

Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN
"SCIENZE DELL'INGEGNERIA"

CICLO XXII

COORDINATORE Prof. Stefano Trillo

WEB DISTRIBUTED COMPUTING SYSTEMS

Settore Scientifico Disciplinare ING-INF/03

Dottorando Tutore
Dott. Boldrin Fabio Prof. Mazzini Gianluca

_______________________________ _____________________________
(firma) (firma)

Anni 2007/2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EprintsUnife

https://core.ac.uk/display/11822703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Intrduction 1

1.1 De�nitions . 1

1.1.1 Distributed computing 1

1.1.2 Web browser . 2

1.1.3 AJAX . 3

1.1.4 Adobe FLEX R© . 6

1.1.5 AJAX and Adobe FLEX R©comparison 7

1.1.6 Web 2.0 . 7

1.2 Research project . 10

1.2.1 Web Distributed Computing Systems 10

1.2.2 Mathematical model 13

1.2.3 Implemented solution comparison 13

2 Architecture 15

2.1 Client . 15

2.2 Server . 16

2.3 Network communication . 17

2.4 Data . 17

2.5 Reingegnerizzazione . 18

3 Implementation of the distributed solution 21

3.1 Problems . 22

3.1.1 RSA cryptosystem crack 22

3.1.2 Pearson's correlation 23

3.2 Computation client . 24

3.2.1 AJAX Client . 24

3.2.2 Flex Client . 25

3.3 Server . 26

3.3.1 Scheduling . 28

3.3.2 Recovering . 28

i

4 Metrics and measurement 31

4.1 De�nitions . 31
4.2 Metrics . 32

4.2.1 PTR . 33
4.2.2 DER . 33
4.2.3 TER . 33
4.2.4 Metrics relationships 34

4.3 Data logging . 35

5 Experimental results 39

5.1 Testing environment . 39
5.2 Metrics comparison . 40

5.2.1 RSA Cracking . 40
5.2.2 Pearson's correlation 41
5.2.3 Results . 42

5.3 Implementation comparison 43
5.4 Results . 47

6 Mathematical model 49

6.1 Model parameters . 50
6.2 Model description . 51
6.3 Examples . 55

7 Conclusions 59

7.1 Summary of the research work 59
7.2 Ulteriori sviluppi . 60

Bibliogra�a 65

ii

List of Figures

1.1 Comparison between the conceptual schemes of a standard
web page and an AJAX application 4

1.2 Web 2.0 map - Web 2.0, fundamental concepts, applications e
sites - from Wikipedia . 9

5.1 Crunch selection from the database 44
5.2 Distribution of computation time for the AJAX client data . . 45
5.3 Distribution of computation time for the Flex client data . . . 46

iii

List of Tables

1.1 AJAX vs Flash/Flex comparison table [10] 8
1.2 Web 1.0 e Web 2.0 key concept evolution. 10

5.1 Metrics: factorization and correlation 41
5.2 Average time detected . 44
5.3 Metrics calculated by type of client 46

v

List of code

2.1 scheduled function . 20
3.1 AJAX scheduled function . 25
3.2 Flex scheduled function . 27
3.3 getCrunch function . 28
4.1 tget java implementation . 36
4.2 tget php implementation . 37
4.3 tpost java implementation . 37
4.4 tpost php implementation . 38

vii

Chapter 1

Intrduction

This �rst chapter presents the problem studied during the research work con-
cerning the usage of web systems to perform distributed computing, making
some preliminarly remarks on some propaedeutics de�nitions before describ-
ing the project developed during the study course.

After the introduction it will be presented the research objectives, giving
the details and the solutions developed for the implementation of the realized
and employed system.

Then data collected for the studied solutions will be shown, together with
the summary and comparison of di�erent test cases in di�erent situations
and con�gurations, underlining measurements and convenience values, those
values that make the distributed system usage convenient compared with the
direct solution.

After the system de�nition and implementation the focus will move to the
mathematical description of the studied problems. This part took to the de-
velopment of a mathematical model to identify and describe di�erent classes
of problems, to discover feasibility, convenience and resolution performance.

The treatise, in conclusion, will present real applications and �elds where
the system could be conveniently emplyed with good performance of resolu-
tion.

1.1 De�nitions and preliminar concepts

1.1.1 Distributed computing

The term distributed computing states for the resolution of a problem dividing
it into a number of smaller parts, called sub-problems, each of them is solved
separately by a di�erent machine (or CPU) that compute the sub-problem

1

Chapter 1. INTRDUCTION

solution in a parallel and independent way.
The results obtained by the computation, or in other words the sup-

problem solutions, are then collected and combined together by another ma-
chine, typically a server machine, that �rst decomposed the original problem
into the sub-problems.

The main �eld of application of this kind of approach is the solution of
complex problems, those problems unsolvable in practical due to the amount
of time required to �nd the solution with a single CPU, doing the computa-
tion monolitically.

By dividing the original problem into more smaller parts there is the
possibility to make the computation of the single sub-problems parallelized,
in fact singles machines (CPUs) partecipating to the computation can run
independently from each other while a single machine has to compute the
solution linearly, under the hypothesis of a single processor.

It comes out, obviously, that the computing power of a single machine
is constraind by the available technology, while on the �eld of distributed
computing the constraint is represented by the number of available clients,
that is looser than the �rst.

Furthermore, on the other hand, it is not always possible to utilize dis-
tributed computing solutions to solve all kind of problems: there are classes
of problems, in fact, that can't easily divided into separate sob-problems, or
even not separable at all.

Finally, thare are classes of problems that give optimal performances
with this approach and other classes that need �ne tuning to be solved in a
conveninet way, as exposed hearinafter.

1.1.2 Web browser

The web browser is well known as the main hypertext navigation tool. In
recent years it has further developed to process a wide range of documents,
written in a growing number of di�erent languages and markup standards.

The role of the browser into this research project has a wider meaning:
it is not only the browsing tool but also the limits and the container for
the whole application. It is not possible for the application developed to
overcome the boundary imposed by the browser process [1, 2].

This constraint is very important and has to be taken into account the
fact that there are a number of limitations in using machine resources through
browsers, in particular it is not possible to control external resources out of
the browser sandboxes boundaries. It is not permitted to have control over
the performances using cpu loading measurements or to access local machine
resources not directly included into the current document.

2

1.1. DEFINITIONS

To avoid excessive limitations it is necessary to exploit the available lim-
ited resources and design the system in order to let it to be as autonomic as
possible so it does not need any external resources.

1.1.3 AJAX

AJAX is an acronim that states for Asynchronous Javascript and XML. It
has been introduced by Jesse James Garrett of Adaptive Path [3]; it is not
a true new technology in the proper term sense but rather an integration of
existing technologies to obtain new functionalities.

The web application concept changes: the application is not only a set of
web pages linked together by a hypertextual navigation logic following a pre-
determined path but instead something more similar to a stand-alone desktop
application, with all the advantages in terms of usability and functionalities
(see �g. 1.1).

The more characterizing concept of the old approach is the loss of the
current view. When a hypertextual link is clicked, a form sent or any other
action performed the e�ect is to be transferred to a new page, statically or
dinamically generated, but always with the e�ect for the user of loosing the
page view for a certain time, while the new resource is loaded. This e�ect is
called �ickering and mainly depends on the network speed and congestion:
the slower the network is, more this e�ect is underling and evident.

AJAX reinvent this concept, exploiting in a new innovative way the inte-
gration of technologies to create clients that are not a�ected by this limitation
in usability.

Using functionalities o�ered by Javascript language, combined together
with DOM the Document Object Model (DOM) and the Browser Object
Model (BOM) it is possible to control the document hierarchy and com-
position and also the browser behaviour programmatically.

In particular, accessing the DOM via javascript it is possible to modify
the current document structure at runtime, using for example HTML infor-
mation dynamically generated on user events, computation results or other
conditions.

The �ickering e�ect can be avoided and the user interface become rich,
increasing interactivity in the direction of a desktop application user experi-
ence [4].

Ajax rich client

The richness of a client built with AJAX technoloies derives from the concept
ofRIAs, rich internet applications, that indicates a web page based applica-

3

Chapter 1. INTRDUCTION

(a) Web page (b) AJAX Application

Figure 1.1: Comparison between the conceptual schemes of a standard web
page and an AJAX application

tion that has an advanced interaction model with the end-user, sensitive to
di�erent kind of inputs and characterized by fast and intuitive responses to
user actions [5, 6, 7].

To better give the idea the goal of a rich ajax client, and more generally
of a rich internet application, is to resemble to an application such as a
spreadsheet or a word processor, in terms of user action reactivity.

The important di�erence between a desktop application and a web ap-
plication is on the fact that while the �rst typically executes into a closed
environment, the second executes into a client-server environment, where
users interacts with clie client-side part of the application.

The client-side components, in turn, communicate with other separated
processes, generally executed in a completely di�erent environment.

Focusing on the server side of tha application, the modern multi-tier
architectures divide the server into many di�erent components, usually not
visible from the external side of the application itself.

AJAX application, acting as an �empty� client (thin client [8]), interacts
with server side viewing it as a black-box, without any knowledge over the
internal architecture, neither having the necessity to.

Considering the interaction between server and client it has to be con-
sidered also the network infrastructure: while a desktop application all the
resources and processes used are local, in a web application the network
plays an important role acting often as bottleneck in presence of slow and
unreliable communications.

This is the typical issue to solve when designing and implementing inter-
active and application that have to be responsive for the end-users inputs.

The heart of AJAX is the possibility to create Javascript objects that

4

1.1. DEFINITIONS

represents asynchronous HTTP requests. Thanks to this kind of object it is
possible to communicate with remote servers to recover many types of data.

The asynchronous characteristic permits moreover to avoid the current
page refresh and �icker like in the usual hypertextual navigation style.

All the problems presented has to be faced when implementing a �rich�
client to obtain fast responses to the user action and inputs and to model
many di�erent type of interaction, to build applications based on a model
that is as mych similar as possible to a classical �monolitical� desktop appli-
cation instead of the hypertextual browsing one.

All the concepts presented can be summarized into the so called 4 AJAX
principles [9]:

Browser encapsulate application, not contents: a standard web appli-
cationbased on hypertextual web-pages navigation acts as an empty
terminal without any knowledge of the current session.

All the session information are hosted by the server that has the task
to create session information when user logs-in on the �rst page, then
it updates the session information according to the user actions and at
the end, when the user logs-out or closes the browser (and consequently
the connection), it destroys the session information freeing resources
associated.

In this scenario the user has no active part in all the work�ow, all the
process is completely transparent to him.

Ajax adds a new element to the scene: the browser has an active part
in the work�ow hosting parts of the application logic using Javascript.

It is not necessary to reload the page during the various interactions
because it is possible to update it without refresh through AJAX, so it
is possible to keep tracking of user actions and choices during all the
session time, like in a classic desktop application.

The server sends data, not contents: the code of the application logic
of the client side is sent a single time at the beginning of the session in
a single solution.

After the �rst client download, since all the necessary application code
is locally present it is su�cient to transmit between client and server
only the chages and the application data.

