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Abstract. The stationary problem for the heat convection of compress-
ible fluid is considered around the equilibrium solution with the external
forces in the horizontal strip domain z0 < z < z0 + 1 and it is proved
that the solution exists uniformly with respect to z0 ≥ Z0 . The limit
system as z0 → +∞ is the Oberbeck-Boussinesq equations.
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1. Introduction

As well known compressible viscous and heat conductive fluid flows, in a
region of space Ω ⊂ Rn , n = 2, 3 , are described by the following Navier-
Stokes-Fourier system of equations, (x1, . . . , xn) ∈ Ω , t ∈ (0, T ) :
The mass conservation :

∂ ρ

∂ t
+

∂(ρuj)
∂xj

= 0 ,

The momentum conservation for i = 1, . . . , n :

∂(ρui)
∂t

+
∂(ρuiuj + pδij)

∂xj
=

∂

∂xj
{µ(

∂ui

∂xj
+

∂uj

∂xi
)} +

∂

∂xi
{µ′(

∂uk

∂xk
)} + ρfi ,

The energy conservation :

∂(ρE)
∂t

+
∂(ρEuj + puj)

∂xj
=

∂

∂xj
{κ ∂T

∂xj
+ µuk(

∂uk

∂xj
+

∂uj

∂xk
) + µ′uj(

∂uk

∂xk
)}

+ ρujfj .
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In the above equations u = (u1, ..., un) is the velocity of fluid, E is the
total energy, ρ is the density, p is the pressure, f = (f1, ..., fn) is
the external force per unit of mass, and µ, µ′, k are the viscosity and heat
diffusivity coefficients.

The Benard equilibrium solution describes the rest state of a liquid with
suitable positive density, and temperature distributions, filling a horizontal
layer having the upper plane xn = 0 and the lower plane xn = d, when a
positive temperature gradient is prescribed at the planes. Here we use the
orthonormal basis {e1, ..., en} in Rn, n = 2 or 3 , and en is considered in the
vertically downward direction. The rest state exists for any potential external
force, however it is observed only for ”small” finite temperature gradients.

The Benard problem concerns the study of onset of convection for the
equilibrium state with large potential forces and nonhomogeneous tempera-
ture at the boundary. Precisely, by injecting energy into the system, typically
the equilibrium state becomes unstable above a certain threshold and, as re-
sult of this instability, well-defined space-time structures emerge. [1], [2], [3]
The study of the critical threshold and of the form of emerging structures
constitutes the Benard, also called Rayleigh-Benard problem, it started in
nineteen century. [4]

The Benard problem is quite complicate, thus one creates thermody-
namically consistent, mathematical models of non-isothermal flow of isotrop-
ically thermally expansible Newtonian fluid in the presence of gravity. Be-
tween the most studied models we quote the Boussinesq, also called Oberbeck-
Boussinesq model, that describes the thermodynamical response of a linearly
viscous fluid that can sustain motions: mechanically incompressible, ther-
mally compressible. The Boussinesq model receives good agreement with ex-
periments for thin layers. Our aim is to propose an approximating model
to Benard problem as alternative to the Boussinesq model, [5], [6], [7], [9],
[10]. Still in this first series of papers we just consider thin layers and con-
struct an alternate model called Benard-Boussineq model. The alternative
is naturally suggested by rewriting the full system of equations considering
as independent variables the velocity, the temperature and the pressure.
We proceed by treating the following steps:
(a) the existence and uniqueness of a solution for the heat conducting com-
pressible linear and nonlinear steady system when basic unknown functions
are velocity, temperature and pressure;
(b) the comparison between the critical Rayleigh numbers of compressible
Benard problem RC and the classical one RB of Boussinesq approximation,
and the study of eigenvalues for the linearized system; c.f. [5]
(c) the comparison between the critical Rayleigh number of compressible
Benard-Boussineq problem RBB and the classical one RB of Boussinesq ap-
proximation, and the comparison of the corresponding energies;
(d) the existence and uniqueness of a solution for the heat conducting com-
pressible linear and nonlinear unsteady system when basic unknown functions
are velocity, temperature and pressure.
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In this paper we confine our attention to step(a), and we study the exis-
tence and uniqueness of a solution for the heat conducting compressible lin-
ear and nonlinear steady system when basic unknown functions are velocity,
temperature and pressure. This choice is made in order to compare a new
model called compressible Benard-Boussineq model with the incompressible
Boussineq model. Concerning existence theorems we quote the papers by
Matsumura Nishida [8] where an analogous result has been obtained assum-
ing smallness on the external forces, and those by Mucha, Novotny, Pokorny
[14], [15], [13], where potential forces may be large however theorems of ex-
istence of regular solutions require a constitutive equation for the pressure
that differs from the classical one of ideal fluids. Indeed our result may result
interesting because it fills this gap of large potential forces and classical pres-
sure law in the case of uniqueness of the rest state, and for these layers. In
a paper in preparation it will be shown an existence theorem of steady com-
pressible flows, considering the pressure for ideal fluids, in the general case of
non homogeneous boundary conditions for the temperature, large potential
forces and small non potential forces and small heat sources [18].
The plan of the paper is the following: in section 2 we reduce the system
into a suitable non-dimensional form where we distinguish between linear
and nonlinear terms; in section 3 we prove the main theorem.

