WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR p-EVOLUTION SYSTEMS OF PSEUDO-DIFFERENTIAL OPERATORS

ALESSIA ASCANELLI AND CHIARA BOITI

Abstract

We study p-evolution pseudo-differential systems of the first order with coefficients in (t, x) and real characteristics. We find sufficient conditions for the well-posedness of the Cauchy problem in H^{∞}. These conditions involve the behavior as $x \rightarrow \infty$ of the coefficients, requiring some decay estimates to be satisfied.

1. Introduction and main results

We consider, in $[0, T] \times \mathbb{R}$, systems of pseudo-differential operators of the form

$$
L=D_{t}+\left(\begin{array}{lll}
\mu_{1}\left(t, x, D_{x}\right) & & \tag{1.1}\\
& \ddots & \\
& & \mu_{m}\left(t, x, D_{x}\right)
\end{array}\right)+R\left(t, x, D_{x}\right)
$$

where D_{t} stands for $D_{t} \cdot I, \mu_{k}\left(t, x, D_{x}\right)$, for $1 \leq k \leq m$, are pseudo-differential operators with symbol in $C\left([0, T] ; S^{p}\right)$, for a given $p \geq 2$, and $R\left(t, x, D_{x}\right)$ is a matrix of pseudo-differential operators with symbol in $C\left([0, T] ; S^{0}\right)$. Here $D=\frac{1}{i} \partial$, and S^{m} is the classical class of symbols $a(x, \xi)$ defined by

$$
\left|\partial_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta, h}\langle\xi\rangle_{h}^{m-\alpha} \quad \forall \alpha, \beta \in \mathbb{N}, h \geq 1
$$

for some $C_{\alpha, \beta, h}>0$, with $\langle\xi\rangle_{h}:=\sqrt{h^{2}+\xi^{2}}$.
System (1.1) will be called a p-evolution system of the first order. We shall assume, in the following, that

$$
\begin{equation*}
\mu_{k}\left(t, x, D_{x}\right)=\mu_{k}^{(p)}\left(t, D_{x}\right)+\sum_{j=1}^{p-1} \mu_{k}^{(j)}\left(t, x, D_{x}\right) \tag{1.2}
\end{equation*}
$$

with symbols $\mu_{k}^{(j)} \in C\left([0, T] ; S^{j}\right)$ for all $1 \leq k \leq m$ and $1 \leq j \leq p$.
According to the necessary condition of the Lax-Mizohata theorem for well-posedness of the Cauchy problem for scalar differential equations in Sobolev spaces, we assume that

$$
\begin{equation*}
\mu_{k}^{(p)}(t, \xi) \in \mathbb{R} \quad \forall(t, \xi) \in[0, T] \times \mathbb{R}, 1 \leq k \leq m \tag{1.3}
\end{equation*}
$$

while $\mu_{k}^{(j)}(t, x, \xi) \in \mathbb{C}$ for $1 \leq j \leq p-1$ and $1 \leq k \leq m$.
When all the coefficients $\mu_{k}^{(j)}$ (and not only $\mu_{k}^{(p)}$) are real, well-posedness results for $p \geq 2$ evolution equations are known (cf., for instance, [A1], [A2], [AZ], [AC]). In the case of complex coefficients, some unavoidable decay conditions in x are needed, as shown by [I1]; this leads us to conditions (1.5)-(1.7) below. Well posedness of first order p-evolution differential equations with complex coefficients has been studied, for instance, in $[\mathrm{I} 2]$ and $[\mathrm{KB}]$ for the case $p=2$, [CC] for $p=3,[\mathrm{ABZ}]$ for $p \geq 4$. Second order equations with complex coefficients have

[^0]been considered, for example, in [CC], [ACC], [CR], for $p=2,3$. Higher order equations with complex coefficients have been studied, for instance, in $[\mathrm{T}]$ for $p=2$ and will be studied in the forthcoming paper $[\mathrm{AB}]$ for $p \geq 4$.

In this paper we focus on $p \geq 2$-evolution pseudo-differential systems of the first order. The main result of this paper, Theorem 1.1, will be crucial in [AB].

We thus consider the operator (1.1)-(1.3) and assume that

$$
\begin{equation*}
\partial_{\xi} \mu_{k}^{(p)}(t, \xi) \geq C_{p}\langle\xi\rangle_{h}^{p-1} \quad \forall(t, \xi) \in[0, T] \times \mathbb{R}, 1 \leq k \leq m \tag{1.4}
\end{equation*}
$$

for some $C_{p}>0$, and moreover that for all $(t, x, \xi) \in[0, T] \times \mathbb{R}^{2}, 1 \leq k \leq m$ and $\alpha \in \mathbb{N}$:

$$
\begin{align*}
& \left|\operatorname{Im} \partial_{\xi}^{\alpha} \mu_{k}^{(j)}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-\frac{j}{p-1}}\langle\xi\rangle_{h}^{j-\alpha}, j=1, \ldots, p-1 \tag{1.5}\\
& \left|\operatorname{Im} \partial_{\xi}^{\alpha} D_{x} \mu_{k}^{(j)}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-\frac{j-1}{p-1}}\langle\xi\rangle_{h}^{j-\alpha}, j=2, \ldots, p-1 \tag{1.6}\\
& \left|\operatorname{Im} \partial_{\xi}^{\alpha} D_{x}^{\beta} \mu_{k}^{(j)}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-\frac{j-[\beta / 2]}{p-1}}\langle\xi\rangle_{h}^{j-\alpha},\left[\frac{\beta}{2}\right]=1, \ldots, j-1, j=3, \ldots, p-1 \tag{1.7}
\end{align*}
$$

for some $C_{\alpha}>0$, where $[\beta / 2]$ denotes the integer part of $\beta / 2$ and $\langle\cdot\rangle:=\langle\cdot\rangle_{1}$.
Under the above assumptions, we prove the following
Theorem 1.1. Let L be a system of the form (1.1) satisfying (1.2)-(1.7). Then there exists a constant $\sigma>0$ such that for every $U \in C\left([0, T] ; H^{s+p}\right) \cap C^{1}\left([0, T] ; H^{s}\right)$ the following estimate holds:

$$
\begin{equation*}
\|\|U(t, \cdot)\|\|_{s-\sigma}^{2} \leq C_{s}\left(\|U U(0, \cdot)\|_{s}^{2}+\int_{0}^{t}\|L L U(\tau, \cdot)\|_{s}^{2} d \tau\right), \quad \forall t \in[0, T] \tag{1.8}
\end{equation*}
$$

for some $C_{s}>0$, where for a given vector $V=\left(V_{1}, \cdots, V_{m}\right)$ we denote $\|V\|_{s}^{2}:=\sum_{j=1}^{m}\left\|V_{j}\right\|_{s}^{2}$.
The energy estimate (1.8) leads to H^{∞} well-posedness of the Cauchy problem

$$
\begin{cases}L U(t, x)=F(t, x) & (t, x) \in[0, T] \times \mathbb{R} \tag{1.9}\\ U(0, x)=G(x) & x \in \mathbb{R}\end{cases}
$$

with loss of σ derivatives.
In order to prove Theorem 1.1 we have to consider first the scalar case, for a pseudo-differential operator P of the form

$$
\begin{equation*}
P\left(t, x, D_{t}, D_{x}\right)=D_{t}+a_{p}\left(t, D_{x}\right)+\sum_{j=0}^{p-1} a_{j}\left(t, x, D_{x}\right) \tag{1.10}
\end{equation*}
$$

with $a_{j} \in C\left([0, T] ; S^{j}\right), 0 \leq j \leq p$,

$$
\begin{equation*}
a_{p}(t, \xi) \in \mathbb{R} \quad \forall(t, \xi) \in[0, T] \times \mathbb{R} \tag{1.11}
\end{equation*}
$$

and $a_{j}(t, x, \xi) \in \mathbb{C} \forall(t, x, \xi) \in[0, T] \times \mathbb{R}^{2}, 0 \leq j \leq p-1$. For the scalar operator (1.10) we prove the following:

Theorem 1.2. Let us consider an operator of the form (1.10) satisfying (1.11) and

$$
\begin{equation*}
\partial_{\xi} a_{p}(t, \xi) \geq C_{p}\langle\xi\rangle_{h}^{p-1} \tag{1.12}
\end{equation*}
$$

for some $C_{p}>0$. Assume that

$$
\begin{align*}
& \left|\operatorname{Im} \partial_{\xi}^{\alpha} a_{j}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-\frac{j}{p-1}}\langle\xi\rangle_{h}^{j-\alpha}, 1 \leq j \leq p-1 \tag{1.13}\\
& \left|\operatorname{Im} \partial_{\xi}^{\alpha} D_{x} a_{j}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-\frac{j-1}{p-1}}\langle\xi\rangle_{h}^{j-\alpha}, 2 \leq j \leq p-1 \tag{1.14}\\
& \left|\operatorname{Im} \partial_{\xi}^{\alpha} D_{x}^{\beta} a_{j}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-\frac{j-[\beta / 2]}{p-1}}\langle\xi\rangle_{h}^{j-\alpha}, 1 \leq\left[\frac{\beta}{2}\right] \leq j-1,3 \leq j \leq p-1 \tag{1.15}
\end{align*}
$$

for all $(t, x, \xi) \in[0, T] \times \mathbb{R}^{2}$ and for some $C_{\alpha}>0$.
Then, the Cauchy problem

$$
\begin{cases}P\left(t, x, D_{t}, D_{x}\right) u(t, x)=f(t, x) & (t, x) \in[0, T] \times \mathbb{R} \tag{1.16}\\ u(0, x)=g(x) & x \in \mathbb{R}\end{cases}
$$

is well-posed in H^{∞} (with loss of derivatives). More precisely, there exists a constant $\sigma>0$ such that for all $f \in C\left([0, T] ; H^{s}\right)$ and $g \in H^{s}$ there is a unique solution $u \in C\left([0, T] ; H^{s-\sigma}\right)$ which satisfies the following energy estimate:

$$
\begin{equation*}
\|u(t, \cdot)\|_{s-\sigma}^{2} \leq C_{s}\left(\|g\|_{s}^{2}+\int_{0}^{t}\|f(\tau, \cdot)\|_{s}^{2} d \tau\right) \quad \forall t \in[0, T] \tag{1.17}
\end{equation*}
$$

for some $C_{s}>0$.
Theorem 1.2 is a generalization of Theorem 1.1 of $[\mathrm{ABZ}]$ where $a_{p}\left(t, D_{x}\right)=a_{p}(t) D_{x}^{p}$ with $a_{p} \in C\left([0, T] ; \mathbb{R}^{+}\right)$, and $a_{j}\left(t, x, D_{x}\right)=a_{j}(t, x) D_{x}^{j}$ were differential operators with uniformly bounded complex valued coefficients. In particular, the assumption $a_{p}(t) \in \mathbb{R}^{+}$of [ABZ] is here replaced by the assumption (1.12) that $\partial_{\xi} a_{p}$ is a real elliptic symbol (cf. (3.35) in the proof of Theorem 1.2).

Remark 1.3. Formula (1.17) states that a loss of derivatives appears in the solution of (1.16). In the following, it will be clear that the loss comes from (2.6), more precisely from (2.8). If condition (1.13) for $j=p-1$

$$
\left|\operatorname{Im} \partial_{\xi}^{\alpha} a_{p-1}(t, x, \xi)\right| \leq \frac{C}{\langle x\rangle}\langle\xi\rangle_{h}^{p-1-\alpha}
$$

is substituted by the slightly stronger condition

$$
\left|\operatorname{Im} \partial_{\xi}^{\alpha} a_{p-1}(t, x, \xi)\right| \leq \frac{C}{\langle x\rangle^{1+\eta}}\langle\xi\rangle_{h}^{p-1-\alpha}
$$

for some $\eta>0$, then, by defining

$$
\lambda_{p-1}(x, \xi)=M_{p-1} \int_{0}^{x}\langle y\rangle^{-1-\eta} \psi\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) d y
$$

(cfr. (2.5)), our method gives well-posedness of (1.16) in Sobolev spaces without any loss of derivatives.

The same considerations hold for formula (1.8), which shows a loss of derivatives in the energy estimate for systems of pseudo-differential p-evolution operators. The loss can be avoided by modifying the assumptions

$$
\left|\operatorname{Im} \partial_{\xi}^{\alpha} \mu_{k}^{(p-1)}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-1}\langle\xi\rangle_{h}^{p-1-\alpha}, 1 \leq k \leq m
$$

into

$$
\left|\operatorname{Im} \partial_{\xi}^{\alpha} \mu_{k}^{(p-1)}(t, x, \xi)\right| \leq C_{\alpha}\langle x\rangle^{-1-\eta}\langle\xi\rangle_{h}^{p-1-\alpha}, 1 \leq k \leq m
$$

for some $\eta>0$.