This can be done by transferring only portion of code for the client
sub-functionalities or data fragments to insert into the document.

5

Chapter 1. INTRDUCTION

Continuous and �uid interaction: with classic web pages the user input
is restricted to hypertextual links and form posting.

Those reduced possibilities limit the �eld of interactions between user
and application.

AJAX, on the other hand, permits to exploit at best the interaction
possibilities like keypresses, drag&drop, mouse movements.

All these option add at �rst interactivity, as stated before, and then
also the option of a di�erent management of the application logic.

For example, when browsing a page a form post breaks the user work-
�ow because of the page refresh; using other events, such as browser
and mouse ones, it is possible to avoid the work�ow break and keep
the user experience linear.

Programming discipline: AJAX is real programming, with rules to re-
spect respect,patterns and best practices

Client has its speci�c own logic embedded into page that continue to
work until user closes the window.

The application has to function without error for the whole operating
time with no internal bugs but also without interferee with the host
browser.

The same attention payed to the server application coding has to be
employed to build up a robust and functional client that correspond to
it. In particular it has to be noted that the code will not be on the
server machine so it will be out of the server-side control.

1.1.4 Adobe FLEX R©
Adobe Flex is a free of charge, high productivity opensource framework that
can be used to build up interactive web application with uniform imple-
mentation over the principal web browser available, desktops and operative
systems, based on the popular Adobe Flash Player runtime.

Usually the term Flash mean the well known player or the development
IDE; Flash is actually a powerful application platform.

Flex, compared with the Flash IDE, is a more �exible development frame-
work focused on the creation of application for the AIR and Flash runtimes.

Moreover, Flex opens up new design possibilities increasing common web
browsers capabilities with the Adobe Flash technology that is at the base of
Flex.

6

1.1. DEFINITIONS

The Flex technology is now available on 2 di�erent environments: Adobe
Flash Player and Adobe AIR, who permits to Flex application to be executed
on the user desktop, outside the common browser boundaries for the �ash
environment [10].

The framework capabilities permit to create powerful RIAs (rich internet
application), a concept already intrduced before, that give a user experience
similar to a desktop application.

The 2 main components of the development language are:

• MXML (Macromedia Flex Markup Language) � used to de�ne the user
interface elements and to de�ne the data binding

• ActionScript (ECMA compliant scripting language) � this is used to
de�ne the business logic and to manage the interactions between the
various components and the data.

1.1.5 AJAX and Adobe FLEX R©comparison

In this section is presented a comparative table that shows the di�erences
and the peculiarities of the 2 di�erent languages used in the development
(tab. 1.1)

1.1.6 Web 2.0

The termWeb 2.0 comes out more or less in 2004, when it has been introduces
at a O'Reilly Media conference [11, 12].

The terms states for a new web generation, with new applications and
new services, linked together by a new web use philosophy.

It is not concerning about new programs or languages, nor architecture
changings or upgrades of the present network in use: the focus this concept
introduces is on the evolution of the way the network is consedered and used.

There are no new techlogy to apply but rather a new way to intend those
already developed and widely used, integrating together to obtain new and
more advanced functionalities, more powerful and easy to use.

The web becomes a platform, like a universe of principles and best prac-
tices to utilize in development and usage of the various applications (see �g.
1.2).

At the beginning the bases of this new kind of view the web environment
have been de�ned, �nding some comparison points between the ��rst� version
of the network, called by analogy Web 1.0, and this new kind of approach.

7

Chapter 1. INTRDUCTION

Description AJAX Flash/Flex
Animations Animations support per-

mits to developers to un-
derline state changes, fo-
cus the user to the naviga-
tion path or simply to give
a better navigation expe-
rience and entertain the
user

Limited support to linear
animations

Extended support

Bitmap manipulation

• Lets the user to mod-
ify bitmap graphics in
a real-time way, directly
on client side

• Gives to the user the
�exibility to create vi-
sual e�ects, distorsions
and variation changes di-
rectly at runtime

• Helps in supporting an-
imation (moving e�ects
and image distorsion)

Partial non-standard
support for Opera, Fire-
fox and Safari browsers.
Achievable through server
side processing

Natively supported

HTML Rendering Under some circumstances
and application it is use-
ful to generate and present
contents directly into che
application. User can
create a potentially high
complexity HTML content
also for other users

Full support Limited support, it is not
possible to utilize HTML
tables, JavaScript, frames
and other components

Video and Audio Streaming Video contents are at
present those of majar in-
terest. There are a num-
ber of video contents on
the web: tutorials, busi-
ness communications, or
simply entertainment.

Limited not native sup-
port, work in progres for
the new HTML5 stan-
dard integration. Need to
use external plugins, such
Quicktime, Windows Me-
dia Player or Flash Player,
and control them with
AJAX

Supported with variable
video quality. Video and
audio capture also sup-
ported.

Development environments An advanced development
environment give the de-
velopers tools to create
code quickly and so helps
to di�use the choosen
techlogy widely.

• Google Toolkit - free

• Echo 2 - free

• jsLINB - free

• Rico - free

• Zapatec - 5400$

• many more, both free
and commecial

• Flex Builder (Eclipse
plugin) - 500$

• Flash CS3 - 700$

Runtime The runtime is the en-
vironment that takes the
code and convert it into
actions. Inconsistencies,
bugs and problems related
to performances can con-
siderably degrade the user
navigation experience.

Each browser has a proper
internal engine to inter-
pret the code, under de-
�ned standards.

Unique platform, common
to all di�erent browsers
that gives a plugin run-
time to put into various
implementations.

Table 1.1: AJAX vs Flash/Flex comparison table [10]

8

1.1. DEFINITIONS

Figure 1.2: Web 2.0 map - Web 2.0, fundamental concepts, applications e
sites - from Wikipedia

9

Chapter 1. INTRDUCTION

Web 1.0 Web 2.0

DoubleClick =⇒ Google AdSense
Ofoto =⇒ Flickr

Akamai =⇒ BitTorrent
Britannica Online =⇒ Wikipedia

Siti personali =⇒ Blog
Speculazione sulla regis-
trazione dei domini

=⇒ Ottimizzazione dei motori di
ricerca

Pagine viste =⇒ Costo per clic
Pubblicazione =⇒ Partecipazione

Content management systems =⇒ Wiki

Table 1.2: Web 1.0 e Web 2.0 key concept evolution.

The main elements of this 2 di�erent version of the web have been iden-
ti�ed with the most important sites and services, reference of the whole
Internet community.

Those summarized on table 1.2 are only some of the di�erences found for
the 2 di�erent web versions.

The main aspect that come out from the analysis of the comparison of
services of the same type is the way the service is intended when moving from
the �old� Web 1.0 to the new Web 2.0 version: the focus is on the services and
information integration to create a dynamic platform to navigate, di�erent
from the concept of static web page.

The debate over the Web 2.0 is still opened and heated, there is also the
question if this concept really exist, since in fact there is no new technology
and any new thing is introduced under the pratical aspect, this is only a new
idea and a way of de�nition.

A remark point over the Web is the activity and the debate it generates:
this stimulates the continuous innovation toward new ways of use the network
to provide new services that are innovative, useful and expecially easy to use.

1.2 Research project

1.2.1 Web Distributed Computing Systems

The reasearch project comes out from the development of a distributed com-
puting system that uses common web browsers as client, focusing on the fact

10

1.2. RESEARCH PROJECT

that no speci�c client installation is necessary.

Literature on distributed computing o�ers multiple cues of study [13, 14],
and many solutions have already been implemented, such as [15, 16].

Many works focus on some particular �elds covered by the distributed
system world: for example relating to the network performances, in terms of
connectivity [17] or management of bandwidth [18].

There are solutions based on the usage of virtual machines [19], in com-
bination with overlay networking and peer-to-peer techniques to create net-
works of virtual workstations for high-throughput computing.

Many systems based on client-server design pattern have grown up in
recent years, for example the Folding@home project [20] of the Stanford
University Chemistry Depart- ment, or the SETI@home [21] of the Space
Sciences Laboratory at the University of California, Berkeley and also the
LHC@home [22], a project by the CERN for simulation on the new Large
Hadron Collider.

However, literature lacks on the �eld of web distributed computing sys-
tems, those based on web browser computation capabilities.

This is the reason that guided the PhD research: study new possibilities
and in particular new ways to do distributed computing, relying on web
browsers potentials on the client side to solve various kinds of problems.

The fact this �eld is relatively unexplorated has obviously pros and cons:
cons are, as stated, mainly the lack of resources to base on to develop the
study.

Pros are surely the possibility to explore a completely new �eld, with a
wide range of paths to follow, starting from the beginning with de�nitions,
designs and implementations.

This particular characteristic guided all the research work and also has
required the development of new speci�c solutions, based on AJAX and Flex
technologies.

The developed solutions have been then compared and analyzed, to dis-
cover the various implemented solution performances, to �nd if among this
solutions there is one better than the other and in case which of them.

A mathematical model have been developed based on the research study
and on the implemented solutions, to characterize di�erent classes of prob-
lems.

Then identy if a particular problem can be e�ciently and conveniently
solved with good performance with the developed system before implement-
ing it, but rather using results of the model characterization.

A brief description of the various themes developed follows, before de-
scribing with detail each single argument in subsequent chapters.

11

Chapter 1. INTRDUCTION

Web browser computing

The main argument of the research is, as mentioned, the development of a
distributed computing system that could function embedded into the com-
mon web browsers.

Under this assumption it is not neccessary any installation of additional
client and it is possible to exploit, to the contrary of other distributed solu-
tions, a large number of potential client, in practice every machine connected
to the Internet network and used to browse web sites.

The developed solutions, both in the AJAX case and using the Abode
Flex technology, had to focus particularly on 2 fundamental aspects:

• limited computing ability provided by both AJAX and Flash/Flex vir-
tual machines, overall the lack of multithreading.

• the constraints on the resources usage. The system can not interfere
with the user operations. Computation runs during the user navigation,
so not on the idle intervals but during the normal activity. The com-
putation runs in backgroung and obviously can not occupy resources
user is employing.

Those characteristics forces the adoption of some particular solutions in
the de�nition of computing cycles, details over this reenginering has been
implemented will be shown in next chapters.

The practical development studied the feasibility of the system over the
problem of large integer number factorization, that is one of the fundamental
steps for the RSA cryptosystem cracking algorithm.

This kind of problem, in fact really simple and trivial, started the imple-
mentation of the whole system.

The system has been then enhanced and tuned by solving another prob-
lem: the correlation computation over samples relative to a genetic database
using the Pearson's correlation formula.

The choose has not been random: this kind of problem, the correlation
computing, needs the transmission of larga data packet in front of a relatively
limited amount of computation over this data.

Moreover it is worth to underline that this kind of solution could be
inserted into the �eld of autonomic systems [23, 24], because of it has the
ability to adapt its behaviour to the environment for both server and client
components, increasing reliability and e�ciency of the system itself.

12

1.2. RESEARCH PROJECT

1.2.2 Mathematical model

Together with the implementation of the distributed system it has been stud-
ied also the characterization and the classi�cation of problems.

