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3. The scalar energy estimate

Let A(x, D,) be the operator constructed in (2.4), (2.5). Fix h > 1 large enough so that the
operator e is invertible, and (2.20) holds. As described in Section 2, we set Ay = (e*)~1Aer
with

A(t,z, D,) Zm]txD

and a, = a,(t, D). To prove Theorem 1.2 we need an estimate of the form
Re(Apv,v) > —c||v||2 Yo(t,-) € H*

for some ¢ > 0. Such an estimate will be obtained by choosing the constants M,_;,...,M; in a
suitable way and by several applications of sharp-Garding and Fefferman-Phong inequalities. In
what follows, we state and prove some useful lemmas. Then, we give the proof of Theorem 1.2.
Throughout this section, we work with the more simple operator e=* Ae?; then, at the end of
the proof, we recover by Lemma 2.5 the full operator Ay = (e*)~1Aeh.

Lemma 3.1. Let us consider the operator e “Ae™. Its terms of order p — k, denoted by

(e=MAeh )|0rd(p e satisfy for 1 <k <p—1:
_ _p=k _k
(3.1) [Re(e™A4Y)] 4 (0:2.)] < Coagy 1, (@) 5 (63
for a constant Cay, .., M, ) > 0 depending only on My, 1, ..., My, and not on My 41, ..., M.

Proof. We compute first

1
o (A(t, x, DI)GA(””D")) = Z —ﬁg‘A(t, z, &) Dmerd)
m!

m>0

:Z Z '85 (ia;(t, x, €)) D™ 1 A,

m=0 j=m+1

Ay € S°. Then, for some Ay € S (which may change from one equality to the other) we have:

o(e ™ Aet) = a,@“ e D2 (Z Z ' ™ (ia;(t, x,€)) Dme @0 4 A())

a>0 m=0 j= m+1
j—1-m

Sy iy e >Z(g)(a?D£<iaj<t,x,s)))@&*a—ﬁeﬂ+Ao
=0

m=0j=m+1 a=0

p—1 P 1
= 3 D)@ iy (r, 7, )
m—Oj*m-i-l

j—l-m «

(3.2) +Z Z > Za, ml( ) (08e™™) (9" D (ia;(t, x, €))) (DIFe=0eh) + Ay

m=0j=m+1 oa=1 =0
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Put now

(3.4)  Ap = | Z_ Z 11 (g) (0 ™) (97" DE (ia;(t, 2, €))) (DI +Fel).

We have
(3.5) o(e™Aet) = A; + A + Ao,
We consider first A;7, where o« > 1. In the case m + a — 5 > 1, from (2.19) we get:

|(Oge™) (0" Diyiay) (D ~Fet)]

p—1 p—1
%—m . a? H e—Ap_k . a;n—l—a—ﬂ H 6)\?7,9/
k=1 k'=1

- al f _ (m+a—B8)! 7 D a
D SR el | (LTS IS T et

|
ai+..tap_1=a k=1 Y+t Yp_1= N 71' el
m+a—_
k 1 E—1
/ qk p pe1 P/ <x>pjpk/_7k, j—m
(36) S C Z H M —ak+Qk(k 1) . Mp_k,/ pk/(k/*l) <£>h
al+..tap_1=a k,k'=1 h <£>h

Y1+...+Yp—1=m+a—p3
T+ trg =ag;ri,ap>1
51+...+spk, =Yt Siy Vgt 21

for some ¢, > 0.
Each term of (3.6) has order j —m —a — S22~ qu(k — 1) = 3201 pw (K — 1) and decay in «
of the form

SP 1 ap (k- D+ZY P (= 1) jmm—a-P 1 g (k—1)— =h. o (-1
<£IZ’> = 1 —m—a+f S <l’> p—1

since —(p—1)(m+a—f) < j+m+aform+oz—ﬁ> 1.

Note also that j —m —a — Y2 gk —1) =32 pp(k' = 1) <p—k—land j—m—a —
St ge(k—1) =S pp (K — 1) < p— K — 1, so that whenever M, ; or M, ;s appear in
(3.6), then the order is at most p — k — 1 and p — k' — 1 respectively.

