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Introduction

This thesis proposes an interactive, integrated system for the exploitation of the large

and ever growing satellite data archives. Collecting observations of the Earth surface

over decades, these archives store large amounts of data that, among other uses, is

used to extract meaningful information about the Earth’s surface, in a form that

humans can directly comprehend. Access to thematic information contained within

these vast archives has to be provided in a way that allows its prompt usability by

diverse user communities, either interested in using it for research purposes or for

decision support. Several catalogue system exist and a continuous effort is ongoing

to improve accessibility to these archives, yet few systems provide systematic access

to thematic data and the ones doing so provide very specific products (such as, fire

events, burned areas, yearly land cover or land use maps).

The evolution over time of primary parameters, measurable from satellite data, is

proven to be a practical and viable methodology for characterization of phenomena

that influence a given area. Any change occurring in an area that is relevant enough to

change one or more of its primary parameters may present a characteristic evolution

pattern over time that can be used for its identification. The prompt availability of

thematic data, derived from satellite images with high temporal frequency, is thus an

improving element for research activities as it can promote an insightful view over study

areas and on their dynamic behaviour over time, avoiding to users the time consuming

operations usually required to: search for, collect and prepare large amounts of data

for multi-temporal analysis.

In the proposed system, thematic-temporal pattern identification (how the the-

matic classification of an area changes over time) is fostered by visual display both

over areas and at single pixel level to permit direct applicability of a valuable research

and analysis tool: the human vision. The archive of thematic maps is browsable inter-

actively to display temporal sequences of maps of a selected study area, that can be

xiii



xiv INTRODUCTION

filtered dynamically to display only a thematic class of interest, to observe its evolution

in the area over time. At pixel level, a complete thematic evolution across the years

can be visualized in a compact visualization form fostering identification of patterns

along (seasonal variations such as agricultural practices) and across (yearly or long

lasting changes) years. Once patterns are identified, either by visual data exploration

or by prior knowledge on a given phenomenon, their search over the data archive can

be automated so that their occurrences are detected over a given area of interest (at

regional or national scale) at the user’s request.

Graphical interfaces are provided to model land cover evolution patterns, to per-

form a spatio-temporal search for these patterns and to display result maps generated

by the search process. These result maps provide immediate visual display of the lo-

cations presenting the modelled evolution over a given period. The availability of a

generic, thematic-temporal pattern definition and matching system, able to provide

interactively (within few seconds to few minutes at 1 Km resolution) the results of

a query such as: “identify locations over Italy presenting a given thematic evolution

across 2010” is a feature unique to the presented system. The availability of such

features in an interactive environment with fast response time, loaded with thematic

data extracted from 15 years of Remote Sensing (RS) data at 1-km resolution with

global coverage, provides an unprecedented dataset to the scientific community to be

explored and used in support to their research activities, with the aim to accelerate

the acquisition of knowledge both on known and unknown dynamics observable on the

Earth’s surface from a satellite’s point of view.

The presented system addresses also the problem of promptness of usability of

outputs coming from research and modelling activities. An access control framework,

providing different views on the system for different user typologies is proposed to

enable prompt usability of “verified” modelled patterns to end users who are not

interested on detailed data analysis but just in utilization of verified models (users of

consolidated products available through classical, catalogue based, delivery systems

such as burned areas, flooding events assessment, agricultural practices and any other

phenomenon that can be characterised by its thematic evolution over time), with the

advantage of having an interactive access to those products, directly on the system

that produces them.

Interactive analysis of multi temporal data is a valuable tool for determining land
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use and detect relevant land cover transition phenomena caused either by human inter-

vention or natural events, the work reported herein provides a starting point toward the

realization of an integrated tool for the exploitation of multiple satellite archives, within

a framework providing a common platform to different user communities, fostering col-

laborative contribution based on interactive reporting of data and cross-validation of

models.

A complete implementation of the Multi-sensor Evolution Analysis (MEA) system

has been realized in the framework of two European Space Agency (ESA) projects: the

Classification Application-services and Reference Datasets (CARD) project[1] where I

participated in the realization and deployment of the system architecture, described in

4.2, for systematic processing of the entire AATSR and ATSR-2 ((A)ATSR) archives

to deliver the classification maps used to build the MEA multi-temporal data stack,

that is continuously updated with new data from the AATSR rolling archives. I have

also defined the interoperable catalogue interface that permits automated access to the

data archive to perform thematic queries over the archived data with the addition of

a flexible data order operation.

The implementation of the first MEA prototype over the entire (A)ATSR archives

was completed in the framework of the Support by Pre-classification to specific

Applications (SPA) project[2], where I participated to all the main aspects in the

realization of the system: from requirements analysis, to system design and implemen-

tation, with an emphasis on performance oriented design justification and system vali-

dation in close cooperation with ESA staff. I also designed and verified the development

of a second version of the system (documented herein), which added features oriented

toward system usability, such as aggregation of the features domain for configurable

level of detail and prepared it for integration of multi-resolution data. A complete

instance of the system is now available to the the Earth Observation (EO) community

through the Ground Segment Research and Technology Development (RTD) Depart-

ment at ESA - European Space Research INstitute (ESRIN) (one of the five ESA

specialised European centres).

My thesis work was also in close cooperation with Meteorological and Environ-

mental Earth Observation (MEEO), an Italian company located near Ferrara that

developed the SOIL MAPPER® (SM) classification system based on spectral signals

remotely detected by a satellite’s sensor. MEEO was prime contractor of the ESA
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projects and owner of SM that has been selected as the classification system to build

the classification maps for MEA implementation.

This thesis describes the approach used in building the system, the data processing

methodology (conceptual design), details architectural elements and interfaces of the

system implementation over 1 Km data and elaborates on results obtained in terms

of potential uses and advantages of the features provided, including results of their

evaluation by a group of end users participating in validation activities to assess both

usability and usefulness of the system. It is organized in chapters as follows:

Chapter 1 provides a short introduction on the idea of using a thematic view over the

temporal domain as an enabling tool for insightful exploitation of large satellite

data archives. Its founding principles and contextual information is provided;

Chapter 2 defines the goals of the system implementation and outlines the system

architecture, elaborating on the main perspectives considered, driving the defi-

nition of the system and design choices relating to each of them;

Chapter 3 details the conceptual description of the methodology including the data

processing flow to prepare a consistent data set that is comparable in the geo-

graphic, thematic and temporal domains, across different sensors. The thematic-

temporal pattern matching system is defined along with the proposed layout of

the user interfaces for interactive data presentation;

Chapter 4 describes the chosen satellite dataset to populate the system archive and

provides an overall view of the implemented systematic data processing chain,

built with a minimal, firewall friendly, reusable distributed processing system, to

extract thematic data and prepare it for interactive access and analysis;

Chapter 5 describes data access and presentation functions, including key functions

of the graphical user interfaces and the model matching engine, implementing a

distributed processing platform based on Web server technology;

Chapter 6 provides a critical analysis of results obtained in terms of features pro-

vided, performances for interactive analysis and results of the assessment per-

formed in collaboration with a group of end users;

Chapter 7 draws conclusions on the presented material and proposes possible im-

provements and future work directions;



Chapter 1

A thematic view on the temporal
domain

The ever increasing availability of Earth RS data acquired from orbiting satellites

calls for the development of tools permitting the EO community to efficiently exploit

such vast and growing amount of data. Thematic categorization is one of the possible

ways to extract meaningful information from large data archives while reducing data

volume to a more manageable size. Such generic thematic information, closer to human

semantics, can then be displayed for interactive analysis by a user community interested

in gathering this information or in its deeper analysis within a specific thematic field.

This thesis proposes an interactive system that permits to analyse time series of

geo-referenced thematic data. The system provides visual data browsing features as

well as tools for computer aided modelling of thematic evolution patterns (defining

how the thematic data is expected to evolve over time) and their automated matching

against very large databases (many years of data over entire continents). Therefore

this system extends the normal search in the space and time dimensions with the

capability to verify the matching of the modelled thematic evolution patterns and

provides derived maps for on-line analysis. A multi temporal thematic evolution search

introduces a form of content based information retrieval on the archived data. The

interactive system operates on the results of a bulk data processing infrastructure that

extracts the thematic data from the huge basic data and stores it in a form suitable

for interactive display and analysis. The implementation of the total system (pre-

processing and interactive parts) for an entire archive of the data acquired from a

moderate resolution RS instrument is also herein described. The remaining of this

chapter provides basic foundational concepts to contextualise the presented work.

1



2 CHAPTER 1. A THEMATIC VIEW ON THE TEMPORAL DOMAIN

Visual analysis for data exploration

An interactive environment for data exploration that promotes visual pattern identifi-

cation is an essential element to ensure direct applicability of the human vision in data

analysis. Human vision has been recognized as an important tool in the advancement

of science, paired with data visualization tools to foster pattern identification in geo-

graphic data applications such as cartography [3]. The way in which data is presented

can thus help to provide insight on the causes determining the observations and an ex-

ploratory attitude to data can lead to discovery of unknown phenomena or be a tool to

provide assessment for further analysis directions; Exploratory Data Analysis (EDA)

principles and the importance of such attitude to data are provided in [4].

Data exploration is a concept now permeating several fields of RS, like the obser-

vation of the skies through the Virtual Observatory (VO) which provides capabilities

to analyse and integrate astronomy data from different providers, as well as to per-

form interactive computations on elements from its widely distributed digital data

archives[5]. Within the Knowledge-based Information Mining (KIM) framework, data

mining techniques are also being applied to search collections of EO images for fea-

tures of interest. KIM provides an interactive environment for spatial data mining,

attempting to simplify user interaction with complex multidimensional data [6]. The

most recent launch of the Google�Earth Engine project to deliver a platform to browse

and access an impressive amount of world-wide raster satellite imagery is also evidence

of the increasing availability of on-line data and the focus towards their interactive

exploration to increase its exploitation[7].

Graphical EDA tools are powerful instruments to provide an insightful display of

data and its interactive visual analysis is a key aspect of the presented work: it provides

a Graphical User Interface to interactively browse data, with focus on the temporal

domain. Building on top of such vast archives, the data reduction potential of feature

extraction can be leveraged to provide access to high level (thematic) data that users

can visually explore.

The land cover thematic domain

Among EO applications, Land Use and Land Cover Change (LULCC) topics are be-

coming more and more critical subjects for the impact they have on global climate.

They are in fact linked to climate and weather in complex ways and are fundamen-
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tal inputs for modelling greenhouse gas emissions, carbon balance, natural ecosystems

and human environment evolution. Both human activity and natural phenomena can

affect many of these processes, that are strictly correlated, influence each other and

have strong impact and consequences on environmental, social and economic aspects

as well as on human health. Land cover refers to everything that covers the land

surface, including vegetation, bare soil, buildings and infrastructure, inland bodies of

water, and wetlands. Land use refers, instead, to societal arrangements and activities

that affect land cover[8].

Many approaches and methodologies exist for land cover change analysis: an ex-

tensive survey is provided in [9]. Recent work for multi temporal analysis systems was

performed to provide targeted land cover change studies or develop yearly databases of

land cover [10]. An interesting bi-temporal approach to land cover change analysis is

provided by the Land and Ecosystem Accounts (LEAC) methodology whose main goal

is to provide an easy and comprehensive access to land cover data, showing the ‘stock’

available for each land cover class in the different land cover data, and providing also

the changes occurred in the periods between different land cover works, as land cover

flows matrices [11]. Besides bi-temporal change reporting, the suitability of modelling

the change patterns of derived quantities extracted from multi temporal satellite data

to identify relevant phenomena has been confirmed for such fields as agriculture; an

example is given by [12] that confirmed the applicability of the Normalized Differ-

ence Vegetation Index (NDVI) from moderate resolution satellite data as a cost- and

time-efficient mean for large-area crop mapping in the U.S. Central Great Plains.