Using among the various input parameters also the resolution algorithm
implementation it has been realized a mathematical model to describe perfor-
mances and conveninence of a particular implementation, with the objectives:

(a) identify the convenience of a particular implementation prior to realize
it, obviously with the intent to save time and resources, focusing on
implementation that are guaranteed to give better results.

(b) optimize a particular algorithm acting on elements that can modify the
convenience values of the system.

Measurements

A set of parameters has been de�ned to measure the overall system per-
formances. These parameters are then been used into the mathematical
description of the various problems and for its optimization.

1.2.3 Implemented solution comparison

After the implementation of the whole system with 2 di�erent languages, the
�rst using AJAX technology and the second with Adobe Flex language, the
solutions have been analyzed and compared to each other.

The �nal research goals can be summarized as follow:

(a) Identify the best solution, or in other words which technology is better to
employ to build up the system. Identify pros and cons of the technologies
to exploit them to obtain better performances, under di�erent aspetcs.

(b) Demonstrate that the choosen technology used for the client-side compu-
tation is completely independent from the technology used for the server
side part that has the task to provide data, manage the persistence and
the transmission.

The following chapters will show details about:

• Realized system architecture: client, server, network elements and data
persistence.

• Studied implementation characteristics, with details about the 2 prob-
lems analyzed during the development and the tests of the system.

13

Chapter 1. INTRDUCTION

• De�nition of metrics used to measure the various system parameters

• Experimental results obtained during test execution performed in an
Internet environment.

• Mathematical model developed to describe and categorize problems,
with details about the model construction and with a particular focus
on the algorithm and the problem, used as input for the de�nition od
the system dimensioning.

• Conclusions, with the summary of the results obtained during the re-
search work and some guideline proposals on the implementation and
problem dimensioning.

14

Chapter 2

Architecture

The general application architecture follows the classic client-server model:
client, embedded into a web page, requests data, computes locally the solu-
tion and sends back to the server the result of the computation.

This process is iterative and continues as long as the client keeps the
connection alive, or in other words, the browser opened on the pae hosting
the client.

The server side has the task to coordinate clients work, distributes compu-
tation data to the various clients, keeps track of already computed parts and
of the solutions and recovers lost data when errors or malfunctions happen.

It is worth to underline that this kind of approach does not rely on the
compational power o�ered by the single client, instead it relies on the number
of machines that take part in the computation process.

Every single processor is really barely used, to ensure that end-users do
not have any kind of interference in their normal usage of computer while
the computation takes place.

Therefore the whole performances are given by the extremely large num-
ber of potencial clients instead of the single machine compation power.

2.1 Client

The client part of the service, implemented in 2 di�erent versions with both
AJAX and Flex, is the object that has the task to solve the single sub-
problem, called �crunch�.

Exploiting the Javascript functionalities for the AJAX solution and using
Actionscript in the Flex implementation an iterative dialog between client
and server is established, based on timed scheduling.

At every iteration the client query the server side to obtain data to com-

15

Chapter 2. ARCHITECTURE

pute and process those data according to a cycle schema that permits to
control the execution speed, to avoid to consume too much resources.

At the end of computation the client query again the server side to send
back proccess results and repeat the iteration from the beginning.

This process is controlled by setting some temporal parameters for the
cycle to keep low the whole time necessary to perform a complete request-
response cycle.

In particular the whole cycle time has to be kept under the limit of a few
seconds, so it is possible to ensure that at least 1 complete computation cycle
is performed by every user that connects to the pages hosting che client.

2.2 Server

Server side of the application has the same importance, since it has the task
to manage the partitioning process of the problem, called �crunching�.

The server also has to manage the solutions collecting process and their
persistence, needed to build up the overall problem solution after all crunches
have been solved.

The task of the server component of the application can be resumed
with the �scheduling� of the problem, that has the following components, as
introduced above:

• crunching: the problem has to be parted into subproblems (crunches)
each of them is assigned to a di�erent client that connects to the ap-
plication.

This process can be dynamic, so did at runtime when the client query
for a cruch to solve, or static, did by preparing and saving crunches
prior to start their distribution to clients.

• results collection: this process includes all the management of crunches
assignement to clients, the sending operations, the management of com-
municatio errors both sending and receiving data, the management of
lost crunches recovering, those for whom there is not a solution avail-
able, because of errors in client, server o transmission.

• results consolidation: once single crunches results are collected it is
necessary to compute the origianl global problem solution. In fact a
local (crunch) solution not necessary is a global (whole problem) one
so single subsolutions has to be treated to obtain the �nal solution.

16

2.4. NETWORK COMMUNICATION

2.3 Network communication

All communications between browser hosted client and management com-
ponents on the server side take place through absolutely standard HTTP
requests sent by appropriate objects that allow to perform an asynchronous
non-blocking communication between client and server.

The asynchronous non-blocking communication is another of the key as-
pects of the research, since one of the main goals of the whole system is
the background execution of the processes and data tranfer is one of the
components of them.

When usign Javascript the object that has the task to perform the asyn-
chronous requests is the XMLHttpRequest: this kind of object create
exactly asynchronous requests that allow to the client to communicate with
the server side without the need to fully reload the displayed page.

The user can continue browsing without any intrusion in his operations
while the embedded client can continue its tasks.

On the other hand, the analogous element in the Flex environment is the
URLLoader object, which has the same functionalities and behaviour for
Flex of the XMLHttpRequest for Javascript.

A XMLHttpRequest object is able to natively manage XML content but
e�ectively can vehiculate any type of content, from HTML to Javascript code
to various text format and more.

It has to be pointed out that with this kind of request it is possible to
send and receive among client and server only portion of data, XML, HTML
or other, limiting to the minimum the network tra�c.

In fact only interesting data are sent without need to provide complete
content at every request.

2.4 Data

Last aspect to consider about the application, but not the least important
one, is the data management for the application: server side dat persistence
has to be guaranteed to keep track of the problem, of the computation, of
the found solutions and of all other complementary data needed to manage
crunches.

The persistence is guaranteed by a RDBMS (Relational DataBase Man-
agement System) with the following tasks:

• sto the problem data;

17

Chapter 2. ARCHITECTURE

• store current crunches data. The server side keeps track of the problems
currently assigned to the various clients, to be able to e�ectively manage
the di�erent errors that could happen, the redundance and in general
all the aspects necessary to guarantee the correct resolution of all the
problem crunches;

• store data concerning crunches in error or without solution, to be able
to reassign them to another client;

• store the solutions that have been found by the clients.

Obviously it has to be underlined also the other data component that is part
of the system: the packets transmitted between server and client.

The choosen format is XML because of its natively support by both AJAX
and Flex objects, it is standard and it is also quite easy to implement the
serialization and deserialization processes.

2.5 Algorithm re-engineering

Virtual machines embedded into browsers, relatively both to the Javascript
browser engine and to the Flash plugin environment do not have the ability
to exploit multithreading.

This fact takes to another one more importat and more constraining for
the application developed: it is not possible to rely on a classic standard
loop, such as for and while loops, to solve the problem.

Using a standard loop, in fact, the browser would look hanged until the
whole cycle completes.

This is obviously a not acceptable scenario for an application with back-
ground activity as keyword: the system has to perform all its operations
without impede the machine performances for the foreground user activities,
using �rst of all limited resources to perform its tasks.

These fact made necessary a re-engineerization of the algorithms that
perform the computation of a single crunch solution client side.

The aim of the re-engineerization is to �nd a way to control the CPU
loading and the execution speed of the client application, to ensure that no
application hangs or malfunctions happen to the browser while the compu-
tation take place.

So the focus returns again to the main aspect of all the research work:
the need that the client end-users do not have any feeling about the compu-
tation taking place because this activity has always background non-invasive
characteristic and remain always completely transparent for the user.

18

2.5. REINGEGNERIZZAZIONE

Loop instructions are used with very rarely exceptions in every problem
resolution due to the iterative nature of almost all solving algorithms.

The classic while loop has been reviewed so it executes only a small �inner
cycle� in a scheduled iterative way, so between 2 di�erent schedulings there
is a certain time of pause in the computation and so the control over the
resources is released.

This �atomic� cycle has a little size and is composed by few instructions.
Its size is dimensioned to be executed in fractions of second, so the CPU

resources are occupied monolithically for a time not appreciable by the user,
then released for a while before restarting the execution.

By using this expedient and releasing the CPU execution control to the
browser after a very limited interval the user experience and feeling is not
deteriorated since the browser is always responsive to the user inputs.

To better describe the system in the rest of treatment it is convenient to
de�ne in a more rigorous way some terms only introduced until now:

• Crunch: de�nes the individual subproblem, fundamental unit sent
from the server to each client and resolved separately on each request.

The division of the original problem into crunches can be done in many
di�erent ways, depending on the type of problem, the size of the prob-
lem and its termination complexity. All these aspects must be consid-
ered to divide the original problem into crunches in a timely manner,
convenient for the resolution.

• External loop: in practice this is the whole resolution algorithm of a
crunch. Exactly as stated by the de�nition, this element is the outer-
most component of the resolution algorithm, which is scheduled when
releasing control between a cycle and the next.

• Inner loop: specular to the external loop, inner loop represents the
atom of computation, or in other words the part of algorithm executed
monolithically by the computation client.

• Operation: this term indicates the base instruction of an inner loop.
Considering an operation one of the 4 fundamental one among addition,
subtraction, multiplication and division, all operations can be imple-
mented by these four, considering the number of base operations that
compose more complex instructions.

Now that the concepts necessary to the treatment have been clari�ed it
is possible to move on to detailed discussion of the re-engineerization applied
to the algorithms.

19

Chapter 2. ARCHITECTURE

This re-engineering consists in the resolution of single crunch through the
use of a double loop which includes both external cycles and internal cycles.

It should be noted that this double loop does not increase the whole
termination complexity of the algorithm because it represents only a breaking
of the single cycle of the original resolution of the problem into external and
internal cycles de�ned above.

Each execution of the external loop is composed of an inner loop and a
break and is iterated until the termination of the crunch under examination.

In contrast, the inner loop is used to control the CPU load on the client
host that is solving a particular crunch of problem.

As mentioned above the inner loop has to be considered as the computa-
tional atom executed by the client.

Carried out a number of loops, number that depends on the complexity
of the cycle, the computation of inner loops stops and the control is released
from the scripting engine (AJAX or Flex) to browser that contains it.

The performance of inner loops must be designed to comply with a rela-
tively small execution time , time in the order of fractions of second, inter-
rupted by a pause time, with subsequent release of control to the browser,
so the user does not su�er the in�uence the progress of calculation.

With reference to the pseudo code listed in 2.1, the algorithm of the client
application is structured by an external loop consisting of kA iterations, where
each iteration consists in turn of by an inner loop composed by kA iterations
followed by a break with consequent release ot the control lasting for tp
seconds.

Code 2.1 scheduled function

for(kB iterations) {

for(kA iterations) {

solution code

}

pause tP

}

20

Chapter 3

Implementation of the distributed

solution

This chapter presents details about the implementation of the distributed
computing solutions studied.

