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1. Introduction  

1.1 Fingerprints as a powerful tool for legal systems 
Fingerprints are a worldwide well known tool for law enforcement 

agencies to reach the individualization of people convicted of a crime. 

Moreover, all major countries have huge fingerprint databases and 

efficient automated systems (AFIS) to perform electronic screening of 

fingerprints marks recovered by crime scene investigation. 

 

 
Fig. 1: inked finger friction ridge impression.   

 

AFIS systems produce a list of candidates from the biometric database, 

“probable and/or possible” perpetrators of the investigated crime. After 

that, the fingerprint expert checks the list and controls if there is a 



positive match between the candidates and the latent mark, reaching, in 

this way, the individualization of the suspect.  

Fingerprints are permanent and even if, from a scientific point of view, 

they could not be considered unique, friction ridge is highly selective and 

allows a discrimination between different individuals with a very high 

proficiency. 

The friction ridge identification process has been recently widely 

discussed, but since sixties, worldwide fingerprint experts agree on its 

four principal phases: 

1. analysis of the latent finger mark; 

2. comparison with a set of ten print cards from a list of suspects; 

3. evaluation on the consistency or non consistency of the 

hypothesis of identification/exclusion; 

4. verification process.  

More recent studies, developed after two famous identification errors 

occurred in Scotland and in the U.S.A., reached the conclusion that in the 

identification process the most important goal to lower the error rate, is 

to strengthen the analysis phase [1; 2].  

During the analysis phase, the fingerprint expert has to assess the reality 

of the recovered mark formations and their clarity, in order to determine 

what information is visible and reliable, considering the 

possible/probable way of deposition of the print, according to the 

particular developing technique.  

In the identification process, three conventional level details are 

considered:  

 5 
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1. level 1 (order of magnitude: 1 to 10 mm) refers to the overall pattern 

formed by the flow of papillary ridges on the papillary surface;  

 

 

 

 

 

 

 

 

Fig. 2a: fingerprint image where level 1 and level 2 (examples in red 

circles) are clearly visible. 

2. level 2 (order of magnitude: 0.1 to 1 mm) refers to major ridge path 

deviations, also known as minutiae or characteristics. Basic forms are 

ridge ending, bifurcations and dots;  

3. level 3 (order of magnitude: 0.01 to 0.1 mm) refers to intrinsic ridge 

formation, as the alignment and shape of each single ridge unit, the pore 

shape and the relative pore position.  
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Fig. 2b: enlargement of an inked  friction ridge: it is easily detectable 

the bifurcation (level 2 detail) and the white dots are pores (level 

3 details). 

Usually, conventional chemical and optical techniques could not develop 

level 3 details, and information absolutely useful for investigation 

purposes is lost.  

Therefore, is extremely important to design developing techniques able 

to reveal details with great accuracy.  

Up to now, the most common techniques for enhancing latent 

fingerprints from articles collected in the crime scene are based on 

chemical-physical processes, or optical detection techniques, based on 

absorption, photoluminescence, diffused reflection or ultraviolet 

imaging, with appropriate band-pass and/or narrow-band filtering.  

 

1.2 Motivation of the research 
Chemical-physical processes have shown really good performances, but 

they are destructive with respect to the latent finger mark deposit and in 

most cases these methods partially affect subsequent DNA analysis. On 

the other side, optical detection processes have the advantage of being 



non-destructive of the fingerprint. As a result, these techniques allow 

later performing of DNA analysis and/or the further application of 

conventional fingerprint development procedures. 

The conventional techniques are still effective in the recovery of latent 

prints under ordinary conditions. On the other hand, the traditional 

methods of latent print detection may impair the subsequent DNA 

typing. 

On the contrary, the majority of the optical techniques, with the possible 

exception of the ultraviolet inspection, allow further biological analysis. 

And as the aforementioned methods have the advantage of being non 

alterative with the respect of the fingerprint deposit, subsequent 

application of chemical and/or physical methods is not precluded. 

However, the range of the electromagnetic spectrum usually used for 

these purposes is from shortwave UV until all the visible band (200 to 

700 nm).  

The absorption technique is used for the enhancement of visible 

fingerprints, contaminated with coloured material, showing characteristic 

absorption properties. For this purpose high-intensity light sources (such 

as filtered arc lamps or xenon lamps) are used.  

The inherent luminescence of finger mark has been investigated mainly 

using laser sources (four different types have been employed: the argon 

ion, the copper vapour, the Nd:YAG and the tuneable dye) [6; 7; 8; 11; 

12]  

The diffuse reflection method is based on the property of diffusing light 

by the fingerprint deposit. High-intensity white light devices are 

employed, at different incidence angles on smooth shiny surfaces.  
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At the end, ultraviolet imaging requires the use of a UV-sensitive CCD 

camera and a source of UV light (mercury – xenon lamp or UV laser, 

usually from 250 to 350 nm). The technique is based on the contrast 

between the surface, which may absorb or reflect UV light, and the 

finger perspiration deposit, that absorbs selectively some UV radiation 

and diffusively reflects the other.  

Moreover, some recent studies are investigating the X-ray fluorescence 

of fingerprints, and some others are attempting to discriminate the IR 

spectrum of the finger mark deposit from the IR spectrum of the surface.  

Actually, IR imaging has been tested successfully on chemical IR-

fluorescent reagent for sweat deposit and also directly on sweat.  

It is easy to understand how crucial is to develop a robust technique of 

optical analysis, able to reach a high-resolution imaging of finger marks, 

requiring no chemical conventional or non-conventional pre-process and 

producing no modification either on the finger perspiration deposit or on 

the background surface. The proper image of the fingerprint, obtained 

from the item surface, could allow us to perform a complete fingerprint 

analysis, which potentially leads us to the individualization of the 

perpetrator. Moreover, fingerprint  imaging could exactly point out the 

particular region of the whole surface where we can surely find the DNA 

of the donor, with a higher probability of successful analysis.  

Besides, the IR analysis carries on another high interesting potential 

piece of information concerning the chemical composition of the finger 

mark deposit, so we should be able to detect if a fingerprint is made by 

sweat or by blood, semen, saliva or by other organic traces coming from 

the victim or, in general, from the crime scene.  
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In conclusion, both the scientific and the investigative interest on the 

extensive application of finger mark optical imaging on real cases is 

really strong. The main goal of this research is to explore reliable 

techniques in order to detect, develop and acquire fingerprint images 

from smooth and non porous surfaces avoiding DNA damage. 

 

2. Fingerprint enhancement on smooth non porous surfaces: 

state of the art 
In general we may consider three forms of fingerprint evidence that may 

be found at a crime scene: 

• visible prints; 

• impression prints; 

• latent prints.  

This work is mainly based on latent marks, which could be retrieved in 

the crime scene, invisible or hardly visible and therefore need some  

development or enhancement process for their visualization. Only 

smooth  and non porous surfaces will be considered. 

Research has developed new methods for the visualization of finger 

marks, on the basis of the chemical composition of the fingerprint 

residue. Even if the fingerprint composition is highly variable with age, 

sex, psychological conditions and type of secretion, many of the 

compounds present are known and recognizable. Some methods target 

water-soluble components, while others target lipids. The effectiveness 

of the method depends on the mark, the surface, and the boundary 

conditions. 
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Physical methods consider both the chemical and the physical properties 

of fingerprint residue components and their potential interactions. 