2. Reduction

We follow Spiegel’s dimensionalization with the vertical axis ( e3 ) pointing
downward and set

R2 =
P 2βR∗cp(m + 1)3d2m+3

g2µκ
, z0 =

Tu

β0d
, β0 =

Tl − Tu

d
,

where d is the width of the layer. ( [5], [7], [10] ). The non-dimensional system
is the following in the horizontal domain z0 < z < z0 + 1

∂ ρ

∂ t
+ R∇ · (ρu) = 0 ,

1
Pr

ρ
∂ u

∂ t
− ∆ u − 1

3
∇(∇ · u) +

R
bγ(m + 1)

∇p +
R
Pr

ρ u · ∇u =
R
b γ

ρ e3 ,

ρ
∂ T

∂ t
− ∆ T + R(γ − 1) p∇ · u + R ρ u · ∇T

=
2 g b γ

β0 cv
{D : D − 1

3
(∇ · u )2} .

The equilibrium solution heated from below in the horizontal strip domain
z0 < z < z0 + 1 is the stratified heat conduction state :

u = 0 , ρ = zm , T = z , p = zm+1 ,

where and hereafter we use the state equation of fluid p = ρ T .
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We consider the stationary problem around the equilibrium solution
with the external forces in the horizontal strip domain, where the Dirichlet
zero boundary condition is supposed to the velocity and the temperature on
the horizontal boundaries z = z0 , z0 + 1 .

The mass conservation :

R∇ · ( ρ∗ u∗ ) = 0 ,

The momentum conservation :

−∆ u∗ −
1
3
∇ (∇ · u∗) +

R
bγ(m + 1)

∇ p∗ +
R
Pr

ρ∗ u∗ · ∇u∗

=
R
b γ

ρ∗ e3 + R ρ∗ fe ,

The energy conservation :

− ∆ T∗ + R(γ − 1) p∗ ∇ · u∗ + R ρ∗ u∗ · ∇T∗

=
2 g b γ

β0 cv
{D : D − 1

3
(∇ · u∗ )2} + R ρ∗ he .

The boundary conditions :

u∗(z0) = u∗(z0 + 1) = 0 , T∗(z0) = z0 , T∗(z0 + 1) = z0 + 1 .

and the side condition :
∫

ρ∗ = constant .

We use the unknown variables p∗, u∗ = (u, v, w), T∗ and rewrite the
mass conservation for the perturbation from the equilibrium state by

u∗ → u , p∗ → zm+1 + p , T∗ → z + θ , ρ∗ → zm + ρ ,

where p = (z + θ) ρ + zm θ , i.e., ρ = ( p − zm θ) / ( z + θ ) :

R ∇ · ( ( zm + ρ ) u ) = R ∇ ·
(

zm u +
p − zm θ

z + θ
u

)
= 0 .