The availability of large quantities of EO data, with an ever increasing frequency

in the temporal domain, especially if considering a combined use of multi-sensor data,

creates the opportunity to develop new tools for both interactive analysis and visual

exploration for pattern identification over time series of images. Yet no application is

available to provide an interactive view on thematic land cover data, allowing interac-

tive exploration of its evolution over time. The proposed system is thus an improving

contribution that provides an unprecedented thematic view over data archives.

Feature extraction

A large variety of tools and algorithms are now available to perform categorization over

satellite imagery to extract meaningful features associated to understandable semantic



4 CHAPTER 1. A THEMATIC VIEW ON THE TEMPORAL DOMAIN

meanings. Many of these tools in the past operated on individual optical images to

identify features, such as those obtainable from algorithms working on spatial patterns

or spectral signatures. The output of the latter algorithms have the ability to reduce

the dimensionality of satellite datasets (in terms of spectral bands) into compressed

maps of thematic information (thematic maps). These maps provide increasing ab-

straction levels towards a higher semantic meanings clear to the end users and close

to his application terminology.

The high amount of time required for visual or semi-automated image analysis

calls for the use of more automated (unsupervised) pre-processing systems in order

to improve satellite data exploitation. In the land cover field, the availability of such

systems and the continuous technology improvement allows to obtain land cover maps

from huge amounts of data in a relatively small amount of time, as it is the case with

the recent global scale land cover maps for 2009 data, produced within the following

year by the GlobCover project [13].

On the one hand, virtually every Earth Science (ES) study and application can

greatly benefit from the use of the existing archives of long time series of satellite data

and the ever increasing availability of new EO images that provide an unprecedented

global coverage from different sources at different resolutions. On the other hand, since

the size of a single multi-spectral image is in the order of hundreds of Megabytes, the

real time utilization of these datasets for on-line analysis is a technological challenge

by itself: computer systems play a key role in the EO field to readily process such large

data volumes. The use of a fully automated, unsupervised classification system allows

to implement clustered and distributed processing, in order to quickly deliver data and

extract information for interactive visualization and ultimately pattern search.

Thematic evolution over time

The methodology described in this thesis is based on advanced applications for single

image feature extraction to deliver an integrated system with tools for multi-temporal

analysis of time series of geographically referenced data. As shown in Figure 1.1,

a thematic classification greatly reduces data volume, that becomes manageable to

offer fast interactive analysis aimed also at visual pattern identification. Pairing the

thematic view with a pattern definition and matching system allows to automate the

search for defined patterns. A generic pattern specification that is not focused on
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any specific change typology, or phenomena, provides a flexible exploration tool that

can be used by scientists to interactively exploit multi temporal data. This interactive

search feature can be an improving aid to research activities: the ability to interactively

search for a temporal evolution pattern (in the thematic domain) at pixel level gives a

new thematic view over existing archives of satellite data and a new way of interacting

with them to discover and use information.

Figure 1.1: From large archives of multi dimensional satellite data, thematic infor-
mation can be extracted, obtaining dimensionality reduction for each image to three
dimensions (two spatial and one thematic). Tiling the thematic maps and linking each
tile to a fixed geographic reference system and to the image acquisition time, permits
to perform complex modelling and queries on the evolution over time of the thematic
content.

An implementation is build for LULCC, with moderate resolution data, applicable

to identifiable thematic categories (abstract, expressed in semantic terms) and pro-

viding an interactive framework for visual exploration of land cover maps, with the

immediate benefits of visual assessment of the accuracy of the underlying classification

system and the land cover dynamics of any study area. The implementation allows

also automated search through the temporal domain for specific patterns, defined using

graphical interface. The automated search over the time series can be used to test the

extent of occurrence of a pattern over wide areas and different time periods to confirm

pattern validity or to identify areas worth studying in more detail. The output of the

search can also be exported in computer readable form to be used to drive further

processing by other systems requiring more processing resources, hence it is applicable
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as a screening tool identifying relevant subsets from the data archive without the need

to access and process the datasets.

User community and technology

Another problem tackled by this thesis is to bridge the gap between research and the

prompt usability of its results over EO products, a goal that is pursued by: considering

different user roles and providing them different views of the system; adopting a web

application model for user interaction; defining an access model that promotes collab-

orative work while allowing access control. With the advent of web 2.0 technologies

and the availability of client side programming features in modern web browsers it is

now possible to deliver highly interactive interfaces directly over the web, without the

need for installation of specific software packages, while providing the opportunity to

build central points of references (i.e. web Portals) for collaborative work on specific

subjects and leverage on high performance resources close to the data to perform the

needed computations.

Summarizing, the MEA system is designed to be a widely applicable, generic tool

for interactive analysis of long time series of (raster) geographic information in the

temporal domain through the provision of specific tools to model, query and visualize

data. It allows not only querying data by single map content but also to search for

occurrences of specific content patterns over time at pixel level. MEA is applicable

to any data scale while the implemented modelling system is better suited for data at

nominal scale of measure, as defined in [14], such as the categories of the land cover

thematic maps used for the presented implementation. Thematic categories can be

easily displayed for better human understanding; for example they are usually mapped

to a meaningful set of colours to produce false colour maps that increase readability.

The applied principle is to ease visual analysis of classification.

Although thematic maps are a powerful tool by themselves for the depiction of

an area in a readily understandable way, they can also be used in time sequences to

effectively depict the dynamic aspects of the area. Two maps at different times are

commonly used for the purpose of change detection, however, the prompt availability of

a series of these maps can provide better understanding of these changes. An interactive

search tool, can then be used to investigate them in greater (temporal) detail. Search

features, based on sequential pattern matching in the thematic-temporal domain, have
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been defined and implemented in MEA as a starting point toward interactive multi-

temporal analysis in an integrated environment.
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Chapter 2

Perspectives on an interactive
thematic system

The first implementation of the system, described in this work, is targeted to be suitable

for fast interactive analysis of land cover maps produced by classification of the entire

(A)ATSR archives and to be continuously updated as new data is collected by the

sensor. Besides this first dataset, the system is designed to be ready to support further

datasets derived from multiple sensors at different resolutions. In this context, the

system has been considered from the perspectives presented in the following sections,

along with discussion about driving choices, assumptions and key principles followed

for each of them in designing the system.

2.1 Users needs and access policy

Clear identification of users of a software system and their needs is the first step and

a key factor in providing an effective design, as endorsed by state of the art guidelines

in the Space segment [15], while multi-user environments require user authentication

and authorization policies to regulate access to their functions. User identification and

access policy for MEA have been defined taking into account that it will serve diverse

user communities, possibly on different domains that employ thematic maps and can

benefit from interactive multi-temporal analysis with the contribution of user provided

content.

In particular, with respect to data utilization, the identification and definition of

evolution patterns over time and their coding into models that can be automatically

searched over time to provide on-demand thematic maps, is a key function, well suited

for identification of two broad categories of users. A first category of users is interested

9
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in the exploratory data analysis functions and in the use of evolution models to assist

their research activities such as investigations in a specific domain.

A second category of users is interested in the prompt availability of on demand

thematic views over user selected geographic areas and temporal ranges: examples

are policy makers and public administrators, who can exploit consolidated products

resulting from the temporal evolution analysis. The “Expert” role is assigned to the

former users, since they have specific knowledge in their domain, while the “Standard”

role is assigned to the latter users, because of the simplified system view they require.

Users in the Standard role require access to finalised, understandable and valid prod-

ucts obtainable from published models. This user categorization is also an attempt

to bridge the gap between research and use, supported by overlapping views on some

of the system functions in an integrated environment. Moreover, for any computer

system that implements user identification, there are two essential user profiles to con-

sider: “Anonymous”, which refers to unidentified users and “Registered”, which refers

to identified users regardless of their other attributes. Finally one last essential role

is considered: “Administrator”, which is assigned to users responsible for system and

data management functions.

From the perspective of authorisation, in order to keep a simple categorization of

functions associated with shared elements, the Unix file access control model is applied

to evolution models, to complete the foundation principle for our access policy, it is

crossed with the Windows Access Control List (ACL) concept. As detailed in section

3.5, from the Unix model we take the emphasis on ownership and the basic set of

permissions: Read, Write and Execute while from the ACL model we add group list

to allow assigning permissions for more than one group of users to the same model.

With respect to functionality, different functional needs are associated to each

defined role that a registered user can belong to. In our model, access to functionality

for user roles is inclusive with respect to the lower role as listed hereafter, in descending

order of inclusion:

Administrator an administrator is expected to perform administrative tasks on the

MEA system, hence it is granted all the capabilities and permissions granted to

the other roles; in addition, specific administrative functions are defined:

� Manage the data archive by means of input rules: a set of rules to drive
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automated data ingestion, oriented toward easing the man-machine interac-

tion, have been defined using a generalised set of labels over an underlying

work flow as detailed in section 3.6;

� Manage users and monitor system usage and health status.

Expert an Expert user is a domain expert in the thematic covered by the classification

maps, with good knowledge of some study areas or interest in modelling some

phenomena by its thematic evolution; Expert functional needs are identified as:

� Have a fast interactive query tool to perform multi temporal visual analysis

on large (spatial and time coverage) data archives e.g., to have a differ-

ent/broader perspective of a known area or to search new ones presenting

unusual characteristics to study;

� Identify relevant thematic patterns, both at the pixel or area level;

� Define evolution models over some identified or hypothesized pattern;

� Run defined models over the archive to interactively search for its occur-

rences over some Area Of Interest (AOI) and multiple time periods, to take

advantage of the search outputs;

� As the owner of the defined model, the “Expert” user is responsible to define

its access policy and its associated meta-data;

Standard an ordinary system user is assumed to be a decision maker interested in

obtaining environmental information derived from analysis over time (e.g. spe-

cific land use or other phenomena) that has been modelled to be automatically

detected over an AOI at any given period in time; identified needs for that role

are:

� To have a fast interactive tool delivering high level thematic information to

support decision making;

� To have a user friendly interface with a simple and effective interaction

model.

The MEA system is thus designed with features aimed at providing an innovative

integrated environment to satisfy these functional needs; as an interactive system it is

also designed to minimize response time perceived by the users to keep a high level
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of responsiveness. As users with different roles access the system with different views

on it, i.e. using different interfaces, the contextual view of the reference scenario,

manageable with this access control model, is depicted in Figure 2.1. Following the

three identified roles, three main views on the system are also defined as interfaces for:

Operators/Administrators (OGUI), Expert users (EGUI) and Standard users (SGUI).

Figure 2.1: User access scenario

The presented policy model is designed to allow collaborative joint efforts for the

development of a single evolution model by different expert users, possibly belonging

to different organizations or not affiliate with any institution. Moreover, a group based

model avoids also the implicit limitation of role based control only to editing features in

multi-user environments, as it is the case of systems where a user with access to editing

functions, an “Editor”, could not only use editing features on its own models but also

those belonging to other users without their authorization, unless no collaborative

editing is enabled at all.

2.2 Data preparation

As an integrated, general purpose analysis tool, the system is designed to operate on

any categorization data that can be mapped on the Earth surface in raster form. The

presented implementation, however is focused on the LULCC domain: it is built over

land cover maps, obtained by unsupervised classification of satellite data at moderate

ground resolution of 1 Km. Use of moderate resolution data brings two advantages: it

is well suited for a first system implementation to assess its performances over limited
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hardware resources while providing access to a global dataset with high temporal

frequency. The potential and applicability of the application can thus be verified

providing access to an extensive dataset at global scale. Use of a single data source

does not hinder the possibility to define extensions for multi-sensor integration, in fact

the selected archive holds data from two very similar sensors with different resolutions,

and to build a scalable system that can grow dynamically as further data sources

are added. Another advantage from the choice to use (A)ATSR data is to open an

unprecedented thematic view over its entire European archive that allows exploring it

interactively with a new perspective.