In the case m +a — =0, by (2.19) we have, forall 0 < g <j—1with1 <j<p—1:

| Re[(0% e_A)(ﬁé”Dfiaj)eAH < |3§“e‘A| - | Im 32”Dfaj]eA

—1
a! 5 r
= 2 WH > CanlOf Nkl 10 Api] | - [ Tm O Dla
k=1

061+---+a’p71:04 T1+...+T‘qk:ak
Ti,02>1

p—1
CRRE D DI I S L R L
art...tap_1 k=1 r1+...+rq =0y
=« ri,a>1
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for some C' > 0. Now, for

0 B=0
(33) =11 770
3 o=

and min{$ + 1,3} < j < p — 1 we have that (3.7) becomes, because of (1.13)-(1.15):

39) [Rel@ge @) < ¢ Y T[N Mgt

al+...fap—1 k=1 7"1+...+qu =y

=« i, >1
i=v(B) im
(@)™ 71 (O
Each term of (3.9) is a symbol of order j —m — a — 3.'_] qi(k — 1) and has decay in x of
the form:
SPT a4 (k= 1)—j+7(8) jmm—a=XR Tl ap(k—1)
(x p1 < (x) = if min{f+1,3} <j<p-1,

since v(8) < B =a+m.

Here again j —m —a — Y01 qu(k — 1) < p — k — 1 and hence M, appears in (3.9) only
when the order is at most p — k — 1.

Summing up, formulas (3.6) and (3.9) give that the terms of order p — k of A7, denoted by
A11|ord(p_k), satisfy:

ek,
(3.10) ‘Re AH|ord(p,k) < Clx) =1(&)] :

for some C' > 0.
Moreover, Re Aj|
We consider then

ord(p—k) depends only on M,_1,..., M,_;4+1 and not on M,_y, ..., M;.

Ar= 2, (0F" (iay) (e " Dyret)

(3.11) = i, + Y (z’apk +> %(82”(iapk+m))(eAD;”eA)> .

Note that D,A = D\, 1 + DyA\p2 + ... + DAy with DA\, 1771 € SP=F because of (2.14).
Moreover, from Lemma 2.6 it follows that there exist f_, € S7°, for 0 < s < p — 2, depending

only on A\y_1, ..., Ap_s_1, and f_,1 € S7P*! such that, for fo = (O ap—kym) f-pr1 € S°,
p—2 ~

(312 (O DI = 3 Fo O Ay st o
s=0

and, from (2.27) for 0 < s <p—2,

(313) Sl pin] € — (O S e
(@) (@)
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for some Cy > 0. Rearranging the terms of the second addend of A; in (3.11) and putting
together all terms of order p — k, we can thus write, because of (3.12), (3.13):

p—1
A[ = iap + Z (iap_k + ’li)\p_kafap + Bp—k) + Bo,
k=1

for some By € S° and B,_;, € SP~* coming from (3.12) and of the form

k s

(314)  Bpk = if-(hos)Mpets- s Apmkrac1) D O Gpaym, k=1,....p—1.
s=2 m=1
Notice that B, j € SP~* depends only on A, 1,...,\p_g+1 and not on A\, g, ..., A;, and more-
over
Cy _
(3.15) |Bpk| < —p (0"
()7
for some C}, > 0.
Setting

(3.16) A)_y = iap_g + DAy Ocay
we write
(3.17) Ar = mp+2 ++ B, &)+ Bo.

Note that AY_,, B, € SP”* and, since Re(AY_;) = —Ima,_j + 9, \p_r9¢ayp, from (1.13) with
j =p—k and a = 0, the first inequality in (2.14) with 8 = 1, and (3.15) we have

p—k _
(3.18) |Re A | + | Byi| < Cila) 1 ()2 7"

for some C}, > 0.
Moreover, AY_, depends only on M,_j and B,_ depends only on M,_,..., M, 41 (and
not on M, g, ..., M) as a consequence of (3.14).
Formulas (3.10) and (3.17)-(3.18) together give (3.1) because of (3.5). The proof is completed.
O

Lemma 3.2. Let us consider, for 1 < k < p — 3 the operator (e’AAeA)‘ and define

ord(p—k)
(3.19) Rpk =1 () Dy (e AM | iy T D Yas(©FEDT (7Aoo s

a+p>2
with Y1,V 5 as in Theorem 2.7. Denote by Rp_klord(p_k_s) the terms of order p—k—s of R,_y,
1<s<p—k—1. Then:

(3.20) ROy ) sy (73| € Clttpattya )70 Q7

Jor every 1 < s < p—k —1 and for a positive constant Cinr, ;... m

p—k—s
Mp_1,..., M, s and not on Mpy_j_s_1,..., M.