Here are the details of implementation of the server side, of client side,
about the components of the transmission and the persistence, as presented
in a more theoretical way in the introductory chapters.

The focal point certainly regards the client component architecture, as
this part integrates the major points of innovation, the concepts of the al-
gorithms re-engineering and of the particular approach to solution of the
problem presented in this research.

Before delving into the architectural and implementative details is appro-
priate to emphasize the concept of independence of the approach studied by
the particular technology used to implementation: a demonstration of this
feature is underlined by the two di�erent implementations realized, the �rst
using AJAX and the second with Adobe Flex.

This chapter will show 2 di�erent practical solutions implemented during
the research work to test the general feasibility �rst and then the practical
behavior of the system.

The server component, also independent of the technology implementa-
tion, includes the scheduling logic, whose implementative space is extremely
broad, as we will see from the simplest iterative assignment to adaptive logics
aimed to achieve the best performance.

21

Chapter 3. IMPLEMENTATION OF THE DISTRIBUTED SOLUTION

3.1 Problems

The architecture of the web distributed system has been implemented on two
di�erent problems, each with its own characteristics features:

• RSA encryption system crack

• Pearson correlation analysis on genetic samples

3.1.1 RSA cryptosystem crack

The breaking of the RSA encryption system [25, 26] can be reduced in essence
to a factorization problem of a � large�integer n, product of two primes p and
q.

This encryption system, which �ts into the category of asymmetric key
systems, uses a public key that is not secret which can be used to encrypt
information that can then be deciphered only by using the corresponding
secret private key.

With appropriate simpli�cations of the case the public key is the number
n, the product of the two primes p and q, while the couple (p, q) is the secret
private key for decryption.

The security the encryption relies on is the di�culty of factorization of
integers that are the product of two prime numbers, the more the 2 primes
are great the more will be di�cult to �nd the 2 prime factors that make it
up, or in other words, the greater the time required to �nd them will be.

On the other hand, it is obvious that once factored the number n into
its factors p and q the secret key to decrypt a message encrypted with your
public key becoma available to discover the content of an encrypted message.

After this mandatory brief introduction, and then traced the problem
of break the encryption algorithm to a problem of factorization, it should
be noted as at present there are no algorithms that allow to decompose a
number into its prime factors e�ciently and this is another point the security
of the RSA cryptosystem relies on.

The research work aim was not to �nd and implement sophisticated al-
gorithms to solve this problem, since the theme of the study is not to �nd
algorithms with speci�c particular performance.

The problem has been entered into the system using the most obvious
solving algorithm, the brute force one, trying to factorize the public key with
all possible odd divisors.

Each client participating in the resolution seeks to factor the number n
trying all the odd divisors of a given range, which is precisely the assigned
crunch.

22

3.1. PROBLEMS

3.1.2 Pearson's correlation

The second problem addressed is to calculate the correlation between pairs
of genetic samples taken from a database with the aim to identify possible
similarities in order to �nd for example patterns of disease or mutations of
the DNA.

In this case the problem is to assess the value of correlation between all
possible pairs of samples of the database, identifying those with a value into
a speci�c range that indicates a certain similarity between samples.

The resolution algorithm implements the Pearson's correlation formula
[27]

r =

∑
X, Y −

∑
x,
∑

Y
N√

(
∑

X2 − (
∑

X)2

N
), (
∑

Y 2 − (
∑

Y)2

N
)

(3.1)

While the �rst problem, based on the factorization, has been used as
the basis for development, taking advantage of its intrinsical simplicity, the
problem of calculating the Pearson's correlation is certainly more interesting
from the standpoint of the system.

The calculation of the correlation, as discussed in detail hereinafter, is an
example of an application that stresses much the system and highlights any
limitations in terms of calculation on one hand and of transfer data on the
other.

It is quite obvious that the system limit is reached when the data transfer
time is greater than to computation.

Spending more time in the transfer of information rather than computing
the solution of subproblems makes system not convenient, in favor of a direct
resolution.

In a �rst work [28] published on this subject was described in detail the
implementation of the system with AJAX.

Both solutions of two problems have been implemented using the re-
engineering cycles of the algorithm, using the iterative client re-scheduling
into the crunch resolution components.

In order to compare the two implementations with the di�erentl chosen
languages, AJAX and Flex, the solutions implemented have been translated
from one language to the other in order to obtain objects comparable in the
measurements.

The two environments, Javascript and Flash/Flex, o�er solutions based
on approaches that are very similar, so it was easy to achieve essentially the
same implementation with the two di�erent languages, of course unless the

23

Chapter 3. IMPLEMENTATION OF THE DISTRIBUTED SOLUTION

speci�c characteristics of individual language which however, did not create
particular problems in the implementation process.

3.2 Computation client

In this section is described one of the most important components of the
whole system designed, maybe the most important one at all: the computing
client embedded into the web pages that executes the background computa-
tion activities during the user navigation.

Details of the 2 di�erent solutions developed follows, with the description
of expedient used, common points and di�erences.

3.2.1 AJAX Client

Ajax technology is certainly one of the most prominent among those counted
in the world of Web2.0, although not in itself something new but rather a
union of other web technologies existing use with a much more developed.

Keeping �xed the idea to maintain and follow the pivotal point of Web2.0
philosophy, that is the integration, and of course the basic principles that have
moved all the research work, namely the lightness and non-invasiveness, the
appearance of the client is that of a common banner, inserted in di�erent
pages very easily.

The main features of the client can be highlighted as follows:

• the client occupies only a small fraction of the available space, for this
reason it was chosen to show it as a banner, that can be plugged in so
as not to occupy the foreground areas reserved for the main contents
[29].

• The basic scheme of the pages is not distorted, the client is inserted
into appropriate areas for the layout chosen, then without the need to
provide adequate locations in which embed the computing client.

• visibility on the client is maintained in any case, details on the crunch
resolution process are always available to the user and are also available
controls that allows user to change the settings for the calculation.

• The client is extremely lightweight due to the background characteristic
of the computation, is essential that the client commitments minimizing
the CPU usage.

This feature has the double advantage, beyond the limited use of the
CPU, also that client could be transferred very quickly because of its

24

3.2. COMPUTATION CLIENT

size, and thus a�ects very marginal on the timing of data transfer, both
for information contained on these pages, and with regard to the crunch
data.

The code listed in 3.1 presents the basic skeleton of AJAX client for the
resolution of a crunch. The computation end conditions are:

• �nished : the solution of the crunch has been completed, the function
ends and it is possible to send back to server results and then a new re-
quest, which in turn will call the function f again, starting the solution
process for the next crunch.

• ended : the computation can always be interrupted acting on the user
controls on the banner of the client. This operation should always be
permitted so end-users have always freedom of choice whether or not
to participate to the resolution of the problem.

Code 3.1 AJAX scheduled function

function f(params) {

...

** crunch inner cycle algorithm **

...

if(!finished && !ended) {

setTimeout(f, timeout); //last instruction

//timeout (int [ms])

}

}

3.2.2 Flex Client

The implementation realized with Adobe Flex traces in good measure that
achieved in AJAX.

It is also used in this case the re-engineering cycles resolution, using a
timer for scheduling continuous inner loops, as presented.

Since the building architecture of the two solutions has no signi�cant
di�erence, it is worth noting the main di�erences between the two imple-
mentations:

• The execution environment of the Flex client is the Adobe Flash Plugin.
The plugin is usually a browser add-on running properly compiled code.

25

Chapter 3. IMPLEMENTATION OF THE DISTRIBUTED SOLUTION

• The plugin is browser-independent, in fact, Adobe distributes versions
of the Flash runtime for all browsers and operating systems.

• The applications, because of they are compiled, are also independent
of browser and operating system, since they are executed within the
runtime, in a separate process but bound to program settings that hosts
the plugin.

• The compiled code of the Flex client is considerably larger, in size,
compared to the AJAX version. In fact, while the Flex client is just
compiledd, the version of AJAX client is made of plain text �les, which
are then interpreted by the Javascript engine of the browser. The com-
piled code contains, in addition to the application logic (the algorithm
of crunch resolution), even the components of the interface and the
various Flash animations.

Other features of the client made in the language from Adobe are quite
closely related to the AJAX universe, the ActionScript language has in fact
many similarities to Javascript used in the �rst implementation.

The code listed in 3.2 shows the similarities in the implementation of Flex
client compared to the AJAX version, despite the syntax and APIs used di�er
from each other.

3.3 Server

The server side of the application is obviously independent from the client,
since the response to a request must be completely transparent to the client,
regardless of its implementation.

The behavior is then identical for both requests from AJAX type clients
and from those coded in Adobe Flex: to the request for a crunch the server
will always respond by sending a data packet for a subproblem and will expect
back a packet with data of the computed solution.

It should be noted that independence between the two sides of the system
is mediated by the communication packets format, which obviously must
comply with an appropriate standard to be de�ned a priori.

Back to the description of the server side of the system, its task is to
schedule the division of the problem, distribute the crunch, manage the re-
covery of those subproblems that have been lost by errors of any type.

Because the system is client-server is not possible for the server control the
behavior of clients, particularly it is not manageable the connection status
between the two sides of the system.

26

3.3. SERVER

Code 3.2 Flex scheduled function

public function f(event:TimerEvent):void {

while(!inner_cycle_ended && !finished && !ended) {

...

** crunch inner cycle algorithm **

...

}

if(ended)

return;

if(!finisched) {

// new inner_cycle loop

timer = new Timer(timeinterval, 1);

timer.addEventListener(TimerEvent.TIMER, f);

timer.start();

} else {

// crunch ended

postresults();

timer = new Timer(5000, 1);

timer.addEventListener(TimerEvent.TIMER, crunchrequest);

timer.start();

}

}

27

Chapter 3. IMPLEMENTATION OF THE DISTRIBUTED SOLUTION

At any time the connection between server and client can be interrupted,
for reasons due to errors or even more trivially to the user disconnection.

Under these conditions the most convenient way to handle errors due to
data loss is to consider a crunch as incorrect when the response is not received
within a certain time, identi�ed considering settings and con�guration of the
system.

Two di�erent implementations have been realized also for the server sys-
tem, mostly to show the actual independence of the two components (server
and client) and to comply with the con�gurations of the environments in
which the tests were conducted.

A �rst prototype has been built on Apache Tomcat, using components
created in Java language. Then the same components were re-implemented
in php scripting language, which best suited for publication in a public en-
vironment in the network of the University of Ferrara.

3.3.1 Scheduling

The scheduling is e�ectively the entry point for the various clients; the
scheduling, implemented �rst by servlets and then with php scripting lan-
guage, is responsible for receiving requests for a new crunch by the clients and
for collecting the responses of the same clients containing the results of the
computation. The scheduling algorithm is summarized in the pseudo-code
listed in 3.3.

Code 3.3 getCrunch function

getCrunch() {

if(lost crunches) {

crunch = recoverCrunch();

} else {

crunch = getNewCrunch();

}

saveCrunchInfo();

return crunch;

}

3.3.2 Recovering

The second fundamental component of the server side is the recovering of
crunch considered lost, or more generally in error.