Then we have for the unknowns p , u = (u, v, w) , θ

R
(

∇ · u +
mw

z
+ ∇ · (

p u

zm (z + θ)
)

)
= R

(
( ∇ · (

θ u

z + θ
) − m

zm+1

pw

(z + θ)
+

m

z

θ w

(z + θ)

)
.

Namely we have the following mass conservation equation after a decompo-
sition of the third term in the left-hand side

R
(
∇ · u +

m w

z
+ ∇ · (

pu

zm+1
)

)
= R g ,
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where

g =
zm+1 + p

zm+1 ( z + θ )
u · ∇ θ − mpw

zm+2
− zm+1 + p

zm+2 (z + θ)
θ w

=
1
z

u · ∇ θ + g0 ,

g0 =
θ

z (z + θ)
u · ∇ θ +

p

zm+1 ( z + θ )
u · ∇ θ − mpw

zm+2

− zm+1 + p

zm+2 (z + θ)
θ w .

The momentum equation is the following :

−∆ u − 1
3
∇ (∇ · u) +

R
bγ(m + 1)

∇p − R
b γ

p − zmθ

z
e3

= − R
Pr

zm u · ∇u + f ,

where

f = − R
Pr

p − zmθ

z + θ
u · ∇u − R

b γ

p − zmθ

z + θ

θ

z
e3

+ R ( zm +
p − zmθ

z + θ
) fe .

The energy equation is the following :

− ∆ θ + R(γ − 1) zm+1 ∇ · u + R zm w = − R zm u · ∇ θ + h′ ,

h′ = − R ρ u · ∇ θ − R(γ − 1) p∇ · u − R ρw

+
2gbγ

β0cv

(
D : D − 1

3
(∇ · u )2

)
+ R ( zm + ρ )he .

The energy equation can be rewritten by the mass conservation in the fol-
lowing form :

− ∆ θ + R ( 1 − m(γ − 1)) zm w = − R γ zm u · ∇ θ + h ,

where

h = R γ
zm θ

z + θ
u · ∇ θ − R γ

p

z + θ
u · ∇ θ

− R(γ − 1)
(
∇ · ( pu ) + p∇ · u + (m + 1)

pw

z
+ zm+1 g0

)
− R ( p − zm θ )w

z + θ
+

2gbγ

β0cv

(
D : D − 1

3
(∇ · u )2

)
+ R ( zm +

p − zm θ

z + θ
) he .
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We are considering the system in the horizontal domain z0 < z < z0 + 1 ,
and we use the following scale for the velocity and the pressure, where

L = z0 +
1
2

.

u =
ũ√
L

, p = Lm−1 p̃ , fe =
f̃e

L
, he =

h̃e√
L

.

Then we have the following system in the horizontal strip L − 1
2 < z <

L + 1
2 :

R
(

∇ · ũ + ∇ · (
Lm−1

zm+1
p̃ ũ) +

mw̃

z

)
= R g̃ ,

−∆ ũ − 1
3
∇(∇ · ũ) +

RLm− 1
2

bγ(m + 1)
∇ p̃ − RLm− 1

2

b γ

p̃

z
e3

+
R
b γ

√
L zm−1 θ e3 = − R

P
zm

√
L

ũ · ∇ ũ + f̃ ,

− ∆ θ + R ( 1 − m(γ − 1) )
zm

√
L

w̃ = − R γ
zm

√
L

ũ · ∇ θ + h̃ ,

where

g̃ =
1
z

ũ · ∇ θ + g̃0 ,

g̃0 = − θ ũ · ∇ θ

z (z + θ)
+

Lm−1

zm+1

p̃ ũ · ∇ θ

(z + θ)
− θ w̃

z(z + θ)