Chemical methods consider the chemistry of fingerprint residue 

components and their potential reactions.  

Visual examination and optical techniques in general exploit the 

differences in terms of optical properties between the mark deposit and 

the surface. 

Finally, a systematic approach  involves the combination of techniques in 

an application protocol. 

2.1 Visual examination 
Currently, the standard operating procedures of the forensic science 

laboratories consider first the DNA swabbing from the item surfaces and 

subsequently the fingerprint enhancement by the most effective 

chemical-physical technique.  

White light examination may reveal visible prints, captured by 

photography, without any further treatment. Equally, other optical 

techniques can disclose latent prints that may not be enhanced by 

chemical and/or physical techniques. Thus, the first step of any latent 

fingerprint enhancement process is the visual examination of the 

surfaces, with techniques selected according to the properties of the 

surface and the boundary conditions.  

2.1.1 Light sources 
Light sources currently used for surface inspections are: 

• Alternative light sources (ALS): xenon lamps with wide bandpass 

filters, where the emission of light varies from the near ultraviolet 
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to the near infrared. The white light could be divided into 

intervals of frequencies, covering all the visible spectrum; 

 

 
 

Fig. 3: ALS LUMATEC® Superlite 400 and accessories. 

 

• Led torches, both in white or in colored lights. Recently a sensitive 

improvement in output power and in color availability has been 

reached; 

 
Fig. 4: LED torches FosterFreeman®  Crime-lite2. 
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Fig. 5: spectra of emission of the FosterFreeman®  LED torches. 

 

• Lasers: solid state green (532nm), blue (460nm) , yellow (577nm), 

the argon ion, the copper vapour, the Nd:YAG and the tuneable dye. 

 
Fig. 6: Coherent®  TracER  portable solid-state laser. 

2.1.2 Optical phenomenology.  
 

• Absorption.  

This technique is used for the enhancement of visible finger 

marks, when are contaminated with a coloured substances. With 

characteristic absorption properties, that can be utilized to 
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maximize contrast. (e.g. blood has an absorption peak at 415 nm, 

which can be exploited to enhance bloody prints).  

The enhancement of coloured prints take into account also the colour 

of the surface. Two different approaches may lead to a positive 

result: the first consider to choose an illumination wavelength that 

will darken the friction ridges, increasing absorption, and lighten the 

background surface, promoting reflection. The second one applies 

white light illumination coupled with an appropriate filter of the 

same colour of the reflecting surface. In both cases, the background 

will appear lighter. 

• Luminescence 

The use of laser illumination to detect latent fingerprints is one of the 

most effective techniques to excite inherent luminescence of latent 

fingerprints on non luminescent surfaces. It has to be stressed that 

mostly the positive results of this technique are due to latent prints 

contaminated with fluorescent substances (makeup, cream, oil).  

Even if in real casework the success rate is not so high, the crime 

scene search for luminescent fingerprints should always come before 

the physical and/or chemical developing. 

The article surfaces should be investigated also at different 

wavelengths by means of high-intensity light source (alternative light 

sources – modified xenon arc lamps,  quartz halogen lamps or  LED 

sources) while observing through dedicated filters. To maximize the 

sensitivity of the human operator and to increase the signal to noise 

ratio of the acquiring device, the ALS and/or LED inspection may be 

conduced in the dark. 
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Starting from the early eighties, scientific research was applied to 

develop luminescent chemical compounds with appropriate 

excitation and emission wavelengths in order to exploit light sources 

to generate luminescence phenomena.  

It is proven that the ALS can perform very close to lasers when 

applied to chemical treated articles.  

The ALS based on xenon arc lamps or quartz-halogen lamps with 

filters can be replaced with LED arrays. Recently extremely powerful 

LED are available on the market and they present some advantages if 

compared with traditional ALS: 

1. high availability of frequencies; 

2. narrow band emission; 

3. uniformity of the emitted beam; 

4. easy to handle whilst battery operated; 

5. lower costs compared to ALS. 

LED may replace ALS in the next future, specially for enhancement 

of chemical processed finger marks, even if dealing with untreated 

latent marks, lasers are still outperforming other light sources. 

 

• Diffused reflection 

The latent finger mark may be regarded as an alteration of the 

smooth surface. Thus, incident light tends to be diffused from the 

mark. This optical property can be used for the enhancement of latent 

fingerprints on smooth, reflective non porous surfaces such as 

glasses, plastics and metals.  

 15 
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Fig. 7: Specular reflection of incident radiation from a smooth 

surface and back scattering of incident radiation from a rough 

surface. 

 

The light inspection of the reflective surface has to be conduced with 

an oblique lighting, revealing latent finger marks, marks in the dust 

or physical and/or chemical enhancement. In the aforesaid 

conditions, fingerprints will appear as light pattern produced by light 

scattered by ridges, in a dark background. 

 

 

 

 

 

 

 

 

 

Fig. 8: Constructing principles of the coaxial episcopic device. 
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Fig. 9: Projectina® coaxial episcopic device. 

 

As shown in fig. 8 the episcopic illuminator is a device realized to 

capture only the reflected light, cutting the noise of the scattered light  

by means of an oblique glass.  

The technique utilize a twisting glass, that works as a semitransparent 

mirror, in order to observe the scattered light through the refracted 

beam of the glass filter. Because illumination, reflection, and 

observation are parallel, the device is so called coaxial. 

The scattered light from the latent fingerprint is reflected by the 

glass. Only the reflected light from the shiny surface forms the 

refracted beam which passes trough the glass slide.  Thus, the latent 

will appear with dark ridges into a light background.  



 
Fig. 10: photograph of a latent mark captured by a coaxial episcopic 

illuminator. 

 

Episcopic coaxial inspection could be used as a visualization 

technique for unprocessed latent finger marks, as well as an 

enhancement technique after chemical treatment of the marks. 

• Ultraviolet imaging. 

Nd:YAG laser illumination by fourth harmonic (266 nm) produces 

luminescence of sebaceous prints, rich in lipid fraction, but not of 

eccrine prints, rich in amino acidic fraction. The emission is observed 

in the long-wave UV region of 300 to 400 nm. To excite an amino 

acidic fraction luminescence long time exposures are needed. 

Equally, if the excitation source emits at 280 nm for sebaceous prints 

two peaks are detectable, one at 330 nm and the other at 440 nm. 

Some techniques actually under study consider also the lifetime of 

fluorescence. Usually the fluorescing time of the background is 

shorter than the fluorescing time of the fingerprint. So the application 
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of time resolved techniques may be an interesting way to image 

fingerprints. 

Once more the UV laser illumination may be applied as an 

enhancement technique for exciting fluorescence in chemically pre-

treated surfaces. 

Even if the background is UV luminescent, as, e.g. the white glossy 

paper, the short UV light inspection could enhance latent finger 

marks specially if its constituents are absorbed by UV light. 

Another approach is followed by considering the optical detection of 

latent finger marks by shortwave UV reflection. This technique 

requires a UV lamp (254 nm)  to illuminate the surface of the article. 

The images are captured by a UV camera provided with a narrow 

band UV filter. 

At 254  nm the lipids of the fingerprint deposit back scatter the UV 

light, whilst the background may absorb the incident radiation. In this 

case the ridges of the print are light on a dark background. On the 

contrary, if the background reflect the UV light, in that case the 

ridges appear dark in light background. One of the parameter which 

is to be taken into account is the angle of the incident UV light. 