2. Preliminary results

We need first to prove Theorem 1.2. To this aim, by the energy method we write

$$
\begin{equation*}
i P=\partial_{t}+i a_{p}\left(t, D_{x}\right)+\sum_{j=0}^{p-1} i a_{j}\left(t, x, D_{x}\right)=: \partial_{t}+A\left(t, x, D_{x}\right) \tag{2.1}
\end{equation*}
$$

and compute, for a solution $u(t, x)$ of (1.16),

$$
\begin{align*}
\frac{d}{d t}\|u\|_{0}^{2} & =2 \operatorname{Re}\left\langle\partial_{t} u, u\right\rangle=2 \operatorname{Re}\langle i P u, u\rangle-2 \operatorname{Re}\langle A u, u\rangle \\
& \leq\|f\|_{0}^{2}+\|u\|_{0}^{2}-2 \operatorname{Re}\langle A u, u\rangle \tag{2.2}
\end{align*}
$$

where $\|\cdot\|_{0}$ and $\langle\cdot, \cdot\rangle$ denote, respectively, the norm and the scalar product in $L^{2}(\mathbb{R})$.
We would like to obtain an estimate from below for $\operatorname{Re}\langle A u, u\rangle$ of the form

$$
\operatorname{Re}\langle A u, u\rangle \geq-c\|u\|_{0}^{2}
$$

for some $c>0$, but such an estimate does not hold true, in general, since

$$
2 \operatorname{Re}\langle A u, u\rangle=\left\langle\left(A+A^{*}\right) u, u\right\rangle
$$

and $A+A^{*}$ is an operator with symbol in $S^{p-1}\left(A^{*}\right.$ is the formal adjoint of $\left.A\right)$. To overcome the obstacle, throughout the paper we work as follows:
(1) we construct an appropriate transformation that changes $\partial_{t}+A$ into $\partial_{t}+A_{\Lambda}$, where A_{Λ} is an operator of the form $A_{\Lambda}:=\left(e^{\Lambda}\right)^{-1} A e^{\Lambda}$ for some pseudo-differential operator Λ;
(2) we use sharp-Gårding Theorem and Fefferman-Phong inequality to obtain the estimate from below

$$
\operatorname{Re}\left\langle A_{\Lambda} u, u\right\rangle \geq-c\|u\|_{0}^{2}
$$

for some $c>0$;
(3) we produce the energy estimate for the transformed equation $\left(\partial_{t}+A_{\Lambda}\right) v=f_{\Lambda}$; by this, we obtain the energy estimate (1.17) for the equation $P u=f$.
This section is devoted to the construction of the transformation in (1) and to his main features. We look for a transformation of the form $e^{\Lambda\left(x, D_{x}\right)}$, where $\Lambda\left(x, D_{x}\right)$ is a pseudo-differential operator of symbol $\Lambda(x, \xi)$ such that:

- $\Lambda(x, \xi)$ is real valued;
- $e^{\Lambda} \in S^{\delta}, \delta>0$, so that $e^{\Lambda}: H^{\infty} \rightarrow H^{\infty}$;
- e^{Λ} is invertible;
- $\left(e^{\Lambda}\right)^{-1}$ has principal part $e^{-\Lambda}$.

Then, in Section 3, we consider the Cauchy problem

$$
\left\{\begin{array}{l}
P_{\Lambda} v=f_{\Lambda} \tag{2.3}\\
v(0, x)=g_{\Lambda}
\end{array}\right.
$$

for $P_{\Lambda}:=\left(e^{\Lambda}\right)^{-1} P e^{\Lambda}, f_{\Lambda}:=\left(e^{\Lambda}\right)^{-1} f$ and $g_{\Lambda}:=\left(e^{\Lambda}\right)^{-1} g$. There we show that (2.3) is well posed in Sobolev spaces; since well-posedness of (2.3) is equivalent to that of (1.16) for

$$
u(t, x)=e^{\Lambda\left(x, D_{x}\right)} v(t, x)
$$

from the energy estimate for v we gain the desired energy estimate (1.17) for u which proves Theorem 1.2. In the energy estimate for u a loss of $\sigma=2 \delta$ derivatives will appear, due to the fact that the transformations $e^{ \pm \Lambda}$ are of positive order δ.
Finally, in Section 4 we prove our main Theorem 1.1 by applying Theorem 1.2.

Let us now construct the operator $\Lambda\left(x, D_{x}\right)$ by defining its symbol

$$
\begin{equation*}
\Lambda(x, \xi):=\lambda_{p-1}(x, \xi)+\lambda_{p-2}(x, \xi)+\ldots+\lambda_{1}(x, \xi) \tag{2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{p-k}(x, \xi):=M_{p-k} \int_{0}^{x}\langle y\rangle^{-\frac{p-k}{p-1}} \psi\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) d y\langle\xi\rangle_{h}^{-k+1}, \quad 1 \leq k \leq p-1 \tag{2.5}
\end{equation*}
$$

where the constants $M_{p-k}>0$ will be chosen later on and $\psi \in C_{0}^{\infty}(\mathbb{R})$ satisfy:

$$
\begin{aligned}
& 0 \leq \psi(y) \leq 1 \quad \forall y \in \mathbb{R} \\
& \psi(y)= \begin{cases}1 & |y| \leq \frac{1}{2} \\
0 & |y| \geq 1\end{cases}
\end{aligned}
$$

The construction (2.4), (2.5) is similar to the one in [ABZ]. In what follows we list some properties of the just constructed function Λ, that will be used in $\S 3$ to prove Theorem 1.2; proofs of these properties heavily use the following immediate features of Λ :

- $\psi\left(\langle y\rangle /\langle\xi\rangle_{h}^{p-1}\right)$ is zero outside

$$
E_{\psi}:=\left\{y \in \mathbb{R}:\langle y\rangle \leq\langle\xi\rangle_{h}^{p-1}\right\} .
$$

- the derivatives $\psi^{(k)}\left(\langle y\rangle /\langle\xi\rangle_{h}^{p-1}\right), k \geq 1$ are zero outside

$$
E_{\psi}^{\prime}:=\left\{y \in \mathbb{R}: \frac{1}{2}\langle\xi\rangle_{h}^{p-1} \leq\langle y\rangle \leq\langle\xi\rangle_{h}^{p-1}\right\} .
$$

This is very useful to give estimates of the derivatives of $\Lambda(x, \xi)$.
Lemma 2.1. There exist positive constants C, δ and $\delta_{\alpha, \beta}$, independent on h, such that

$$
\begin{align*}
& |\Lambda(x, \xi)| \leq C+\delta \log \langle\xi\rangle_{h} \tag{2.6}\\
& \left|\partial_{\xi}^{\alpha} D_{x}^{\beta} \Lambda(x, \xi)\right| \leq \delta_{\alpha, \beta}\langle\xi\rangle_{h}^{-\alpha}, \quad \forall \alpha+\beta \geq 1 . \tag{2.7}
\end{align*}
$$

Remark 2.2. We remark that the positive constant δ in (2.6) is explicitly determined; this is very important since we are going to show that the loss of derivatives is exactly $\sigma=2 \delta$. The precise value of δ is obtained in formula (2.10).

Proof. Direct computations give

$$
\begin{align*}
&\left|\lambda_{p-1}(x, \xi)\right| \leq M_{p-1} \log 2+M_{p-1}(p-1) \log \langle\xi\rangle_{h}, \tag{2.8}\\
&\left|\lambda_{p-k}(x, \xi)\right| \leq M_{p-k} \frac{p-1}{k-1}\langle x\rangle^{\frac{k-1}{p-1}}\langle\xi\rangle_{h}^{-k+1} \chi_{E_{\psi}}(x) \leq M_{p-k}^{\prime}, \tag{2.9}
\end{align*}
$$

for $M_{p-k}^{\prime}=M_{p-k} \frac{p-1}{k-1}$, and $\chi_{E_{\psi}}$ the characteristic function of E_{ψ}. Since

$$
|\Lambda(x, \xi)| \leq\left|\lambda_{p-1}(x, \xi)\right|+\sum_{k=2}^{p-1}\left|\lambda_{p-k}(x, \xi)\right|
$$

estimates (2.8) and (2.9) give (2.6) for

$$
\begin{equation*}
\delta=(p-1) M_{p-1} \tag{2.10}
\end{equation*}
$$

and $C=M_{p-1} \log 2+\sum_{k=2}^{p-1} M_{p-k}^{\prime}$.

Now, with the aim to prove (2.7), we derive some useful estimates for the functions λ_{p-k}, $1 \leq k \leq p-1$. We first give estimates of the derivatives of the function $\psi\left(\langle y\rangle /\langle\xi\rangle_{h}^{p-1}\right)$. For $\beta \geq 1$ we have:

$$
\begin{align*}
\left|\partial_{x}^{\beta} \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right| & =\left|\sum_{\substack{r_{1}+\ldots+r_{q}=\beta \\
r_{i} \in \mathbb{N}\{0\}}} C_{q, r} \psi^{(q)}\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) \partial_{x}^{r_{1}} \frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}} \cdots \partial_{x}^{r_{q}} \frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right| \tag{2.11}\\
& \leq c_{\beta}\langle x\rangle^{-\beta}
\end{align*}
$$

since we are in the region $\langle x\rangle \leq\langle\xi\rangle_{h}^{p-1} ;$ similarly, for $\alpha \geq 1$:

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right| \leq c_{\alpha}\langle\xi\rangle^{-\alpha} ; \tag{2.12}
\end{equation*}
$$

finally, for $\alpha \geq 1$ and $\beta \geq 1$, by (2.11) and (2.12):

$$
\begin{align*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right| \leq & \sum_{\alpha_{0}+\ldots \alpha_{q}=\alpha} c_{\alpha_{0}, \ldots, \alpha_{q}} \sum_{\substack{r_{1}+\ldots+r_{q}=\beta \\
r_{i} \in \mathbb{N} \backslash\{0\}}} C_{q, r}\left|\partial_{\xi}^{\alpha_{0}}\left(\psi^{(q)}\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right)\right| . \\
& \cdot\left|\partial_{\xi}^{\alpha_{1}} \partial_{x}^{r_{1}} \frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}} \cdots \partial_{\xi}^{\alpha_{q}} \partial_{x}^{r_{q}} \frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right| \\
\leq & c_{\alpha, \beta}\langle x\rangle^{-\beta}\langle\xi\rangle_{h}^{-\alpha} . \tag{2.13}
\end{align*}
$$

In order to prove (2.7), let us first consider the case $\alpha=0$. For $\beta \geq 1$ and $1 \leq k \leq p-1$

$$
\begin{aligned}
\partial_{x}^{\beta} \lambda_{p-k}(x, \xi)= & M_{p-k} \partial_{x}^{\beta-1}\left[\langle x\rangle^{-\frac{p-k}{p-1}} \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right]\langle\xi\rangle_{h}^{-k+1} \\
= & M_{p-k}\left[\left(\partial_{x}^{\beta-1}\langle x\rangle^{-\frac{p-k}{p-1}}\right) \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right. \\
& \left.+\sum_{\beta_{1}=1}^{\beta-1}\binom{\beta-1}{\beta_{1}}\left(\partial_{x}^{\beta-1-\beta_{1}}\langle x\rangle^{-\frac{p-k}{p-1}}\right) \partial_{x}^{\beta_{1}} \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right]\langle\xi\rangle_{h}^{-k+1} .
\end{aligned}
$$

By (2.11) there exist positive constants c_{β} and $C_{k, \beta}$ such that for $\beta \geq 1$ and $1 \leq k \leq p-1$:

$$
\begin{align*}
\left|\partial_{x}^{\beta} \lambda_{p-k}(x, \xi)\right| & \leq M_{p-k} c_{\beta}\langle x\rangle^{-\frac{p-k}{p-1}-\beta+1}\langle\xi\rangle_{h}^{-k+1} \chi_{E_{\psi}}(x) \\
& \leq C_{k, \beta}\langle x\rangle^{\frac{k-1}{p-1}-\beta}\langle\xi\rangle_{h}^{-k+1} \chi_{E_{\psi}}(x) \leq C_{k, \beta}\langle x\rangle^{-\beta} \leq C_{k, \beta} \tag{2.14}
\end{align*}
$$

For the case $\alpha \geq 1$ and $1 \leq k \leq p-1$, let us compute (for $\beta=0$):

$$
\begin{align*}
\partial_{\xi}^{\alpha} \lambda_{p-k}(x, \xi) & =M_{p-k} \sum_{\alpha_{1}=1}^{\alpha}\binom{\alpha}{\alpha_{1}} \int_{0}^{x}\langle y\rangle^{-\frac{p-k}{p-1}} \partial_{\xi}^{\alpha_{1}}\left[\psi\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right] d y \partial_{\xi}^{\alpha-\alpha_{1}}\langle\xi\rangle_{h}^{-k+1} \\
& +M_{p-k} \int_{0}^{x}\langle y\rangle^{-\frac{p-k}{p-1}} \psi\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) d y \partial_{\xi}^{\alpha}\langle\xi\rangle_{h}^{-k+1} . \tag{2.15}
\end{align*}
$$