Using two sensors of the same kind, at similar resolutions, the derived maps archive

offers also the opportunity to assess across sensor processing performances. The focus

on multi-temporal analysis drives the approach at data and dictates how it has to

be processed to build a consistent stack that can be used for time series analysis:

accurate geolocation and accurate radiometric calibration are the basis for the pre-

processing chain in order to attain spatial and radiometric comparability; furthermore,

a spectral classification based on prior-knowledge is applied with the aim to provide

a sensor independent data layer, consisting of land cover typologies, with a human

understandable semantic meaning.

During the development of the system, a strong standardization effort was ongoing

in the EO data archives domain toward increased accessibility of data and services;

among other events, the Service Support Environment (SSE) reached its operational

state providing a generalised web based platform for delivering value adding services

to users through a common interface and a defined set of operations with customizable

parameters [16]. To promote interoperability and data accessibility, the output maps

produced by classification of the entire (A)ATSR archives are also provided as an

SSE service, named Advanced Semantic Query system for Large satellite Database

(ASQuLD); it enables the provision of search by area and time coverage of the Earthnet

OnLine Interactive (EOLI) interface[17] to browse the maps. The extensibility of the

standard has been exploited to add thematic content to the search parameters allowing

searches on image thematic content. In addition a minimal, yet flexible, custom Order

operation that allows full automation in dataset retrieval via File Transfer Protocol

(FTP) is added, as defined in section 4.2.2.

The ASQuLD service is the foundational building block of the data processing
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Figure 2.2: Overall diagram of data preparation elements: the ASQuLD service re-
trieves satellite data elements both from archived data and continuously from an up-to-
date data source (Rolling Archive), processes it to extract thematic data and publishes
it to be accessible to SOAP clients. Its interface allows querying on the thematic con-
tent of the classified maps.

chain of the MEA system, that we call the Classified Maps Provider (CMP) as it can

be also seen as the extension point toward other thematic domains. An overall diagram

of that component is provided in Figure 2.2. Its implementation design is focused on

performance and scalability in computing the classification maps: taking advantage of

the unsupervised, pixel based nature of the selected classification system, a distributed

computation approach is used to build a processing infrastructure that can process the

entire archive in less than six months. The distributed approach allows further accel-

eration, if needed, by adding processing elements that can also be moved close to the

source archive itself to reduce network traffic by transferring only the classified map to

the system. The distributed pull model protocol used for data processing is detailed in

section 4.2. To ensure best geolocation accuracy, a new geolocation correction module,

accounting for the sensor specific geometry and acquisition model was implemented

with the support of Rutherford Appleton Laboratory (RAL) scientists that increased

the accuracy of the resulting maps.

Building on top of the classification maps, accessible via the ASQuLD service, the
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MEA archive, designed for interactive access, is built to enable multi-temporal analysis

by remapping all data over a common reference system so that the time dimension can

cross a consistent spatial data stack. Besides facilitating multi-temporal analysis, the

use of grid reference systems “has been recognized as key point for the integration of

heterogeneous sources of data”[18]. This approach, complemented with the use of a

variable grid size, allows to build a system that can work at different resolutions, in

order to exploit data from different EO sensors. The resulting layered reference system

is defined in a way suitable for fast computer processing.

Being a global scale application, a widely used system for depicting global maps has

been selected to display thematic maps content to users in a two dimensional represen-

tation: the plate carrée or simple cylindrical projection. That projection is the simplest

form of association between map points and their coordinates on the Earth surface (ac-

tually on its surrogate ellipsoidal representation), that simplicity can be leveraged to

build raster data without the need for associated geo-location information since it can

be coded directly in the raster definition: by defining a regular sampling mesh over the

standard Latitude Longitude coordinate system, the corresponding digital representa-

tion as raster maintains that regularity, resulting in the simple cylindrical projection

if directly rendered.

This simple approach to sample and represent geographic data has well known lim-

itations, as extensively reported in [19] and [20] where it is confirmed to be suboptimal,

especially if compared to several kinds of Geodesic Discrete Global Grid (GDGG) that

partition the Earth surface using polyhedra as base grid structure making them partic-

ularly suited for three dimensional representations such as virtual globes[21] as these

have the same dimensionality of the base grid structure. Nonetheless the geographic

coordinate system is still by far the most widely used reference system for satellite

imagery and its plain representation well known to the user community. The adopted

solution, that is basically to define a regular square partitioning over the simple cylin-

drical representation of the Earth, is demonstrated to be adequate for the presented

implementation at 1-Km resolution, as reported in section 4.3, and to deliver good

performances for an assessment of the proposed approach for multi-temporal analysis.

Although the efficiency of the adopted solution decreases toward the poles as the dis-

tortion produced by its driving representation, it is considered to be still applicable at

finer resolutions to assess system performances and set the basis for future research
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on multi-resolution usage of the system. The most relevant drawback of that solution

is known to be the absence of equal-area cell regions in the derived grid and this is

especially evident for applications near polar regions where a different approach to

data sampling would be a better choice.

The solution adopted for the layered, multi-resolution, reference system is basically

a Discrete Global Grid System (DGGS) that, according to [19], is congruent and

unaligned with respect to the planar representation of the Earth over which it defines

an uniform square partitioning, hence well suited for two dimensional display and

related operations since it does not require re-projection to the target display and its

congruency allows a regular square pixel subdivision at each level. On the other hand

the solution is non-uniform with respect to cell areas over the Earth surface, hence not

optimal for data storage that is still greatly lightened by the classification process, but

still leaves room for optimization, as reported in section A.5. Re-sampling classified

maps on the DGGS can be done on any kind of categorical thematic map using the

nearest neighbour algorithm, without changing actual class values.

An ingestion system that retrieves maps from the ASQuLD service has been de-

signed to perform the re-sampling operation to provide full process automation as a

solution to ease the data management and maintenance tasks that are common for

satellite data archives, especially for derived products that are subject to changes in

the algorithms that generate them, thus potentially requiring periodic, selective re-

ingestion. A rule based ingestion controller is implemented and an associated set of

rules is defined to drive its operation. To complete the MEA ingestion system depicted

in Figure 2.3, storage elements are defined to archive ingested data for interactive ac-

cess.

The approach to the data archive is oriented toward exploitation of the natural

spatial-domain partitioning that is induced by using a regular sampling over a flat

square Earth representation: grid elements are grouped together in uniform Tiles of

equal size. Tiles are the basic storage units of the system and their fixed spatial

addressing on the grid eases both the implementation of parallel processing solutions

and spatial queries efficiency. Efficient storage solutions applicable to data organized

in regular grids exists in literature, for example the on disk layout proposed by [22] to

accelerate real-time exploration with optimized storage techniques. The advantage of

such Out-of-core computing [23] techniques should be investigated as new data layers
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Figure 2.3: Overall diagram of the Automated Data Ingestion system. An automated
ingestion component, driven by a set of ingestion rules defined by an administrator,
retrieves classification maps from the map provider. Maps are Tiled over the reference
grid and stored in the Tile archive for interactive access.

at increasing resolution are added to the system as the advantages obtained with

performance oriented data layout restructuring could be applied to the Tile archive.

In the presented implementation however, the use of standard files stored on a robust

standard file system has been preferred and the spatial partitioning scheme exploited

by organizing data into an hierarchical directory tree designed to have leaves (data

files) oriented toward the time dimension, as shown in figure 2.4. The geolocation

space is partitioned by directories to enable direct mapping between Tile identifiers

and file paths. This approach exploits also the operating system cache by organizing

directory meta-data content toward the geographic location, accelerating both location

of data along the temporal axis and responsiveness to subsequent request related to

the same area.

Figure 2.4: Directory tree structure of the Tile storage. The hierarchy is multi-
dimensional: sensor, geographic location and finally temporal reference are used to
partition the file system into manageable units.

The use of direct file system mapping promotes also storage scalability by allowing
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distribution of data across several file systems on different storage arrays without

requiring any customization. As shown in Figure 2.5, different storage units with

different size and performance characteristics can be used to store a partition of the

archived Tiles by making direct use of mount points within the directory tree.

Figure 2.5: Use of different storage units by direct use of mount points. A file system
based approach allows linking and mounting of different storage elements transparently
to the software elements managing its content.

Besides the file system based Tile storage, Tile meta-data is organized in a cus-

tomized, performance oriented database to provide fast identification of Tiles as fast

interactive browsing of the archive is recognized as one of the key success factors for

this system. Fast access to Tile meta-data for interactive queries is thoroughly exam-

ined with the goal of performing complex spatio-temporal-semantic(thematic classes)

queries within few seconds over the entire temporal domain at national scale areas.

Besides removal of the real-valued geographic coordinate system in favour of an inte-

ger valued Tile addressing scheme, modern Data Base Management System (DBMS)

features such as partitioning and clustering, as well as recent technology such as Solid

State Drive (SSD) are also employed and tested as means of performance improvement.

To be noted also that the data duplication issue toward poles has been assessed but

not addressed in this implementation, for example the use of an equal-area projection

as the basis for grid definition, such as the sinusoidal, would remove the duplication at

the expense of greater geometric distortion or the adoption of different base projections

on different zones, as is the case with the Goode Homolosine projection, that gives a

raster-friendly equal area representation at global scale with a balanced look for land

areas. These solutions would also require further customization toward results display

and area of interest management and its representation to the users with respect to

the simple cylindrical. Application scope and design choices however, help to mitigate

that issue. Firstly the focus on land cover and the cloud detection capability of the
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classifier allows discarding cloud samples to focus only on valid land cover classes, as

clouds are filtered out of the data stack, entirely cloudy tiles are discarded together

with those completely over sea. To further mitigate storage issues, temporal resolution

is limited to one day, adequate to typical revisit time of moderate resolution satellites,

that allows elimination of the multiple acquisitions for a single day approaching the

poles, due to the near polar orbit of those satellites.

2.3 Thematic search and evolution modelling

Fast thematic content filtering at single Tile level enabled by the customised meta-data

handling is a key element of fast interactive visual display of long time series. Browsing

data in a way that aids temporal pattern identification is one of the main goals of the

MEA system. An automatic system to search interactively for occurrences of identified

patterns across the archive is then added providing a feature unique to this system to

further proceed in the analysis process. The provision of a modelling tool to define

the identified (or supposed) pattern, that can be readily matched to assess the extent

of its occurrence and the visual display of the results again as a thematic map is a

simple, yet effective way to provide a versatile tool for interactive visual analysis in

the temporal domain. In addition, the option to retrieve search outputs also as plain

text files allows external processing systems to make direct use of them.

Automated data analysis techniques, even if very relevant for pattern detection

(data mining) in large data archives, require considerable effort in design and valida-

tion and can be applied only to specific fields. Our definition of evolution model is

instead designed to let the user precisely define each model element with tolerance

margins in both thematic and time domains while aiding tools are provided to derive

model elements from observed data. All the knowledge for multi temporal analysis is

provided by domain experts in the form of evolution models (searchable patterns) that

provide immediate thematic understanding of the modelled phenomena. This pattern

matching approach has been selected as a first analysis tool to demonstrate the capa-

bility of an interactive thematic analysis to explore and exploit satellite data focusing

on the temporal domain, it lays also the basis for the introduction of more automated

techniques in the integrated environment.