28

3.3. SERVER

The evaluation of the loss of a crunch is pretty delicate, as it should avoid
false positives cases, which cause performance degradation, and of course it
should also avoid not recognize subproblems actually in error.

This second part of the problem is quite simple to identify, in fact a sub-
problem is in error when the server does not receive receive back a response
for a crunch, neither positive or negative

The �rst part is instead more delicate, because it must consider when
evaluate a subproblem actually in error, or lost.

The simplest solution is to consider a crunch lost when a reply for that
subproblem is not received within a certain time.

This time can be set as twice the total time normally necessary for the
resolution of a crunch. Even assuming slow client or slow network is plausible
that if a particular client does not send back results within this time it could
disconnected or may have gone wrong for other reasons, causing the loss of
the response.

However, this does not solve the problem entirely but moves it in deter-
mination of the �normal� time of calculation of a crunch.

This topic will be analyzed further in the de�nition of mathematical
model, for now we just consider the fact that this time, that should not
be too high, can however, vary depending on the problem and the algorithm
implemented.

Returning to the recovering methods, after having established the condi-
tions of recoverable crunches, these are essentially two:

• timed

• upon request.

With regard to the �rst mode, the timed one, recovering is done through
a daemon that periodically queries the database containing the data of the
current crunch assigned to any client and evaluate if any of these has exceeded
the maximum time to be considered in error.

If the recovery conditions are satis�ed for a cruch, this crunch is removed
from the crunch queue of subproblems allocated and added to that of sub-
problems recovered to be resent to another client.

On the other hand, if recovery process is done at runtime, the scheduler
evaluates the age of crunches when clients request new ones, recovering them
when the crunch age is over a certain limit and by updating the age to now.

The two approaches can be considered equivalent, again discriminant de-
pends on the particular con�guration of a problem and scalability to be
achieved.

29

Chapter 3. IMPLEMENTATION OF THE DISTRIBUTED SOLUTION

Hitting too often reading and editing the same database table, in the
case of the runtime approach, while certainly it makes easier to manage the
application because it is simpler, on the the other hand may degrade system
performances due to frequent accesses.

30

Chapter 4

Metrics and measurement

During the development of the computing system, regardless of problem faced
some measures have been collected in order to quantify the overall perfor-
mance and system peculiarities, evaluating various parameters that come
into play during the resolution.

These measurements also are a prerequisite for the development of math-
ematical model that describes the system, detailed later in the discussion
(see chapter 6).

In particular, measurements involving the transmission times, the com-
putation time and the size of packets containing subproblems and solutions
exchanged between clients and servers have been de�ned and collected.

The aim is to derive relations expressing a trade-o� between time and
size of packages and the various times in the game from the analysis of all
these parameters.

The measures collected and analyzed, using the mathematical description
of the solving algorithms for the problems, can be used to develop adapta-
tion and optimization solutions to extend the class of problems that can be
solved, meaning the problems which solution is convenient by the analysis of
measures obtained.

4.1 De�nitions

Before de�ning the sizes of the system that come into play in determine
system performance, it is necessary to precede the de�nition of secondary
variables that contribute to compose the metrics.

The components that come into play in the metrics used by system are
the size of data packets both in input and output, that determine the network
tra�c, the time required to transmission of data over the network, either to

31

Chapter 4. METRICS AND MEASUREMENT

or from the server, and �nally those relating to the computation process.
The measurement of transmission time over the network can be done both

from the standpoint of the client than the server.
It is reasonable to expect that there are no macroscopic di�erences since

the time spent on the passage through the various levels of the stack is
negligible compared to the real-time transmission on the network.

The computation time is instead purely relative to the client and to the
processing necessary to calculate the single crunch solution.

Data used by the metrics we are going to de�ne are the following:

• Din: is the size of the client incoming packet, sent by the server in
response to individual GET request the client sends to get a new crunch
to compute.

• Dout: specular to the previous one, this is the size of the outbound
packet from the client, containing the results of the crunch camputa-
tion. While for sizing the package data in a crunch it is possible to
act server side, providing crunch with greater or smaller size, relative
to response packet this is highly dependent on the way the client is
implemented, and on the type and number of solutions found during
the computation.

• tget: GET time, is the time needed to client to receive (or similar to
the server to send) the data of a crunch.

• tpost: POST time, is time required to client to send to the server the
packet data with the results of a processed crunch.

• tc: computation time, the total time needed to solve a subproblem. It
should be stressed that this value is not the actual time of calculation,
because it includes also the pauses between inner cycle necessary to
release control and resources that are actually part of the computation
process.

4.2 Metrics

After the necessary preliminary de�nitions the details on metrics that de-
scribe the system now follow.

Next will be also presented details of the relations that exist between dif-
ferent metrics, which permits the convertion from the di�erent measurements
to each other.

32

4.2. METRICS

4.2.1 PTR

Using the values just de�ned we introduce the �rst of the system metrics:

PTR =
Din +Dout

tg + tp
(4.1)

Packet-to-transfertime ratio, the ratio between the size of packets
sent and the time needed to send them.

This measure is in fact the actual speed of transfer, calculated taking into
account all the variables that come into play during data transfer, such as
network transfer errors, congestion and reconnections.

A high value of the metric indicates of course a fast network, where many
data is transferred in a short time. Similarly, a small value indicates a slow
network, where more time is needed to transfer the data.

The value of the PTR is useful for data normalization where measure-
ments are carried out in di�erent environments with di�erent network speeds.

4.2.2 DER

DER =
Din +Dout

tc
(4.2)

Data-to-evaluation ratio, ratio betweend size of packet exchanged
and the time required to calculate the solution.

This parameter indicates the usage of data packets. This information is
an indication about the quality of the algorithm. An algorithm that exploits
deeply the crunch data will obviously be better than another that does not
do it.

Optimizations in the solution algorithms can be measured through this
metric.

It is assumed that this metric can not be controlled in an arbitrary manner
because it depends on the particular characteristics of the problem faced.

Every problem has particular peculiarities which determine the order of
magnitude of this metric.

The result can then be re�ned to improve performance, this is in fact the
signi�cant value of the measure.

4.2.3 TER

TER =
tg + tp

tc
(4.3)

33

Chapter 4. METRICS AND MEASUREMENT

Transfer-to-evaluation ratio, the ratio between the time of data
transfer and the time needed to solve the subproblem.

This third and �nal metric is the true measure of system performance
subject of research.

The value of this metric provides information about the �convenience� to
use the distributed web system developed to solve a problem.

An high value of this parameter indicates that the transmission time is
too higher than the computation time, so most of the time available is used
for network transmission rather than the calculation of the solution.

Obviously, this indicates that the proposed method is not convenient
since the network transmission time can be considered �wasted� and should
be limited as much as possible.

In a case like this it will be more convenient to solve the problem by
running it on a single machine, without distributing it.

A low value, in particular less than the unity, indicates instead that the
solution is cost-e�ective: the time spent to compute solutions of the crunches
is higher than the correspondant time �lost� in transferring data between the
client and the server.

The unit value of the ratio can be considered as the value of reference of
�threshold� of convenience.

To have this approach method actually e�ective in practice, the TER
value should be signi�cantly less than unity: for example, a value of 0.5 means
for the TER index means that the 2

3
of the total time is spent in computing

the solution, while the remaining 1
3
is the time lost in data transfers on the

network.

4.2.4 Metrics relationships

Looking at the equations that de�ne the metrics in previous sections (see eq.
4.1, eq. 4.2, eq. 4.3) the relationships between the di�erent measures can be
easily identi�ed. Each of these can be obtained by knowing the other two:

DER = PTR · TER (4.4)

PTR =
DER

TER
(4.5)

TER =
DER

PTR
(4.6)

34

4.3. DATA LOGGING

4.3 Data logging

The measurements of the values used for the calculation of metrics of the
system are stored and later retrieved from the server side problem database.

As stated, the server side of the application persists into the database not
only the information about the problem but also all other accessory useful
data of the problem.

The server-side entry points queried by clients deal to identify the time
required to transfer the data, identifying opening and closing connections
after sending or receiving, according to the operations of the client.

These data, which the server records autonomously relatively its opera-
tions are complemented by time measurements that client side banner com-
ponentscollect and send as ancillary information of the results of processing.

The information needed to measure di�erent values are then been identi-
�ed in the following, independent of the particular problem:

• GET Start : records the call entry point, when the service method to
send the crunch is entered.

• GET End : records the closing of the data stream after sending the
package containing the subproblem, immediately before closing the pro-
cess and exit (see code 4.1 and 4.2).

• POST Start : record the call entry point of sending the solution, when
you enter the service function of receipt of the results of the crunch.

• End POST : records the closing of the stream of data after receiving
the package containing the calculated results of the crunch, just before
close of the process and exit (code 4.3 and 4.4).

• GetTime: This value is the information that is recorded as the value of
recovery time from the client, which corresponds to the time di�erence
between the time GET End and GET Start. The same time was also
measured from the perspective of the client, evaluating the value as the
di�erence between the start of the request for a new crunch and the
completion receiving data, just before starting the cycle resolution.

• CalcTime: This information is sent by the client as as accessory to the
calculation results. This time is included among the time di�erence
between GET End and POST Start, which serves as the upper limit.

Is preferable to collect this value directly into the client instead use the
measurements of time on the server side, since client-side a measure

35

Chapter 4. METRICS AND MEASUREMENT

more e�ective and therefore more signi�cant of the computation can
be obtained.

• PostTime: this information records the amount of time spent in sending
data from the client, similar to what was seen for the GetTime.

This time corresponds to the di�erence between the times POST End
and POST Start.

This value is not measurable by the client side as it would be necessary
to complete the send operation, close the connection, collect the total
time spent and then send a new data packet to server that contains
only this information.

Code 4.1 tget java implementation

protected void processGetRequest(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

LogRecord lr = null;

lr = new LogRecord(Level.INFO, "Start GET: "+new Date());

logger.log(lr);

// ... open response output stream ...

// ... get crunch data ...

// ... prepare xml packet ...

// ... send data ...

// ... close stream

lr = new LogRecord(Level.INFO, "End GET: "+new Date());

logger.log(lr);

}

36

4.3. DATA LOGGING

Code 4.2 tget php implementation

<?php

header('Content-Type: text/xml');

try{

logGetStartTime();

echo(getCrunchDataPacket());

logGetEndTime();

}

catch(Exception $ex) {

echo 'Caught exception: ', $ex->getMessage(), "\n";

}

?>

Code 4.3 tpost java implementation

protected void processPostRequest(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

LogRecord lr = null;

lr = new LogRecord(Level.INFO, "Start POST: "+new Date());

logger.log(lr);

// ... open response input stream ...

// ... read crunch result data ...

// ... update database ...