Now, for $k=1$, since $\langle y\rangle^{\varepsilon} \psi^{(q)}(y)$ is bounded for every $\varepsilon>0$, we obtain that:

$$
\begin{aligned}
& \left|\partial_{\xi}^{\alpha} \lambda_{p-1}(x, \xi)\right| \leq M_{p-1} \int_{0}^{x} \frac{1}{\langle y\rangle}\left|\partial_{\xi}^{\alpha}\left[\psi\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right]\right| d y \\
& \leq M_{p-1} \sum_{\substack{r_{1}+\ldots+r_{q}=\alpha \\
r_{i} \in \mathbb{N} \backslash\{0\}}} C_{q, r} \int_{0}^{x} \frac{1}{\langle y\rangle}\left|\psi^{(q)}\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right|\langle\xi\rangle_{h}^{-\alpha} d y \\
& \leq M_{p-1} \sum_{\substack{r_{1}+\ldots+r_{q}=\alpha \\
r_{i} \in \mathbb{N} \backslash\{0\}}} C_{q, r} \int_{0}^{x} \frac{1}{\langle y\rangle^{1+\epsilon}} \sup _{\mathbb{R}}\left|\frac{\langle y\rangle^{\epsilon}}{\langle\xi\rangle^{\epsilon(p-1)}} \cdot \psi^{(q)}\left(\frac{\langle y\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\right| \chi_{E_{\psi}^{\prime}}(y) d y \cdot\langle\xi\rangle_{h}^{\epsilon(p-1)-\alpha} \\
& \leq M_{p-1} c_{\alpha}^{\prime}\langle x\rangle^{-\epsilon} \chi_{E_{\psi}^{\prime}}(x)\langle\xi\rangle_{h}^{\epsilon(p-1)-\alpha} \\
(2.16) & \leq M_{p-1} c_{\alpha}^{\prime}\langle\xi\rangle_{h}^{-\alpha} .
\end{aligned}
$$

For $2 \leq k \leq p-1$, by (2.15) and (2.12):

$$
\begin{align*}
\left|\partial_{\xi}^{\alpha} \lambda_{p-k}(x, \xi)\right| & \leq M_{p-k} c_{\alpha} \int_{0}^{x}\langle y\rangle^{-\frac{p-k}{p-1}} d y \chi_{E_{\psi}}(x)\langle\xi\rangle_{h}^{-k+1-\alpha} \\
& \leq C_{\alpha} M_{p-k}\langle x\rangle^{\frac{k-1}{p-1}}\langle\xi\rangle_{h}^{-k+1-\alpha} \chi_{E_{\psi}}(x) \tag{2.17}\\
& \leq C_{\alpha} M_{p-k}\langle\xi\rangle_{h}^{-\alpha} .
\end{align*}
$$

Let us finally assume $\alpha, \beta \geq 1$ and compute:

$$
\begin{aligned}
\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \lambda_{p-k}(x, \xi) & =M_{p-k} \sum_{\substack{\alpha_{1}+\alpha_{2}=\alpha \\
\beta_{1}+\beta_{2}=\beta-1 \\
\alpha_{1} \cdot \beta_{2}>0}}\binom{\alpha}{\alpha_{1}}\binom{\beta-1}{\beta_{1}} \partial_{x}^{\beta_{1}}\langle x\rangle^{-\frac{p-k}{p-1}} \partial_{\xi}^{\alpha_{1}} \partial_{x}^{\beta_{2}} \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) \partial_{\xi}^{\alpha_{2}}\langle\xi\rangle_{h}^{-k+1} \\
& +M_{p-k} \partial_{x}^{\beta-1}\langle x\rangle^{-\frac{p-k}{p-1}} \cdot \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) \cdot \partial_{\xi}^{\alpha}\langle\xi\rangle_{h}^{-k+1} .
\end{aligned}
$$

From (2.13), for $\alpha, \beta \geq 1$

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \lambda_{p-k}(x, \xi)\right| \leq C_{\alpha, \beta}\langle x\rangle^{\frac{k-1}{p-1}-\beta}\langle\xi\rangle_{h}^{-\alpha-k+1} \chi_{E_{\psi}}(x) \leq C_{\alpha, \beta}\langle\xi\rangle_{h}^{-\alpha} . \tag{2.18}
\end{equation*}
$$

Summing up, estimates (2.14), (2.16), (2.17) and (2.18) give

$$
\begin{align*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} \lambda_{p-k}(x, \xi)\right| & \leq C_{\alpha, \beta} M_{p-k}\langle x\rangle^{\frac{k-1}{p-1}-\beta}\langle\xi\rangle_{h}^{-\alpha-k+1} \chi_{E_{\psi}}(x) \tag{2.19}\\
& \leq \delta_{\alpha, \beta}\langle\xi\rangle_{h}^{-\alpha} \quad \forall 1 \leq k \leq p-1, \alpha+\beta \geq 1,
\end{align*}
$$

that is (2.7) by construction (2.4).
In the sequel we shall need also the following Lemmas; for their proofs please refer to [ABZ].
Lemma 2.3. Let $\Lambda(x, \xi)$ satisfy (2.6) and (2.7). Then there exists $h_{0} \geq 1$ such that for $h \geq h_{0}$ the operator $e^{\Lambda\left(x, D_{x}\right)}$, with symbol $e^{\Lambda(x, \xi)} \in S^{\delta}$, is invertible and

$$
\begin{equation*}
\left(e^{\Lambda}\right)^{-1}=e^{-\Lambda}(I+R) \tag{2.20}
\end{equation*}
$$

where I is the identity operator and R is of the form $R=\sum_{n=1}^{+\infty} r^{n}$ with principal symbol

$$
r_{-1}(x, \xi)=\partial_{\xi} \Lambda(x, \xi) D_{x} \Lambda(x, \xi) \in S^{-1}
$$

Lemma 2.4. Let $\Lambda(x, \xi)$ satisfy (2.7) and $h \geq 1$ be fixed large enough to get (2.20). Then

$$
\begin{array}{ll}
\left|\partial_{\xi}^{\alpha} e^{ \pm \Lambda(x, \xi)}\right| \leq C_{\alpha}\langle\xi\rangle_{h}^{-\alpha} e^{ \pm \Lambda(x, \xi)} & \forall \alpha \in \mathbb{N} \\
\left|D_{x}^{\beta} e^{ \pm \Lambda(x, \xi)}\right| \leq C_{\beta}\langle x\rangle^{-\beta} e^{ \pm \Lambda(x, \xi)} & \forall \beta \in \mathbb{N} . \tag{2.22}
\end{array}
$$

Lemma 2.5. Let $A\left(t, x, D_{x}\right)$ be the operator in (2.1), Λ satisfying (2.7), $h \geq h_{0}$ and R as in (2.20).

Then the operator

$$
\begin{equation*}
A_{\Lambda}\left(t, x, D_{x}\right):=\left(e^{\Lambda\left(x, D_{x}\right)}\right)^{-1} A\left(t, x, D_{x}\right) e^{\Lambda\left(x, D_{x}\right)} \tag{2.23}
\end{equation*}
$$

can be written as

$$
\begin{align*}
A_{\Lambda}\left(t, x, D_{x}\right)= & e^{-\Lambda\left(x, D_{x}\right)} A\left(t, x, D_{x}\right) e^{\Lambda\left(x, D_{x}\right)} \\
& +\sum_{m=0}^{p-2} \frac{1}{m!} \sum_{n=1}^{p-1-m} e^{-\Lambda\left(x, D_{x}\right)} A^{n, m}\left(t, x, D_{x}\right) e^{\Lambda\left(x, D_{x}\right)}+A_{0}\left(t, x, D_{x}\right), \tag{2.24}
\end{align*}
$$

where $A_{0}\left(t, x, D_{x}\right)$ has symbol $A_{0}(t, x, \xi) \in S^{0}$ and

$$
\begin{equation*}
\sigma\left(A^{n, m}\left(t, x, D_{x}\right)\right)=\partial_{\xi}^{m} r^{n}(x, \xi) D_{x}^{m} A(t, x, \xi) \in S^{p-m-n} . \tag{2.25}
\end{equation*}
$$

Lemma 2.6. Let Λ be defined by (2.4), with λ_{p-k} satisfying (2.19). Then, for $m \geq 1$,

$$
\begin{equation*}
e^{-\Lambda} D_{x}^{m} e^{\Lambda}=\sum_{s=0}^{p-2} f_{-s}\left(\lambda_{p-1}, \ldots, \lambda_{p-s-1}\right)+f_{-p+1}\left(\lambda_{p-1}, \ldots, \lambda_{1}\right) \tag{2.26}
\end{equation*}
$$

for some $f_{-p+1} \in S^{-p+1}$ depending on $\lambda_{p-1}, \ldots, \lambda_{1}$ and $f_{-s} \in S^{-s}$ depending only on λ_{p-1}, \ldots, λ_{p-s-1}, and not on $\lambda_{p-s}, \ldots, \lambda_{1}$, such that

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} f_{-s}\right| \leq C_{\alpha, \beta, s} \frac{\langle\xi\rangle_{h}^{-s-\alpha}}{\langle x\rangle^{\frac{p-1-s}{p-1}+\beta}} \quad \forall \alpha, \beta \geq 0, \tag{2.27}
\end{equation*}
$$

for some $C_{\alpha, \beta, s}>0$.
We conclude this Section by recalling the sharp-Gårding Theorem and the Fefferman-Phong inequality, the two main tools we are going to use in proving Theorem 1.2, referring respectively to $[\mathrm{KG}]$ and $[\mathrm{FP}]$ for proofs.

Theorem 2.7 (Sharp-Gårding). Let $A(x, \xi) \in S^{m}$ with $\operatorname{Re} A(x, \xi) \geq 0$. There exist pseudodifferential operators $Q\left(x, D_{x}\right)$ and $R\left(x, D_{x}\right)$ with symbols, respectively, $Q(x, \xi) \in S^{m}$ and $R(x, \xi) \in S^{m-1}$, such that

$$
\begin{align*}
& A\left(x, D_{x}\right)=Q\left(x, D_{x}\right)+R\left(x, D_{x}\right) \\
& \operatorname{Re}\left\langle Q\left(x, D_{x}\right) u, u\right\rangle \geq 0 \quad \forall u \in H^{m} \\
& R(x, \xi) \sim \psi_{1}(\xi) D_{x} A(x, \xi)+\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta}(\xi) \partial_{\xi}^{\alpha} D_{x}^{\beta} A(x, \xi), \tag{2.28}
\end{align*}
$$

with $\psi_{1}, \psi_{\alpha, \beta}$ real valued functions, $\psi_{1} \in S^{-1}$ and $\psi_{\alpha, \beta} \in S^{(\alpha-\beta) / 2}$. As a consequence, there exists $c>0$ such that it holds the well-known sharp-Gärding inequality

$$
\begin{equation*}
\operatorname{Re}\left\langle A\left(x, D_{x}\right) u, u\right\rangle \geq-c\|u\|_{(m-1) / 2}^{2} . \tag{2.29}
\end{equation*}
$$

Theorem 2.8 (Fefferman-Phong inequality). Let $A(x, \xi) \in S^{m}$ with $A(x, \xi) \geq 0$. There exists $c>0$ such that

$$
\begin{equation*}
\operatorname{Re}\left\langle A\left(x, D_{x}\right) u, u\right\rangle \geq-c\|u\|_{(m-2) / 2}^{2} . \tag{2.30}
\end{equation*}
$$

3. The scalar energy estimate

Let $\Lambda\left(x, D_{x}\right)$ be the operator constructed in (2.4), (2.5). Fix $h \geq 1$ large enough so that the operator e^{Λ} is invertible, and (2.20) holds. As described in Section 2, we set $A_{\Lambda}=\left(e^{\Lambda}\right)^{-1} A e^{\Lambda}$ with

$$
A\left(t, x, D_{x}\right)=\sum_{j=0}^{p} i a_{j}\left(t, x, D_{x}\right)
$$

and $a_{p}=a_{p}\left(t, D_{x}\right)$. To prove Theorem 1.2 we need an estimate of the form

$$
\operatorname{Re}\left\langle A_{\Lambda} v, v\right\rangle \geq-c\|v\|_{0}^{2} \quad \forall v(t, \cdot) \in H^{\infty}
$$

for some $c>0$. Such an estimate will be obtained by choosing the constants M_{p-1}, \ldots, M_{1} in a suitable way and by several applications of sharp-Garding and Fefferman-Phong inequalities. In what follows, we state and prove some useful lemmas. Then, we give the proof of Theorem 1.2. Throughout this section, we work with the more simple operator $e^{-\Lambda} A e^{\Lambda}$; then, at the end of the proof, we recover by Lemma 2.5 the full operator $A_{\Lambda}=\left(e^{\Lambda}\right)^{-1} A e^{\Lambda}$.