) depending only on

Proof. From (3.5), to estimate R, ; we need to give estimates of

R(AI|ord(p—k)) = 77Z}1 (£>D$ AI|ord(p—k) + Z ¢a,ﬂ(§)ang Al|ord(p—k)

at+p>2
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and
R(Afl‘ord(pfk)) = wl (é-)Dx AII’ord(pfk) + Z waw@(g)a?Df AIIlord(pfk)

a+p>2
We start by considering R(A;|,q¢,-1)) = R(A)_}) + R(B,_), because of (3.17) for A) ; and
B, defined respectively in (3. 16) d (3.14). In computmg
(3.21) R(A) ) = 1D A+ Y YaslE DIA)
a+pB>2

we find

%sz‘lgf;@ = iwlDIa’pfk + Z'D?c)‘pfkwlaﬁap ;

by (1.14):
Re($1 Dy A% )| < |Tm Dyay s - ] < — oo ()21
x) p-1
() ) Cr(g)yp=*1 "
3.22 < — — +C
( ) ¢ (<é_>z 1 <:C>Pp_l

p—k—

since ¥y € S~ and (£)7 i Y () T is bounded on supp(1l — v).
We now look at

> WapOf DEAY = > o 08 Dl (it + iDypNy—rOeay)

a+pB>2 a+pB>2
. .
(323) = > CapidfDlay i+ Y tap P (a>zaglpg+up_k-agz+lap.
a+B22 atf>2  artaz=a N

Note that the first addend in (3.23) is 1, [ﬂaaDBap p € SPh=0 , so it has to be considered
at level p — k — a_+5 if 4+ [ is even, at level p — k — a;rﬁ + 35 Lif o + B is odd, thus at level

p—k+ [ a+ﬁ + ] Looking also at its decay as © — oo, we have by (1.14), (1.15), for p—k > 3
and v(3) deﬁned by (3.8):

o ke a+ﬁ C
| Re(tha, 5108 Diay—i)| < (€)) ———

(3.24) < Oy <<

for some C’" > 0, since

a+b+1} Ya.b> 0.

(3.25) —(b) > [— >+ 3

We remark that decay estimates of the form (3.24) are needed until level p — k — —6 >
l.e.

(3.26) Oglg}gp—k—l, for p — k > 3.
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For the second addend of (3.23) by (2.19) we immediately get:

Z Vs Z ( )aale)‘ - 0¢*Ma,| < Z %@y*k*agj

a+p>2 a1toae=a a+,3>2< >p 1+B
1 p— —edbi1
(3.27) R e

since f(p — 1) > [—O‘T’Lﬁ +13].
Summing up, we have obtained, for the second addend of (3.21), that

pokt[-o241]  _rhH[0E0

Re Y tasde DIA) 4| < CE)), (g) ]@/)JrC’

a+pB>2

for some C,C" > 0, because of (3.24) and (3.27). Note that only in (3.24) the assumptions

(1.14), (1.15) are used. We have thus proved, looking also at (3.22), that R(A)_,) fulfills the

decay estimate in (3.20) and, moreover, it depends only on M,_; and not on M, for j # p — k.
We now estimate the other term

k s
R(Bp_k) = Z Z R (Zf_(k_s)ag ap_5+m)
s=2 m=1
k
(328) = Z Z wle(iff(kfs)agnap—s—‘rm) + Z wa,ﬁa?Df(if(ks)aénap—s—i—m)]
s=2 m=1 a+p>2

for ¢1 € S71, 1ho s € S and B,_; defined by (3.14).
We have from (2.27):

|1/}1Dz(if—(k:—s)agnap*s+m)| < ‘wl(axf—(k—s))agnapfs+m| + ’wlf—(k—s)aéna:papfs+m)| <