// ... close stream ...

lr = new LogRecord(Level.INFO,

"CalcTime: "+result.getCalctime());

logger.log(lr);

lr = new LogRecord(Level.INFO, "End POST: "+new Date());

logger.log(lr);

}

37

Chapter 4. METRICS AND MEASUREMENT

Code 4.4 tpost php implementation

<?php

try{

logStartPostTime();

saveCrunchResult();

updatePendings();

logEndPostTime();

}catch (Exception $ex){

echo 'Caught exception: ', $ex->getMessage(), "\n";

}

?>

38

Chapter 5

Experimental results

This chapter presents the results obtained during the various tests carried
out during the system and solutions development.

Results and details relating to mutual comparison of these solutions are
also presented.

Collected data, then use with the metrics de�ned in earlier chapters, are
fundamentals for the subsequent the mathematical model description of the
system presented later in treatment.

5.1 Testing environment

The tests were conducted on the implementations of the problems made
during the development of the system, detailed in previous chapters (see
chapter 2 and chapter 3.

After the �rst design implementation of the the server-side published on
a Java Apache Tomcat server environment for the test was decided to use
php to re-implement the problem scheduler server side component.

The client components of the application were made available both with-
out changes due to the independence from the server implementation, and
have not required any change moving from the �rst environment to the new
one.

The aspect that deserves attention in this context and need to be under-
line concerns the network component of the system: the tests are were carried
out at the beginning on a 100MB LAN environment, at the Department of
Engineering, University of Ferrara.

Then the same system has been published to the external Internet en-
vironment and tests continued accessing the distributed system by outside
the University network, to collect data in a context more aderent to the real

39

Chapter 5. EXPERIMENTAL RESULTS

usage.
Obviously when the system is used in an Internet environment, commu-

nications are signi�cantly slower and more unreliable than those observed in
a LAN.

The main e�ect that can be observed is the shift of the values of mea-
surements from the surveys carried out when we will move into real Internet
environment from an high-performance Intranet one.

The tests can be divided into two categories:

• Comparison of metrics : data are collected solving the two problems
studied, RSA crack (par. 5.2.1) and genetic correlation (par. 3.1.2),
by measuring the values of parameters de�ned in the previous chapter
(see section 4.2.1, 4.2.2, 4.2.2), with the aim of identifying a possible
classi�cation of problems.

• Comparison of implementations : data were collected related to the
solution of a single problem, the genetic correlation (par. 3.1.2) using
the two di�erent client implementations developed, with the aim of
assess whether a particular language may o�er some kind of bene�ts
compared to the another.

5.2 Metrics comparison

The metrics de�ned in chapter 4 have been applied to the 2 problems imple-
mented, the breaking of RSA encryption and calculating the Pearson corre-
lation.

5.2.1 RSA Cracking

The problem has been set to the resolution of the factorization of a number
of 72 bits, 12 bits of crunch, corresponding to 4096 values for each crunch.

From the measurements made on resolving the problem of the RSA cryp-
tosystem crack the following values for the crunch solving have been obtained:

• average time of calculation, calculated by the client: 3499 ms.

• Average time to serve a GET request from measured by the client: 221
ms.

• Average time to serve a GET request from measured by the server: 182
ms.

40

5.2. METRICS COMPARISON

Measure\Problem Factorization Correlation

PTR 0.694 Byte/ms 314.982 B/ms (300KB/s)
TER 0.133 0.041
DER 0.092 12.898

Table 5.1: Metrics: factorization and correlation

• Average time to serve a POST request, measured exclusively from the
server: 243 ms.

• size of a GET packet containing crunch data: 125 Byte

• size of a POST packet containing the computed crunch solution: 197
Byte

5.2.2 Pearson's correlation

The system calculates the correlation over a database composed of 20000
samples, packaging 50 + 50 samples a time, calculating the correlation be-
tween all possible pairs, considering the correlation result as signi�cant when
the absolute value is greater than 0.4.

From the logs for the computation of the correlation over the genetic
samples database were extracted the following values:

• average time of calculation, calculated by the client: 19293 ms.

• Average time for serve a GET request measured by the client: 580 ms.

• Average time for serve a GET request measured by the server: 542 ms.

• Average time for serve a POST request, measured exclusively from the
server: 210 ms.

• size of a GET packet containing crunch data: 196946 Byte (about 192
KB)

• size of a POST packet containing the computed crunch solution: 51890
Byte (about 51 KB, it depends on the number of signi�cant correlations
detected).

The results of the metrics computed using the collected data are presented
in Table 5.1.

41

Chapter 5. EXPERIMENTAL RESULTS

5.2.3 Results

The PTR index for the �rst problem, the crack of the RSA encryption, has
showed a relatively low transfer rate, considering the LAN environment where
the �rst tests have been led.

In reality, this measure was partially distorted by the fact that the data
packet is extremely small and therefore does not use e�ciently the network
connection.

In this case assumes a signi�cant overhead the path along the network
stack both server and client side.

In the second problem, about the Pearson's correlation, the network pro-
vides a more signi�cant data rate considering the environment in which it
operates.

The TER index is probably the most signi�cant for our system, since it
indicates the ratio between the time spent in data transfer and the the cor-
responding time spent in client side computation and gives the convenience
value of the system.

Considering the unit value as a threshold for the convenience index it
results that when the value is above the unity value the system is not conve-
nient while if the index has a value below the unity there is convenience in
the use of distributed system to solve problem (see section 4.2.3).

The index result for both the problems faced during test was very good,
well below the the unity value, indicating that both problems can be conve-
niently dealt with the designed distributed system.

Regarding the problem of the correlation, where the data transfer is crit-
ical respect to the computation component, resolution algorithm has been
properly calibrated to get a good result for the TER index convenience value.

The latest index, the DER, indicates the �usage� of data comparing the
packet size and computation time (par. 4.2.2): this measure has good values
when the index is closer to 0.

In the case of breaking the RSA we have a value very close to 0 as the
descriptive parameters of a crunch include very little data.

With regard to the Pearson's correlation problem, instead, the index
shows an high value due to the particular characteristics of the problem
that is very data oriented.

From the data collected the system performance measured during the test
have been more than good, although we must stress the fact that bringing the
system on the Internet with wide usage rather than in a controlled testing
environment the parameters that control the execution speed and size of
packets should be modi�ed to maintain the same performance level.

42

5.3. IMPLEMENTATION COMPARISON

5.3 Implementation comparison

The second part of the tests conducted involved the comparison of the 2
di�erent solutions implemented for the client side: the realization with AJAX
and the one with Flex.

In this case, the tests are based on the problem more stressful for the
system, that of the Pearson's correlation, to better focus on performance
characteristics of the di�erent implementations.

The tests were performed both in the same Intranet environment of the
Previous comparison of metrics (section 5.2 and on a more realistic Internet
environment, accessing from outside the ENDIF network to the published
application, in accordance with the following features:

• The database contains S = 20000 samples, each consisting of 100 mea-
surements made on genetic sequences.

• Each crunch is composed of a 50x50 set of samples on which perform
calculations of correlation, taken from the collection SxS, organized as
can be seen in �g. 5.1.

• The algorithm considers the calculation of a positive result when cor-
relation in absolute value exceeds 0.4.

• data were collected over 12700 crunches, which correspond to the cal-
culation of 50 ∗ 50 ∗ 12700 = 31750000 Pearson's correlations.

• The collected results showed just over 60000 signi�cant correlations,
corresponding approximately to 2%�of the total calculated.

In this case, in addition to the previously de�ned data information on
the type of client used have also been collected, to permit analysis for the 2
implementations in a separate way.

Data relative to lost crunches,for errors of various kinds, have not been
considered in this case.

Since the testing environment was quite controlled both in the Intranet
and the Internet tests the number of lost crunches can be considered negligible
for treatment.

The table 5.2 presents the most important data detected by analyzing
the information collected during the calculation of Pearson's correlation.

The table shows statistics on the execution with AJAX and Flex clients
and also gives the consolidated value, regardless of the client used.

It should be emphasized that the results obtained with two di�erent
clients are quite similar and therefore close enough to general data that do
not distinguish the client used.

43

Chapter 5. EXPERIMENTAL RESULTS

Figure 5.1: Crunch selection from the database

Measure Ajax Flex Total

#sample 5718 6989 12707

Average get time [ms] 1301 2334 1766
Median [ms] 754 1702 834

Average computation time [ms] 8591 7052 7821
Median [ms] 8008 4671 5288

Average post time [ms] 1655 725 1237
Median [ms] 1281 509 1231

Table 5.2: Average time detected

44

5.4. RESULTS

Figure 5.2: Distribution of computation time for the AJAX client data

Another interesting fact to be noted is the distribution of computing time,
visible in �gs. 5.2 for the AJAX client and 5.3 for the Flex client: there is a
fairly even distribution of time, distributed according to number of �steps�.

This is due, in part, to the environment in which the tests were con-
ducted, but more prominently in the construction of the crunch, sized to
keep the calculation within a certain range of times, in order to minimize the
probability of crunch loss as a result of the disconnection by the client.

The segmentation of time, �nally, is due to the user control of computing
power provided:

• the lower layers, corresponding to a faster computation, are obtained by
increasing the number of inner loops performed before a break and/or
decreasing the pause time between two successive cycles.

• the intermediate layers are those that correspond to standard, which
takes into account an average time per visit that minimize loss of
crunch, and at the same time limiting as much as possible the resources
involved in the calculation.

• the upper layers, which correspond to the user action of slowing com-
putation and thus reducing the power provided or to moments of con-
gestion of the client, leading to a lower response in the browser and
then to a general slowdown int the computation process.

45

Chapter 5. EXPERIMENTAL RESULTS

Figure 5.3: Distribution of computation time for the Flex client data

Index Ajax Flex Total

TER 0.686 0.692 0.688
PTR [KB/s] 0.027 0.033 0.030
DER [KB/s] 0.018 0.023 0.020

Table 5.3: Metrics calculated by type of client

46

5.4. RESULTS

5.4 Results

Considering the characteristics of the two implementations realized the ex-
pectation was that the results obtained by the Flex implementation should
be signi�cantly better than those obtained with the AJAX implementation
of the client.

This is mainly because the Flex client is natively compiled and runs in
a separate process, although under the control of the browser that hosts the
plugin.

In fact the results con�rmed this expectation, the test showed a di�erence
in the mean time for the 2 types of clients by about 20% between results of
the AJAX client an the results of the Flex implementation.

Considering the overall average the di�erence is instead of ±10%, due to
the fact that totals are in practice the average of the 2 solutions.

The di�erence, however, is not so marked as to say that the Flex client
is much better than the AJAX version for the distributed system designed.

Here at last, the table 5.3 complete the comparison between the two
di�erent implementation of the client showing the index values for the metrics
de�ned in chapter 4, evaluated in two separate cases involving the single type
of client and in the comprehensive way.

47

Chapter 6

Mathematical model

The ultimate objective of development of the web distributed computing
web studied and developed as described so far is produce a mathematical
model that is able to describe the system, in order to determine the limits,
constraints and optimal size for convenient use of the system.

In other words, the model must determine the optimal size for the crunch
sent to clients and minimize the probability of crunch loss identifying appro-
priate client-side parameters for the re-engineered algorithm execution.

Typically, the data packet size is strongly dependent on the problem
addressed, as already noted in chapter 4.