In the MEA context, an evolution model element, or simply Model Element (ME)

defines an association between a given set of categorical values (thematic classes) and a
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temporal reference, defining “when” that set is expected to be observed. An Evolution

Model (EM) is in turn defined as a sequence of model elements, positioned along the

temporal line by relative time references. In the LULCC domain, an evolution model

defines a sequence of land cover classes that are expected at given times to model

the land cover evolution over time. As a sequential pattern, an evolution model can

be quickly matched with actual time series data at the pixel level, to determine if

that data matches the modelled evolution pattern. The suitability of change patterns

over time to identify relevant phenomena has been confirmed in agriculture[12] and its

applicability to define also transition phenomena to identify changes of interest directly

derives from the temporal attributes of such changes (e.g. burned areas identification

imply a change in the land cover of the affected area as do flooding events).

The proposed evolution model matching is a form of change analysis that, accord-

ing to the topology summarized in [9], falls in the “classification” category and in

particular, it is a form of the commonly used post-classification comparison; it is com-

bined with pattern matching to provide comparison at an arbitrary set of time intervals

to detect an evolution pattern over time, thus realizing an automated multi-temporal

search tool applicable for fast, on-demand time series analysis.

One foundational basis of the system in the LULCC field, the evolution of land

cover classification over time, based on spectral analysis of principal measures, can

lead to the identification of land use typologies and to the contextual detection of

major disturbances (areas of rapid land-use / land-cover variations). The key to the

automatic identification of relevant evolution patterns is the definition of a correspond-

ing evolution model that can be systematically used to determine if a given series of

observations conforms to the modelled pattern.

Being a post-classification system, its accuracy is strongly dependant on the ac-

curacy of the underlying classification system, in fact it can be at most as accurate.

Single image classification depends instead on the resolution of the underlying data,

since land cover changes must be discriminated by the sensor for the classification

system to detect a different pixel class. The effect of mixed pixel acquisition is also a

known source of misclassification for systems based on pure spectral signatures: the

higher the resolution detail, the less mixed pixels would occur with respect to identified

typologies. The SM classifier detects classes that are suitable for global to local scale

applications as it is pixel based and independent from the geometric appearance of
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data. It is still affected by the acquisition geometry that leads to mixed pixels and,

although an accurate study of this effect at different resolutions is not part of this

work, advantage from the availability of MEA can be taken immediately by using it as

an investigation tool toward mixed pixel effects, using its multi-level grid system and

display features over areas with low distortion.

With respect to sequential pattern matching alone, which leads to a yes/no response

from the search for an exact match, evolution models feature two kinds of tolerance

parameters that change pattern detection behaviour. Changing tolerance parameters,

a high degree of detection flexibility can be obtained:

� To identify relative position of elements in the sequence along the temporal line,

their temporal reference is defined with respect to the element preceding them

in time so that the pattern is independent of absolute time references, making it

applicable at any point in the time line.

� Each element is designed to detect a particular set of values, and a tolerance

set is also admitted to let the user evaluate the incidence of selected values over

the result and to divide the results into two levels of confidence. To cope with

possible misclassification, values to be ignores can also be specified;

� Besides sets of values, a model element defines “when” those sets are to be

found by means of its temporal reference. Since it is common to not have daily

acquisitions (for polar orbiting satellites, revisit time is in the order of several

days) and to have invalid observations that are not applicable to the domain

(e.g. clouds for land cover), there is the need to introduce some flexibility in the

pattern to let the model accept data not only at the day referred by its temporal

reference: the Time Tolerance (TT) of an element defines the radius in days of

a temporal interval, centred on the element’s temporal reference, as its sampling

window over the time dimension.

� Another option considered for model matching is whether an element will eval-

uate just the closest available value to its temporal reference or search all the

values covered by it. A “persistent” element can be useful in defining a limit to

accepted variability over some time window during the search for a match or to

require a uniform coverage type.
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An algorithm to perform the matching has been defined and a distributed processing

engine built to allow its use to search over an AOI and one or more temporal intervals.

With the aforementioned extensions, a pattern match can deliver four different results

for any given pixel and time reference pair: Perfect Match, Match within Tolerance,

Not Match and No data (i.e. possible match but not enough data to test all elements).

A match is tested by assigning a position in time to the first element of a model, then

analysing observed data as detected by all model elements at their respective temporal

reference.

2.4 User Interfaces

Any system foreseeing user interaction has to provide some kind of interface to its users;

for software systems designed for visual analysis a graphical interface is an effective

choice and can be one of the main factors driving its success in being used effectively

and with satisfaction by its users. The interfaces designed for MEA are tailored to its

specific purpose, context and user typologies while still presenting well known elements

for any Geographic Information System (GIS) application. Three interfaces are defined

to provide a different view of the data and access to different functions following the

three main user roles.

The interface for users in the “Expert” role provides access to all multi-temporal

analysis features of the system, with the aim to aid the user detecting relevant patterns

in the thematic data over time. A geographic map browser is provided, common to

virtually every two dimensional GIS interface, along with interface elements focused

toward the temporal domain, such as a complete profile of a given pixel over time and

the dynamic display of Tiles time series. Tree dimensional effects were also considered

for some interface elements but they have been discarded as a limiting factor due to

their tendency to overlap data elements, thus impeding their full visibility to the user.

The layout of the expert interface is designed along the three essential steps of the

research sequence, as reported in [3]: an exploratory phase where data is explored to

formulate an hypothesis (visual browsing of data, pattern detection and modelling), a

confirmatory stage where the hypothesis is tested (automated pattern matching and

visual analysis of results, numerical analysis versus external data). Once confirmed,

the hypothesis is then made public for others to take advantage of it (a model be-

comes usable also by “Standard” users). As the interface for users in the “Standard”
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Figure 2.6: Overall diagram of user interfaces with main functions provided. Three
different interfaces are defined to provide different views of the system and different
sets of functions to users in different roles. These are backed by the Tile archive, the
Evolution Models engine and a set of system administration tools.

role coincides with the confirmatory function of the Expert interface (although with

reduced options), it becomes seamless to deliver an effective, verified pattern to the

user community thanks to the system integration. Meta-data is also associated to

each model to define how it has to be used to effectively search through the time series

for a modelled phenomena. Finally, management interfaces and cooperative reporting

functions are made available to let the user community become a direct resource for

system improvement. By reporting issues in archived data its quality improves as its

error rate decreases; collaborative effort in pattern validation and modelling is also

possible. A top level overview of the MEA user interface system is depicted in Figure

2.6 where main functions of the interfaces are represented as labelled messages arrows.

Interactive analysis, the main function of MEA interfaces, requires high respon-

siveness to user actions and interface accessibility is another key factor to obtain user

satisfaction. Recent developments in Internet technologies make the World Wide Web

the ideal application distribution channel, especially for multi-user applications that

can take advantage of the proximity of the computing elements engine to the data

archives. With the added advantage of immediate application update dissemination

by design as the application accessed over the web is always presented to the users in its
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most up-to-date version. The Asynchronous JavaScript and XML (AJAX) approach

to web applications[24], coupling rich features with high interface responsiveness, of-

fers the opportunity to deliver rich features for interactive exploration of time series

directly over the web making them readily accessible with a modern web browser, with

very limited resource requirements to the user. The functional diagram provided in

Figure 2.6 omits the container component serving the user interfaces and allowing such

delivery model: a web server supporting server side programming for the AJAX asyn-

chronous functions. The interfaces are also assessed for their Usability[25] as perceived

by a limited set of test users.

2.5 Hardware and performances

Hardware used for prototype implementation of MEA has been sized to deliver a proof

of concept system, yet efficient and adequate for use by an initial small community of

users in an operational environment. It has been also tailored towards Tile meta-data

access performance to ensure high interactivity while browsing data and it is designed

to run on commodity hardware with no specialized components.

The reported implementation of MEA has been built in two steps: a semantically

searchable catalogue of land cover maps over the entire (A)ATSR archive has been built

as a Web Service: at this point we provided basic ”image content” search capability

allowing queries based on land cover type percentage in single images. Then the

evolution analysis system to interactively browse through the temporal domain and

search for occurrences of a given sequential pattern in time at pixel level was added;

the addition included a second batch of hardware to store the Tile archive and provide

a fast meta-data catalogue. Thus, the system hardware comprised two batches of

different systems that, paired with reuse and share resource strategy, led to the final

configuration of:

� One central storage and controller unit, that has also been reused to host the core

web server, hosting both the MEA application and the ASQuLD maps catalogue

service. A Direct-Attached Storage (DAS) unit was added with the second batch

to provide Tile storage;

� Two Processing Nodes (first batch); devoted to systematic ingestion of satellite

data to build the classified maps catalogue, that are also used to host model
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matching processing;

� Two Database Nodes (second batch); dedicated to fast meta-data access (em-

ploying also SSD technology), model matching processing and also systematic

ingestion in addition to the processing nodes.

Performance

The target implementation over limited, heterogeneous hardware resources promoted

the design of distributed processing components and a policy to share that hardware

among all software components to deliver high performance for burst-load operations

addressed to user interaction and continuous processing for data ingestion and back-

ground operations. The Linux kernel scheduler offers process niceness level[26] that

has been used to give adequate prioritization to the system functions to provide adap-

tive (prioritized) hardware utilization, according to the following performance priority

requirement of each function:

1. Data selection queries for Tile identification have top priority as they provide

high responsiveness to interactive browsing and data exploration on the user

interface: database functions run at slightly above normal niceness level;

2. Model matching computation must deliver high performance as it provides re-

sults to the multi-temporal thematic search, it however depends on the database

function and is thus run at normal niceness level;

3. Systematic data ingestion has the lowest priority with respect to the other inter-

active functions hence, it is given background priority.

During development, all components underwent performance monitoring and anal-

ysis aimed at detection of anomalies and system improvement where feasible.
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Chapter 3

Multi-temporal analysis system

This chapter provides a conceptual description of the MEA system aimed at realizing

a generalised, integrated solution for multi-temporal analysis over geographic sets of

thematic raster data. Without loss of generality, the specific case of land cover classifi-

cation is considered since the system implementation is based on land cover maps. The

methodology is aimed at building a comparable set of data in the thematic-temporal

domain that, consisting of thematic data (semantically identifiable), is readily under-

standable by humans so that interactive visual browsing can be effectively employed

as an analysis tool. The visual presentation of data to the user is aimed at easing the

identification of relevant patterns in the classification over the temporal domain and

aiding tools are provided to formally define such patterns as Evolution Model that

define an expected thematic behaviour over time at pixel level. The formal definition

of patterns enables the definition of a multi-temporal search engine that can be used to

test for occurrence of a given pattern in a subset of the data archive. The integration of

thematic maps, graphical interfaces with tools aimed at easing pattern detection and

a modelling tool for pattern formalisation, allows the execution of interactive thematic

searches in the temporal domain that can be performed on the thematic evolution over

time of each image pixel in time series of satellite data. The result of such search

can itself be effectively represented as a thematic map to be readily accessible for an

assessment of the occurrence extent of the modelled evolution.

The practical use of the presented approach becomes evident when considering that

a given evolution of thematic data over time (such as land cover class) can be used to

describe a given phenomenon (such as an agricultural practice, that can be identified

by its seasonal cycle or any transitional event such as flooding or deforestation); the

particularity of a formalised pattern is to be clearly understandable to the user and its

27
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codification in a machine readable format, combined with the condensed information

of a thematic data allows fast searches for occurrences to be performed on-line at the

user request. Moreover, the preparation of a thematic archive of satellite data can be

prepared for multi-sensor applicability if the data archive is built on a fixed reference

system permitting multiple resolution levels.

3.1 Comparable data over time and across sensor

The ideal dataset for multi temporal detection of patterns over time, applicable across

sensors, would consists of a thematic dataset that is consistently derived from any EO

data type in order to always provide the same class value for the same observed surface

feature, independently from sensor specific parameters and atmospheric conditions at

the time of observation. Since mixed pixel effect cannot be avoided across different

resolution levels, the dataset should also be scale invariant for pixels that present no

mixed content at several scales: while the contours of a given feature would present

some changes, the core of the feature should be effectively detectable at different reso-

lution scales with the characterization of its thematic-temporal behaviour. With such

consistent and robust thematic classification, the outputs of different sensors at similar

resolution levels could be merged together to increase data coverage in both spatial

and temporal domains. Post classification analysis allows to operate across sensors,

provided the classification system is able to detect the same class for the same observed

object at different times.