− mLm−1 p̃ w̃

zm+2
− Lm−1 p̃ w̃ θ

zm+2 (z + θ)
,

f̃ =
R
P

zm θ√
L (z + θ)

ũ · ∇ ũ − R
P

Lm− 3
2 p̃

(z + θ)
ũ · ∇ ũ

− R
b γ

Lm− 1
2 θ

(z + θ)
(

p̃

z
− zm−1

Lm−1
θ ) e3

+ RLm− 1
2

(
(

z

L
)m z

z + θ
+

p̃

L (z + θ)

)
f̃e ,

h̃ =
R γ√

L

zm θ

z + θ
ũ · ∇ θ − R γ

Lm− 3
2 p̃

z + θ
ũ · ∇ θ

− R(γ − 1) Lm− 3
2

(
∇ · (p̃ ũ) +

m + 1
z

p̃ w̃ + p̃∇ · ũ + L (
z

L
)m+1 (L g̃0)

)
− R√

L

zm θ w̃

(z + θ)
− RLm− 1

2
p̃ w̃

L (z + θ)
+

2gbγ

β0cv L

(
D : D − 1

3
(∇ · ũ )2

)
− RLm− 1

2

(
p̃

L ( z + θ )
− z

z + θ
(
z

L
)m

)
h̃e .
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We use the following Rayleigh number which was pointed out by Spiegel [5]

Rm = RLm− 1
2 ,

then we have the following system that we want to solve

Rm

(
∇ · ũ +

mw̃

z
+ ∇ ·

(
(

L

z
)m−1 p̃ ũ

z2

) )
= Rm

˜̃g , (2.1)

− ∆ ũ − 1
3
∇(∇ · ũ) +

Rm

bγ(m + 1)
∇ p̃ − Rm

bγ

p̃

z
e3

+
Rm

b γ
(

z

L
)m−1 θ e3 = − Rm

P
(

z

L
)m ũ · ∇ ũ + ˜̃f , (2.2)

− ∆ θ + Rm ( 1 − m(γ − 1) ) (
z

L
)m w̃ = − Rm γ (

z

L
)m ũ · ∇ θ + ˜̃

h ,(2.3)

where

˜̃g =
ũ · ∇ θ

z
+ ˜̃g0

˜̃g0 =
θ ũ · ∇ θ

z (z + θ)
+ (

L

z
)m−1 p̃ ũ · ∇ θ

z2 (z + θ)
− θ w̃

z(z + θ)

− (
L

z
)m−1 m p̃ w̃

z3
− (

L

z
)m−1 p̃ θ w̃

z3 (z + θ)
,

˜̃f =
Rm

P
( (

z

L
)m θ

(z + θ)
− p̃

L (z + θ)
) ũ · ∇ ũ

− Rm

b γ

p̃ θ

z (z + θ)
e3 +

Rm

b γ
(

z

L
)m−1 θ2

(z + θ)
e3

+ Rm ( (
z

L
)m z

z + θ
+

p̃

L (z + θ)
) f̃e ,

˜̃
h = Rm γ ( (

z

L
)m θ

z + θ
− p̃

L (z + θ)
) ũ · ∇ θ

− Rm
γ − 1

L

(
∇ · (p̃ ũ) +

m + 1
z

p̃ w̃ + p̃∇ · ũ

)
+ Rm

(
(

z

L
)m θ w̃

(z + θ)
− p̃ w̃

L (z + θ)

)
+ Rm (γ − 1) (

z

L
)m+1 (L g̃0 )

+ Rm

(
p̃

L (z + θ)
− (

z

L
)m z

z + θ

)
h̃e

+
2gbγ

β0cv L

(
D : D − 1

3
(∇ · ũ )2

)
.

We impose the boundary conditions as follows.