It is therefore rather di�cult to develop a model that can be applied to
problems di�erent with each other in terms of description of the problem
itself, since this description determines then the crunch data packet sent to
the various client for computation.

Trying to overcome this obstacle the problem itself has been used as one
of the inputs to the model developed: the problem description is thus one of
the input parameters and is used to derive results, so it is possible to control
and then modify these results according to the problem description given as
input.

To characterize the problem and introduce it as a parameter of the model
developed the number of elementary operations required to solve a crunch
have been used.

This allows to generalize the model unlinking it from a particular class
of problems because it is usually always possible to determine the number of
operations required to solve an algorithm, in our case that for the resolution
of the individual crunch on the client side.

Another advantage of this generalization is the possibility to apply the
same model to the system, with the same parameters and measurements,
without requiring any changes to introduce and describe new kind of prob-

49

Chapter 6. MATHEMATICAL MODEL

lems.

6.1 Model parameters

This section starts with the introduction of the main parameters of the model
that describes the web distributed computing system exposed, strictly de-
�ned:

• top: operation time. This parameter is one of the most di�cult to
measure and usually must be identi�ed experimentally by running the
code on di�erent machines with di�erent performance.

Based on the rated speed of the CPU is possible to approximate a value
close enough to the real value.

Another aspect to take into account is the fact that transactions are
often complex in terms of implementation, as for example, function
calls or composed operations.

In this case, complex operations count for the number of elementary
operations of which they are composed.

• tp: pause time. It is the time between the execution of two consecutive
inner loops.

This time must be long enough to allow the release of CPU control and
therefore not cause delays for the user.

On the other hand should be short enough to ensure that there is not
too much idle time between two inner, as this would cause a loss of
time useful for calculation.

• Nop: number of operations required to solve a crunch. This is the total
number of elementary operations (in reference to the �rst point) needed
to solve a subproblem completely.

• nop: number of operations required to solve an inner cycle. This num-
ber represents the total of elementary operations performed between 2
successive pauses of the computation, without interruption.

• kA: number of cycles for the resolution of an inner loop, executed
monolitically before releasing control to the browser.

• kB: number of cycles required for a complete crunch solution. In prac-
tice this is the the number of external loops performed to solve a sub-
problem.

50

6.2. MODEL DESCRIPTION

• tn: time between two successive breaks, or in other words the compu-
tation time needed to execute kA inner loops.

• tc: computation time. This time, already de�ned previously, is the
total time needed to completly solve a crunch.

• Tv: time to visit. This value is the average time that a user spends
visiting a single web page. This value can vary greatly depending on
the type of information the page provides.

An average time of visit can be easily statistically obtained from the
visits.

Typically the value is settles between 20 and 30 seconds. Another
signi�cant value, the median, could also be used, derived also from
visit statistics.

• vnet: network speed. Means in this case rated speed of the network.
For a LAN this value is usually 100Mbit/s or even 1Gbit/s, depending
on the infrastructure available.

In an Internet environment this value can vary greatly, according to
the infrastructure and to the service provided.

Moreover, while in a local area network the nominal speed can be quite
signi�cant, in an Internet environment often the service provider has
no guaranteed minimum bandwidth, then the rated speed is purely
indicative.

Under these conditions the rated speed must be determined with anal-
ysis of the average bandwidth available, then considering how actual
speed will vary around the nominal set.

6.2 Model description

After de�ning the parameters needed to de�ne the model describing the
web distributed computing system presented, now follow the details of the
construction of the model step by step presented.

The �rst constraint of the model concerns the time to visit Tv: to have
some assurance, or in a statistical sense high probability, that the compu-
tation completes in the time the user spend in a given page that hosts the
computing client, the total time needed to complete the resolution of a crunch
has to be kept below this value.

If the process of solving a subproblem, including retrieving data from the
server, the calculation and the delivery back of result of processing, takes

51

Chapter 6. MATHEMATICAL MODEL

longer than the visit time, the crunch will be lost due to interruption of
resolution process.

The loss of crunches obviously worsens the system performance because if
requires the computation of a greater number of crunch due to the recovery
of those that are lost.

In addition, the time used for the resolution of a crunch which solution is
not collected on the server side is being lost in the calculating the total time
required to solve a particular problem.

The constraint appears to be the following:

tget + tc + tpost < Tv (6.1)

The expression 6.1 is the minimum and also the main requirement to
ensure that at least one crunch is resolved completely, so received from the
server, processed and sent to the server for the solution storage.

Obviously if the user keeps the client connection opened for a su�ciently
long time than the time needed to solve a crunch (including time of receipt
and dispatch) it is possible to solve more than a crunch since the resolution
process is iterative and continuously rescheduler, improving overall perfor-
mance.

The computation time tc is, as mentioned above, strongly dependent from
the algorithm, this time can be de�ned as the product of number of operations
multiplied by the time of execution time of a single operation 1

tc = Nop ∗ top (6.2)

The equation 6.2 does not consider, however, the re-engineerization of
algorithms of the web distributed system and in particular does not show
the pauses between two subsequent inner cycles necessary to release control
to the browser and keep it usable and not slow.

Considering the revised components of the resolution algorithm the fol-
lowing expression is obtained for the computation time tc:

tc = (nop ∗ top ∗ kA + tp) ∗ kB (6.3)

A very important aspect to be highlighted at this point is that the run-
ning time of an inner loop must be maintained su�ciently low, this allows the
client machine avoid congestion and overloading of the CPU, which would
translate in a slow response to user input, particularly relatively to the

1remains to be stressed that this time is dependent on the performance of the host

machine and the load of machine during execution

52

6.2. MODEL DESCRIPTION

browser, which is supposed to be used as foreground application during its
processing.

This de�nes a new constraint for the model: the time execution of an
inner loop must be maintained below a speci�c time tA.

This is the maximum �xed time of continuous computation after then the
the computation process must pause and release the control.

To keep the browser, and the machine in general, always interactive to
user input this time must be maintained in the order of magnitude of 10−1.

The constraint for the inner loop is therefore:

nop ∗ top ∗ kA < tA (6.4)

By relaxing the constraint in an equation:

nop ∗ top ∗ kA = tA (6.5)

it is possible to �nd the value of kA, ie, the number of inner cycles that
can be completed maintaining the computation time under the limit imposed
by tA:

kA =
tA

nop ∗ top∗
(6.6)

From which follows, since the inner loop is atomic and therefore not
divisible:

kA =

⌊
tA

nop ∗ top∗

⌋
(6.7)

The value of kA is the greatest integer that keeps the single computation
atom within the time limit tA

From the concept of convenience of the system, already introduced dur-
ing system development and related metrics, an additional constraint of the
model is de�ned as follows:

TER < 1 (6.8)

Considering that the TER index formula can be solved in the following
expression:

TER =
tget + tpost

tc
< 1 (6.9)

which is immediately derived:

tget + tpost < tc (6.10)

53

Chapter 6. MATHEMATICAL MODEL

At this point the computation time can be explained in its components,
as seen above in equation 6.3), obtaining:

tget + tpost = tt < (nop ∗ top ∗ kA + tp) ∗ kB = tc (6.11)

In the equation 6.12 was introduced the total time as the sum of transfer
times, both get and post, for 2 fundamental reasons:

• the distributed system is convenient when the total transfer time is less
than the computing time;

• typically the size of the response is a function of the size of the request.

The response will include the solutions of a problem speci�ed in the
packet sent from the server after the request.

Intuitively, except in special cases, larger will be the get packet for a
crunch, the greater the size of response packet will be too, since it is
relative to a greater size subproblem.

By combining the constraint equations 6.1 and 6.10 yields the following:

tget + tc + tpost = tt + tc < Tv (6.12)

Once de�ned the time constraints, it remain to determine those relative
to sizing, the other key aspect of the model, aimed at establish limits and op-
timizations about the size of packages containing the crunch to be processed.

therefore the size of data packets of subproblems is introduced as function
of the timing values that have been introduced so far:

D = Din +Dout

= tget ∗ vnet + tpost ∗ vnet
= (tget + tpost) ∗ vnet = tt ∗ vnet

From which it follows, by combining the equations 6.10 and 4.3 with the
appropriate substitutions:

D = tt ∗ vnet < tc ∗ vnet (6.13)

Finally, still following, from the equation 6.13 the fundamental constraint
for the model developed so far on the data packets size.

D < ((nop ∗ top ∗ kA + tp) ∗ kB) ∗ vnet (6.14)

54

6.3. EXAMPLES

This last inequality 6.14 is the �nal result of the mathematical model
describing the web distributed system and provides the limit on the size of
data packets transferred.

Transferring a larger amount of data in a crunch makes the system not
convenient in its use compared to the direct resolution, considering the
amount of data transferred in both input and output from the client.

Keeping the total size of data transferred under this threshold makes
the web distributed computing system developed during the PhD program
convenient for the resolution.

In other words we can say that it is possible to create a scheduler to dis-
tribute to crunches to clients sized in a way that makes the problem provided
as input solved conveniently.

This constraint of the model has another important meaning as well as
to establish a limit of convenience given the algorithm resolution as input.

For the majority of the problems the size of kA and kB de�nes the amount
of data analyzed for each crunch. This is strongly linked to the size of data
packets.

If the constraints of the problem are all satis�ed except the last 6.14 there
are two possibilities:

• the resolution algorithm is not optimized in the context in which it is
used, it is therefore necessary to review it and improve the format of
packages used or algorithms, to meet all the constraints presented.

• The problem can not be solved conveniently with the system.

The second option is actually a rather rare case as it is generally always
possible to re-engineer conveniently the algorithm for the system on the client
side and/or the format of packets so that data transmitted satis�es all the
constraints of the model.

In conclusion, the optimal size Dopt can be de�ned as the size of data
packets that provides minimum value for the TER of the problem.

The lower the value of the TER ratio index is, the better the performance
of the scheduler on the server side of the problem are: for a limited transfer
time there is a correspondant greater time invested by the various clients to
solve the problem.

6.3 Examples

To conclude the exposition of the model of the web distributed system here
presented now follows the application of the equations and constraints of

55

Chapter 6. MATHEMATICAL MODEL

the model to a speci�c problem, showing how to derive the di�erent sizing
parameters.

The application of the model will use as a case example the problem of
RSA encryption algorithm crack, presented in the previous chapter 3 and
then in paragraph 5.2.1.

It will be shown how the application of the model to an actual concrete
case takes to the identi�cation of parameters necessary to a convenient imple-
mentation of the resolution through this web distributed computing system.

Starting with the de�nition of the average visiting time as Tv = 20s, the
�rst constraint the model takes the form:

tget + tc + tpost < 20 (6.15)

This value is indicative and may be derived from the average time the user
spend on a single web page, calculated on a statistically sample of signi�cant
web resources.

Here are some values, established for convenience and used during the ap-
plication development, that can be applied to evaluate the model constraints:

• tc = 15s: it is a reasonable computation time referenced to equation
6.15.

Considering furthermore the value of convenience for TER index it is
obtained immediately that the system has su�cient performance when
tc > 10s.

The chosen value is then consistent with the convenience of the system
and with acceptable performance.