1 1
S _10 —s —1—k+s + p—l—k+s p e n
Gret &ﬁwlﬂ @pJ)@n GH

therefore, for each 2 < s <k,

{z) ) ©n

(3.20) L N S e =
o

for some ¢, > 0. For the second addend of (3.28) we write

S g0 DR O ion)

a+5>2

= % o 32 () (S ot

a+B8>2 =0 B'=



A. AscaNELLI AND C. BoITl 15

By (2.27) we have that @Da,ﬁ(a?/Dglf—(k_s))(3?_a’+mD§*5/ap_s+m) c sp+%2 Jnd

o ’ a—a'+m _ A Ck:—s —lc—M
|1/}a,/3(8§ Df f—(k—S))(ag - Df 7 ap—s+m>| < p=l—kts g <§>i ’
x) Pl
Ck,S p—k—i—[—agﬂ-‘r%]

for some Cy_s > 0, since p—1—k+ s >p—k (being s > 2) and ' > [—a—;rﬁjté}

This, together with (3.29), means that R(B,_j) satisfies the decay estimate in (3.20), inde-
pendently of the conditions on the x-decay of the coefficients.

Now we are going to estimate R(Asz|,q(, ), Where Ay is defined in (3.4). We have:

(3.30) R ((0Fe) (0" Dy (iay(t, z,€))) (DY %eh)) =
V1D [(08e™)(0F" Dy (ia;(t, 2, €)))(Dy et

£ S a2 D (080 DI (i (t, 7, ) (DM ]
a'+p'>2

for 1 € S~ and by g € S°F
In order to avoid further computations analogous to those already made for the estimate of
A;, we make some remarks. When the z-derivatives fall on (9¢e™*)(Dt* Pe?), the decay in
x gets better because of Lemma 2.4, while the level in £ decreases. When the x-derivatives fall
on 9¢" DY (ia;) the assumptions (1.14) and (1.15) on the coefficients give a decay in (z) of order
(7 —v(B+1))/(p—1) in the first addend of (3.30), and of order (5 — (5 + f’))/(p — 1) in
the second addend of (3.30), with + the function defined in (3.8); at the same time we have
that the level in £ decreases of 1 in the first addend of (3.30) and of o/ — % = a/;“B " in the
second addend of (3.30). Therefore the assumptions (1.14), (1.15) on the coefficients give that

R(Arr]ora(p—r)) satisfies the decay estimate in (3.20), since

1
(331) @+ 2 -5 -1 )
8 od+p5 1
32 _ N> -2 -
(3.32) v+ 2 -5 -5
because of (3.25) with b=+ 1,a=1and b=+ ', a = o’ respectively. O

Proof of Theorem 1.2

The proof of Theorem 1.2 consists in choosing recursively positive constants M,_i, ..., M,
in such a way that
—A 4 A ~
(3.33) Re (e Ae")[ oy TC =0

for some C' > 0, and applying the sharp-Géarding Theorem 2.7 to terms of order p — 2, p — 3,
and so on, up to order 3, the Fefferman-Phong inequality to terms of order p — k = 2 and the
sharp-Garding inequality (2.29) to terms of order p — k = 1, finally obtaining that

P
e A =iay(t, D,) + Z Qp—s

s=1
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with
Re(Qp-sv,v) >0 Yo(t,-) € H™®, s=1,...,p—3
Re(Qp—sva'l}) > _CHU“(Q) \V/U(t, ) S Hp—s’ S§=PpP— 27p -1
Qo € SY.

At the end of the proof we will show that the result holds not only for e *Ae®, but also for the
full operator (e*)~1Ae, finding a constant ¢ > 0 such that

Re(Ayv,v) > —c||v|ls Vo(t,:) € H®.

From this, the thesis follows by standard energy arguments.

Lemma 3.1 is fundamental to make these choices possible: it states that all terms of order p—k&
(1 <k < p—1) of the operator e~ Ae® have the “right decay at the right level”, in the sense that
they satisfy (3.1); the fact that the constants C(yy, ;. ..a,_,) depend only on M, _1,..., M,
and not on M,_;_1,..., M; is very important in the following in the application of the sharp-
Garding Theorem, since we shall choose M,_1, ..., M; step by step, and at each step (say “step
p — k”) we need something which depends only on the already chosen M,_1,..., M, i1 and
on the new M,_;, that we need to choose, and not on the constants M,_;_1,..., M; which will
be chosen in the next steps.