Lemma 3.1. Let us consider the operator $e^{-\Lambda} A e^{\Lambda}$. Its terms of order $p-k$, denoted by $\left.\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}$, satisfy for $1 \leq k \leq p-1$:

$$
\begin{equation*}
\left|\operatorname{Re}\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}(t, x, \xi) \left\lvert\, \leq C_{\left(M_{p-1}, \ldots, M_{p-k}\right)}\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k}\right. \tag{3.1}
\end{equation*}
$$

for a constant $C_{\left(M_{p-1}, \ldots, M_{p-k}\right)}>0$ depending only on M_{p-1}, \ldots, M_{p-k} and not on M_{p-k-1}, \ldots, M_{1}.
Proof. We compute first

$$
\begin{aligned}
\sigma\left(A\left(t, x, D_{x}\right) e^{\Lambda\left(x, D_{x}\right)}\right) & =\sum_{m \geq 0} \frac{1}{m!} \partial_{\xi}^{m} A(t, x, \xi) D_{x}^{m} e^{\Lambda(x, \xi)} \\
& =\sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \frac{1}{m!} \partial_{\xi}^{m}\left(i a_{j}(t, x, \xi)\right) D_{x}^{m} e^{\Lambda(x, \xi)}+\bar{A}_{0}
\end{aligned}
$$

$\bar{A}_{0} \in S^{0}$. Then, for some $A_{0} \in S^{0}$ (which may change from one equality to the other) we have:

$$
\begin{aligned}
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right)= & \sum_{\alpha \geq 0} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} e^{-\Lambda} D_{x}^{\alpha}\left(\sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \frac{1}{m!} \partial_{\xi}^{m}\left(i a_{j}(t, x, \xi)\right) D_{x}^{m} e^{\Lambda(x, \xi)}+\bar{A}_{0}\right) \\
= & \sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \sum_{\alpha=0}^{j-1-m} \frac{1}{\alpha!} \frac{1}{m!}\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right) \sum_{\beta=0}^{\alpha}\binom{\alpha}{\beta}\left(\partial_{\xi}^{m} D_{x}^{\beta}\left(i a_{j}(t, x, \xi)\right)\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right)+A_{0} \\
= & \sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \frac{1}{m!}\left(e^{-\Lambda} D_{x}^{m} e^{\Lambda}\right)\left(\partial_{\xi}^{m}\left(i a_{j}(t, x, \xi)\right)\right) \\
& +\sum_{m=0}^{p-2} \sum_{j=m+1}^{p} \sum_{\alpha=1}^{j-1-m} \sum_{\beta=0}^{\alpha} \frac{1}{\alpha!} \frac{1}{m!}\binom{\alpha}{\beta}\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} D_{x}^{\beta}\left(i a_{j}(t, x, \xi)\right)\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right)+A_{0} .
\end{aligned}
$$

Put now

$$
\begin{align*}
& A_{I}:=\sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \frac{1}{m!}\left(e^{-\Lambda} D_{x}^{m} e^{\Lambda}\right)\left(\partial_{\xi}^{m}\left(i a_{j}(t, x, \xi)\right)\right), \tag{3.3}\\
& A_{I I}:=\sum_{m=0}^{p-2} \sum_{j=m+1}^{p} \sum_{\alpha=1}^{j-1-m} \sum_{\beta=0}^{\alpha} \frac{1}{\alpha!} \frac{1}{m!}\binom{\alpha}{\beta}\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} D_{x}^{\beta}\left(i a_{j}(t, x, \xi)\right)\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right) . \tag{3.4}
\end{align*}
$$

We have

$$
\begin{equation*}
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right)=A_{I}+A_{I I}+A_{0} \tag{3.5}
\end{equation*}
$$

We consider first $A_{I I}$, where $\alpha \geq 1$. In the case $m+\alpha-\beta \geq 1$, from (2.19) we get:

$$
\begin{align*}
& \left|\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} D_{x}^{\beta} i a_{j}\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right)\right| \\
& \leq c\langle\xi\rangle_{h}^{j-m} \cdot\left|\partial_{\xi}^{\alpha} \prod_{k=1}^{p-1} e^{-\lambda_{p-k}}\right| \cdot\left|\partial_{x}^{m+\alpha-\beta} \prod_{k^{\prime}=1}^{p-1} e^{\lambda_{p-k^{\prime}}}\right| \\
& =c\langle\xi\rangle_{h}^{j-m} \sum_{\alpha_{1}+\ldots+\alpha_{p-1}=\alpha} \frac{\alpha!}{\alpha_{1}!\cdots \alpha_{p-1}!} \prod_{k=1}^{p-1}\left|\partial_{\xi}^{\alpha_{k}} e^{-\lambda_{p-k}}\right| \cdot \sum_{\substack{\gamma_{1}+\ldots+\gamma_{p-1} \\
m+\alpha-\beta}} \frac{(m+\alpha-\beta)!}{\gamma_{1}!\cdots \gamma_{p-1}!} \prod_{k^{\prime}=1}^{p-1}\left|\partial_{x}^{\gamma_{k^{\prime}}} e^{\lambda_{p-k^{\prime}}}\right| \\
& \leq c^{\prime} \sum_{\substack{\alpha_{1}+\ldots+\alpha_{p-1}=\alpha}} \tag{3.6}\\
& \gamma_{1}+\ldots+\gamma_{p-1}=m+\alpha-\beta \\
& r_{1}+\ldots+r_{q_{k}}=\alpha_{k} ; r_{i}, \alpha_{k} \geq 1 \\
& s_{1}+\ldots+s_{p_{k^{\prime}}}=\gamma_{k^{\prime}} ; s_{i}, \gamma_{k^{\prime}} \geq 1
\end{align*}
$$

for some $c, c^{\prime}>0$.
Each term of (3.6) has order $j-m-\alpha-\sum_{k=1}^{p-1} q_{k}(k-1)-\sum_{k^{\prime}=1}^{p-1} p_{k^{\prime}}\left(k^{\prime}-1\right)$ and decay in x of the form

$$
\langle x\rangle \frac{\left.\sum_{k=1}^{p-1} q_{k}(k-1)+\sum_{k^{\prime}=1}^{p-1} p_{k^{\prime}} k^{\prime}-1\right)}{p-1}-m-\alpha+\beta \leq\langle x\rangle^{\frac{\left.j-m-\alpha-\sum_{k=1}^{p-1} q_{k}(k-1)-\sum_{k^{\prime}=1}^{p-1} p_{k^{\prime}} k^{\prime}-1\right)}{p-1}}
$$

since $-(p-1)(m+\alpha-\beta) \leq-j+m+\alpha$ for $m+\alpha-\beta \geq 1$.
Note also that $j-m-\alpha-\sum_{k=1}^{p-1} q_{k}(k-1)-\sum_{k^{\prime}=1}^{p-1} p_{k^{\prime}}\left(k^{\prime}-1\right) \leq p-k-1$ and $j-m-\alpha-$ $\sum_{k=1}^{p-1} q_{k}(k-1)-\sum_{k^{\prime}=1}^{p-1} p_{k^{\prime}}\left(k^{\prime}-1\right) \leq p-k^{\prime}-1$, so that whenever M_{p-k} or $M_{p-k^{\prime}}$ appear in (3.6), then the order is at most $p-k-1$ and $p-k^{\prime}-1$ respectively.

In the case $m+\alpha-\beta=0$, by (2.19) we have, for all $0 \leq \beta \leq j-1$ with $1 \leq j \leq p-1$:

$$
\begin{aligned}
& \left|\operatorname{Re}\left[\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} D_{x}^{\beta} i a_{j}\right) e^{\Lambda}\right]\right| \leq\left|\partial_{\xi}^{\alpha} e^{-\Lambda}\right| \cdot\left|\operatorname{Im} \partial_{\xi}^{m} D_{x}^{\beta} a_{j}\right| e^{\Lambda} \\
= & \sum_{\alpha_{1}+\ldots+\alpha_{p-1}=\alpha} \frac{\alpha!}{\alpha_{1}!\cdots \alpha_{p-1}!} \cdot \prod_{k=1}^{p-1}\left(\sum_{\substack{r_{1}+\ldots+r_{q_{k}}=\alpha_{k} \\
r_{i}, \alpha_{k} \geq 1}} C_{q, k}\left|\partial_{\xi}^{r_{1}} \lambda_{p-k}\right| \cdots\left|\partial_{\xi}^{r_{q_{k}}} \lambda_{p-k}\right|\right) \cdot\left|\operatorname{Im} \partial_{\xi}^{m} D_{x}^{\beta} a_{j}\right| \\
(3.7) \leq & C \sum_{\substack{\alpha_{1}+\ldots+\alpha_{p-1} \\
=\alpha}} \prod_{k=1}^{p-1} \sum_{\substack{r_{1}+\ldots+r_{q_{k}}=\alpha_{k} \\
r_{i}, \alpha_{k} \geq 1}} M_{p-k}^{q_{k}}\langle x\rangle^{\frac{k-1}{p-1} q_{k}}\langle\xi\rangle_{h}^{-\alpha_{k}-q_{k}(k-1)} \cdot\left|\operatorname{Im} \partial_{\xi}^{m} D_{x}^{\beta} a_{j}\right|
\end{aligned}
$$

for some $C>0$. Now, for

$$
\gamma(\beta)= \begin{cases}0 & \beta=0 \tag{3.8}\\ 1 & \beta=1 \\ {\left[\frac{\beta}{2}\right]} & \beta \geq 2\end{cases}
$$

and $\min \{\beta+1,3\} \leq j \leq p-1$ we have that (3.7) becomes, because of (1.13)-(1.15):

$$
\begin{align*}
\left|\operatorname{Re}\left[\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} i a_{j}\right) e^{\Lambda}\right]\right| \leq & C^{\prime} \sum_{\substack{\alpha_{1}+\ldots+\alpha_{p-1} \\
=\alpha}} \prod_{k=1}^{p-1} \sum_{\substack{r_{1}+\ldots+r_{q_{k}}=\alpha_{k} \\
r_{i}, \alpha_{k} \geq 1}} M_{p-k}^{q_{k}}\langle x\rangle^{\frac{k-1}{p-1} q_{k}}\langle\xi\rangle_{h}^{-\alpha_{k}-q_{k}(k-1)} . \tag{3.9}\\
& \cdot\langle x\rangle^{-\frac{j-\gamma(\beta)}{p-1}}\langle\xi\rangle_{h}^{j-m}
\end{align*}
$$

Each term of (3.9) is a symbol of order $j-m-\alpha-\sum_{k=1}^{p-1} q_{k}(k-1)$ and has decay in x of the form:

$$
\langle x\rangle^{\frac{\sum_{k=1}^{p-1} q_{k}(k-1)-j+\gamma(\beta)}{p-1}} \leq\langle x\rangle^{-\frac{j-m-\alpha-\sum_{k=1}^{p-1} q_{k}(k-1)}{p-1}} \text { if } \min \{\beta+1,3\} \leq j \leq p-1,
$$

since $\gamma(\beta) \leq \beta=\alpha+m$.
Here again $j-m-\alpha-\sum_{k=1}^{p-1} q_{k}(k-1) \leq p-k-1$ and hence M_{p-k} appears in (3.9) only when the order is at most $p-k-1$.