For multi-spectral optical sensors, each image is a co-registered data cube in the

geographic-spectral dimensions where, as shown in Figure 3.1(a), each cell/pixel has

a specific value in each spectral band. Extraction of a thematic classification map

flattens the spectral dimension to a single layer with extracted semantic meaning (e.g.

land cover type). Provided that pixels are remapped or co-registered across a series

of images of the same area taken at different times, a new data cube can be built in

the geographic-temporal dimensions where each cell/pixel value, as shown in Figure

3.1(b), is a feature value understandable by the user at thematic level. Moreover, since

different optical sensors may have different spectral bands (in number and position vs.

the frequency domain), the classification can be used as an effective system to flatten

such differences by providing a single value, representing the thematic meaning of the

spectral data. It is thus a possible method to reach sensor independence. Several
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(a) Multi-spectral image: a geographic-
spectral data cube with observed values in
spectral bands

(b) After classification and time series colloca-
tion: a geographic-Temporal data cube with
thematic classes over time

Figure 3.1: Spectral classification flattens the spectral dimension, collocated time series
provide a thematic cube over time.

examples of hyper-spectral image classification algorithms, implemented to provide

fast processing of images with high spectral dimensionality over hardware clusters are

presented in [27]. With adequate hardware resources, it is then possible to perform

systematic classification in a reasonable amount of time over a large volume of datasets.

The implementation herein presented is not based on hyper-spectral data and makes

use of a single pixel based classification system that requires limited resources to deliver

adequate performances for systematic classification. Moreover, as reported in section

6.1.1, faster processing would lead to data locality issues.

A system providing a coherent classification represented by a finite set of (semantic)

labels can be the basis for change detection, since variation in the output label for

a pixel would indicate a corresponding variation in the observed surface area. To

be directly comparable the output set has to be the same for each data source, at

a minimum for sensors with a similar resolution level. Such classification provides

comparable data in the temporal domain within a given margin, which decreases as

adherence to the common classification increases.

It must be recalled that radiometric calibration, i.e. digital numbers to radiance

or surface reflectance conversion, is a key factor for quantitative analyses of multi-

temporal images [9] and that primary parameters, like the spectral surface reflectance

can be used to produce a standardised characterization of soil and vegetation[28].
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Therefore a spectral classification system working at pixel level with calibrated ob-

servations can be used to build the thematic characterization and its output maps

processed for comparison in the temporal dimension.

One of the disadvantages of post-classification methods is the considerable amount

of time and expertise usually required to produce the thematic classification. The

availability of classifiers that consolidate the ever increasing knowledge about observed

spectral information enables systematic production of thematic maps within relatively

small time frames that can build thematic layers of information. Applicability to

multiple sensors allows increasing the temporal density of data, providing an improved

data base. However the strong dependency of the final accuracy on the quality of the

single maps remains an intrinsic disadvantage of post-classification methods.

Among other spectral classification systems, SM characterizes the vegetation in-

dex and other derived properties as tone and brightness and provides as output a set

of classes. According to its product specification[29], SM is an unsupervised classi-

fier that performs multi-spectral analysis on calibrated Top Of Atmosphere (TOA)

physical values to generate a preliminary classification map over the main categories

of Vegetation, Bare soil / Built-up, Water / Shadows and Snow / Ice. Furthermore

it has built-in detection of clouds and provides indication of outliers that do not fall

within its classification scheme. Each main category is provided in a discrete set of

intensity scale that can be directly mapped to a quantization of the vegetation in-

dex crossed with other spectrally derived properties such as brightness and relevant

signature characteristics, for a total of 56 classes. SM classification technique takes

inspiration from the decision tree classifier published in [30] that uses prior knowledge

on spectral response to directly provide a semantic category for a given observation.

SM software implementation is named Enhanced SOIL MAPPER (ESM) that extends

the supported set of input sensors providing an improved classification system and

cloud detection technique; further details are provided in an internal report of the

providing company[31]. One key aspect of ESM is its standardised output set allowing

direct classification comparison among thematic maps derived from images of different

sensors.

There is evidence of the suitability of features extracted by quantities derived from

spectral signature analysis like the NDVI for effective multi temporal characterization

of agricultural phenomena [12]. We assume that any phenomenon changing the spec-
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tral signature can be detected from comparison of the output of a spectral classifier,

provided its intensity is enough to be detected in a given time frame, hence by char-

acterization of the output classes (either observed or expected) over time provides a

model that can be matched to the geo-temporal feature cube to detect the modelled

phenomenon. The implemented MEA system builds on time series of homogeneous

thematic data obtained by processing satellite images using the SOIL MAPPER®

classification system that processes data coming from different sensors in a consistent

way, generating maps of land cover classes with consistent semantic meaning. That

classification system is thus believed suitable to permit multi-temporal and multi-

sensor applications.

3.2 Comparable data locations across sensors

The availability of a consistent dataset with respect to sensor and time is not enough

to achieve good accuracy in multi-temporal analysis. The geographic reference of

the observed surface has to be collocated in the time series of images: the effect

of discrepancies in the pixel locations is more evident toward high resolution images

where a slight shift in the observed features would produce highly spurious comparison

outputs[9]; geometrical rectification, topographic correction over mountain areas and

image registration are major steps in any change analysis project.

One of the most common problems in multi sensor and multi temporal analysis

is the registration (re-sampling) of all images not just one against another one in a

limited time series, but placing all of them into a common reference projection. While

this problem is far to be effectively solved by the approach adopted by MEA, the only

methodology adequate for re-sampling categorical data is adopted, that is the nearest-

neighbour algorithm which does not alter the pixel values, and an Earth fixed grid is

defined to support information geocoding.

The Earth Fixed Reference defined in MEA derives from the definition of a regular,

uniform angle sampling mesh over the geographic coordinates system (Lat. / Lon.),

an example of the resulting grid mesh over the Earth surface is shown in Figure 3.2.

The first layer of the multi-level DGGS sets the sampling angle at 1/256th degree,

that is grid level 0. Each further level doubles the sampling rate in both dimensions

(e.g. 1/512th degree at level 1 and so on). Cell values are provided by re-sampling the

thematic maps with the nearest-neighbour algorithm. To give all pixels of the original
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Figure 3.2: Discrete Grid Tiles on the Earth surface. Image background is an inverted
color Shaded-Relief image from NOAA’s National Geophysical data center[32].

image a chance of being remapped into a cell, the sampling rate is choosen such that

a cell size is at most half of the Ground Sampling Distance (GSD) of the sensor; this

is obtained by considering the equatorial ground pixel resolution that results from the

sampling rate, which is the maximum area represented by a pixel in the chosen grid.

By doubling the sampling rate at each subsequent grid level a congruent grid system

is built, with respect to the coordinate system, that allows re-sampling data from any

given sensor by selecting the closest level to its reference GSD, as shown in Table 3.1.

Grid Reference Equatorial pixel Samples per Supported sensors
Level GSD resolution degree

m m #

0 1000 434,84 256 (A)ATSR, MODIS
1 500 217,42 512 MODIS HKM
2 250 108,71 1024 MODIS QKM, MERIS
3 125 54,36 2048 Landsat TM TIR
4 60 27.18 4096 Landsat ETM+ TIR
5 30 13,59 8192 Landsat TM/ETM+ MS
6 15 6,79 16384 Landsat ETM+ Pan, SPOT5, AVNIR-2

Table 3.1: Discrete Grid System levels and supported sensors

Having defined a congruent, regular square partition of the simple cylindrical rep-

resentation of the Earth allows grouping grid elements together easily in fixed size tiles

of 64 by 64 cells called Tiles. At level 0 each Tile covers one quarter of degree in
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Figure 3.3: Addressing of cells: from geographic Lat/Lon to Grid Tiles. Inside Tiles
cells are addressed as in a matrix.

both Latitude and Longitude. Tiles can be stored in raster format without requiring

geo-location information as it is directly encoded in their definition and can use an

addressing scheme based on integer grid coordinates, instead of the real-valued geo-

graphic coordinates. Grid coordinates are defined by numbering Tiles locations in two

dimensions with x mapping to Longitude and y mapping to Latitude; origin of the

grid coordinates is set with Tile zone (0,0) at Lat/Lon (90,-180). Within each Tile,

cells are in turn addressed by their position in the two dimensional space defined by

Tile coordinates with origin in the upper (northern) left (western) cell; the addressing

scheme is shown in Figure 3.3.

Multiple grid levels of the congruent grid partition Tiles in square sub-tiles, as

shown in Figure 3.4. Each level halves the area covered by its cells on the Earth

cylindrical projection, with respect to the previous level, squaring the number of Tiles

at each level.

3.3 Evolution Model concepts

Many change detection techniques for specific change detection projects have been

adopted, as summarized in [9]: their suitability however depends on the specific project

and the selection of the best one is not easy in practice. The approach proposed for

MEA, being based on a post-classification dataset, provides a generalized system for

change detection, suitable for interactive definition and application of search patterns

over considerable amounts of data. The evolution model aim is to permit the definition

of a pattern of changes in the temporal domain that removes the requirement for similar

phenological states across images as it variation over time is one of the factors enabling
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Figure 3.4: Multi-
ple grid levels: each
level halves cell size
on the cylindrical
projection, with re-
spect to the previous
level. The number
Tiles squares at each
level wile the num-
ber of cells in each
tile does not vary.

the distinction of features for their identification with multi-temporal analysis. This

section extends and details the concept of Evolution Model defined in [33].

In the MEA context, an Evolution Model is used to define the thematic behaviour

of a feature, at pixel level, over time in a form that is easily understandable by the

user and that can be readily used to quickly search time series for occurrences of the

modelled evolution. It allows defining a sequence of expected sets of land cover classes

along the temporal line to characterize the modelled phenomena. An Evolution Model

Element, or simply Model Element, defines an association between a given set of class

and a temporal reference thus defining “when” that set is expected to be observed,

as shown in Figure 3.5(a). Since the time dimension of the data cube is likely to be

irregularly filled due to satellite revisit time and possible cloudy acquisitions, a single

day is not suitable as a sampling reference to allow finding a valid data to match the

element’s set. The TT of an element defines a temporal extent centred on the temporal

reference: observations falling within the time tolerance are covered by the element as

shown in Figure 3.5(b). The temporal coverage of an element is thus twice its TT plus

one day (the temporal reference itself).

An Evolution Model is in turn defined as a sequence of Model Elements, posi-

tioned along the temporal line by specifying the distance from their predecessors. To

connect the model elements in a sequence that composes an evolution model, a tem-

poral parameter is associated to all elements except for the first one: the Time Since

Previous (TSP) defines the number of days a given element follows its preceding one.
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(a) Temporal reference of a Model Element:
defines the point in the time line where to
search for thematic data.

(b) Output message element

Figure 3.5: Temporal parameters of a model element
The temporal reference of a model element defines its sampling point along the

temporal line, the Time Tolerance defines a sampling interval.

Figure 3.6: An Evolution Model is a sequence over time of Model Elements, with the
TSP parameter specifying of how many days it follows the previous one.

In that way the evolution model defines a sequence of expected classes in defined

moments thus allowing the definition of the expected classes at different times.

In the LULCC domain, an evolution model defines a sequence of land cover classes

that are expected at given times to model the land cover evolution over time. As

a sequential pattern, an evolution model can be quickly matched with actual time

series data at the pixel level, to determine if that data matches the modelled evolution

pattern as depicted in Figure 3.6.