As a matter of fact, the abovementioned technique may be used both 

on non processed latent prints as well as on chemically processed 

ones. 

The capture of the images enhanced by means of UV waves may be 

performed using a CCD UV -  sensitive camera or a silicon CCD 

camera coupled with an UV imager device, that converts the UV 

incoming radiation in a visible signal pixel by pixel. 

 19 
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When using the first device, major concerns are constituted by the 

fact that the human eye cannot reveal the UV radiation. Thus, a 

digital camera UV sensitive, with UV bandpass filter and live view 

are recommended.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Short UV light inspection with a Spex® Scenescope UV 
imager and the latent finger mark captured with this system. 

 

2.2 Chemical developing of marks 
Considering smooth and non porous substrates, the cyanoacrylate esters 

fumigation is the most widely used, fast and cheap technique for the 

development of latent fingerprints, mainly in the laboratory, but also in 

the crime scene. 
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The methyl and/or the ethyl ester of cyanoacrylate are transparent, 

monomeric liquids, usually utilized as fast and high-strength glues, also 

called superglue. When heated, cyanoacrylate monomer vaporize: 

because of the presence of nucleophiles in the sweat deposit, the 

monomer start to react with a nucleophilic addiction to the carbon – 

carbon double bond.  

 

Fig. 12: cyanoacrylate polymerization chain reaction. 
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In the scientific literature different interpretation of the reaction 

mechanism are available. Recently (ENFSI-EWG annual meeting, Delft 

(NL), Sept. 2010) De Puit has proposed the amine group of amino acids 

of eccrine deposit as chain initiator, whilst the water content of the marks 

has the function of  catalyst [13]. 

The vapour selectively polymerizes on the fingerprint ridges to form a 

hard, white polymer known as polycyanoacrylate. 

Plenty of methods are available in order to obtain a suitable 

polymerization of cyanoacrylate  (CA) on the latent finger marks. 

In general, the article is exposed to the cyanoacrylate vaporization in a 

fuming chamber. 

The cabinet has a heater in which the liquid monomer reach the boiling 

temperature and passes in the gas phase. The cabinet may have a 

humidity source and a ventilation system, which has the purpose to 

equalize the cyanoacrylate monomer concentration in the vapour phase. 

The chain reaction continues until vapour phase monomer is present in 

the cabinet: the polymerization process starts from the friction ridges of 

the latent mark and if not properly controlled, it may continue even in the 

space between two adjacent ridges, literally covering with the polymer 

the whole surface. So as to avoid an overexposure, the inside of these 

cabinets may be inspected directly by the operator. Control sample may 

be used to properly set the time of exposure. 

Portable fuming devices has been developed for crime scene use. 

 22 
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A number of systems allows the vaporization of a small amount of 

cyanoacrylate directly onto the investigated surface or inside a confined 

volume, e.g. the passenger compartment of a vehicle. 

Other systems are capable of producing massive flow rates of 

cyanoacrylate, permitting an extensively field use.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: FosterFreeman®  fuming cabinet MVC5000. 

 

Besides, other strategies to facilitate the vaporization of the monomer has 

been developed, as the vacuum cyanoacrylate fuming. The fuming 

cabinet is formed by a metal vacuum chamber. After the placing of the 

object to investigate inside the cabinet and opportunely feeding the 

consumables, the internal pressure is reduced from the atmospheric 

pressure to 0,2 mmHg by vacuum pumps. Due to the reduction of the 

pressure, the boiling point of liquid cyanoacrylate reaches the ambient  

temperature. Continuing to lower the pressure the liquid start to 



evaporate. The fuming process rapidly keep on going, until the complete 

evaporation. Due to the reduced presence of other gasses and vapours, 

the concentration of cyanoacrylate is highly uniform in the inner volume 

of the cabinet and it is effective also in the internal surfaces. Producing  

polymers shorter than the traditional method, as shown through scanning 

electron microscopy, it avoids the risk of overdevelopment. 

As a result, latent friction ridges enhanced by vacuum cyanoacrylate 

fuming are very detailed, even if the developed marks do not show the 

typical white colour. Thus, subsequent staining process is needed.  

The reduced polymerization may be due to the evaporation of the water 

content from the marks, whereas vacuum process is running.  

Although vacuum cyanoacrylate fumigation shows excellent results in 

terms of latent fingerprint enhancement, the developed marks are 

difficult to visualize because of an attenuated contrast with the 

background. 

The cyanoacrylate polymer does not exhibit absorption band, but 

produces a diffuse reflectivity of the incident radiation of wavelength 

ranging from the ultraviolet to the infrared. Thus, the selection of the 

most suitable band of wavelengths to be used for the enhancement of the 

CA treated finger marks depends on the colour of the substrate. 

Some of the aforementioned methods of visualization may be 

successfully applied to obtain higher contrast on cyanoacrylate fumed 

exhibits, as the coaxial episcopic imaging or the reflected ultraviolet 

imaging. 
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When cyanoacrylate fuming in itself has to be considered not sufficient 

even if visual enhancement is performed, there are several secondary 

treatments for developing cyanoacrylate fumed finger marks. 

Cyanoacrylate enhanced finger marks may be further developed by 

secondary chemical treatment. The staining technique is widely applied. 

A large variety of dyes are available, with different colours and different  

properties (luminescence and fluorescence). These dyes have to be 

coupled with the appropriate visualization technique, consisting in the 

accurate selection of the proper band of wavelength of excitation, joined 

with observation filters, depending on the nature and the colour of the 

item surface. 

The stain solutions may partially solve the cyanoacrylate polymer, 

causing a loss in the fingerprint image. Furthermore, the stained surface 

needs to be rinsed with water to facilitate the removal of the excess of 

dye. Thus, as later better explained, these techniques may compromise 

severely the DNA extraction from enhanced fingerprint. 

At last, has to be mentioned the simple technique of dusting the surface 

with fingerprint powder after the cyanoacrylate fuming. Further on, it 

will be discussed the method of enhancing latent finger marks by means 

of powders, however it has to be considered that dusting is also a 

secondary enhancement process after cyanoacrylate fuming.   

Also vacuum metal deposition (VMD), may be regarded as a secondary 

process after cyanoacrylate, that can be used after the staining. In 

extreme synthesis, the process consider the finger mark tridimensional: 

in a vacuum chamber different metal vapours are condensed on the 
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surface of the item, in sequence, enhancing the contrast between ridges 

and substrate. 

As is easy to understand also this process may inhibit DNA analysis. 

 

2.3 Physical enhancement of marks 
The classic latent print developing technique for processing smooth 

nonporous surfaces is dusting with fingerprint powders. 

The general application of powders is in the crime scene search, mainly 

on the surfaces and the objects not easily removable and transportable. 

The adhering mechanism is physical: powder particles stick to the 

moisture or the oily fraction of the mark deposit.  

Powdering is a time and cost effective technique, that allows to secure 

the developed marks by means of adhesive tape or gelatine foils. 

The application of the aforementioned method is recommended whilst 

the content of water in latent print is still high (so called fresh prints).  

This is due to the fact that while time passes, the evaporation of the water 

content of the fingerprint causes a reduction in its thickness. 

The powder is applied using different kind of brushes. The distinction 

between them is made by their fibres (natural, glass or carbon fibres).  