ũ = 0 , θ̃ = 0 on z = L − 1
2

, L +
1
2

, (2.4)
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and the periodic boundary condition with respect to x and y with the
period 2 π / a and 2π / b respectively.
Remark 2.1 It is worth of notice an important property of system (2.1), (2.2)
and (2.3). We are considering the domain∣∣∣ z

L
− 1

∣∣∣ ≤ 1
2 L

and it is clear which terms of the system remain as the limit of L → ∞ .

3. Existence

We aim to prove existence of a regular steady solution to heat-conducting
compressible fluids (2.1)-(2.4) in correspondence of small external forces f̃e , h̃e

for L ≥ L0 and for 0 ≤ Rm < Rc . A difficulty to construct the solu-
tion is the treatment of a derivative-loss of the third nonlinear term on the
left hand side of the mass conservation law (2.1). In order to overcome the
difficulty we follow the arguments of Heywood and Padula [11] and Bause,
Heywood, Novotny and Padula [12].

We use the Hilbert-Sobolev spaces H l = W l, 2 , l = 0, 1, 2, 3 with
the Dirichelet boundary conditions and the periodic boundary conditions.
Hereafter we omit the tilde of the above system of equations (2.1)–(2.3) and
(2.4).

Theorem

There exist constants L0 and Rc such that for any L ≥ L0 ,
0 ≤ Rm < Rc and for small external forces there exist the solutions for

(2.1)-(2.3), (2.4), and that the solutions converge to the solutions of Boussi-
nesq equations as L → ∞ .

We consider the resolvent system for the steady linearized equations of
(2.1), (2.2), (2.3) in the following form.

λ
π

zm
+ Rm

(
∇ · u +

mw

z

)
= Gl , (3.1)

λ
u

P
− ∆ u − 1

3
∇ (∇ · u) +

Rm

b γ (m + 1)
∇π − Rm

b γ

π

z
e3

+
Rm

b γ
(

z

L
)m−1 θ e3 = F l , (3.2)

λ γ θ − ∆ θ + Rm ( 1 − m(γ − 1) ) (
z

L
)m w = Hl . (3.3)

We consider the problem in the domain

Ω = { (x, y, z) | 0 ≤ x ≤ 2π/a , 0 ≤ y ≤ 2π/b , L − 1
2

≤ z ≤ L +
1
2
}
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with the Dirichlet zero boundary conditions for u and θ on the boundaries
z = L − 1

2 , L + 1
2 and the periodic boundary condition with respect to

x, y . Here we notice that

zm Gl = ∇ · Gl

for some vector function Gl , which vanishes on the horizontal boundaries.

Lemma 1
There exist constants L0 , R0 such that if

Re λ ≥ 0 , 0 ≤ Rm < R0 and L ≥ L0

then the resolvent exists and the solution (π , u , θ ) satisfies the compati-
bility condition

∫
π = 0 and for λ = 0 the following estimates.

If Gl ∈ H1 , Fl ∈ L2 , Hl ∈ L2 , then we have

||π ||1 , ||u ||2 , || θ ||2 ≤ C1 ( ||Gl ||1 + ||Fl || + ||Hl || ) .

If Gl ∈ H2 , Fl ∈ H1 , Hl ∈ H1 , then we have

||π ||2 , ||u ||3 , || θ ||3 ≤ C2 ( ||Gl ||2 + ||Fl ||1 + ||Hl ||1 ) .

If the first eigenvalue with the largest real part crosses the imaginary axis at
Rm = Rc (L) , then the above estimate extends to 0 ≤ Rm < Rc (L) .
The square Rc(L)2 tends to the critical Rayleigh number of the Oberbeck-
Boussinesq equation RB as L → +∞ [16], [10], [17].