Summing up, formulas (3.6) and (3.9) give that the terms of order $p-k$ of $A_{I I}$, denoted by $\left.A_{I I}\right|_{\text {ord }(p-k)}$, satisfy:

$$
\begin{equation*}
\left|\operatorname{Re} A_{I I}\right|_{\operatorname{ord}(p-k)} \left\lvert\, \leq C\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k}\right. \tag{3.10}
\end{equation*}
$$

for some $C>0$.
Moreover, $\left.\operatorname{Re} A_{I I}\right|_{\operatorname{ord}(p-k)}$ depends only on $M_{p-1}, \ldots, M_{p-k+1}$ and not on M_{p-k}, \ldots, M_{1}.
We consider then

$$
\begin{align*}
A_{I} & =\sum_{m=0}^{p-1} \sum_{j=m+1}^{p} \frac{1}{m!}\left(\partial_{\xi}^{m}\left(i a_{j}\right)\right)\left(e^{-\Lambda} D_{x}^{m} e^{\Lambda}\right) \\
& =\sum_{k=0}^{p-1} \sum_{m=0}^{k} \frac{1}{m!}\left(\partial_{\xi}^{m}\left(i a_{p-k+m}\right)\right)\left(e^{-\Lambda} D_{x}^{m} e^{\Lambda}\right) \\
& =i a_{p}+\sum_{k=1}^{p-1}\left(i a_{p-k}+\sum_{m=1}^{k} \frac{1}{m!}\left(\partial_{\xi}^{m}\left(i a_{p-k+m}\right)\right)\left(e^{-\Lambda} D_{x}^{m} e^{\Lambda}\right)\right) . \tag{3.11}
\end{align*}
$$

Note that $D_{x} \Lambda=D_{x} \lambda_{p-1}+D_{x} \lambda_{p-2}+\ldots+D_{x} \lambda_{1}$ with $D_{x} \lambda_{p-k} \xi^{p-1} \in S^{p-k}$ because of (2.14). Moreover, from Lemma 2.6 it follows that there exist $f_{-s} \in S^{-s}$, for $0 \leq s \leq p-2$, depending only on $\lambda_{p-1}, \ldots, \lambda_{p-s-1}$, and $f_{-p+1} \in S^{-p+1}$ such that, for $\tilde{f}_{0}=\left(\partial_{\xi}^{m} a_{p-k+m}\right) f_{-p+1} \in S^{0}$,

$$
\begin{equation*}
\left(\partial_{\xi}^{m} a_{p-k+m}\right)\left(e^{-\Lambda} D_{x}^{m} e^{\Lambda}\right)=\sum_{s=0}^{p-2} f_{-s}\left(\lambda_{p-1}, \ldots, \lambda_{p-s-1}\right) \partial_{\xi}^{m} a_{p-k+m}+\tilde{f}_{0}, \tag{3.12}
\end{equation*}
$$

and, from (2.27) for $0 \leq s \leq p-2$,

$$
\begin{equation*}
\left|f_{-s} \partial_{\xi}^{m} a_{p-k+m}\right| \leq \frac{C_{s}}{\langle x\rangle^{\frac{p-1-s}{p-1}}}\langle\xi\rangle_{h}^{p-k-s} \leq \frac{C_{s}}{\langle x\rangle^{\frac{p-k-s}{p-1}}}\langle\xi\rangle_{h}^{p-k-s} \quad \forall k \geq 1 \tag{3.13}
\end{equation*}
$$

for some $C_{s}>0$. Rearranging the terms of the second addend of A_{I} in (3.11) and putting together all terms of order $p-k$, we can thus write, because of (3.12), (3.13):

$$
A_{I}=i a_{p}+\sum_{k=1}^{p-1}\left(i a_{p-k}+i D_{x} \lambda_{p-k} \partial_{\xi} a_{p}+B_{p-k}\right)+\tilde{B}_{0},
$$

for some $\tilde{B}_{0} \in S^{0}$ and $B_{p-k} \in S^{p-k}$ coming from (3.12) and of the form

$$
\begin{equation*}
B_{p-k}=\sum_{s=2}^{k} i f_{-(k-s)}\left(\lambda_{p-1}, \ldots, \lambda_{p-k+s-1}\right) \sum_{m=1}^{s} \partial_{\xi}^{m} a_{p-s+m}, \quad k=1, \ldots, p-1 . \tag{3.14}
\end{equation*}
$$

Notice that $B_{p-k} \in S^{p-k}$ depends only on $\lambda_{p-1}, \ldots, \lambda_{p-k+1}$ and not on $\lambda_{p-k}, \ldots, \lambda_{1}$, and moreover

$$
\begin{equation*}
\left|B_{p-k}\right| \leq \frac{C_{k}}{\langle x\rangle^{\frac{p-k}{p-1}}}\langle\xi\rangle_{h}^{p-k} \tag{3.15}
\end{equation*}
$$

for some $C_{k}>0$.
Setting

$$
\begin{equation*}
A_{p-k}^{0}:=i a_{p-k}+i D_{x} \lambda_{p-k} \partial_{\xi} a_{p} \tag{3.16}
\end{equation*}
$$

we write

$$
\begin{equation*}
A_{I}=i a_{p}+\sum_{k=1}^{p-1}\left(A_{p-k}^{0}+B_{p-k}\right)+\tilde{B}_{0} . \tag{3.17}
\end{equation*}
$$

Note that $A_{p-k}^{0}, B_{p-k} \in S^{p-k}$ and, since $\operatorname{Re}\left(A_{p-k}^{0}\right)=-\operatorname{Im} a_{p-k}+\partial_{x} \lambda_{p-k} \partial_{\xi} a_{p}$, from (1.13) with $j=p-k$ and $\alpha=0$, the first inequality in (2.14) with $\beta=1$, and (3.15) we have

$$
\begin{equation*}
\left|\operatorname{Re} A_{p-k}^{0}\right|+\left|B_{p-k}\right| \leq C_{k}\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k} \tag{3.18}
\end{equation*}
$$

for some $C_{k}>0$.
Moreover, A_{p-k}^{0} depends only on M_{p-k} and B_{p-k} depends only on $M_{p-1}, \ldots, M_{p-k+1}$ (and not on M_{p-k}, \ldots, M_{1}) as a consequence of (3.14).

Formulas (3.10) and (3.17)-(3.18) together give (3.1) because of (3.5). The proof is completed.

Lemma 3.2. Let us consider, for $1 \leq k \leq p-3$ the operator $\left.\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}$ and define

$$
\begin{equation*}
R_{p-k}=\left.\psi_{1}(\xi) D_{x}\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}+\left.\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta}(\xi) \partial_{\xi}^{\alpha} D_{x}^{\beta}\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}, \tag{3.19}
\end{equation*}
$$

with $\psi_{1}, \psi_{\alpha, \beta}$ as in Theorem 2.7. Denote by $\left.R_{p-k}\right|_{\operatorname{ord}(p-k-s)}$ the terms of order $p-k-s$ of R_{p-k}, $1 \leq s \leq p-k-1$. Then:

$$
\begin{equation*}
\left|\operatorname{Re}\left(R_{p-k}\right)\right|_{\operatorname{ord}(p-k-s)}(t, x, \xi) \left\lvert\, \leq C_{\left(M_{p-1}, \ldots, M_{p-k-s}\right)}\langle x\rangle^{-\frac{p-k-s}{p-1}}\langle\xi\rangle_{h}^{p-k-s}\right. \tag{3.20}
\end{equation*}
$$

for every $1 \leq s \leq p-k-1$ and for a positive constant $C_{\left(M_{p-1}, \ldots, M_{p-k-s}\right)}$ depending only on $M_{p-1}, \ldots, M_{p-k-s}$ and not on $M_{p-k-s-1}, \ldots, M_{1}$.

Proof. From (3.5), to estimate R_{p-k} we need to give estimates of

$$
R\left(\left.A_{I}\right|_{\operatorname{ord}(p-k)}\right)=\left.\psi_{1}(\xi) D_{x} A_{I}\right|_{\operatorname{ord}(p-k)}+\left.\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta}(\xi) \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{I}\right|_{\operatorname{ord}(p-k)}
$$

and

$$
R\left(\left.A_{I I}\right|_{\operatorname{ord}(p-k)}\right)=\left.\psi_{1}(\xi) D_{x} A_{I I}\right|_{\operatorname{ord}(p-k)}+\left.\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta}(\xi) \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{I I}\right|_{\operatorname{ord}(p-k)}
$$

We start by considering $R\left(\left.A_{I}\right|_{\operatorname{ord}(p-k)}\right)=R\left(A_{p-k}^{0}\right)+R\left(B_{p-k}\right)$, because of (3.17) for A_{p-k}^{0} and B_{p-k} defined respectively in (3.16) and (3.14). In computing

$$
\begin{equation*}
R\left(A_{p-k}^{0}\right)=\psi_{1} D_{x} A_{p-k}^{0}+\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{p-k}^{0} \tag{3.21}
\end{equation*}
$$

we find

$$
\psi_{1} D_{x} A_{p-k}^{0}=i \psi_{1} D_{x} a_{p-k}+i D_{x}^{2} \lambda_{p-k} \psi_{1} \partial_{\xi} a_{p}
$$

by (1.14):

$$
\begin{align*}
\left|\operatorname{Re}\left(\psi_{1} D_{x} A_{p-k}^{0}\right)\right| & \leq\left|\operatorname{Im} D_{x} a_{p-k}\right| \cdot\left|\psi_{1}\right| \leq \frac{C^{\prime}}{\langle x\rangle^{\frac{p-k-1}{p-1}}}\langle\xi\rangle_{h}^{p-k-1} \\
& \leq \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) \frac{C^{\prime}\langle\xi\rangle_{h}^{p-k-1}}{\langle x\rangle^{\frac{p-k-1}{p-1}}}+C^{\prime \prime} \tag{3.22}
\end{align*}
$$

since $\psi_{1} \in S^{-1}$ and $\langle\xi\rangle_{h}^{p-k-1} /\langle x\rangle^{\frac{p-k-1}{p-1}}$ is bounded on $\operatorname{supp}(1-\psi)$.
We now look at

$$
\begin{align*}
& \sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{p-k}^{0}=\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \partial_{\xi}^{\alpha} D_{x}^{\beta}\left(i a_{p-k}+i D_{x} \lambda_{p-k} \partial_{\xi} a_{p}\right) \\
& =\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} i \partial_{\xi}^{\alpha} D_{x}^{\beta} a_{p-k}+\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \sum_{\alpha_{1}+\alpha_{2}=\alpha}\binom{\alpha}{\alpha_{1}} i \partial_{\xi}^{\alpha_{1}} D_{x}^{\beta+1} \lambda_{p-k} \cdot \partial_{\xi}^{\alpha_{2}+1} a_{p} . \tag{3.23}
\end{align*}
$$

Note that the first addend in (3.23) is $\psi_{\alpha, \beta} i \partial_{\xi}^{\alpha} D_{x}^{\beta} a_{p-k} \in S^{p-k-\frac{\alpha+\beta}{2}}$, so it has to be considered at level $p-k-\frac{\alpha+\beta}{2}$ if $\alpha+\beta$ is even, at level $p-k-\frac{\alpha+\beta}{2}+\frac{1}{2}$ if $\alpha+\beta$ is odd, thus at level $p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]$. Looking also at its decay as $x \rightarrow \infty$, we have by (1.14), (1.15), for $p-k \geq 3$ and $\gamma(\beta)$ defined by (3.8):

$$
\left|\operatorname{Re}\left(\psi_{\alpha, \beta} i \partial_{\xi}^{\alpha} D_{x}^{\beta} a_{p-k}\right)\right| \leq\langle\xi\rangle_{h}^{p-k-\frac{\alpha+\beta}{2}} \frac{C}{\langle x\rangle^{\frac{p-k-\gamma(\beta)}{p-1}}}
$$

$$
\begin{equation*}
\leq C \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) \frac{\langle\xi\rangle_{h}^{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}}{\langle x\rangle^{\frac{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}{p-1}}}+C^{\prime} \tag{3.24}
\end{equation*}
$$

for some $C^{\prime}>0$, since

$$
\begin{equation*}
-\gamma(b) \geq\left[-\frac{a+b}{2}+\frac{1}{2}\right] \quad \forall a, b \geq 0 \tag{3.25}
\end{equation*}
$$

We remark that decay estimates of the form (3.24) are needed until level $p-k-\frac{\alpha+\beta}{2} \geq \frac{1}{2}$, i.e.

$$
\begin{equation*}
0 \leq\left[\frac{\beta}{2}\right] \leq p-k-1, \quad \text { for } p-k \geq 3 \tag{3.26}
\end{equation*}
$$

For the second addend of (3.23) by (2.19) we immediately get:

$$
\left.\begin{array}{l}
\left|\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \sum_{\alpha_{1}+\alpha_{2}=\alpha}\binom{\alpha}{\alpha_{1}} i \partial_{\xi}^{\alpha_{1}} D_{x}^{\beta+1} \lambda_{p-k} \cdot \partial_{\xi}^{\alpha_{2}+1} a_{p}\right|
\end{array} \leq \sum_{\alpha+\beta \geq 2} \frac{C_{\alpha, \beta}}{\langle x\rangle^{\frac{p-k}{p-1}+\beta}}\langle\xi\rangle_{h}^{p-k-\frac{\alpha+\beta}{2}}\right] \text { } \begin{aligned}
& \text { 27) } \quad \leq C\langle\xi\rangle_{h}^{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}\langle x\rangle^{-\frac{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}{p-1}}
\end{aligned}
$$

since $\beta(p-1) \geq\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]$.
Summing up, we have obtained, for the second addend of (3.21), that

$$
\left|\operatorname{Re} \sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{p-k}^{0}\right| \leq C\langle\xi\rangle_{h}^{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}\langle x\rangle^{-\frac{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}{p-1}} \psi+C^{\prime}
$$

for some $C, C^{\prime}>0$, because of (3.24) and (3.27). Note that only in (3.24) the assumptions (1.14), (1.15) are used. We have thus proved, looking also at (3.22), that $R\left(A_{p-k}^{0}\right)$ fulfills the decay estimate in (3.20) and, moreover, it depends only on M_{p-k} and not on M_{j} for $j \neq p-k$.