The application procedure is only apparently simple: the physical contact 

between the mark and the brush should damage the fingerprint, as well as 

the brush may cause dangerous DNA transfer. 

Different fingerprint powder formulations have been produced through 

last century, although each formulation consider a colorant for contrast 
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and a resin to foster the adhesion of the colorant to the fingerprint 

deposit. 

Colorants are metallic oxides, sulphides and carbonates.  

 

 

 

 

 

 

 

 

Fig. 14: UV Luminescent powder with a squirrel brush.  

Some powders are made by spherical particles, as well s some other, like 

the aluminium powder, are made by flake particles. 

Moreover a wide range of coloured fluorescent powders are available for 

dusting multicoloured items. 

Another class of dusting powder is constituted by magnetic powder. 

Magnetic mixtures of iron particles and other metals flakes are applied 

by means of a magnetic brush, which could invert easily its polarity in 

order to collect or release the magnetic powder. 

Dusting surfaces with brushes in order to develop latent finger marks it is 

an easy and cost effective technique, but some basic rules have to be 

followed: 

o The colour of the powder has to maximize the contrast with the 

deposit; 
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o The average dimension of the particulate has to be suitable to 

enhance all the smallest details. 

 

 

 

 

 

 

 

 

 

Fig. 15: Fingerprint enhanced with magnetic powder applied by a 

magnetic brush.  

 

2.4 Effects on DNA typing of the chemical and physical 

techniques.  
In the previous paragraphs it has been given an highlight of the most 

relevant techniques in order to detect and enhance fingerprints on smooth 

nonporous surfaces. If the fingerprint components are of paramount 

importance for the chemical techniques, there is a fingerprint component 

which is in itself a biometric: the deoxyribonucleic acid (DNA).  

It has been proven that significant amount of DNA could be recovered 

by bloody prints: some studies have demonstrated that cyanoacrylate 

fuming, forensic light inspection and black powders may not affect the 

subsequent polymerase chain reaction short tandem repeat (PCR-STR), 



whilst exposure of DNA to 254 nm UV radiation even if for a short time, 

dramatically lower the possibility of having a successful DNA typing. 

Apart from traces in blood, fingerprints are a well known biological 

material source. 

Indeed, epithelial cells can be transferred as residues from sloughing or 

through direct contact with an object. In some cases, fingerprints 

characterization cannot be performed after enhancement because of 

partial prints and/or marks overlay. The DNA quantity of handled objects 

is sufficient to extract a complete DNA profile. 

For this reason, many authors attempted nuclear DNA typing from 

fingerprints enhanced from a huge number of items, as a very useful tool 

in criminal investigations. In general such trend has led to the demand 

for an assessment of technical reliability of DNA analysis performed on 

such exhibits. So far, unambiguous approaches in this field have not been 

indicated yet, nor the establishment of reliable and robust guidelines can 

be considered an easy task.  

Otherwise, in high profile cases, the most common forensic laboratories 

protocols consider the recovery of DNA from touched surfaces a 

priority: but what evidence is more important, the DNA or the 

fingerprint?  

In spite of recent advances in DNA technology, at the moment the 

question is still open, even if, according to the literature physical and 

chemical methods seem to show low inhibition rate on subsequent DNA 

profiling. 

Scientific research have made possible the recovery of DNA from: 

o blood prints and / or stains; 
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o saliva (envelopes, stamps, cigarette butts);  

on porous and non porous surfaces.  

Most studies found that only a few visualization reagents inhibit DNA 

analysis. This assumption leads to the point whether DNA could be 

recovered from a smeared or partial, developed print that is without any 

identification value.  

Has been widely demonstrated that the quantity of DNA present on 

handled objects is sufficient to extract a complete profile and in some 

cases also secondary transfer (from a different origin) allow the DNA 

typing. 

The recovery of DNA from physical or chemical enhanced fingerprint 

shows the following critical factor: 

o the intrinsic nature of the shedder: in fact some recent works suggest  

that there is no relation between good prints donors and good DNA 

shedders; 

o the nature of the surface could provide some additional inhibition, 

which interfere with the eventual inhibition caused by the 

enhancement technique; 

o the amount of DNA that may be recovered after the latent finger 

mark enhancement critically decrease;  

o even if fingerprint techniques do not directly affect the PCR 

amplification and the DNA typing, as a matter of fact the quantity of 

DNA recovered after a fingerprint enhancement acutely drops. 
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2.4.1. Experimental setup 
It has to be taken into account that the majority of the studies 

exploring the possibility of DNA profiling after fingerprint 

enhancement were conducted in laboratory condition.  

In order to verify the real possibility of recovering both 

biometric information, we decided to develop a pilot study, 

which simulate the real casework situation. 

The objective of this part of the research is to try to develop a 

reliable procedure, especially for high profile cases, to 

recover useful piece of evidence both on fingerprint and DNA 

side, achieving human individualization achieved by means 

of two different biometrics: fingerprint and DNA profiling. 

Before considering only optical non destructive techniques is 

of fundamental importance to outline advantages and 

drawbacks of the DNA typing after cyanoacrylate fuming. 

Main concerns to consider are: 

o partial proved inhibition introduced by cyanoacrylate; 

o no optical UV inspection allowed before and after the 

treatment, with potential loss of marks; 

o Risk of loosing some of the few cells during the 

fingerprint enhancement; 

o Variability in the donors’ population, whereas the test 

items were only touched in order to collect fingerprint, 

for only few seconds and they were not extensively 

handled. 
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2.4.2. Tests 
Following, the details of the experiment conduced: 

• STR AMPFlSTR Identifiler (Applied Biosystem) 1/3 

standard volume 8.3 μl ; 

• PCR parameters 34 cycles ; 

• Mini STR AMPFlSTR Minifiler (Applied Biosystem)  

½ standard volume 12.5 μl ; 

• DNA extraction:  

– swab with 3 x 3 mm paper with bi distilled water; 

– Chelex in 30 μl final volume; 

– Positive and negative control performed; 

– No filtration or concentration. 

 

 

Fig. 16 and 17: the two different types of item selected for the trial, 

9mm FMJ cartridge and a glass slide. 

 

 



• DNA quantification:  

– Quantifiler duo kit (Applied Biosystems) from 16 

to 50 pg. 

• Sequencing on  AB 3130 xl genetic sequencer. 

 

Types of surfaces selected: 

• Microscope sterile glasses; 

• New 9mm brass full metal jacket cartridges, properly 

cleaned before print deposition.  

Sampling policy: 

• 9 donors; 

• one donor for each sample; 

• all fingerprints deposited in one day; 

• all fingerprints were deposited in sequence of five from 

the same finger, to model the real situation; 

• Two sequences for each donor, the first one fumed with 

cyanoacrylate vapours, the second one used as reference 

sample. 

Running of the experiment: 

• All the samples to be enhanced were put in a DNA free 

cyanoacrylate fuming cabinet (Projectina®) for 15 

minutes, accurately cleaned after and before each single 

process to avoid cross contamination; 

• After the developing process each item was separately 

inspected with forensic light source (white light) and 

photographed; 
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 Fig. 18: Example of a cyanoacrylate fumed depletion  

 

• Each fumed item has been swabbed with sterile filter 

paper and the DNA has been profile following the 

aforementioned protocol; 

• Each control sample has been swabbed with sterile filter 

paper and the DNA has been profiled following the 

aforementioned protocol. 