The suitability of change patterns over time to identify relevant phenomena has

been confirmed in agriculture where the evolution of the NDVI allows identification

of different kinds of crop lands, two of them are shown in Figure 3.7. By defining a

sequence of elements that samples the time line at given intervals, representing the
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Figure 3.7: NDVI profiles of two specific agricultural crops as observed in Kansas by
MODIS with candidate temporal intervals for model elements highlighted. Adapted
from [12]

most relevant state of the crop field expected at a given time (with respect to the

previous relevant state) an evolution model characterizing crop lands can be easily

defined, given the set of land cover types is sufficiently diverse to allow specification

of all the relevant states over time. Rectangular blocks in Figure 3.7 show possible

candidate time periods for the definition of related model elements, since they present

stable classification (assuming that the classification on the right side is assigned,

depending on the NDVI, including intermediate levels).

Besides the definition of well defined seasonal phenomena, EM can be used to model

transitional phenomena, by defining a model with only two elements (one before and

one after the transitory event to be modelled) and even single element models can be

used to search information as they can serve to find stable coverage or assess frequency

of occurrence of a given class. Metadata is associated to evolution models (i.e. model

name, model type, model description, associated keywords, area of applicability, ap-

plicability to grid levels and category) to provide information about the model and the

modelled information.

Having defined the temporal side of a model element and its parameters, we now

define the thematic side of the pair: each model element defines three sets to which
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thematic values (classes) can be assigned: Main set, Tolerance set and Ignore set.

These sets define the behaviour of the element when tested with time series data

falling in its temporal coverage. Any number of classes can be assigned to each set

provided the sets are disjoint (no class is allowed to appear in any two different sets).

A Model Element can be tested for a match with actual data across the time

dimension; for any given sampling location (Grid Element), four possible outcomes

can result from the test:

Match if all observations considered within the temporal coverage belong to the Main

set;

Match within tolerance if all the observations considered within the temporal cov-

erage belong to the Tolerance set or the Main set and there is at least one

observation belonging to the Tolerance set;

Not Match if any of the observations considered within the temporal coverage does

not belong to any of the element’s sets, that is an unexpected observation;

No Data if there are no observation within the temporal coverage or all observations

considered within the temporal coverage belong to the Ignore set1.

In other words, when testing an element for a match: data in the Ignore set is

ignored; the Main and Tolerance sets define expected classes to give a match (possibly

within tolerance) while any unexpected data results in a failed match. An element can

also be marked “persistent” to influence how observations within its temporal coverage

are considered: if persistence is set, all observations are considered as described above,

otherwise only the closest element to the temporal reference is considered to determine

the outcome.

Since an EM is a sequential pattern of elements, the outcome of a test on the model

can also result in four outcomes, depending on the outcome of its elements, as follows:

Match if all elements returned a match;

Match within tolerance if one or more elements returned a match within tolerance

while all others returned a match;

1The availability of the ignore set may lead to a change in the intuitive meaning of the “No Data”
outcome: if many valid classes are assigned to that set (e.g. to search only for a specific class) the
“No Data” outcome will be returned if the expected data has not been observed to confirm the match,
while many observations could have been ignored that would have led to a “Not Match” outcome.
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Not Match if any element returned a not match;

No Data if at least one element returned no data, while no other element returned a

not match.

In other words, when testing a model for a match: if one element fails the match,

the entire model fails, otherwise, if there is no data to test an element, the whole model

cannot be tested. Finally, the kind of match returned will be within tolerance if any

element so resulted or perfect match if all elements resulted in Match.

To summarize, we define an Evolution Model as a sequence of Model Elements

connected together over time by the TSP, that defines the number of days an element

follows its preceding one in the time line. The temporal reference of each element

defines a day along the time line where its Main class set is expected. The tempo-

ral reference can be extended to become a temporal interval by means of the Time

Tolerance that allows both to cope with the possibility of missing data along the time

line (such as cloudy acquisition or gaps due to satellite revisit time) and to extend

an element’s class expectancy over arbitrarily long periods by setting element persis-

tence. Besides the Main class set, yielding to a perfect match when testing a model, a

Tolerance set is also defined to provide two confidence levels for a matching outcome.

Finally an Ignore set is defined to specify classes that are not seen by the element

during a test for a match.

The proposed evolution model matching derives from a form of change analysis

that, according to the topology summarized in [9], falls in the “classification” category,

in particular, it is a form of the commonly used post-classification comparison, com-

bined with pattern matching to take advantage of an integrated GIS environment to

provide interactive comparison at an arbitrary set of time intervals to detect a pattern

of changes over time. This integration allows realizing an automated multi-temporal

search tool applicable for fast, on-demand time series analysis. The pattern definition

allows flexibility in both temporal and thematic domains with tolerance parameters;

it is however limited by the rigid temporal bounds between adjacent elements set by

a fixed temporal constraint. The TSP allows defining rigid temporal distances be-

tween elements which has the advantage of being well suited for modelling phenomena

presenting low temporal variability but is less effective when searching for evolution

patterns with high variability in the relative duration of their characterising elements.
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The applicability of the defined models to a user readable categorization has the

immediate advantage of allowing effective intuitive pattern definition and the direct

assessment of the result of a test for match as the information is readily readable by

expert users but can be also understood by end users, depending on the semantic level

of the thematic categories. The thematic categories can be seen as words and the

time of their occurrence as their context so that pattern matching can be effectively

employed to query data at the same semantic level for known contexts and can also

be searched for unknown patterns. The aim of the defined evolution models is also to

allow defining sequences in time that are readily understandable by the user and can

effectively define derived phenomena.

The strong dependence of the achievable accuracy from the accuracy of images at

each date cannot be removed from a post-classification methodology; it can however

be mitigated by the availability of many observations (theoretically a daily coverage

could be obtained, depending on the atmospheric conditions). Two model features help

mitigate the problem. The class Tolerance set provides for a different level of confidence

allowing inclusion of values that are likely due to misclassification or to accept some

margin in pattern definition. The Ignore class set allows to specify classes that are not

relevant to the detection of a given pattern and can be also used to “remove” noise by

not letting a model element consider classes likely subject to misclassification in the

model context. Conversely, models targeted at detection of possible misclassification

in the underlying classification to search for single image quality issues can be defined.

Another strong dependence of the matching system from the underlying data is

on the expressive power that can be obtained with the models with respect to the

underlying thematic set: the richer the set of values, the more detailed the models

can be. For example, a thematic classification over the NDVI would allow detection of

phenomena that can be entirely defined by variation of a vegetation index over time.

The inclusion of water as a possible value, lets the model define phenomena depending

on both vegetation level and presence of water, such as rice fields or flooding events.

An EM test for a match is done by setting the temporal reference of its first element,

thus setting all other references consequently (as defined by their element’s TSP). We

can call this a daily test since it is done referencing the first element to a single date.

The temporal extent of the model is equal to the sum of all its element’s TSP plus the

time tolerances of its first and last elements, as shown in Figure 3.8(a).
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(a) The temporal coverage of an evolution model is given by the sum of its element’s TSP values
+ TT 0 + TT N

(b) When testing for matching over wide temporal interval, the model is tested daily as a sliding
window over the test range

Figure 3.8: An evolution model defines a temporal extent where data is tested

When searching for a given evolution pattern in a wide temporal range (defined by

start and end dates), the evolution model is tested iteratively for each day in the test

range, starting from the start date and ending when the sliding window defined by the

temporal extent of the model reaches the end date, as shown in Figure 3.8(b). As the

model is tested over several days, the final output of a search for a given grid element

over the test range can give one of the four values:

Match if at least one daily test matched over the test range. Matches are counted as

a modelled evolution can occur several times within the test range. Moreover,

when a match is found, the next test day is moved forward in time of an entire

sliding window to avoid redundant matches (otherwise, a match, once detected,

will persist until the sliding window passes over it leading to redundant count);

Match within tolerance no daily test resulted in a match and at least one daily test

resulted in a match within tolerance (once a match within tolerance is found, the

search continues on the next day and other matches within tolerance are not

counted);

No Data if no daily test resulted in any kind of match and at least one daily test
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Figure 3.9: An evolution model designed to model a specific event occurring within
its temporal extent may specify a temporal offset to provide information of the event
location in the time dimension, with respect to its first element temporal reference.

resulted in no data (this avoids false negatives due to missing data in given

intervals of the test range that would have led to a match if present).

Not Match if all daily tests resulted in not match for the entire test range: in that

case there is certainty of a negative match;

Finally, the evolution models can be defined to detect some specific event charac-

terised by a change that is not necessarily covered by the entire model or practical

to be referred as the temporal reference of the first element when the matched test

occurred (default behaviour). To allow specification of the precise date of the modelled

event with respect to the temporal reference of the first element, an optional temporal

offset can be defined for a model that can be used to refer temporal parameters to

when interacting with the user (interested in when the modelled event occurred more

than in when a model test matched). The concept of the temporal offset is shown in

Figure 3.9.

3.4 User interaction

The evolution models permit to query the data stored in the MEA system in terms

of the evolution of its thematic content over time as it is observed at specific sam-

pling frames. To run a model search, user input is required and results must be made

accessible to users. Moreover, functions for basic browsing of the data archive and visu-

alization tools for time oriented data analysis are needed to provide an integrated GIS

platform. This section presents the overall architectural model of the user interfaces

for multi-temporal analysis that provides user interaction with the system.
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Figure 3.10: GUI outline for exploratory analysis.

With respect to data analysis, the user interface is designed following an underlying

work flow to assist the user in the steps commonly associated with the research pro-

cess; three essential phases are reported in [3] and to each one is associated a specific

configuration of the user interface:

� In the exploratory phase, where data is explored to formulate an hypothesis,

the interface provides interactive visualization tools to explore the data archive,

focusing on the temporal domain and providing also spatial context to data visu-

alization (world map background) to allow spatial pattern identification. In the

exploratory configuration the interface aims to promote spatio-temporal visual

pattern identification and should also aid in definition of a model correspond-

ing to an identified temporal evolution. Interface configuration for this phase is

outlined in Figure 3.10;

� The formulated hypothesis takes the form of an evolution model to be tested over

the data archive, the modelling part of the exploratory phase is associated to a

specific interface that graphically aids the user in the definition of the model. In

this configuration the focus is on model definition and both reference to observed

data and complete freedom in model definition are provided. A pattern can be

modelled from scratch to define an expected thematic evolution for a known

feature. Interface configuration for model editing is outlined in Figure 3.11;

� The confirmatory phase follows the definition of the model and consists on its

use to run a search over subsections of the data archive to automatically detect

occurrences that can be compared with expected results. Results themselves are
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Figure 3.11: GUI outline for model editing.

Figure 3.12: GUI outline for model matching (thematic evolution search).

displayed as thematic maps to provide immediate readability and to foster spa-

tial pattern identification in the occurrences. In this configuration the interface

provides results analysis tools and an option to connect external data sources or

processing system by exporting the results for further analysis. Interface config-

uration for this phase is outlined in Figure 3.12;

� The publication phase, consisting in making confirmed hypotheses public, is pro-

vided by the access control model that allows publication of verified models. In

the context of this system, publication means to grant access to a wide range of

users that are not interested in the model contents or definition but in its use as

an effective search tool to examine the data set at a higher semantic level (such

as a new thematic class, derived from temporal evolution of the base dataset).

As the interface for users in the “Standard” role coincides with the confirmatory
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Figure 3.13: Tree view of the interfaces with associated functionality and user need.

function of the Expert interface (although with reduced options), it becomes

seamless to deliver an effective, verified pattern to the user community thanks

to the system integration. Meta-data is also associated to each model to define

how it has to be used to effectively search through the time series for a modelled

phenomenon;

The integrated approach allows to perform change detection and feature / event

identification putting together post-classification, GIS and visual analysis principles

to give a potentially insightful thematic view on satellite data archives and provide a

thematic search engine that can be used to query time series for given pattern over

time in the data set. A complete overview diagram of the features provided to users

of the MEA system through its interfaces is provided in Figure 3.13.