Lemma 2 Estimates for the nonlinear terms of (2.1)-(2.3).
We assume that

z ≥ L − 1
2

≥ 2 , u
∣∣∣z=L− 1

2 , L+ 1
2

= 0 ,

and that
|| p ||2 , ||u ||3 , || θ ||3 ≤ 1 ,

then g vanishes on the horizontal boundaries and we have the estimates

|| g || ≤ c0

L
( || p || + ||u ||2 ) ( ||u ||2 + || θ ||2 )

|| g ||1 ≤ c1

L
( || p ||1 + ||u ||2 ) ( ||u ||3 + || θ ||3 )

|| g ||2 ≤ c2

L
( || p ||2 + ||u ||2 ) ( ||u ||3 + || θ ||3 )

||f || ≤ c0

L
( || p || + ||u ||2 + || θ ||2 ) ( ||u ||2 + || θ ||2 ) + c0 ||fe ||

||f ||1 ≤ c1

L
( || p ||1 + ||u ||2 + || θ ||2 ) ( ||u ||2 + || θ ||2 ) + c1 ||fe ||1

||h || ≤ c0

L
( || p ||1 + ||u ||2 ) ( ||u ||2 + || θ ||2 ) + c0 ||he ||

||h ||1 ≤ c1

L
( || p ||2 + ||u ||2 ) ( ||u ||3 + || θ ||3 ) + c1 ||he ||1
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We begin the iteration to prove the existence of the solution of the nonlinear
system (2.1)-(2.3) uniformly bounded for large L .

Given the functions for step k , k = 0, 1, 2, · · · with

p(0) = 0 , u(0) = 0 , θ(0) = 0 ,

we define

G(k) = −Rm

(
∇ · ( (

L

z
)m−1 p(k) u(k)

z2
) + g(k)

)
, g(k) = g( p(k) , u(k) , θ(k) ) ,

F (k) = − Rm

Pr
(

z

L
)m u(k) · ∇u(k) + f (k) , f (k) = f( p(k) , u(k) , θ(k) ) ,

H(k) = − Rm γ (
z

L
)m u(k) · ∇ θ(k) + h(k) , h(k) = h( p(k) , u(k) , θ(k) ) ,

where G(k) vanishes at horizontal boundaries. We solve the linear boundary
value problem for the unknowns π(k+1) , u(k+1) , θ(k+1)

Rm

(
∇ · u(k+1) +

mw(k+1)

z

)
= G(k) , (3.4)

− ∆ u(k+1) − 1
3
∇∇ · u(k+1) +

Rm

b γ (m + 1)
∇π(k+1)

− Rm

b γ z
π(k+1) e3 +

Rm

b γ
(

z

L
)m−1 θ(k+1) e3 = F (k) , (3.5)

− ∆ θ(k+1) + Rm ( 1 − m(γ − 1) ) (
z

L
)m w(k+1) = H(k) , (3.6)

u(k+1)
∣∣∣z=L− 1

2 , L+ 1
2

= 0 , θ(k+1)
∣∣∣z=L− 1

2 , L+ 1
2

= 0 . (3.7)

The transport equation is introduced as follows. We define

E(k+1) =
Rm

b γ (m + 1)
π(k+1) − 4Rm

3
( ∇ · u(k+1) +

m w(k+1)

z
) . (3.8)

Then E(k+1) satisfies the following

∆ E(k+1) = − 4Rm

3
∆ (

mw(k+1)

z
)

+
Rm

b γ

∂

∂ z
(
π(k+1)

z
) − Rm

b γ

∂

∂ z
((

z

L
)m−1 θ(k+1)) + ∇ · F (k) .

The pressure of k + 1 step is obtained by the following transport equation

Rm

b γ (m + 1)
p(k+1) +

4Rm

3
∇ · ( (

L

z
)m−1 p(k+1) u(k+1)

z2
)

= E(k+1) +
4Rm

3
g(k) . (3.9)

If we use the estimates of Lemma 1 for the solutions of linear system
(3.4) - (3.6), we have the following estimate for E(k+1) .
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Lemma 3
The linear system of equations (3.4), (3.5), (3.6) has a solution for

Rm < Rc(L) , where Rc(L) 2 is the critical Rayleigh-Bénard number for
the system. The solution satisfies the estimates as follows.