2.4.3. Results and discussion 
The results of the trial indicate a good degree of reliability of 

the aforementioned process when applied on most of the 

tested items. Being a single tube approach, adequate Chelex  

methodology prevent or at least minimize the loss of DNA, 

whereas inhibition and "in-tube" nucleic acid degradation is 



still a major concern. On the other hands silica column – 

based extraction resulted in partially usable profiles for 

enhanced print on slides. To the contrary, for the remaining 

samples, the cartridges, partial and total loss of signal in 

subsequent genotyping was most likely caused by inhibition 

more than retention of DNA by the column. 

As a matter of fact, for smooth non porous surfaces Chelex 

revealed an enormous potential as to time and costs 

effectiveness.  

A higher sensitivity in touched objects STR profiling has 

been reached by changing different reaction conditions in 

Chelex protocol and additionally using length-reduced 

amplicons markers. Full profiles were obtained from both 

good and only fragmentary fingerprints, regardless to quality 

of the print itself, when non chemically enhanced. To a 

minimal extent, drop in and drop out peaks still affects 

resulting electropherograms. 

Partial profiles were obtained from both good and only 

fragmentary fingerprints, as well as in the case of non treated 

latent marks. Even in this electropherograms show seldom  

same drop in and drop out artefacts.  
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 Fig. 19: DNA profile obtained from cyanoacrylate enhanced 

fingerprint. 

 

To summarize the results on glass slides: 

• Swabbing directly marks  100% profiles with 13 to 15 

loci; 

• After cyanoacrylate fumigation 100% profiles with 6 to 9 

loci. 
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Fig. 20: no value DNA profile obtained from cyanoacrylate 

enhanced fingerprint on 9mm fmj cartridge. 

 

 

These results should be seen from two different perspectives: 

from the point of view of the investigator the technique 

should be considered more than successful, because it 

allowed to gain lots of additional biometric information on 

the trace, whereas from the outlook of the forensic scientist is 



mandatory develop different techniques which may deliver a 

complete information both on fingerprints and on DNA. 

Surprisingly, for 9mm cartridges, before and after 

cyanoacrylate fumigation, no profiles were obtained. On these 

sample, a strong DNA inhibition has been detected and the 

evaluation of the reasons is still in progress.  

The same technique, extensively applied in real caseworks, 

allowed to obtain full profiles from the same class of items, 

when changing the chemical composition of the cartridge 

case. 

3. Spectroscopy by images 

The results of the experiment on DNA and cyanoacrylate fuming have to 

be considered. According to the literature, they clearly show a loss in the 

DNA number of loci, when items are pre processed for fingerprint 

enhancement. In order to deepen the extent to find a suitable tool to 

simply image the latent fingerprint, without any detrimental effect on 

DNA typing, further research on optical methods has to be conducted.  

To briefly point out the philosophy under the work, consider latent finger 

mark on a smooth non absorbent surface in a physical sense:  the 

fingerprint on the item is a different phase, with different physical 

properties. With the purpose to develop the latent and, subsequently, to 

obtain a DNA profile, the electromagnetic radiation, starting from the 

visible to the infrared, produced by conventional (incandescence lamps 

and lasers) and non conventional sources (synchrotron radiation) is used 

as a suitable mean for fingerprint revelation. 
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Following this idea, luminescence and phosphorescence occurrences will 

not be considered.  

Only absorption and reflection phenomena of the incident 

electromagnetic radiation will be taken into account. 

3.1. Image spectroscopy: white and red light. 
Fingerprint analysis has been carried on as a result of the fact that 

different substances (the mark and the surface) show different optical 

properties while an electromagnetic radiation beam is focused on 

them, without considering any induced fluorescence phenomena. 

Therefore, at a first instance, the following light sources were 

considered: 

o Alternative white light source, with tunable intensity and light 

guides; 

o Laser Mells  Griot 632,8 nm, 15mW output power; 

o Red LED light. 

Imaging system: 

o binocular microscope; 

o digital video camera Hitachi KP-FD 140F – S1  IR filter, 

CCD 0.5 inch,  1,45 Mpixel; 

o Personal computer. 

 

Sampling policy: 

o Test fingerprints on glass slides;  

o 2 donors; 

o Multiple samples; 
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o Fresh prints, both sebaceous and eccrine; 

o Depletion series. 

3.1.1. Experimetal setup 

 

 

 

 

 

 
Fig. 21: the light source, red LED or white light, illuminate 

the mark tangentially, while the CCD is 

perpendicular.   

 

Following, all the relevant parameters and data of the 

experiment are briefly summarized: 

o Configuration 0°/90°, means that the incident beam is 

tangent to the item surface and the capture device is 

perpendicular to the latent mark (see figure 21). 

o Red laser Mells Griot (632.8 nm) supported by a 

Ealing desk; 
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o On the axial direction of the beam, there are a 

dispersion element, an optical barrier of 20 mm of 

diameter and a periscope for directing the beam on the 

sample (see figure 22). 

 
Fig. 22: the laser beam is directed tangentially on the item, 

put onto the microscope stage. Images are captured  

perpendicularly to the CCD.   

3.1.2. Tests 

As an example of all the test run, in figure 23 is reproduced a one day 

old fingerprint in daylight, in figure 24 the light source used is white 

light, in figure 25 the light source utilized is a red LED light and, at 

last, in figure 26 an imaging of the same print under a laser beam is 

given. 

It has to be underlined that all images are not enhanced, in order to 

verify in which condition the amount of information captured by the 
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CCD is maximum in terms of contrast between friction ridges and the 

substrate. 

 

 

 

 
 

Fig. 23: mark under daylight illumination.   

 

 

 
 

 

Fig. 24: mark under white light illumination.   

 

 

 

 

 

Fig. 25: mark under LED red light illumination. 
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Fig. 26: mark under Laser red light illumination. 

 

3.1.3. Results and discussion 

The limit of this configuration is the low power of the beam on the 

sample surface. 

Even if the dispersion element has been changed with a cylindrical   

lens so as to focalize the beam no sensitive improvement has been 

detected. 

In order to understand if the poor results obtained in the red 

wavelengths is due to a limitation in the emitted power by laser and 

LED light, narrow band red filters has been used, coupled with a 

powerful white light source. 

Two different filters were tested: 

o Filter narrow band 610 nm (band width 40 nm); 

o Filter narrow band 630 nm (band width 40 nm); 
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Moreover, the images obtained when red filters were applied have 

been digitally enhanced, because of the poorness of the contrast. 

“Image J” software has been used for the latent marks enhancement. 

 

 

 

 

 

 

 

 

 

limitation revealed with the red LE

dependent by the particular wavele

limitation in the emitting power of

Fingerprints rich in details were the ones with filtered white light, 

quite similar to images obtained with not filtered white light.  

 

 

 

 

Fig. 27: mark under white light. 

As a result of the application of the filters, was clearly stated that 

D light and the red laser are not 

ngth in itself, but is due to a 

 the two red sources. 
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Fig. 29: mark under red LED and narrow 

bandpass filter 630 nm.  

3.2. Image spectroscopy: monochromator . 
Fingerprints need to have strong incident radiation, in order to be 

revealed by an incident beam. Attempting to achieve more details 

concerning the most sensitive wavelengths for fingerprint, the change of 

the emitting source was considered. 

Therefore, this experiment was carried on by means of the following 

light sources: 

o Alternative white light source, with tunable intensity and light 

guides; 

 

 
Fig. 28: mark under white light and 

narrow bandpass filter 630 nm. 