Lemma 3.2 states that not only the terms of order p — k of the operator e™*Ae®, but also
remainder terms coming from an application of Theorem 2.7 have the “right decay at the right
level” (formula (3.20)), with constants Ciay,_, .., +_s) depending only on M,_i,..., M, 4,
and not on M,_,_s_1,..., M;j; this lets the recursive choice of the constants possible.

So, let us start with the proof.

Choice of M, ;. Let us define, with the notations of Lemma 3.1,

(334) Ap—k = (Q_AAG ) ord(p—k) AI|ord(p k) + Alllord (p—k)
:Ag—k+B k+A[I|ordpk k’zl,,p—l
We focus on the real part of A, . From (1.12), (1.13)-(1.15), (2.5) we have

Re Ap p = —Ima,_g + 0:\p—10ka,
= Mp,k(@_%d; (%) (5};’““85% —Ima,_y
()"
> CyMy_i(x) "o (E)F 9 — Cla) v () — Cla) w1 (7 (1 — )
(3.35) > 4 (CyMy_y, — C)x) 5= ()~ — "

for some C” > 0 since (£)?~"/(z) is bounded on the support of (1 — ). Then, from (3.35),
(3.18) and (3.10):

Re A, » = Re(A)_) +Re(B, ) + Re(Arroragp-r))
(3.36) > P(Cy M, — C) () 1 (€8 — C" — (Co+ C') () 51 ()27,

where the constants C, C", C", Cj depend only on M,,_;,..., M, 41 and not on M,_y, ..., M.
In particular, for £ =1,

Re Ay1 > $(CyMy1 = C = Cr = C){a) HET — C"
and we can thus choose M, ; > 0 sufficiently large, so that

Re A, ((t,z,6) > -C  Y(t,x,&) €[0,T] x R?
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for some C' > 0. Applying the sharp-Garding Theorem 2.7 to Apy +C we can thus find pseudo-
differential operators Q,_1(¢,z, D,) and R, (t,z, D,) with symbols Q,_;(¢,z,£) € SP~! and
R, 1(t,z,€) € 5772 such that

(337) Ap,1 - prl -+ ép,1 - é
Re(Q, 1v,v) >0  VY(t,z) € [0,T] x R, Vo(t,-) € H" 1 (R)
Rp—l(t’xvf) ~ ¢1(§)D Ap 1 t z f Z wa ag DgAp—l(t7x7§)

a+B>2

with ¢1 S Silv ¢o¢,ﬁ € S(aiﬁ)/a 1017 ¢a,ﬁ € R.
Therefore, the first application of the sharp-Garding Theorem 2.7 gives, because of (3.5),
(3.34) and (3.37):

p—1 p—1

o(e M Aet) = ia, + Y Ay + Af =ia,+ Ay + Y A+ A
k=1 k=2
p—1
— 5 D "
(338) = 1ap + prl + ;(Afyord(pk) + Alf‘ord(pfk) + Rp*1 ord(pfk)) + AO

for some Afy, AY € S°, where R, 1|ora(p_k) denotes the terms of order p — k of R, , := R(A, ;).
We have thus proved that it is possible to choose M,_; > 0 such that

(3.39) (e M Aet) = iay(t,€) + Qp- 1+Z AN | iy T Bt + Ao,

where @Q,—1(t,x, D) is a positive operator of order p — 1, Rp,l is a remainder of order p — 2,
and Ao(t,x, D) is an operator of order zero.

Choice of M, 5, ..., Ms. To iterate this process, applying the sharp-Garding Theorem 2.7
to terms of order p — 2, p — 3, and so on, up to order 3, we need to investigate the action of
the sharp-Garding Theorem to each term of the form

(e7*Aeh)

ord(p—k) + Sp—k;;

where S,_j denotes terms of order p — k coming from remainders of previous applications of
the sharp-Garding Theorem 2.7, for p— k > 3. Lemma 3.2 says that remainders of terms of the
form (e Ae?) lor a(p_k) ave “the right decay at the right level”, in the sense of (3.20); in what

follows we show that also S,_x (and hence their remainders R(S,_x)) are sums of terms with
“the right decay at the right level”. Then we apply the sharp-Garding Theorem 2.7 to terms
of order p — k, up to order p — k = 3.

To estimate S,_j and then R(S,_j) we previously need to make some remarks.