If G(k) ∈ H1 , F (k) ∈ L2 , H(k) ∈ L2 , then we have

||π(k+1) ||1 , ||u(k+1) ||2 , || θ(k+1) ||2 ≤ C1 ( ||G(k) ||1 + ||F (k) || + ||H(k) || ) .

If G(k) ∈ H2 , F (k) ∈ H1 , H(k) ∈ H1 , then we have

||π(k+1) ||2 , ||u(k+1) ||3 , || θ(k+1) ||3 ≤ C2 ( ||G(k) ||2 + ||F (k) ||1 + ||H(k) ||1 ) .

Therefore we have

||E(k+1) ||1 ≤ C C1 ( ||G(k) ||1 + ||F (k) || + ||H(k) || ) ,

||∆ E(k+1) || ≤ C C1 ( ||G(k) ||1 + ||F (k) ||1 + ||H(k) || ) ,

||E(k+1) ||2 ≤ C C2 ( ||G(k) ||2 + ||F (k) ||1 + ||H(k) ||1 ) .

The norm || p(k+1) ||2 and ||G(k+1) ||2 is recovered by the transport
equation (3.9) as follows.

Lemma 4

There exists a constant CT such that if CT
||u(k+1) ||3

L 2
≤ 1

2
is

fulfilled, then the transport equation has the solution p(k+1) and it satisfies
the following estimates :

|| p(k+1) ||1 ≤ C3 ( ||G(k) ||1 + ||F (k) || + ||H(k) || ) ,

|| p(k+1) ||2 ≤ C4 ( ||G(k) ||2 + ||F (k) ||1 + ||H(k) ||1 )

≤ C4

(
||F (k) ||1 + ||H(k) ||1 + || g(k) ||2 + ||∇ ·

(
(
L

z
)m−1 p(k) u(k)

z2

)
||2

)
,

||∆ p(k+1) || , ||∆∇ ·
(

(
L

z
)m−1 p(k+1) u(k+1)

z2

)
||

≤ C5

(
||G(k) ||1 + ||F (k) ||1 + ||H(k) || + || g(k) ||2 + CG

||u(k+1) ||3 || p(k+1) ||2
L 2

)
.
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Therefore if we notice the Dirichlet zero boundary condition for the velocity
and so that G(k) , k = 0, 1, · · · vanish on the boundaries, we have

||∇ ·
(

(
L

z
)m−1 p(k+1) u(k+1)

z2

)
||2 ≤ C ||∆∇ ·

(
(
L

z
)m−1 p(k+1) u(k+1)

z2

)
||

≤ C C5

(
||G(k) ||1 + ||F (k) ||1 + ||H(k) || + || g(k) ||2

+ CG
||u(k+1) ||3 || p(k+1) ||2

L 2

)
≤ C6

(
||G(k) ||1 + ||F (k) ||1 + ||H(k) || + || g(k) ||2

)
+

C6 CG

L 2

(
||F (k) ||1 + ||H(k) ||1 + || g(k) ||2 + ||∇ ·

(
(
L

z
)m−1 p(k) u(k)

z2

)
||2

) 2

.

Now we proceed to obtain the uniform bounds for

|| p(k+1) ||2 , ||u(k+1) ||3 , || θ(k+1) ||3 .

Let us assume that for small R and S

|| p(k) ||2 , ||u(k) ||3 , || θ(k) ||3 ≤ R , ||fe ||1 , ||he ||1 ≤ S = R2 ,

and also that

||∇ ·
(

(
L

z
)m−1 p(k) u(k)

z2

)
||2 ≤ Cn R2 .

Then we know by lemma 2 that for L ≥ 2.5

||L g(0) ||2 , || g(k) ||2 , ||G(k) ||1 ≤ C R2 , ||G(k) ||2 ≤ Cn R2 + C R2 ,

||F (k) ||1 , ||H(k) ||1 ≤ C R2 + C0 S .