We now estimate the other term

$$
\begin{aligned}
R\left(B_{p-k}\right) & =\sum_{s=2}^{k} \sum_{m=1}^{s} R\left(i f_{-(k-s)} \partial_{\xi}^{m} a_{p-s+m}\right) \\
8) & =\sum_{s=2}^{k} \sum_{m=1}^{s}\left[\psi_{1} D_{x}\left(i f_{-(k-s)} \partial_{\xi}^{m} a_{p-s+m}\right)+\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \partial_{\xi}^{\alpha} D_{x}^{\beta}\left(i f_{-(k-s)} \partial_{\xi}^{m} a_{p-s+m}\right)\right]
\end{aligned}
$$

for $\psi_{1} \in S^{-1}, \psi_{\alpha, \beta} \in S^{\frac{\alpha-\beta}{2}}$ and B_{p-k} defined by (3.14).
We have from (2.27):

$$
\begin{aligned}
\left|\psi_{1} D_{x}\left(i f_{-(k-s)} \partial_{\xi}^{m} a_{p-s+m}\right)\right| & \left.\leq\left|\psi_{1}\left(\partial_{x} f_{-(k-s)}\right) \partial_{\xi}^{m} a_{p-s+m}\right|+\mid \psi_{1} f_{-(k-s)} \partial_{\xi}^{m} \partial_{x} a_{p-s+m}\right) \mid \leq \\
& \leq\langle\xi\rangle_{h}^{-1} C_{k-s}\left(\frac{1}{\langle x\rangle^{\frac{p-1-k+s}{p-1}+1}}+\frac{1}{\langle x\rangle^{\frac{p-1-k+s}{p-1}}}\right)\langle\xi\rangle_{h}^{-k+s}\langle\xi\rangle_{h}^{p-s} \\
& \leq \frac{C_{k-s}}{\langle x\rangle^{\frac{p-k-1}{p-1}}}\langle\xi\rangle_{h}^{p-k-1},
\end{aligned}
$$

therefore, for each $2 \leq s \leq k$,

$$
\begin{equation*}
\left|\psi_{1} D_{x}\left(i f_{-(k-s)} \partial_{\xi}^{m} a_{p-s+m}\right)\right| \leq c \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right) \frac{\langle\xi\rangle_{h}^{p-k-1}}{\langle x\rangle^{\frac{p-k-1}{p-1}}}+c^{\prime} \tag{3.29}
\end{equation*}
$$

for some $c, c^{\prime}>0$. For the second addend of (3.28) we write

$$
\begin{aligned}
& \sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \partial_{\xi}^{\alpha} D_{x}^{\beta}\left(i f_{-(k-s)} \partial_{\xi}^{m} a_{p-s+m}\right) \\
= & \sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta} \sum_{\alpha^{\prime}=0}^{\alpha} \sum_{\beta^{\prime}=0}^{\beta}\binom{\alpha}{\alpha^{\prime}}\binom{\beta}{\beta^{\prime}} i\left(\partial_{\xi}^{\alpha^{\prime}} D_{x}^{\beta^{\prime}} f_{-(k-s)}\right)\left(\partial_{\xi}^{\alpha-\alpha^{\prime}+m} D_{x}^{\beta-\beta^{\prime}} a_{p-s+m}\right)
\end{aligned}
$$

By (2.27) we have that $\psi_{\alpha, \beta}\left(\partial_{\xi}^{\alpha^{\prime}} D_{x}^{\beta^{\prime}} f_{-(k-s)}\right)\left(\partial_{\xi}^{\alpha-\alpha^{\prime}+m} D_{x}^{\beta-\beta^{\prime}} a_{p-s+m}\right) \in S^{p-k-\frac{\alpha+\beta}{2}}$ and

$$
\begin{aligned}
\left|\psi_{\alpha, \beta}\left(\partial_{\xi}^{\alpha^{\prime}} D_{x}^{\beta^{\prime}} f_{-(k-s)}\right)\left(\partial_{\xi}^{\alpha-\alpha^{\prime}+m} D_{x}^{\beta-\beta^{\prime}} a_{p-s+m}\right)\right| & \leq \frac{C_{k-s}}{\langle x\rangle^{\frac{p-1-k+s}{p-1}+\beta^{\prime}}}\langle\xi\rangle_{h}^{p-k-\frac{\alpha+\beta}{2}} \\
& \leq \frac{C_{k-s}}{\langle x\rangle^{\frac{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}{p-1}}\langle\xi\rangle_{h}^{p-k+\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]}}
\end{aligned}
$$

for some $C_{k-s}>0$, since $p-1-k+s \geq p-k$ (being $s \geq 2$) and $\beta^{\prime} \geq\left[-\frac{\alpha+\beta}{2}+\frac{1}{2}\right]$.
This, together with (3.29), means that $R\left(B_{p-k}\right)$ satisfies the decay estimate in (3.20), independently of the conditions on the x-decay of the coefficients.

Now we are going to estimate $R\left(\left.A_{I I}\right|_{\operatorname{ord}(p-k)}\right)$, where $A_{I I}$ is defined in (3.4). We have:

$$
\begin{align*}
& R\left(\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} D_{x}^{\beta}\left(i a_{j}(t, x, \xi)\right)\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right)\right)= \tag{3.30}\\
& \psi_{1} D_{x}\left[\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} D_{x}^{\beta}\left(i a_{j}(t, x, \xi)\right)\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right)\right] \\
& \quad+\sum_{\alpha^{\prime}+\beta^{\prime} \geq 2} \psi_{\alpha^{\prime}, \beta^{\prime}} \partial_{\xi}^{\alpha^{\prime}} D_{x}^{\beta^{\prime}}\left[\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(\partial_{\xi}^{m} D_{x}^{\beta}\left(i a_{j}(t, x, \xi)\right)\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right) .\right]
\end{align*}
$$

for $\psi_{1} \in S^{-1}$ and $\psi_{\alpha^{\prime}, \beta^{\prime}} \in S^{\frac{\alpha^{\prime}-\beta^{\prime}}{2}}$.
In order to avoid further computations analogous to those already made for the estimate of A_{I}, we make some remarks. When the x-derivatives fall on $\left(\partial_{\xi}^{\alpha} e^{-\Lambda}\right)\left(D_{x}^{m+\alpha-\beta} e^{\Lambda}\right)$, the decay in x gets better because of Lemma 2.4, while the level in ξ decreases. When the x-derivatives fall on $\partial_{\xi}^{m} D_{x}^{\beta}\left(i a_{j}\right)$ the assumptions (1.14) and (1.15) on the coefficients give a decay in $\langle x\rangle$ of order $(j-\gamma(\beta+1)) /(p-1)$ in the first addend of (3.30), and of order $\left(j-\gamma\left(\beta+\beta^{\prime}\right)\right) /(p-1)$ in the second addend of (3.30), with γ the function defined in (3.8); at the same time we have that the level in ξ decreases of 1 in the first addend of (3.30) and of $\alpha^{\prime}-\frac{\alpha^{\prime}-\beta^{\prime}}{2}=\frac{\alpha^{\prime}+\beta^{\prime}}{2}$ in the second addend of (3.30). Therefore the assumptions (1.14), (1.15) on the coefficients give that $R\left(\left.A_{I I}\right|_{\text {ord }(p-k)}\right)$ satisfies the decay estimate in (3.20), since

$$
\begin{align*}
& -\gamma(\beta+1) \geq\left[-\frac{\beta}{2}-1+\frac{1}{2}\right] \tag{3.31}\\
& -\gamma\left(\beta+\beta^{\prime}\right) \geq\left[-\frac{\beta}{2}-\frac{\alpha^{\prime}+\beta^{\prime}}{2}+\frac{1}{2}\right] \tag{3.32}
\end{align*}
$$

because of (3.25) with $b=\beta+1, a=1$ and $b=\beta+\beta^{\prime}, a=\alpha^{\prime}$ respectively.

Proof of Theorem 1.2

The proof of Theorem 1.2 consists in choosing recursively positive constants M_{p-1}, \ldots, M_{1} in such a way that

$$
\begin{equation*}
\left.\operatorname{Re}\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}+\tilde{C} \geq 0 \tag{3.33}
\end{equation*}
$$

for some $\tilde{C}>0$, and applying the sharp-Gårding Theorem 2.7 to terms of order $p-2, p-3$, and so on, up to order 3 , the Fefferman-Phong inequality to terms of order $p-k=2$ and the sharp-Gårding inequality (2.29) to terms of order $p-k=1$, finally obtaining that

$$
e^{-\Lambda} A e^{\Lambda}=i a_{p}\left(t, D_{x}\right)+\sum_{s=1}^{p} Q_{p-s}
$$

with

$$
\begin{aligned}
& \operatorname{Re}\left\langle Q_{p-s} v, v\right\rangle \geq 0 \quad \forall v(t, \cdot) \in H^{p-s}, \quad s=1, \ldots, p-3 \\
& \operatorname{Re}\left\langle Q_{p-s} v, v\right\rangle \geq-c\|v\|_{0}^{2} \quad \forall v(t, \cdot) \in H^{p-s}, \quad s=p-2, p-1 \\
& Q_{0} \in S^{0} .
\end{aligned}
$$

At the end of the proof we will show that the result holds not only for $e^{-\Lambda} A e^{\Lambda}$, but also for the full operator $\left(e^{\Lambda}\right)^{-1} A e^{\Lambda}$, finding a constant $c>0$ such that

$$
\operatorname{Re}\left\langle A_{\Lambda} v, v\right\rangle \geq-c\|v\|_{0}^{2} \quad \forall v(t, \cdot) \in H^{\infty}
$$

From this, the thesis follows by standard energy arguments.
Lemma 3.1 is fundamental to make these choices possible: it states that all terms of order $p-k$ ($1 \leq k \leq p-1$) of the operator $e^{-\Lambda} A e^{\Lambda}$ have the "right decay at the right level", in the sense that they satisfy (3.1); the fact that the constants $C_{\left(M_{p-1}, \ldots, M_{p-k}\right)}$ depend only on M_{p-1}, \ldots, M_{p-k} and not on M_{p-k-1}, \ldots, M_{1} is very important in the following in the application of the sharpGårding Theorem, since we shall choose M_{p-1}, \ldots, M_{1} step by step, and at each step (say "step $p-k "$) we need something which depends only on the already chosen $M_{p-1}, \ldots, M_{p-k+1}$ and on the new M_{p-k} that we need to choose, and not on the constants M_{p-k-1}, \ldots, M_{1} which will be chosen in the next steps.

Lemma 3.2 states that not only the terms of order $p-k$ of the operator $e^{-\Lambda} A e^{\Lambda}$, but also remainder terms coming from an application of Theorem 2.7 have the "right decay at the right level" (formula (3.20)), with constants $C_{\left(M_{p-1}, \ldots, M_{p-k-s}\right)}$ depending only on $M_{p-1}, \ldots, M_{p-k-s}$ and not on $M_{p-k-s-1}, \ldots, M_{1}$; this lets the recursive choice of the constants possible.

So, let us start with the proof.
Choice of M_{p-1}. Let us define, with the notations of Lemma 3.1,

$$
\begin{align*}
A_{p-k} & :=\left.\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}=\left.A_{I}\right|_{\operatorname{ord}(p-k)}+\left.A_{I I}\right|_{\operatorname{ord}(p-k)} \tag{3.34}\\
& =A_{p-k}^{0}+B_{p-k}+\left.A_{I I}\right|_{\operatorname{ord}(p-k)}, \quad k=1, \ldots, p-1 .
\end{align*}
$$