From (3.38) with R, ; = R(A,_1) we have

p—1
o(e M Ae") = iap + Qpo1 + R(Ap) + Y Api + Af
k=2
p—1
= iay + Qp1 + Apz + R(Ap1)| gy + D (Api + R(Ap1)] L go) + A6

k=3
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From (3.36) with k£ = 2 and Lemma 3.2 with £ = 1, we can now choose M,_5 > 0 sufficiently
large so that

Re (AP—2 + R(Ap—l)|ord(p—2)> (t7x7€) > _é \V/(t,l’,é) S [07T] x R?

for some C > 0.

Note that A,_, depends on M, and M,_,, in the sense of (3.36), while R(Ap—1)|orapp—2)
depends only on the already chosen M,_;. Thus, by the sharp-Garding Theorem 2.7 there exist
pseudo-differential operators ,—2 and RP_Q, with symbols in S?~2 and SP~2 respectively, such
that

Re(Q, ov,v) >0  Vu(t,-) € H?

AP—2+R(A )|ordp 2) Qp 2+Rp 2

with
Ry s =R(A, 5+ R(Ap-1)| praqpzy) = B(Ap—2) + R(R(Ap-1)] ()
so that
o(e™™Ae™) = da, + Qp-1 + Q2 + R(Ay—2) + R(R(A,-1) |Ord(p_2))
p—1
+ Z(Ap—k + R<Ap—1) Ord(p—k)) + Ag
k=3

= iap + Qp_1 + Qp—2
+ (A -3+ R(A _1> ‘ord(pf?)) + R(Ap_2> ‘ord(pf?)) + R2<Ap_1) ’ord(p73)>

To proceed analogously for the terms of order p — 3, then p — 4 and so on up to order 3, we
thus need to estimate, for p — k > 3 and s > 2:
RS(A ) RS(A?; k) + RS(BP k) + RS(AII|ord (p—k) )

The arguments are analogous to those already made for the discussion of R(A)_), R(B,_x)
and R(Arr|,q(,1)) in Lemma 3.2. Indeed, in the remainders of the sharp-Garding Theorem 2.7

+ R(Ap—Q)ord(pfk) + R2(Ap—1)

+ AL

ord(p—k) ord(p—k)>

we have a first addend with some ¢1 € S~! and where some derivatives D, appears and a second

addend with some ¢, g € Sz and where some derivatives 8?’D§’ appear.

When the z-derivatives fall on A,_; the decay in x gets better by (2.14), while the level in £
decreases, so that we still have the “right decay”.

When the z-derivatives fall on the coefficients then the assumptions (1.13)-(1.15) still give
the “right decay” since the level in £ decreases of QI;B : (for o/ = B = 1 in the first addend)
and because of (3.31) and (3.32).

Therefore, remainders coming from the sharp-Garding Theorem 2.7 always have the “right
decay”.

This shows that we can apply again and again the sharp-Garding Theorem 2.7 until we find
pseudo-differential operators Qp—1, @Qp—2,...,Q3 of order p —1,p —2,..., 3 respectively and all
positive definite, such that

ole™™AeM) =ia, + Qp 1+ Qp ot ...Qz+ Z ok + Spi) + Ao

_p2
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for some Ay € S° and Sp—k coming from remainders of the sharp-Garding theorem.
Choice of M, and M;. Let us write

Ay + Sy =Ty +iT,

with Ty = Re(As + S3) and Ty = Im(As + S5). As in the previous steps we choose My > 0 such
that

T2 = RG(AQ + SQ) > 0
(up to a constant that we can put in flo). Then, by the Fefferman-Phong inequality (2.30), we
get that
(3.40) Re(Tyv,v) > —c|lv]|2
for some ¢ > 0, without any remainder.
On the other hand, we write
o LTy | Ty = Ty
2 = )
2 2

where

iTy — (i13)*
2

while ¢T3+ (i73)* has a real principal part of order 1, has the “right decay” and does not depend

on M. Therefore we can choose M; > 0 sufficiently large so that

Re (M%—Al%—&) >0
and hence, by the sharp-Garding inequality (2.29) for m =1,

(3.42) Re( (w
By (3.40), (3.41) and (3.42) we finally get

(3.41) Re( u,uy =0,

+&+SO%MZ—¢ﬂ3

p—3
J(G_AAeA) =ia, + Z Qp—s + (A + 52) + (A1 + 51) + Ay
s=1

with
Re(Qp—sv,v) >0 Yo(t,-) e HP®, s=1,2,...,p—3
Re((Ay + So + Ay + S1)v,v) > —c|jv|l§ Yo(t,-) € H?.