• tp = 2 ∗ 10−3s: the pause time is 2 ms, su�ciently short to avoid
running too long without processing problem data but at the same
time su�cient to allow the release of control.

• kA: the number of inner loops performed before releasing control.

The number is limited to e�ciently alternate computation and pauses
with release of control.

• kB: number of external cycles needed to solve a whole crunch, given
the size of the range to process of 212 integers.

• tA = 3.65 ∗ 10−3: average time observed during tests for the resolution
of a set of inner loops.

56

6.3. EXAMPLES

• vnet = 2MBit/s: network speed considering the execution in an Inter-
net environment. This value has to be considered an average variable
value a�ected by all the known network �uctuations.

Considering the constraint on the crunch size from equation 6.13 and
paragraph 6.2 the crunch dimension equation gives:

D = tt ∗ 2 < 15 ∗ 2 = 3.75MB < 20 ∗ 2 = 5MB (6.16)

As one can easily guess the result is not completely realistic, since it is
rare to reach the rated speed of the network in a real environment on the
Internet.

This relation, however, indicates that the client must make a strong pro-
cessing on the data received, or in other words, it must add value to infor-
mation processed so that the system could be used in a convenient way.

The example on this particular problem wants to underline a very impor-
tant fact that characterizes the convenience of the approach presented: the
properties of the problem of RSA cracking and its relative algorithm that
has been implemented have a data packet of constant size.

The package consists of the RSA public key system (the product of two
prime factors) and the extremes of the range try factors.

This information is totally independent of amplitude interval taken from
a single crunch.

Consequently, it is possible to change the computation time of a crunch by
using more or less wide intervals while maintaining the size package constant.

This same concept holds true for the package containing the calculation
results.

Considering all these features, for this particular problem the optimum
is determined simply by setting the size of a data packet as Dfix and its
correspondant time to transfer as tfixt that only depends on the speed of the
network and not on other characteristics of the problem.

It is obtained from equations 6.9 and 6.13 of the previous paragraph:

tfixt

tc
< 1 (6.17)

Dfix < tc ∗ vnet < 20 ∗ vnet (6.18)

The optimal value is the one that makes the TER index as close as possible
to 0; having tt (and D) values constant the optimum is given by:

tc = Tv − tt (6.19)

57

Chapter 6. MATHEMATICAL MODEL

This equation is not a formula derived directly from the model, but de-
rived from the considerations on the problem and the resolution algorithm
which the model is applied to, stressing the fact that a one of the inputs of
the model is exactly the problem.

In general, the optimal value is derived from re�ections on these charac-
teristical elements and is part of the optimization process for the system.

This process has to identify the values of kA and kB that minimize the
value of the TER index of convenience.

58

Chapter 7

Conclusions

7.1 Summary of the research work

The research work developed and presented here, had as its objective the
implementation of an innovative solution for distributed computing system
by the use of a web infrastructure.

The results obtained in the development of the various components have
shown that this system is feasible, obtaining also good performance with
a simple but e�ective architecture, which makes convenient to use this de-
stributed environment to solve problems.

The use of proven technologies, those enumerated in the universe Web 2.0,
AJAX and Flex in particular, the cornerstones of the implemented system,
together with the use of standards and speci�cations for protocols, makes
the system usable by almost each of the multitude of clients connected to the
World Wide Web.

This fact makes the number of possible clients for the system extremely
high, thereby increasing the performance and potential of the system.

The mathematical model developed, moreover, is a very useful tool in the
hands of the developers to determine a proper sizing of the various parameters
in order to obtain applications with good performance and �convenient� under
the de�nition here described (see 4.2.3).

Another important result is the overall system design: the model can be
applied to almost any problem because the problem itself is an input.

It is su�cient to provide some parameters of the problem under exami-
nation, as the number and type of operations required to solve a crunch in
order to apply the model even to problems very di�erent between each other.

Finally, tests have shown the e�ectiveness of the system in a real Internet
environment, which of course is the natural �eld for a web distributed com-

59

Chapter 7. CONCLUSIONS

puting system, the one that provides the greatest number of potential clients
and therefore the most computational power.

The characteristics of the client components, both the one developed in
with AJAX the other implement on Adobe Flah/Flex, makes them embed-
dable in many di�erent web resources, thus di�erentiating the catchment
area.

The current implementation is still in operation at the ENDIF depart-
ment, at the University of Ferrara [30].

At the conclusion of the the PhD studies can then be summarized posi-
tively the achieved results and also evaluate interesting and commercial real
applications, especially using the extent of the catchment area for capillary
applications.

Finally, the work led to the publication of two di�erent works, the �rst, in-
troductory, at the VTC conference in 2007 [28], the second summarizing the
whole system presented, with model and results, in the journal International
Journal of Adaptive, Resilient and Autonomic Systems [31].

7.2 Ulteriori sviluppi

Among the possibilities for further development of the system, in order to
improve the performance and applicability, there is surely the integration of
model de�nitions directly into the server side scheduling process.

This implementation will make the adaptive system with respect to client
behavior, in particular with a view of use it in other network environments,
where the measured parameters were di�cult to measure because of the
di�erences among client adopted and also of the network infrastructure.

By evaluating the constraints of the model at runtime it is possible di
dynamically size the crunch of the problem, getting from time to time pack-
ages that maximize performance and indexes of convenience, while limiting
the crunch loss and errors.

Client components are also likely to improve, although it is pointed out
that these depend on the particular problem, then the optimizations can only
partially cover these components, mostly in the structural parts.

Finally, an aspect still under analysis, given the sensitivity and the possi-
ble impacts of the topic, is related to security, regarding the server and client
components separately.

On the server side must have the assurance that the results received from
clients are not corrupted by errors or tampering. A �rst step has already
been implemented by using a control system over the responses on the server
side, but still does not eliminate entirely the possibility of malicious actions

60

7.2. ULTERIORI SVILUPPI

by some clients.
On the client side the problem moves to the code executed, which in real

application is potentially provided by third parties and may contain malicious
instructions, invalidating the e�ectiveness of the system.

61

Bibliography

[1] Adam Barth, Collin Jackson, Reis Google, and Chrome Team. The
security architecture of the chromium browser. Web source, 2008.

[2] Dieter Gollmann. Computer security. Wiley Online Library, 1999.

[3] Jesse James Garrett. Ajax: A new approach to web applications. expe-
riencezen.com, 2005.

[4] Noriko Hanakawa and Nao Ikemiya. A web browser for ajax approach
with asynchronous communication model. Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence, 2006.

[5] Vic Cekvinich. Rich internet applications. TheServerSide.com, 2004.

[6] Tom Noda and Shawn Helwig. Rich internet applications. UW E-
Business Consortium - Best Practices Report, 2005.

[7] Jeremy Allaire. Macromedia �ash mx�a next-generation rich client.
Macromedia.com whitepapers, 2002.

[8] B.K. Schmidt, M.S. Lam, and J.D. Northcutt. The interactive perfor-
mance of slim: a stateless, thin-client architecture. Proceedings of the
17th ACM Symposium on Operating Systems and Principles. Kiawah
Island, SC, 1999.

[9] Dave Crane, Eric Pascarello, and Darren James. Ajax in Action. Man-
ning, 2006.

[10] Anthony Franco. Flex vs. ajax friends or foes. E�ectiveUI White Paper,
2008.

[11] Tim O'Reilly. What is web 2.0. O'Reilly network, 2005.

[12] Wikipedia. Web 2.0. Wikipedia, 2006.

63

64 BIBLIOGRAPHY

[13] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-
tributed Programming. Addison�Wesley, 2000.

[14] Sanjeev Arora and Boaz Barak. Computational Complexity � A Modern
Approach. Cambridge, 2009.

[15] Sunderam V. Pvm: a framework for parallel distributed computing.
Concurrency: practice and experience, 2(4), pp215-319, 1990.

[16] Wikipedia. List of distributed computing projects. Wikipedia, 2011.

[17] J. Maassen and H. E. Bal. Solving the connectivity problems in grid
computing. HPDC07, 2529, 2007.

[18] L. Marchal, P. V.-B. Primet, Y. Robert, and J. Zeng. Optimal band-
width sharing in grid en- vironments. 2006 15th IEEE International
Conference on High Performance Distributed Computing (pp. 144-155),
2006.

[19] A. Ganguly, A. Agrawal, and R. Boykin, P. O.and Figueiredo. Wow:
Self-organizing wide area overlay networks of virtual workstations. 2006
15th IEEE International Conference on High Performance Distributed
Computing (pp. 30-42), 2006.

[20] Stanford University. Folding@home. http://folding.stanford.edu/.

[21] Berkeley University. Seti@home. http://setiathome.berkeley.edu/.

[22] CERN laboratories. Lhc@home. http://lhcathome.cern.ch/.

[23] Wikipedia. Autonomic system (computing). Wikipedia, 2011.

[24] Wikipedia (IBM). Macromedia �ash mx�a next-generation rich client.
Wikipedia, 2011.

[25] Menezes A., Van Oorschot P. C., and Vanstone S. A. Handbook of
Applied Cryptography. CRC Press., 1996.

[26] Cormen T. H., Leiserson C. E., Rivest R. L., and Stein C. Introduction
to algorithms (2nd ed.). MIT Press and McGraw-Hill, 2001.

[27] HyperStat Online. Hyperstat online contents: Pearson's correlation.
http://davidmlane.com/hyperstat/A34739.html, 2006.

[28] Boldrin F., Taddia C., and Mazzini G. Distributed computing through
web browser. WTC Conference, Baltimore, USA, 2007.

64

BIBLIOGRAPHY 65

[29] Huizingh E.K.R.E. The content and design of web sites: an empirical
study. Information & Management, Volume 37, Number 3, 1 April 2000,
pp. 123-134(12), 2000.

[30] Fabio Boldrin. Testing environment at endif dpt. - unifersity of ferrara.
http://www.tlc.unife.it/mycomputation, 2009.

[31] Boldrin F., Taddia C., and Mazzini G. Web distributed computing sys-
tems, implementation and modeling. International Journal of Adaptive,
Resilient and Autonomic Systems, 2010.

65

	Intrduction
	Definitions
	Distributed computing
	Web browser
	AJAX
	Adobe FLEX®
	AJAX and Adobe FLEX®comparison
	Web 2.0

	Research project
	Web Distributed Computing Systems
	Mathematical model
	Implemented solution comparison

	Architecture
	Client
	Server
	Network communication
	Data
	Reingegnerizzazione

	Implementation of the distributed solution
	Problems
	RSA cryptosystem crack
	Pearson's correlation

	Computation client
	AJAX Client
	Flex Client

	Server
	Scheduling
	Recovering

	Metrics and measurement
	Definitions
	Metrics
	PTR
	DER
	TER
	Metrics relationships

	Data logging

	Experimental results
	Testing environment
	Metrics comparison
	RSA Cracking
	Pearson's correlation
	Results

	Implementation comparison
	Results

	Mathematical model
	Model parameters
	Model description
	Examples

	Conclusions
	Summary of the research work
	Ulteriori sviluppi

	Bibliografia