To provide pixel level multi-temporal display, an hybrid graphical method has been

defined, taking advantage of the intuitive mapping that can be done between thematic

information and colours, commonly used to obtain false colour images. Two of the

graphical methods for EDA, defined in [4], have been adopted to build what we call

the Pixel History graph (PXH) which is basically a stem plot like representation of
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Figure 3.14: The pixel history graph: the profile of the thematic pixel evolution over
time is displayed in a matrix that eases seasonal and yearly pattern identification.
Each cell is filled with a colour representing the thematic class observed for a the same
area at the time identified by year-day crossing.

(land cover) observations where the stems are the years for which some data may be

available in the archives (it is potentially covered by a data source) and the leaves are

uniformly sized boxes, coloured according to the observed value and the absence of

data is considered a valid observation for plotting purposes that is assigned the plot

background colour. The result is a matrix that displays the class observed at any given

day in rows, each row representing a year and each year presented below the preceding

one; year stems are chosen to ease identification of phenomena following yearly cycles

that become clearly identifiable along rows while the identification of patterns across

year is also eased by consistency of day of year along along column, to ensure alignment

to calendar days, a background coloured box is also added corresponding to February

29 for non leap years. That design makes the PXH also comparable to multiple run

charts for categorical variables over a year, since it is a multi-row plot on the temporal

dimension. The PXH visualization matrix is outlined in Figure 3.14. The Pixel History

graph can also be used to select identified patterns by selection of cell ranges to be

used as a basis for evolution model definition. The other elements of the interfaces are

also oriented toward the specific goal of the system and are defined in detail in chapter

5, where examples of Pixel History graph display of actual values are also presented.

3.5 Access Control

Along the access control model introduced in 2.1, which is centred on object ownership,

use groups and simple level of authorization paired with user roles, the following access

control policy have been defined for the MEA system. By definition any unregistered
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user accessing the system, if allowed to do so, is assigned the standard user role for

the duration of his session and some additional limitations may be applied to him

as an unregistered user. Unregistered users are also by definition members of the

system group “Everyone” while registered ones are members of the “Registered” group:

those system level groups are defined to allow assignment of permissions to a broad

category of users without the need to list them in a user group. Furthermore, each

user can belong to one and only one of the defined user roles: Expert, Standard and

Administrator.

Having defined system level user roles (used to present different views of the system

and its functions, thus regulating access to the system interfaces), we can now detail

the authorization policy with respect to user provided access to controlled entities (i.e.

Evolution Models): that model is based on the two essential concepts of ownership

and user groups, according to the following principles:

� Three permissions are defined: read, edit and run (taking from the Unix read,

write, execute flag set) and are granted to user groups (not to individual users);

� A set of operations available on models is assigned to each permission label as

listed in 3.2;

� Users are grouped into user groups where each group has an owner (by default

its creator) who is the only user (besides administrators) authorized to add or

remove users from that group;

� Each Evolution Model has an owner (by default its creator) who is the only user

(besides administrators) authorized to manage the model and to grant or revoke

access permissions for it to user groups.

Following the aforementioned principles, any user group may have different per-

missions for different EM so that a project may have its own groups to manage who

can edit models related to that project or thematic collections of models may be made

accessible according to thematic user groups to ensure their prompt accessibility. An

approach to allow administrative delegation over user groups is also proposed by grant-

ing Expert users the permission to create new user groups without requiring action by

an administrator. This approach has been chosen to ensure autonomy to (potential)

model owners in deciding who is going to access their models and how. This approach
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Ownership Group Permission User role
Operation Model Group Read Edit Run Expert Admin

Create model V V
Change model ownership V* V
View/copy model V V V
Edit model V V V
Apply (run) model V V V
Publish model V* V
Restore published to editable V
Delete Model V** V
Withdraw published model V

Create group V* V
Delete group V V
Edit group V V
Assign group permission V V
Change group ownership V* V
Change group membership V V

Add users to the system V
Delete users V
Manage users V

(*) revocable semi-administrative operation;
(**) actually a “hide element” operation.

Table 3.2: Permissions reference matrix

of granting semi-admin privileges to Expert users also allows to ease management of

permissions at project level. Suppose some project requires creation and use of ex-

perimental models for a given study; permissions can be easily managed by Experts

involved in the project by creating a user group for that project to effectively grant

user permissions, without requiring an administrator to intervene.

Besides user defined groups, the applicability of that same model to manage per-

missions for the entire user community and the general public, two default system

level groups are also foreseen: “Everyone”, that includes any user accessing the system

and “Registered”, comprising only registered users: by granting specific permissions

to these groups a model owner can make his model publicly accessible.

Figure 3.15 illustrates and example of group assignments and permissions for mod-

els, clarifying a possible scenario.

Supposing that User 1 is the owner of all the three models, the following applies 2:

� Owning them, User 1 has full permissions on model 1, 2 and 3, regardless of

group permissions;

� User 2 can: Read and Edit models 1 and 2 (group permissions and is also member
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Figure 3.15: Authorization policy example

of the Registered group); Run models 1 and 3 (due to Everyone system group);

� User 3 can: Read model 2 (as a Registered user) and Run model 1 (as member

of the Everyone group) and model 3 (for group permission).

The expert user who defines a model becomes its owner and is the main referee for

that model. The owner grants permissions to other users (with respect to that model)

and is the only user that can decide whether or not to mark its model as stable or

make it accessible to the user community. During its development stage, an EM can be

accessed only by expert users that are developing it; when model has reached a stable

point where it can be effectively used by the user community it can be published: by

publishing a model, the model owner creates an immutable copy of that model that can

be applied by any authorised user. Once a model is published, only an administrator

can remove it from the available models.

3.6 Data flow automation

Any system for data processing that is designed to build an integrated archive by pro-

cessing large data sets should provide a good degree of automation in its data ingestion

process such as standardised access to its data source and provide the possibility to

2To be noted that the different role-based system views still apply. Therefore, even if User 3
has group permission to Edit model 2, he cannot do so since editing features are accessible only to
”Expert” users; an administrator has to assign User 3 to the “Expert” role in order to actually allow
editing of model 2. Similarly, an anonymous user accessing the system (if allowed to do so) can only
apply model 1, since he is considered a Standard user and assigned by default policy to the “Everyone”
group.
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define control rules for conditional processing. As a complex system it should also

provide an administrative view allowing to monitor its status and to perform main-

tenance operations in a safe environment, that is less error prone compared to direct

administration not constrained by an interface view and executed manually instead of

through the use of automated functions. For the MEA system, the most relevant cus-

tom solutions relate to data ingestion control and to the definition of a data provider

interface that permits interoperability and some degree of independence from the data

source. Such independence provides readiness for multi-source support and applicabil-

ity to different thematic domains by allowing to connect the ingestion system to any

other data provider that implements the defined interface.

To drive the automation of the data ingestion, a set of control rules has been defined

and a work flow with corresponding states and state transitions / actions defined for

the ingestion activities, making the controller a finite state automata. Since the focus

of the system is on a large temporal domain, any input archive is conceptually divided

into processing units of one month, hence input rules can be defined for each month.

The geographic extent of the operations is set to cover the whole globe: even if the

interface defined with the data provider allows for sub-region definition no interface

element is defined for inputting this parameter that can be manually set in a specific

implementation to reduce the geographic coverage of the system. The set of input

rules correspond to the background filled states in Figure 3.16 and can be set by the

operator. A month is locked when the system performs operations on it and its status

is shown along with statuses where the system awaits user input that cannot be set by

the user (Processed and Finalised).

With the proposed set of rules the data archive can be conveniently managed,

particularly in case of updates to the source data set or changes in the ingestion policy

(e.g. filters applied to thematic data) when automated re-processing can prove useful.

Moreover, in order to avoid the system marking months as processed when not enough

data is still available from the maps provider, a threshold value is associated to each

data source. If the number of maps available from the provider is under the threshold,

the month will not be marked as processed, regardless of new data availability. New

data is intended as data that has not yet been ingested into the system (without

reference to the acquisition or processing time). To provide an overview of the data

archive that is immediate to understand and practical to control with a graphical
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Figure 3.16: Automated data ingestion rules and control flow: the normal flow would
be to set a month to be updated, then an operator must confirm its completeness
from the processed state: then data finalisation operations are performed. Deletion
and Re-processing operations are also automated. Background filled states can be set
directly by the operator. When a month is locked its state cannot be changed by the
operator.
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interfaces, a matrix display is defined with years as rows and months as columns so that

information about processing status of each month can be displayed in a compact form.

Once again the use of thematic colouring can be effectively employed by associating

each status to a colour, providing a compact and immediate overview.

To obtain automation in data flow when different systems are involved, the key

requirement is to ensure the ability of such system to exchange information in a way

that allows them to effectively use that information. For our implementation, the

automated data ingestion system has been designed to interoperate with any system

implementing the Classified Maps Provider interface, detailed in section 4.2.2. That

interface has been designed and implemented to update the ASQuLD service, that

provides the building block of our moderate resolution implementation: multi-sensor

and multi-product support has been added to the basic catalogue interface, resulting

in the interface described in [34]. Provision of an equi-rectangular projected product,

identified by standard nomenclature in the interface, enables direct map ingestion from

the system (direct Tiling of the source map). This allows management of geo-location

at data provider level: an obvious advantage considering that it is a highly sensor

dependant operation. The definition of an interface at map provider level fosters

readiness for multi-domain applicability, obtained connecting a different thematic map

provider; it also enables multi-sensor support to the administrative tools as each sensor

can be equally managed in terms of its processing rules and its data accessed in an

interoperable way.
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Chapter 4

Implementation: building the
data stack

This chapter describes the data processing system implemented to process moderate

resolution data. It has been designed and implemented already with multi sensor

and multi resolution extensibility options for components allowing such design. A

distributed computation system has been implemented to process an entire satellite

repository, holding around fifteen years of data at the time of writing (early 2011).

Moreover, as new data is sent by the satellite it can be automatically processed and

added to the system data archive. This chapter does not provide a complete detailed

description of the system, it is focused on systems integration and performance aspects.

4.1 Along Track Scanning Radiometer

Along Track Scanning Radiometer (ATSR) is a typology of instruments that collects

observation of the Earth surface at one kilometre spatial resolution from a satellite

platform. The first of these instruments is ATSR-1, launched in July 1991, that we

do not use for this implementation due to a lack in visible spectral bands (required by

the classification system). Following the first instrument, two enhanced versions were

launched that sound also the visible spectrum required for vegetation classification

over land: Along Track Scanning Radiometer 2 (ATSR-2), launched in April 1995 and

Advanced Along Track Scanning Radiometer (AATSR), launched in March 2002[35].

An instrument on-board a satellite platform, in a near-polar orbit, scans a portion of

the Earth surface underneath it, the visible portion that is observed by the instrument

on the surface as it moves along its orbit is called swath, as shown in Figure 4.1. The

projection on the surface of the orbit is called the track. As the Earth revolves, the

53
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satellite eventually flights over its entire surface, revisiting a certain spot after a period

dependant on its altitude. Satellites hosting the ATSR instruments have a revisit time

of about three days, hence they are able to provide an observation of any given area

once in three days. This is the case at the Equator, where the distance between the

Earth’s revolution axis and the satellite orbit are the farther away while the frequency

of observation raises to several in a single day toward the poles. Also the width of the

sensed area under the satellite (across its flying direction) contributes to the actual

frequency of observations as it tends to overlap to the area covered by the previous

orbit approaching the poles.