 

 



o Monochromator Bausch & Lomb cat. No. 33-86-02 with lamp 33-

86-25 a 115V, emitting spectrum range  350 -  800 nm. 

Imaging system: 

o binocular microscope with infrared filters; 

o digital video camera Hitachi KP-FD 140F – S1  IR filter, CCD 0.5 

inch,  1,45 Mpixel; 

o Personal comupter. 

Sampling policy: 

o Test fingerprints on glass slides;  

o 2 donors; 

o Multiple samples; 

o Prints range from one month old to five month old, both sebaceous 

and eccrine; 

o Depletion series. 

 

3.2.1. Experimental setup 

Following all the relevant parameters and data of the experiment are 

briefly summarized: 

o Configuration 45°/90°, means that the incident beam forms a 45° 

angle with the item surface and the capture device is 

perpendicular to the latent mark (see figure 30). 

o Monochromator Bausch & Lomb cat. No. 33-86-02 with lamp 

33-86-25 a 115V, emitting spectrum range 350 -  800 nm. 

o On the axial direction of the beam there are a converging lens, a 

periscope for directing the beam on the sample and another 
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converging lens, with three degrees of freedom, which could 

focus the beam exactly on the item  (see figure 30). 

Fig. 30: the monochromatic beam is directed with a slope of 45° on the 

item, put onto the microscope stage. Images are captured 

perpendicular  to the CCD.   

3.2.2. Tests 
With the abovementioned configuration two different series of tests 

were conduced. 

During the first series of  trials one month old test fingerprints were 

considered. The tests finger marks were imaged by the narrow band 

beam of the monochromator. The same test prints were inspected 

varying wavelengths with steps of 10 nm.  

To perform the second series of  trials five month old test fingerprints 

were considered. The tests finger marks were imaged by the narrow 

band beam of the monochromator. The same test prints were 

inspected varying wavelengths with steps of 20 nm, whilst  during 
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two subsequent images inspected under beam

10 nm in wavelength.  

 

 

 

 

 

 

(left) and at 400 nm (right) 

 

 

 

 

 

 

 

 

) 

 

the first experiment it was possib e to detect small variations between 

s which differs only of 

 

 

 

 

 

 

Fig. 31 and 32: beam at 380 nm 

Fig. 33 and 34: beam at 420 nm (left) and at 440 nm (right
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Fig. 35 and 36: beam at 460 nm (left)  and at 480 nm (right) 

Fig. 37 and 38: beam at 500 nm (left)  and at 520 nm (right) 

 

Fig. 35 and 36: beam at 540 nm (left)  and at 560 nm (right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 41 and 42: beam at 580 nm (left)  and at 600 nm (right) 

 Fig. 43 and 44: beam at 620 nm (left)  and at 640 nm (right) 

 

Fig. 44 and 45: beam at 660 nm (left)  and at 680 nm (right) 
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Fig. 47: beam at 700 nm 

 

3.2.3. Verification test 
After a wide repetition of the experiment, in order to ensure an 

appropriate reproducibility of the experiment, every single equipmet 

has been checked and tested. 

The monochromator has been calibrated by means of 632.8 nm laser 

and a sodium lamp. 

Also the image acquiring device Hitachi has been calibrated in the 

400 nm – 800 nm interval. 

With the ultimate purpose of verifying the detected trend, furthering 

the investigation in the near infra red, has been designed an 

analogous system of optical imaging. 

Therefore, another experiment was carried on by means of the 

following light sources: 

o Monochromator Bausch & Lomb cat. No. 33-86-02 with lamp 33-

86-25 a 115V, emitting spectrum range  350 -  800 nm, without split. 



Imaging system: 

o binocular microscope without infrared filters; 

o digital video camera black and white Pulnix AccuPixel TM-1400 

CL; acquisition software “Measurement and Automation Explorer 

Pulnix TM-1400 CL; Image dimension: 1396x1036 pixels; 0.25 x;  

lock up table: LOG; 

o Personal comupter. 

Sampling policy: 

o Test fingerprints on glass slides;  

o 2 donors; 

o Multiple samples; 

o Prints range six month old, both sebaceous and eccrine; 

o Depletion series. 

3.2.4. Experimental setup of the verification test 

Following all the relevant parameters and data of the experiment are 

briefly summarized: 

o Configuration 45°/90°; 

o Monochromator Bausch & Lomb cat. No. 33-86-02 with lamp 

33-86-25 a 115V, emitting spectrum range 350 -  800 nm, 

without split in order to increase the output power of the beam, 

even if the beam in itself loose uniformity; 

o Same configuration of the previous experiment  (see figure 48). 

With the abovementioned configuration the verification tests were 

conduced. 
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To perform the trials at least six month old test fingerprints were 

considered. The tests finger marks were imaged by the narrow band 

beam of the monochromator. The same test prints were inspected 

varying wavelengths with steps of 20 nm. The range of wavelength 

was extended to 740 nm. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 48: the beam has a slope of 45° on the item, put onto the 

microscope stage. Images are captured perpendicular  to 

the b/w CCD.   
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Fig. 49 and 50: beam at 380 nm (left) and beam at 400 nm (right)  

Fig.51 and 52: beam at 420 nm (left) 

and beam at 440 nm (right) 



Fig. 53 and 54: beam at 460  nm 

(left) and beam at 480 nm (right) 
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Fig. 55  and 56: beam at 500 nm (left) 

Fig. 57  and 58: beam at 540 nm (left) and beam at 560 nm (right) 

Fig. 59  and 60: beam at 580 nm (left) and beam at 600 nm (right) 

and beam at 520 nm (right) 



Fig. 61 and 62: beam at 620 nm (left) and beam at 640 nm (right) 

Fig. 63  and 64: beam at 660 nm (left) and beam at 680 nm (right) 

 

Fig. 65 and 66: beam at 700 nm (left) and beam at 720 nm (right) 
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Fig. 67: beam at 740  nm 

 

3.2.5. Results and discussion 
All the aforementioned tests confirmed that relevant differences have 

been shown according to wavelength of the incident beam. 

These variation were absolutely confirmed also with the aging of the 

latent finger mark, from one day up to over six months. 

Concerning the wavelengths, the range where a satisfactory imaging 

could be obtained are from the blue to the yellow. At the borders of 

the visible field the mentioned configuration did not permit to 

achieve satisfactory result. 

The best performance has proved to be in the green/yellow interval. 

Further investigation is needed in the low wavelengths, in the 

ultraviolet region, as well as in the infrared region, by means of 

dedicated UV and IR sensitive CCDs. 
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3.3. Design of a new device for image spectroscopy. 
During the extensive testing conducted at the different wavelength  

the power of the beam was  the major concern.  Whether the incident 

beam on the latent finger mark is not enough powerful, the 

visualisation of the print is not satisfactory.    

Many different configurations has been widely tested, even if some 

of them have to be abandoned due to limitation of the power of the 

beam. 

 

 Fig. 68 and 69: Device for Image spectroscopy. On the right image, 

in light blue are represented the 1” diam. filter seat, coupled in the 

double revolver counter rotating. 

 

This is the reason why we are planning for future works to use the 

device shown in figure 68 and 69. 

Essentially it is constituted by a double revolver with nine 1” 

diameter filter seats each, hence it may host until sixteen different 

 

 

 

 

 

 

 

 



filters, leaving vacant one seat each to allow the option of direct 

capturing of images without any filtering. 