We focus on the real part of A_{p-k}. From (1.12), (1.13)-(1.15), (2.5) we have

$$
\begin{align*}
\operatorname{Re} A_{p-k}^{0} & =-\operatorname{Im} a_{p-k}+\partial_{x} \lambda_{p-k} \partial_{\xi} a_{p} \\
& =M_{p-k}\langle x\rangle^{-\frac{p-k}{p-1}} \psi\left(\frac{\langle x\rangle}{\langle\xi\rangle_{h}^{p-1}}\right)\langle\xi\rangle_{h}^{-k+1} \partial_{\xi} a_{p}-\operatorname{Im} a_{p-k} \\
& \geq C_{p} M_{p-k}\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k} \psi-C\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k} \psi-C\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k}(1-\psi) \\
& \geq \psi \cdot\left(C_{p} M_{p-k}-C\right)\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k}-C^{\prime \prime} \tag{3.35}
\end{align*}
$$

for some $C^{\prime \prime}>0$ since $\langle\xi\rangle_{h}^{p-1} /\langle x\rangle$ is bounded on the support of $(1-\psi)$. Then, from (3.35), (3.18) and (3.10):

$$
\begin{align*}
\operatorname{Re} A_{p-k} & =\operatorname{Re}\left(A_{p-k}^{0}\right)+\operatorname{Re}\left(B_{p-k}\right)+\operatorname{Re}\left(\left.A_{I I}\right|_{\operatorname{ord}(p-k)}\right) \\
& \geq \psi\left(C_{p} M_{p-k}-C\right)\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k}-C^{\prime \prime}-\left(C_{k}+C^{\prime}\right)\langle x\rangle^{-\frac{p-k}{p-1}}\langle\xi\rangle_{h}^{p-k}, \tag{3.36}
\end{align*}
$$

where the constants $C, C^{\prime}, C^{\prime \prime}, C_{k}$ depend only on $M_{p-1}, \ldots, M_{p-k+1}$ and not on M_{p-k}, \ldots, M_{1}.
In particular, for $k=1$,

$$
\operatorname{Re} A_{p-1} \geq \psi\left(C_{p} M_{p-1}-C-C_{1}-C^{\prime}\right)\langle x\rangle^{-1}\langle\xi\rangle_{h}^{p-1}-C^{\prime \prime}
$$

and we can thus choose $M_{p-1}>0$ sufficiently large, so that

$$
\operatorname{Re} A_{p-1}(t, x, \xi) \geq-\tilde{C} \quad \forall(t, x, \xi) \in[0, T] \times \mathbb{R}^{2}
$$

for some $\tilde{C}>0$. Applying the sharp-Gårding Theorem 2.7 to $A_{p-1}+\tilde{C}$ we can thus find pseudodifferential operators $Q_{p-1}\left(t, x, D_{x}\right)$ and $\tilde{R}_{p-1}\left(t, x, D_{x}\right)$ with symbols $Q_{p-1}(t, x, \xi) \in S^{p-1}$ and $\tilde{R}_{p-1}(t, x, \xi) \in S^{p-2}$ such that

$$
\begin{align*}
& A_{p-1}=Q_{p-1}+\tilde{R}_{p-1}-\tilde{C} \tag{3.37}\\
& \operatorname{Re}\left\langle Q_{p-1} v, v\right\rangle \geq 0 \quad \forall(t, x) \in[0, T] \times \mathbb{R}, \forall v(t, \cdot) \in H^{p-1}(\mathbb{R}) \\
& \tilde{R}_{p-1}(t, x, \xi) \sim \psi_{1}(\xi) D_{x} A_{p-1}(t, x, \xi)+\sum_{\alpha+\beta \geq 2} \psi_{\alpha, \beta}(\xi) \partial_{\xi}^{\alpha} D_{x}^{\beta} A_{p-1}(t, x, \xi)
\end{align*}
$$

with $\psi_{1} \in S^{-1}, \psi_{\alpha, \beta} \in S^{(\alpha-\beta) / 2}, \psi_{1}, \psi_{\alpha, \beta} \in \mathbb{R}$.
Therefore, the first application of the sharp-Gårding Theorem 2.7 gives, because of (3.5), (3.34) and (3.37):

$$
\begin{align*}
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right) & =i a_{p}+\sum_{k=1}^{p-1} A_{p-k}+A_{0}^{\prime}=i a_{p}+A_{p-1}+\sum_{k=2}^{p-1} A_{p-k}+A_{0}^{\prime} \\
& =i a_{p}+Q_{p-1}+\sum_{k=2}^{p-1}\left(\left.A_{I}\right|_{\operatorname{ord}(p-k)}+\left.A_{I I}\right|_{\operatorname{ord}(p-k)}+\left.\tilde{R}_{p-1}\right|_{\operatorname{ord}(p-k)}\right)+A_{0}^{\prime \prime} \tag{3.38}
\end{align*}
$$

for some $A_{0}^{\prime}, A_{0}^{\prime \prime} \in S^{0}$, where $\left.\tilde{R}_{p-1}\right|_{\operatorname{ord}(p-k)}$ denotes the terms of order $p-k$ of $\tilde{R}_{p-1}:=R\left(A_{p-1}\right)$. We have thus proved that it is possible to choose $M_{p-1}>0$ such that

$$
\begin{equation*}
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right)=i a_{p}(t, \xi)+Q_{p-1}+\left.\sum_{k=2}^{p-1}\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}+\tilde{R}_{p-1}+A_{0} \tag{3.39}
\end{equation*}
$$

where $Q_{p-1}(t, x, D)$ is a positive operator of order $p-1, \tilde{R}_{p-1}$ is a remainder of order $p-2$, and $A_{0}(t, x, D)$ is an operator of order zero.

Choice of M_{p-2}, \ldots, M_{3}. To iterate this process, applying the sharp-Gårding Theorem 2.7 to terms of order $p-2, p-3$, and so on, up to order 3 , we need to investigate the action of the sharp-Gårding Theorem to each term of the form

$$
\left.\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}+S_{p-k},
$$

where S_{p-k} denotes terms of order $p-k$ coming from remainders of previous applications of the sharp-Gårding Theorem 2.7, for $p-k \geq 3$. Lemma 3.2 says that remainders of terms of the form $\left.\left(e^{-\Lambda} A e^{\Lambda}\right)\right|_{\operatorname{ord}(p-k)}$ have "the right decay at the right level", in the sense of (3.20); in what follows we show that also S_{p-k} (and hence their remainders $R\left(S_{p-k}\right)$) are sums of terms with "the right decay at the right level". Then we apply the sharp-Gårding Theorem 2.7 to terms of order $p-k$, up to order $p-k=3$.

To estimate S_{p-k} and then $R\left(S_{p-k}\right)$ we previously need to make some remarks.
From (3.38) with $\tilde{R}_{p-1}=R\left(A_{p-1}\right)$ we have

$$
\begin{aligned}
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right) & =i a_{p}+Q_{p-1}+R\left(A_{p-1}\right)+\sum_{k=2}^{p-1} A_{p-k}+A_{0}^{\prime \prime} \\
& =i a_{p}+Q_{p-1}+A_{p-2}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-2)}+\sum_{k=3}^{p-1}\left(A_{p-k}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-k)}\right)+A_{0}^{\prime \prime}
\end{aligned}
$$

From (3.36) with $k=2$ and Lemma 3.2 with $k=1$, we can now choose $M_{p-2}>0$ sufficiently large so that

$$
\operatorname{Re}\left(A_{p-2}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-2)}\right)(t, x, \xi) \geq-\tilde{C} \quad \forall(t, x, \xi) \in[0, T] \times \mathbb{R}^{2}
$$

for some $\tilde{C}>0$.
Note that A_{p-2} depends on M_{p-1} and M_{p-2}, in the sense of (3.36), while $\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-2)}$ depends only on the already chosen M_{p-1}. Thus, by the sharp-Gårding Theorem 2.7 there exist pseudo-differential operators Q_{p-2} and \tilde{R}_{p-2}, with symbols in S^{p-2} and S^{p-3} respectively, such that

$$
\begin{aligned}
& \operatorname{Re}\left\langle Q_{p-2} v, v\right\rangle \geq 0 \quad \forall v(t, \cdot) \in H^{p-2} \\
& A_{p-2}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-2)}=Q_{p-2}+\tilde{R}_{p-2}
\end{aligned}
$$

with

$$
\tilde{R}_{p-2}=R\left(A_{p-2}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-2)}\right)=R\left(A_{p-2}\right)+R\left(\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-2)}\right)
$$

so that

$$
\begin{aligned}
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right)= & i a_{p}+Q_{p-1}+Q_{p-2}+R\left(A_{p-2}\right)+R\left(\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-2)}\right) \\
& +\sum_{k=3}^{p-1}\left(A_{p-k}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-k)}\right)+A_{0}^{\prime \prime} \\
= & i a_{p}+Q_{p-1}+Q_{p-2} \\
& +\left(A_{p-3}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-3)}+\left.R\left(A_{p-2}\right)\right|_{\operatorname{ord}(p-3)}+\left.R^{2}\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-3)}\right) \\
& +\sum_{k=4}^{p-1}\left(A_{p-k}+\left.R\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-k)}+R\left(A_{p-2}\right)_{\operatorname{ord}(p-k)}+\left.R^{2}\left(A_{p-1}\right)\right|_{\operatorname{ord}(p-k)}\right)+A_{0}^{\prime \prime}
\end{aligned}
$$

To proceed analogously for the terms of order $p-3$, then $p-4$ and so on up to order 3 , we thus need to estimate, for $p-k \geq 3$ and $s \geq 2$:

$$
R^{s}\left(A_{p-k}\right)=R^{s}\left(A_{p-k}^{0}\right)+R^{s}\left(B_{p-k}\right)+R^{s}\left(\left.A_{I I}\right|_{\operatorname{ord}(p-k)}\right) .
$$

The arguments are analogous to those already made for the discussion of $R\left(A_{p-k}^{0}\right), R\left(B_{p-k}\right)$ and $R\left(\left.A_{I I}\right|_{\text {ord }(p-k)}\right)$ in Lemma 3.2. Indeed, in the remainders of the sharp-Gårding Theorem 2.7 we have a first addend with some $\tilde{\psi}_{1} \in S^{-1}$ and where some derivatives D_{x} appears and a second addend with some $\psi_{\alpha^{\prime}, \beta^{\prime}} \in S^{\frac{\alpha^{\prime}-\beta^{\prime}}{2}}$ and where some derivatives $\partial_{\xi}^{\alpha^{\prime}} D_{x}^{\beta^{\prime}}$ appear.

When the x-derivatives fall on λ_{p-j} the decay in x gets better by (2.14), while the level in ξ decreases, so that we still have the "right decay".

When the x-derivatives fall on the coefficients then the assumptions (1.13)-(1.15) still give the "right decay" since the level in ξ decreases of $\frac{\alpha^{\prime}+\beta^{\prime}}{2}$ (for $\alpha^{\prime}=\beta^{\prime}=1$ in the first addend) and because of (3.31) and (3.32).

Therefore, remainders coming from the sharp-Gårding Theorem 2.7 always have the "right decay".

This shows that we can apply again and again the sharp-Gårding Theorem 2.7 until we find pseudo-differential operators $Q_{p-1}, Q_{p-2}, \ldots, Q_{3}$ of order $p-1, p-2, \ldots, 3$ respectively and all positive definite, such that

$$
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right)=i a_{p}+Q_{p-1}+Q_{p-2}+\ldots Q_{3}+\sum_{k=p-2}^{p-1}\left(A_{p-k}+S_{p-k}\right)+\tilde{A}_{0}
$$

for some $\tilde{A}_{0} \in S^{0}$ and S_{p-k} coming from remainders of the sharp-Gårding theorem.
Choice of M_{2} and M_{1}. Let us write

$$
A_{2}+S_{2}=T_{2}+i T_{2}^{\prime}
$$

with $T_{2}=\operatorname{Re}\left(A_{2}+S_{2}\right)$ and $T_{2}^{\prime}=\operatorname{Im}\left(A_{2}+S_{2}\right)$. As in the previous steps we choose $M_{2}>0$ such that

$$
T_{2}=\operatorname{Re}\left(A_{2}+S_{2}\right) \geq 0
$$

(up to a constant that we can put in \tilde{A}_{0}). Then, by the Fefferman-Phong inequality (2.30), we get that

$$
\begin{equation*}
\operatorname{Re}\left\langle T_{2} v, v\right\rangle \geq-c\|v\|_{0}^{2} \tag{3.40}
\end{equation*}
$$

for some $c>0$, without any remainder.
On the other hand, we write

$$
i T_{2}^{\prime}=\frac{i T_{2}^{\prime}+\left(i T_{2}^{\prime}\right)^{*}}{2}+\frac{i T_{2}^{\prime}-\left(i T_{2}^{\prime}\right)^{*}}{2}
$$

where

$$
\begin{equation*}
\operatorname{Re}\left\langle\frac{i T_{2}^{\prime}-\left(i T_{2}^{\prime}\right)^{*}}{2} u, u\right\rangle=0, \tag{3.41}
\end{equation*}
$$

while $i T_{2}^{\prime}+\left(i T_{2}^{\prime}\right)^{*}$ has a real principal part of order 1 , has the "right decay" and does not depend on M_{1}. Therefore we can choose $M_{1}>0$ sufficiently large so that

$$
\operatorname{Re}\left(\frac{i T_{2}^{\prime}+\left(i T_{2}^{\prime}\right)^{*}}{2}+A_{1}+S_{1}\right) \geq 0
$$

and hence, by the sharp-Gårding inequality (2.29) for $m=1$,

$$
\begin{equation*}
\operatorname{Re}\left\langle\left(\frac{i T_{2}^{\prime}+\left(i T_{2}^{\prime}\right)^{*}}{2}+A_{1}+S_{1}\right) v, v\right\rangle \geq-c\|v\|_{0}^{2} \tag{3.42}
\end{equation*}
$$