Estimates for the operator A,. We finally look at the full operator A, in (2.23); by
(2.24), (2.25) we notice that A™™ is of the same kind of A with 9{"r" D"a; instead of a;. This
implies that we have m more z-derivatives on a;, but the level in § decreases of —n —m < —m,
so that we argue as for o(e ™ Ae?) and find that also

P
o(e ™t Ammel) = Z Q"
5=0

with Qg™ € S° and
Re(Qp ", v) > —Ch om0 Vo(t,-) e HP 1 <s<p-—1

for some C,, ,,, > 0.
Since every @ € S also satisfies

Re(Qu,v) > —cl|v|3 Vv e H°
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for some ¢ > 0, by Lemma 2.5 we finally have that
(3.43) Re(Apv,v) > —c||v||3 Yu(t,-) € H*

for some ¢ > 0, and hence if v € C([0,T]; L?) is a solution of (2.3), by (2.2) with A, instead of
A we get that

d
||U||0 ||fA||0+ ||U||o 2R6<AAU:U>

< e+ 1)(Ifallg + 10]15)-
By standard arguments we deduce that, for all s € R, if v € C([0,7T]; H®),

(3.44) M@Nﬁéd@mﬁ+AHhﬁﬁﬁw) vt € 0,7,

for some ¢ > 0.
Since e** € S°, for u = v we finally have, from (3.44) with s — J instead of s:

|M@%§ﬁmﬁ4§@0%ma+/wwpﬂ0

es (o1 + [ 151207)
0
for some ¢y, ¢y, c3 > 0.

This proves the existence of a solution v € C([0,T]; H*(R)) of (1.16) which satisfies (1.17)
forc =26 =2(p—1)M,_. O

Remark 3.3. For the choice of M,_4,..., M3 we made use of the sharp-Garding Theorem 2.7
obtaining, at each step, a new remainder given by (2.28). On the contrary, for the choice
of My and M; we made use of, respectively, the Fefferman-Phong inequality (2.30) and the
sharp-Garding inequality (2.29), where no new remainders appear. This lets us save some
conditions on the coefficients a; and ag, for which we required, indeed, only conditions (1.13)
and (1.13)-(1.14) respectively, in the statement of Theorem 1.2.

4. Energy estimate for systems: proof of Theorem 1.1

Let us now consider the operator L in (1.1) and the transformed operator L, := (e*)™'Le*,
for A defined by (2.4), (2.5):

251
Ly = (M) Dye + (M) e + (e*) ' Ret
Hm,
(eA)_l,uleA
= D+ + Ra
(€)™ pme
with Ra(t,z€) € S°. Setting
A
Ay = ;A=) 1<j<m
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we can thus write
Ly =D; —iAx + Ry.
As is §2 we substitute the Cauchy problem (1.9) by

(4.1) LAV (t,x) = Fp(t,z) (t,z)€[0,T] xR

' V(0,z) = Ga(z) reR
for F = (e®)7'F and G, = (e*)71G.

Proving the energy estimate for V' we can then deduce the energy estimate for U = eV
solution of (1.9). For a solution V' of (4.1) we have:

d
ZIVIIG = 2Re((V',V)) = 2Re((iFa, V)) = 2Re((AxV, V) = 2Re((iRsV, V)
(4.2) < CUIAE + IIVIE) — 2Re((AaV, V)
for some C' > 0, where for given vectors U = (Uy,...,U,,) and V = (V4,...,V,,) we denote

Z (U;,V;). Note that every A; is of the same form as (2.23), so that by (3.43):
J=1

Re({AAV, V) ZRG AV5 Vi) —_CZ”VHO —lIVIIi5
7j=1

Substituting in (4.2) we obtain, by standard arguments, the energy estimate for V'

HW@NMSC(WWWE+AMHhJMw>

for some C' > 0, and hence the desired energy estimate for U = eV
U 25 = eV IIE_2s < CilllVIIE-s

s%(m’mm+/mm e s
s%QW@M+AMHnmw)

for some Cy, Cy, Cy > 0, since e? € S°.
This concludes the proof of Theorem 1.1. 0
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