The objectives and the lenses merge the photographic standard and 

the output is standardized for CCD cameras. 

Next future the device will be extensively tested, because it solves 

the problem of the light source. In fact, in this case if a suitable white 

light source is available, the wavelengths scattered by the latent 

fingerprint will be separated by the 1” diameter interferential filter of 

the device. 

Because of the double revolver, the filters could be easily coupled 

together, giving 80 different range of wavelengths, plus the white 

light. Moreover, simply changing the set of filters, other eighty 

different ranges may be immediately available, for an exhaustive 

imaging from ultraviolet to infrared.  

The device is extremely efficient and, above all, cost effective.  

     

 

 

4. Polarized light imaging 
One of the well renown sources of polarized light is the reflection from a 

dielectric. At a given angle, θB , for an incoming unpolarized wave, only 

the component polarized, normal to the incident plane and, therefore, 

parallel to the surface of the dielettric will be reflected.  
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In order to determine the value of this angle, so called polarization angle 

or Brewster’s angle, from Snell’s Law: 

 

n 1 sin θB = n 2 sin ( π/2 - θB )                             (4.1) 

 

n 1 sin θB = n 2 cos θB                                   (4.2) 

 

It follows that: 

tan θB = n 2 / n 1                                        (4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 70: Reflection and refraction in  dielettric media at the 

polarization angle. 



Assuming for the air a refracting index almost equal to 1,  n 1 = 1, and 

for the glass a refracting index may be assumed in the interval 1,5 – 1,8, 

after opportune calculations the following values may be considered: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 1: polarization angle and refracting 

index for the glass.   

 

Thus, deeming to have a latent finger mark on a glass surface, when  

directing the incident beam at the polarization angle, the reflected light 

from the glass surface will be polarized. Only the friction ridges will 

scatter a diffuse light.  

Whether a detector is with the acquiring device orthogonal to the 

reflected beam, it may collect the polarized plane wave reflected from 

the glass surface and the scattered light from the friction ridges.  

n 2 θB 

1,50 56,3° 

1,55 57,2° 

1,60 58,0° 

1,65 58,8° 

1,70 59,5° 

1,75 60,3° 

1,80 60,9° 
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Therefore, setting an analyzer (linear polarizer) on the reflection axis, in 

front of the acquiring device, and opportunely rotating it, almost all the 

transmitted plane polarized radiation coming from the surface will be cut 

by the analyzer. Naturally, the percentage of the polarized light will be 

cut according to the efficiency of the linear polarizer. 

The imaging device will acquire only the back scattered light reflected 

from the fingerprint creases. 

In such way, the ridge pattern shall appear white in a dark background. 

 

4.1. Experimental setup 

With the purpose of verifying the capability of such a device to 

enhance fingerprints on dielettric media (as glass slides) the 

following  system was contemplated. 

The experiment was carried on by means of the following light 

source: 

o Incandescence lamp, 12 Volts, 50 Watt. 

First detector: 

o Digital camera Sony DSC- F717 CMOS 5.0 Mpixel, zoom 

10x; 

o 52 mm polarizer with 52 mm lens 4 x; 

Second detector: 

o Digital camera Nikon D70S with DX18-70 objective; 

o 62 mm polarizer. 

Sampling policy: 

o Test fingerprints on glass slides;  
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o 2 donors; 

o Multiple samples; 

o Six month old fingerprints, both sebaceous and eccrine; 

o Depletion series. 

 

 

 

 

 

 

 

 

 

 

Fig. 71: the beam has a slope of the polarization angle (from 56° to 

61°) in order to reflect only the polarized plane light from the glass 

slide background. Only friction ridges back scatter the non polarized 

light captured by the CCDs. 

 

The polarized light imaging system consider two different 

configurations, one each capturing device: 



o First detector [56°-61°]/90°, means that the incident beam 

forms a polarization angle with the item surface and the first 

capture device is perpendicular to the latent mark (see figure 

71); 

o Second detector [56°-61°]/ 90°- [56°- 61°], means that the 

incident beam forms a polarization angle with the item 

surface and the second capture device is perpendicular to the 

reflection axis of the polarized beam (see figure 71); 

o Both devices are equipped with a polarization filter, in order 

to be able to block (or attenuate – depends upon the filter 

efficiency) the polarized radiation.   

4.2.  Results and discussion 
The trial conducted exhibited some result of value, even if some 

improvements to the system are still needed. 

First of all, in order to reduce at minimum the reflection of non 

polarized light may be desirable the use of a light source highly 

focalized. 

Secondly, in order to improve the overall quality of the image may 

be beneficial provide the capturing devices with macro objectives 

and customized polarizer. 

In the end, the only partial concern may be the distortion of the 

prints acquired from the second device. In any case, knowing the 

distortion introduced by the lenses and the polarization angle, a 

correction of the acquired image via ad hoc software may be 

considered. 
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5. Chem-imaging using Fourier Transform Infrared 

Microscopy and the use of Synchrotron Light 

 

Fingerprint Science has experienced an increasing interest in all research 

activities: all paths that allow the professionals to obtain new methods to 

obtain more results in the crime scene inspection and the culprit 

identification  are tracked. Nonetheless image acquisition and processing 

plays a key role in the fingerprint analysis. 

Forensic science already benefits from Synchrotron sources: synchrotron 

reflectance infrared spectromicroscopy has been used for the study of 

inks on paper and in forensic trace evidence analysis, glass and paints. 

Whilst conventional source infrared microspectroscopy has been used 

recently to analyze the composition of fingerprint, in order to distinguish 

between adults and children donors and to determine the contaminants in 

the sweat deposit, such as creams, drugs or explosives. 

During the tests both a standard and a Synchrotron source were 

employed, claiming the latter is better suited to analyze smaller particles 

due to its brightness advantage over thermal sources. 

FTIR spectromicroscopy has the capability to cover all the three level of 

details. At SISSI laboratories, Elettra Sincrotrone Trieste S.C.p.A, 

performances of FPA detector operated with conventional global source 

have been tested to image fingerprints allowing reconstructing good 

chemical images. To decrease computational weight, investigated region 

was restricted to some hundreds of wavenumbers (methyl and methylen 
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stretching region, phosphate region, AmideI region). Then, the 

investigated spectral range was extended to all the MidIR region 

accessible to FPA detector allowing to image smaller regions with higher 

chemical detail, then accessing both level 2 and level 3, at least when 

working with optimized IR substrates such as MirrIR slides.  

Synchrotron light can be of great help in order to ensure the better signal 

to noise ratio to reach required resolution or even better, maybe revealing 

details not yet considered. As a matter of fact the brightness gain of 

Synchrotron light in comparison to conventional source is already 

appreciable at 50 micron spatial resolution, especially for the low 

wavenumber region (below 1200 cm-1) where the most interesting 

DNA-RNA features fall. Moreover, if the searched background surface is 

poorly reflecting, using a SR source could allow us to decrease the 

number of scans for each image point, increasing the speed of analysis. 

This means that we could detect large areas, according to real needs of 

investigation without losing spectral feature details. 

A multi-technique approach has been adopted, based on conventional 

and synchrotron radiation techniques, to study latent fingerprints from 

the morphological and chemical point of view.  