By (3.40), (3.41) and (3.42) we finally get

$$
\sigma\left(e^{-\Lambda} A e^{\Lambda}\right)=i a_{p}+\sum_{s=1}^{p-3} Q_{p-s}+\left(A_{2}+S_{2}\right)+\left(A_{1}+S_{1}\right)+\tilde{A}_{0}
$$

with

$$
\begin{aligned}
& \operatorname{Re}\left\langle Q_{p-s} v, v\right\rangle \geq 0 \quad \forall v(t, \cdot) \in H^{p-s}, s=1,2, \ldots, p-3 \\
& \operatorname{Re}\left\langle\left(A_{2}+S_{2}+A_{1}+S_{1}\right) v, v\right\rangle \geq-c\|v\|_{0}^{2} \quad \forall v(t, \cdot) \in H^{2} .
\end{aligned}
$$

Estimates for the operator A_{Λ}. We finally look at the full operator A_{Λ} in (2.23); by (2.24), (2.25) we notice that $A^{n, m}$ is of the same kind of A with $\partial_{\xi}^{m} r^{n} D_{x}^{m} a_{j}$ instead of a_{j}. This implies that we have m more x-derivatives on a_{j}, but the level in ξ decreases of $-n-m<-m$, so that we argue as for $\sigma\left(e^{-\Lambda} A e^{\Lambda}\right)$ and find that also

$$
\sigma\left(e^{-\Lambda} A^{n, m} e^{\Lambda}\right)=\sum_{s=0}^{p} Q_{p-s}^{n, m}
$$

with $Q_{0}^{n, m} \in S^{0}$ and

$$
\operatorname{Re}\left\langle Q_{p-s}^{n, m} v, v\right\rangle \geq-C_{n, m}\|v\|_{0}^{2} \quad \forall v(t, \cdot) \in H^{p-s} 1 \leq s \leq p-1
$$

for some $C_{n, m}>0$.
Since every $Q \in S^{0}$ also satisfies

$$
\operatorname{Re}\langle Q v, v\rangle \geq-c\|v\|_{0}^{2} \quad \forall v \in H^{0}
$$

for some $c>0$, by Lemma 2.5 we finally have that

$$
\begin{equation*}
\operatorname{Re}\left\langle A_{\Lambda} v, v\right\rangle \geq-c\|v\|_{0}^{2} \quad \forall v(t, \cdot) \in H^{\infty} \tag{3.43}
\end{equation*}
$$

for some $c>0$, and hence if $v \in C\left([0, T] ; L^{2}\right)$ is a solution of (2.3), by (2.2) with A_{Λ} instead of A we get that

$$
\begin{aligned}
\frac{d}{d t}\|v\|_{0}^{2} & \leq\left\|f_{\Lambda}\right\|_{0}^{2}+\|v\|_{0}^{2}-2 \operatorname{Re}\left\langle A_{\Lambda} v, v\right\rangle \\
& \leq(2 c+1)\left(\left\|f_{\Lambda}\right\|_{0}^{2}+\|v\|_{0}^{2}\right) .
\end{aligned}
$$

By standard arguments we deduce that, for all $s \in \mathbb{R}$, if $v \in C\left([0, T] ; H^{s}\right)$,

$$
\begin{equation*}
\|v(t, \cdot)\|_{s}^{2} \leq c^{\prime}\left(\left\|g_{\Lambda}\right\|_{s}^{2}+\int_{0}^{t}\left\|f_{\Lambda}(\tau, \cdot)\right\|_{s}^{2} d \tau\right) \quad \forall t \in[0, T] \tag{3.44}
\end{equation*}
$$

for some $c^{\prime}>0$.
Since $e^{ \pm \Lambda} \in S^{\delta}$, for $u=e^{\Lambda} v$ we finally have, from (3.44) with $s-\delta$ instead of s :

$$
\begin{aligned}
\|u\|_{s-2 \delta}^{2} & \leq c_{1}\|v\|_{s-\delta}^{2} \leq c_{2}\left(\left\|g_{\Lambda}\right\|_{s-\delta}^{2}+\int_{0}^{t}\left\|f_{\Lambda}\right\|_{s-\delta}^{2} d \tau\right) \\
& \leq c_{3}\left(\|g\|_{s}^{2}+\int_{0}^{t}\|f\|_{s}^{2} d \tau\right)
\end{aligned}
$$

for some $c_{1}, c_{1}, c_{3}>0$.
This proves the existence of a solution $u \in C\left([0, T] ; H^{\infty}(\mathbb{R})\right)$ of (1.16) which satisfies (1.17) for $\sigma=2 \delta=2(p-1) M_{p-1}$.

Remark 3.3. For the choice of M_{p-1}, \ldots, M_{3} we made use of the sharp-Gårding Theorem 2.7 obtaining, at each step, a new remainder given by (2.28). On the contrary, for the choice of M_{2} and M_{1} we made use of, respectively, the Fefferman-Phong inequality (2.30) and the sharp-Gårding inequality (2.29), where no new remainders appear. This lets us save some conditions on the coefficients a_{1} and a_{2}, for which we required, indeed, only conditions (1.13) and (1.13)-(1.14) respectively, in the statement of Theorem 1.2.

4. Energy estimate for systems: proof of Theorem 1.1

Let us now consider the operator L in (1.1) and the transformed operator $L_{\Lambda}:=\left(e^{\Lambda}\right)^{-1} L e^{\Lambda}$, for Λ defined by (2.4), (2.5):

$$
\begin{aligned}
L_{\Lambda} & =\left(e^{\Lambda}\right)^{-1} D_{t} e^{\Lambda}+\left(e^{\Lambda}\right)^{-1}\left(\begin{array}{lll}
\mu_{1} & & \\
& & \ddots \\
& & \\
& & \mu_{m}
\end{array}\right) e^{\Lambda}+\left(e^{\Lambda}\right)^{-1} R e^{\Lambda} \\
& =D_{t}+\left(\begin{array}{llll}
\left(e^{\Lambda}\right)^{-1} \mu_{1} e^{\Lambda} & & & \\
& & \ddots & \\
& & \left(e^{\Lambda}\right)^{-1} \mu_{m} e^{\Lambda}
\end{array}\right)+R_{\Lambda}
\end{aligned}
$$

with $R_{\Lambda}(t, x \xi) \in S^{0}$. Setting

$$
A_{\Lambda}=\left(\begin{array}{ccc}
A_{1} & & \\
& \ddots & \\
& & A_{m}
\end{array}\right), \quad A_{j}=i\left(e^{\Lambda}\right)^{-1} \mu_{j} e^{\Lambda}, \quad 1 \leq j \leq m
$$

we can thus write

$$
L_{\Lambda}=D_{t}-i A_{\Lambda}+R_{\Lambda}
$$

As is $\S 2$ we substitute the Cauchy problem (1.9) by

$$
\begin{cases}L_{\Lambda} V(t, x)=F_{\Lambda}(t, x) & (t, x) \in[0, T] \times \mathbb{R} \tag{4.1}\\ V(0, x)=G_{\Lambda}(x) & x \in \mathbb{R}\end{cases}
$$

for $F_{\Lambda}=\left(e^{\Lambda}\right)^{-1} F$ and $G_{\Lambda}=\left(e^{\Lambda}\right)^{-1} G$.
Proving the energy estimate for V we can then deduce the energy estimate for $U=e^{\Lambda} V$ solution of (1.9). For a solution V of (4.1) we have:

$$
\begin{align*}
\frac{d}{d t}\left\|\|V\|_{0}^{2}\right. & =2 \operatorname{Re}\left\langle\left\langle V^{\prime}, V\right\rangle\right\rangle=2 \operatorname{Re}\left\langle\left\langle i F_{\Lambda}, V\right\rangle\right\rangle-2 \operatorname{Re}\left\langle\left\langle A_{\Lambda} V, V\right\rangle\right\rangle-2 \operatorname{Re}\left\langle\left\langle i R_{\Lambda} V, V\right\rangle\right\rangle \\
& \leq C\left(\| \| F_{\lambda}\left\|_{0}^{2}+\right\| V \|_{0}^{2}\right)-2 \operatorname{Re}\left\langle\left\langle A_{\Lambda} V, V\right\rangle\right\rangle \tag{4.2}
\end{align*}
$$

for some $C>0$, where for given vectors $U=\left(U_{1}, \ldots, U_{m}\right)$ and $V=\left(V_{1}, \ldots, V_{m}\right)$ we denote $\langle\langle U, V\rangle\rangle:=\sum_{j=1}^{m}\left\langle U_{j}, V_{j}\right\rangle$. Note that every A_{j} is of the same form as (2.23), so that by (3.43):

$$
\operatorname{Re}\left\langle\left\langle A_{\Lambda} V, V\right\rangle\right\rangle=\sum_{j=1}^{m} \operatorname{Re}\left\langle A_{j} V_{j}, V_{j}\right\rangle \geq-c \sum_{j=1}^{m}\left\|V_{j}\right\|_{0}^{2}=-c\| \| V \|_{0}^{2}
$$

Substituting in (4.2) we obtain, by standard arguments, the energy estimate for V

$$
\left\|\|V(t, \cdot)\|_{s}^{2} \leq C\left(\| \| V(0)\left\|_{s}^{2}+\int_{0}^{t}\right\| \mid F_{\Lambda}(\tau, \cdot) \|_{s}^{2} d \tau\right)\right.
$$

for some $C>0$, and hence the desired energy estimate for $U=e^{\Lambda} V$:

$$
\begin{aligned}
\|\|U(t, \cdot)\|\|_{s-2 \delta}^{2} & =\left\|\mid e^{\Lambda} V\right\|\left\|_{s-2 \delta}^{2} \leq C_{1}\right\| V V \|_{s-\delta}^{2} \\
& \leq C_{2}\left(\| \| V(0)\left\|_{s-\delta}^{2}+\int_{0}^{t}\right\| \mid F_{\Lambda}(\tau, \cdot) \|_{s-\delta}^{2} d \tau\right) \\
& \leq C_{3}\left(\|U(0)\|_{s}^{2}+\int_{0}^{t}\|F(\tau, \cdot)\|_{s}^{2} d \tau\right)
\end{aligned}
$$

for some $C_{1}, C_{2}, C_{3}>0$, since $e^{\Lambda} \in S^{\delta}$.
This concludes the proof of Theorem 1.1.

References

[A1] R. Agliardi, Cauchy problem for p-evolution equations, Bull. Sci. Math. 126, n. 6 (2002), 435-444.
[A2] R. Agliardi, Cauchy problem for evolution equations of Schrödinger type, J. Differential Equations 180, n. 1 (2002), 89-98.
[AZ] R. Agliardi, L. Zanghirati, Cauchy problem for nonlinear p- evolution equations, Bull. Sci. Math. 133 (2009), 406-418.
[AB] A. Ascanelli, C. Boiti, Cauchy problem for higher order p-evolution equations (2013), in preparation
[ABZ] A. Ascanelli, C. Boiti, L. Zanghirati, Well-posedness of the Cauchy problem for p-evolution equations, J. Differential Equations 253 (2012), 2765-2795.
[AC] A. Ascanelli, M. Cicognani, Schrödinger equations of higher order, Math. Nachr. 280, n. 7 (2007), 717727.
[ACC] A. Ascanelli, M. Cicognani, F. Colombini, The global Cauchy problem for a vibrating beam equation, J. Differential Equations 247 (2009), 1440-1451.
[CC] M. Cicognani, F. Colombini, The Cauchy problem for p-evolution equations., Trans. Amer. Math. Soc. 362, n. 9 (2010), 4853-4869.
[CR] M. Cicognani, M. Reissig, On Schrödinger type evolution equations with non-Lipschitz coefficients, Ann. Mat. Pura Appl. 190, n. 4 (2011), 645-665.
[FP] C. Fefferman, D.H. Phong, On positivity of pseudo-differential operators, Proc. Natl. Acad. Sci. USA 75, n. 10 (1978), 4673-4674.
[I1] W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations Osaka J. Math. 21 (1984), 565-581.
[I2] W. Ichinose, Sufficient condition on H^{∞} well-posedness for Schrödinger type equations, Comm. Partial Differential Equations, 9, n. 1 (1984), 33-48.
[KB] K. Kajitani, A. Baba, The Cauchy problem for Schrödinger type equations, Bull. Sci. Math. 119 (1995), 459-473.
[KG] H. Kumano-Go, Pseudo-differential operators The MIT Press, Cambridge, London, 1982.
[M] S. Mizohata, On the Cauchy problem. Notes and Reports in Mathematics in Science and Engineering, 3, Academic Press, Inc., Orlando, FL; Science Press, Beijing, 1985.
[T] J. Takeuchi, Le problème de Cauchy pour certaines équations aux déivées partielles du type de Schrödinger. IV, C. R. Acad. Sci. Paris, Ser. I Math, 312 (1991), 587-590.

Alessia Ascanelli, Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35, 44121 Ferrara, Italy

E-mail address: alessia.ascanelli@unife.it
Chiara Boiti, Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35, 44121 Ferrara, Italy

E-mail address: chiara.boiti@unife.it

[^0]: 2000 Mathematics Subject Classification. 35S10, 35F40.
 Key words and phrases. p-evolution equations, H^{∞} well-posedness, pseudo-differential operators.