Then it follows from lemma 3 and lemma 4 that

||π(k+1) ||2 , ||u(k+1) ||3 , || θ(k+1) ||3
≤ C C2

(
Cn R2 + C R2 + C0 S

)
= C7

(
Cn R2 + C R2 + C0 S

)
,

|| p(k+1) ||2 ≤ C C4

(
Cn R2 + C R2 + C0 S

)
= C8

(
Cn R2 + C R2 + C0 S

)
.

||∇ ·
(

(
L

z
)m−1 p(k+1) u(k+1)

z2

)
||2 ≤ C C6 ( C R2 + C0 S )

+
C C6 CG

L2
C7 C8 ( C R2 + C0 S + Cn R2 )2

≤ C C6 R2

(
C + C0 + C7 C8 ( C + C0 + Cn )2

CG R2

L2

)
≤ 2 C C6 (C + C0 ) R2 = Cn R2 .
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Therefore we have the uniform estimate :
Proposition 1

Let C9 = max{C7 , C8 } , S = R2 and Cn = 2 C C6 (C + C0 ) .

If S and
1
L

are small such that C9 ( C + C0 + Cn )R ≤ 1 ,

C7 C8 ( C + C0 + Cn )2
CG R2

L2
≤ C + C0 ,

|| p(k) ||2 , ||u(k) ||3 , || θ(k) ||3 ≤ R ,

||∇ ·
(

(
L

z
)m−1 p(k) u(k)

z2

)
||2 ≤ Cn R2 .

then
|| p(k+1) ||2 , ||u(k+1) ||3 , || θ(k+1) ||3 ≤ R .

||∇ ·
(

(
L

z
)m−1 p(k+1) u(k+1)

z2

)
||2 ≤ Cn R2 .

Remark. Notice that for L > L0 given by Lemma 1, Lemma 4 and
Proposition 1 we may prove the existence and uniqueness only for R suitably
small.

To prove the convergence of the iteration we consider the difference

p(k+1) − p(k) , u(k+1) − u(k) , θ(k+1) − θ(k) .

They satisfy the similar system of equations to (3.4), (3.5), (3.6) and (3.9)
and so they have the similar estimates.

||π(k+1) − π(k) ||1 , ||u(k+1) − u(k)||2 , || θ(k+1) − θ(k)||2
≤ C10 (C R + C0 S ) ( || p(k) − p(k−1) ||1

+ ||u(k) − u(k−1)||2 + || θ(k) − θ(k−1)||2 ) ,

|| p(k+1) − p(k)||1
≤ C11 ( C R + C0 S ) ( || p(k) − p(k−1)||1

+ ||u(k) − u(k−1)||2 + || θ(k) − θ(k−1)||2 ) .

Therefore we have the convergence estimate :
Proposition 2

Let C12 = max{ C10 , C11 } and S = R2 . If S is small such that

C12 ( C R + C0 S ) ≤ 1
2

then

|| p(k+1) − p(k) ||1 + ||u(k+1) − u(k)||2 + || θ(k+1) − θ(k)||2

≤ 1
2

( || p(k) − p(k−1) ||1 + ||u(k) − u(k−1)||2 + || θ(k) − θ(k−1)||2 ) .
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Thus as k → ∞ by (3.4),(3.5),(3.8),(3.9) we have the limit functions
for small S and large L uniformly with respect to L ≥ L0

p(∞) = π(∞) ∈ H2 , u(∞) ∈ H3 , θ(∞) ∈ H3 ,

which are solutions to the stationary equations (2.1)-(2.3) and (2.4) for each
L . Therefore by lemma 2 with the uniform estimates the limit functions as
L = z0 + 1

2 → +∞ satisfies the stationary Oberbeck-Boussinesq system
with the small external forces for Rm < Rc . Theorem is completely proved.

Thus we have a justification of approximation by Oberbeck-Boussinesq
equations for the system of the compressible fluids in the case of stationary

solutions with small external forces as L = z0 +
1
2

=
Tl + Tu

2β0 d
→ +∞ .
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