 

5.1. Experimental setup.  
Several human fingerprints were deposited on lightly doped 
silicon wafers and poly-ethylene-terephthalate (PET). 

The prints were left by male and female donors in depletion 

series, in order to better model a real situation. 
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The morphology as well as the chemical composition of the 

fingerprints have been characterized by Fourier transform 

infrared microspectroscopy (FT-IRMS).  

We started with FT-IR microspectroscopy (FT-IRMS) to make a 

chemical imaging of sweat fingerprints deposited on silicon 

substrates, in order to characterize the chemical nature of the 

deposits. The FT-IRMS measurements have been carried out at 

the SISSI beamline of Elettra.  

Infrared spectroscopy exploits the absorption of the light at 

specific frequencies, characteristic of a given chemical bond. 

Because of this, infrared spectroscopy detects, distinguishes and 

determines the relative amount of nucleic acids, fats (lipids), and 

proteins. The samples have been prepared by leaving fingerprints 

on silicon substrates following a precise pattern of depletion. 

Each donor has to leave his fingerprint for eight consecutive 

times creating an impoverishment scale. 

FT-IRMS spectra have been collected in the Mid-IR regime from 

4000 to 500 cm−1 using a Bruker Vertex 70 Fourier Transform 

interferometer equipped with a blackbody source. The infrared 

beam is sent to a Hyperion 3000 infrared microscope equipped 

with 15x cassegrain optics. Light is detected in transmission 

mode by a single-element Hg-Cd-Te detector, cooled with liquid 

nitrogen. Using knife edge apertures and motorized stage   

chemical maps have been collected by defining a matrix of points 

of 100×100 μm2. Morphologically characterized zones of 
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fingerprints are then chemically characterized assembling maps 

of the collected spectra. 

Data are acquired by co-adding either 256 scans per point, or 512 

scans per point if the sample is particularly poor, at a resolution 

of 16 cm−1. 

Each picture element is not characterized by a unique intensity 

value, but by a full spectrum in the same frequency range 

mentioned above. 

 

Fig. 72:. The FT-IRMS beam line acquires a spectrum for each 

pixel of the sample. 

 

The data extracted must be analyzed to visualize the distribution 

maps of the compounds of interest. This analysis can be 

performed following an univariate or a multivariate approach. 

In the first case the chemical bonds of the compound under 

investigation are considered responsible of the system response, 

as could be the case for the 1655 cm−1 C=O stretch frequency of 

the primary amide (Amide I). 
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The map is then built either considering the signal intensity at a 

given wavelength or calculating the area under a specific spectral 

peak. The second case takes into account the whole spectral 

information contained in the data. Since we know the rough 

wavelength position of the peaks of interest we chose the 

univariate analysis and functional group mapping since more 

representative of the chemistry of the sample. 

 

Fig. 73: (Left) fingerprint seen using visible light; (middle and 

right) maps of two different chemical compounds using FT-

IRMS: proteins (middle) and carboxylates (right). 

 

The collected information needs subsequent processing: once 

selected a window of wave numbers of interest (e.g. from 1700 

cm−1 to 1500 cm−1), the spectrum needs to be corrected for its 

baseline contribution and vertical displacement. 

Fig. 74: (Left) fingerprint seen using visible light; (right) maps of 

a chemical compound using FT-IRMS: lipids. 

 

 

 

 

 

 

 

 

 



 70 

Each baseline corrected spectra is modelled as a sum of Gaussian 

functions with different centre frequencies: we can’t choose from 

the beginning the number of Gaussians to be fitted to the baseline 

corrected data, as some of the spectra show only one Gaussian 

and others have up to six contributions. 

Once each spectrum has been processed, we are able to map the 

contribution of the chemical species of interest based on the 

Gaussian components identified by the previous procedure. 

 

 

 

 

 

 

Fig. 75: (Left) fingerprint seen using visible light; (right) maps of 

a chemical compound using FT-IRMS: lipids. 
5.2 Results and discussion. 
Whilst being in its early stage, synchrotron radiation has been 

used to analyze fingerprints. This contribution showed that 

combining conventional and SR sources FT-IRMS, to describe a 

fingerprint in terms of its morphology and organic compounds 

mapping.  



We identified the protein amide I and carboxylates contribution 

in the fingerprint deposits using FT-IRMS. 

These techniques were tested as alternative imaging techniques to 

be used in order to both preserve the collected items and to allow 

DNA profiling in those cases where all the other classical 

techniques fail. 

Moreover, the chance is given to broad the spectrum of 

information pertaining the trace, not only the morphology of the 

fingerprint, but also its organic compounds and possible 

contaminants content. 

It is granted that the added bonus of giving both a complete 

morphological and chemical characterization of the fingerprint 

will give useful information to better understand the dynamics of 

the crime and to prosecute the criminal. 
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6. Conclusions. 
The scope of the research was an exploration of new and different 

possibilities given to the forensic professionals to approach fingerprint 

development and enhancement from a different and wider perspective, 

which could take in account all the implications related to DNA 

profiling. 

To reach this objective we decided to follow a path given by the applied 

research on electromagnetic radiation. 

Even if latent finger mark are invisible to our personal detectors (the 

eyes), different detectors,  designed for different purposes, may give 

additional information in a non destructive way. 

First of all, we have experimentally verified the detrimental effect of 

cyanoacrylate fuming on subsequent DNA profiling, obtaining two 

immediate deliverables: 1. the suggestion to investigate only optical 

methods for fingerprint analysis whether there is the need of a complete 

DNA profiling; 2. the set up of a tested procedure to obtain some partial 

DNA profile from cyanoacrylate enhanced fingerprints of no value for 

identification purposes. 

In particular, following the abovementioned procedure some high profile 

real cases have been approached, with impressive positive results in the 

10% of the investigations. 

Concerning image spectroscopy the wavelength of the visible spectrum 

suitable for fingerprint visualization were determined, allowing to detect 

latent finger marks on smooth non porous substrates, without altering the 
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surface. The outcomes of this study may orient also the professionals 

towards the selection of the wavelength during visual examinations. 

The basis for further research to develop a cost effective device for 

image spectroscopy for fingerprint application were extensively 

examined. 

Moreover, optical properties of dielettric media were utilized to realize a 

device to capture fingerprint with a novel approach, without any 

interference with the deposited biological matter, which is very 

promising specially with high reflective surfaces. 

In the end the chemical imaging of fingerprint has been exploited by 

means of FT infrared spectromicroscopy, both with conventional and 

with Synchrotron light sources. These techniques could provide not only 

an efficient imaging of latent fingerprint, nevertheless they may deliver 

information regarding contaminants and other substances of potential 

interest. 

   

7.  Future works. 
The research opened lots of possible field of further developing.  

First of all, it may be interesting widen the interval of wavelength studied 

by means of image spectroscopy, especially in the ultraviolet and in the 

infrared fields. Using adequate filter sets, the image spectroscopy device 

may adapt perfectly broad band light source to forensic sciences needs. 

Moreover, it may be remarkable developing a ready-to-use apparatus for 

fingerprint imaging on high reflective dielettric media, considering that 

these types of substrates are common in forensic examinations. 
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Finally, the use of Synchrotron light for forensic applications in 

fingerprint is an on going project which may deliver fundamental 

information on the possibility of fusing data originated from different 

kind of analytical techniques, based on the electromagnetic radiation, not 

only for tracking DNA but also other contaminants of potential forensic 

interests.  
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