Figure 4.1: Near Polar Orbit

The along track scanning technique is a particular acquisition geometry that allows

sensing the same location from two different points of view at a close interval. As shown

in Figure 4.2, the actual field of view of the instrument consists of two 500 km-wide

curved swaths, one crossing the track right below the instrument (nadir swath) and the

other crossing the track ahead of it (forward swath)[36]. For our purposes we consider

only the nadir view of the instrument that produces 500-km-wide images of the Earth’s

surface.

The spectral resolution of the instrument is of seven bands in the visible and

infrared frequencies, as shown in Table 4.1 that can be used to retrieve geophysical

parameters for the land cover classification.

To ensure the best performance of the ATSR datasets, several quality assessments
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Figure 4.2: Along track scanning technique: the conic acquisition geometry provides a
view at 55° along the track acquiring data ahead of the satellite (Forward view), then
a second acquisition is made over the same area when the satellite flights straight over
it (Nadir view). Source [36]

Target feature Band type Wavelength Bandwidth

Chlorophyll Visible 0.55µm 20nm
Vegetation Visible 0.67µm 20nm
Vegetation Near infrared 0.87µm 20nm
Cloud Short wave infrared 1.6µm 0.3µm
Sea surface temperature Medium wave infrared 3.7µm 0.3µm
Sea surface temperature Thermal infrared 10.8µm 1.0µm
Sea surface temperature Thermal infrared 12.0µm 1.0µm

Table 4.1: Spectral resolution of ATSR-2 and AATSR instruments.
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have been done and identified issues corrected, in particular: the long term drift in the

calibration parameters of the visible AATSR bands has been corrected by application

of drift tables[37], while images from the ATSR-2 instrument from January 2001 to July

2001 present quality issues that make them not adequate for pixel based comparison

and were excluded from processing[38].

4.2 A land cover maps provider service

ATSR data comes already calibrated in TOA reflectance and temperature values that

can be effectively used to generate a standard categorization of the Earth’s surface. An

implementation of the Enhanced SOIL MAPPER (ESM) software is used to extract

classification maps in the same geographic reference as the gridded input dataset.

Moreover, to compensate the geographic misplacement of up to one pixel, on aver-

age, present in the AATSR Level 1b re-gridding process, an experimental correction

method[39] was implemented to reduce uncertainty in the pixel absolute geo-referencing

of both ATSR-2 and AATSR data below half the pixel size [40]. The corrected geo-

location is used to generate a re-mapped version of the classification map in the simple

cylindrical projection.

The system architecture presented in [41], that provided the first thematic maps

archive over 15 years of ATSR data, with an interface suitable to perform content

based queries, has been extended. Besides the capability to systematically process the

archives and new incoming AATSR data, an interoperable interface has been defined.

This new interface allows to browse archived data, to know which typologies of products

are available in the archive and to obtain classification maps via FTP in an automated

way. These improvements led to the realization of the ASQuLD catalogue service,

that provides a standardised infrastructure for advanced database queries based on

land cover types[42].

The ASQuLD catalogue service is designed to run over two kinds of hardware

nodes, listed in Table 4.2. A central controller and storage node is devoted to provide

the catalogue service itself while processing nodes are employed to compute land cover

maps from the satellite data archive. Two relevant aspects of this solution are its

scalability, allowing load distribution among several processing units, and its interop-

erability, providing an interface suited for automated access; both aspects are detailed

in the following sections.
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Node Name Type id Purpose

Storage controller (STOR) Data storage, service interface and processing control
Processing Node (PN) Processing power

Table 4.2: Typologies of hardware nodes for the ASQuLD catalogue: a central storage
and control unit (STOR) provides the service and coordinates work for one or more
processing nodes (PN).

Figure 4.3: ASQuLD service architectural design. The “Processing Coordinator
Server” component maintains a workload queue to be distributed to one or more “Pro-
cessing Coordinator Client” instances. The client executes data processing steps, using
also the SOIL MAPPER® classification software. On the server side, products are
loaded into the queue by the ingestion component and processing results stored into
the repository and meta-data database components, that are used by the catalogue
interface and query system.

Several software components, distributed on the hardware nodes, cooperate to

the data preparation and service provision for the ASQuLD service, as shown by the

deployment diagram in Figure 4.3. The following two sections detail the processing

coordination system and the service interface for data access.

Input of the catalogue system are strips of 40000 pixels in length by 512 pixel

in width, radiometrically calibrated top of atmosphere values. The length of such

datasets make them not well suited for applications at regional scale, since they cover

an entire orbit around the globe. Output of the catalogue system are classification maps

provided in Granules, that are 2000 pixels long cuts of the input strip. The resulting

20 granules per strip are more manageable to be provided for regional or even national

scales as they do not require a full orbit of data to be retrieved. Moreover, since the
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classification based on spectral bands in the visible spectra is not possible over night

time acquisitions, granules covering such acquisitions can be entirely discarded, further

reducing the resulting dataset.

4.2.1 An automated pluggable distributed processing system

Systematic processing of data archives is a task well suited for automation, especially

if re-processing may be required with different processing software versions, or entirely

different processing software. A solution has been designed for this automation that

is based on three assumptions:

� Data to be processed is already available over the network with a well known

transfer protocol (e.g. FTP) or can be found in an “Incoming” directory on the

controller system;

� Data is provided in units that can be independently processed and are uniquely

identified, for the ATSR archives the units are strips of observations covering

an orbit and are identified uniquely by the acquisition start date and time (also

from their file name that is a unique identifier);

� A workload queue management system exists to execute the processing to which

work units can be queued for execution.

With the aforementioned assumptions the automation can be obtained either by

monitoring data sources for new data to process (as in the case of Rolling Archives,

where new data is made available for a limited period of time before its long term

archiving) or by transferring units of archived data in the “Incoming” directory for

later processing. The unique identification allows to keep a list of processed data to

avoid undesired re-processing (as may happen when data already processed from the

Rolling Archive is made available also to long term archives that are being processed).

The final element enabling automation is the execution of a concurrent loop process

to monitor the Incoming directory, that adds data to the processing queue.

The workload queue management system has been designed and implemented to

allow automation and the queue model allows to manage distributed computation in

a firewall-friendly pull model that allows distribution from any location enabled to

establish incoming connections to the central system. A completely pull model allows
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Figure 4.4: ASQuLD service: processing coordinator architecture. A network interface
is provided to a queue manager that manages an execution queue.

also to secure the processing nodes behind an additional firewall layer making it not

accessible from the service front end or the controller: any proprietary processing

system can thus benefit from being secured from network intrusion since no incoming

connection to the processing node is required or the processing can be done directly at

the provider premises. Besides protection of the processing software another advantage

of this model is that processing nodes can be located close to the data to be processed.

Given the data compression provided by a classification process, moving the processing

close to the data is the most advantageous approach since it saves on network transfer

that can rapidly become the bottleneck of the process. The implemented solution,

described hereafter, consists of a simple solution built as a Java client application paired

with the processing software to be executed, hence requiring very low installation effort

and providing a high degree of re-usability.

The work queue is managed by the processing coordinator server, that provides a

network interface to receive and handle requests by its client component to provide

redundant, distributed and balanced data processing. The coordinator maintains a

processing queue to coordinate work assignment to the processing nodes. The com-

ponent architecture is depicted in Figure 4.4. A network interface is provided where

instances of the processing coordinator client can connect remotely to communicate

with the server.

The processing queue is implemented by a database table, holding work units and

assignments, paired with a table holding registered client instances. Both tables are

shown in Figure 4.5. The minimal set of information to manage the processing is used

and a basic authentication mechanism implemented by registration of clients with a

security token.

An interface consisting of four methods is provided by the controller to allow access

to the queue, as depicted in Figure 4.6:

addToQueue is called to add a new queueEntry to the queue and is called from the

local thread responsible for Rolling Archive and remote data sources monitoring;
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Figure 4.5: ASQuLD service: the processing coordinator queue is implemented as a
single database table that holds information about each queued work unit and its as-
signment. High priority can be assigned to queued entries to ensure they are processed
before other entries.

Figure 4.6: ASQuLD service: the processing coordinator interface provides four meth-
ods that can be invoked remotely to add a new item to the queue (addToQueue), ask
for the next dataset to be processed (getWork), report a completed processing task
(reportWork) and to report processing node liveness (imAlive).

getWork is called by the clients on processing nodes to request a new work unit;

reportWork is called by the processing nodes to report a completed work unit;

imAlive is called by the processing nodes to notify its activity status or automatically

by the server upon receiving a work request message from a client.

The overall activities executed by the coordinator server upon receiving a message

are shown in Figure 4.7. Actions related to reported work are implemented by calling

an external script to allow complete customization of data content management. Re-

sults are packaged by the client in a single file (results archive) and uploaded to the

controller via its FTP server to allow local archival of the produced classified map and

management of possible meta-data. Contents of the transferred archive are generated

by the processing element on client side, that is also an external component with re-

spect to the processing coordinator. The system is hence completely pluggable in the
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Figure 4.7: ASQuLD service: the processing coordinator server performs actions cor-
responding to the received message type.

Figure 4.8: ASQuLD service: the processing coordinator client loops in a request,
process report work cycle.

sense that it provides a distribution model that is applicable to any data archive and

implements extension points where specific components can be plugged to support a

new source or new thematic archives. It will suffice to add a processing core to the

client that prepares the result archive in the defined structure to support classification

of a new data source. By updating accordingly the reported work processing script,

new thematic data can be managed in the result archive.

The coordinator client continuously performs the activities depicted in Figure 4.8.

Any number of clients can be instantiated, depending on the available hardware nodes

to add computational power to the system. The number of nodes can also be dynami-

cally increased or reduced without further operations, provided each client is registered

with the controller. Finally the queue is monitored for stale assignments to cope with

possible long term failures of any client.

As security policies of the data provider may forbid data processing elements inside

their network premises, the only option remains to download the entire data archive

to the remote processing system. In the case of the ATSR archive, the processing

system was remote and all data needed to be downloaded off site for processing. Wide

area network links, even the broad band ones, have considerably less bandwidth than
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those attainable in local area networks, hence the download link can easily become

the bottleneck of data processing, especially when other network transfers are required

over the same link. In such situation the use of a download buffer (feasible thanks to

the Incoming folder approach) has proven useful to keep the processing system always

busy. A continuous download to the buffer allowed to store enough data locally during

periods of high bandwidth availability to compensate for the reduced bandwidth peri-

ods, thus avoiding the network bottleneck. This also confirmed the need for processing

elements available at data provider premises to further reduce the network bandwidth

requirements for systematic data processing, especially (actually only) for processes

that provide reduction in the amount of data output.

The coordinator interface is ready both for remote processing nodes and for multiple

data sources: the locationFilter parameter of the workUnitRequest is the key for these

features. This filter provides a substring that must appear in the fileLocation attribute

of queued work units for them to be assigned to the requester. Since the file location

is its full network address, the server name could be used to request processing of data

hosted only at specific servers (e.g. those close to the processing node). The same

approach can also be used to process different sensors with different clients by filtering

file locations on the portion of the file name identifying its source. This approach

assumes that a new data source has its clear identification in the file names (as is

usually the case with satellite data where a part of the file name identifies the sensor

or processor that created it).

4.2.2 An interoperable interface for data provision

One of the goals of the MEA system design is to be applicable to multiple sensors

at different resolutions. From data pre-processing perspective, the availability of a

classified maps catalogue gives the opportunity to use it as a connection point between

the multi temporal system and different data archives. This approach allows also to

define an interoperable interface that is proven suitable for data access automation

by its actual integration into the system. The interface presented hereafter is used to

automatically search and retrieve classification maps by the automated data ingestion

component that builds the MEA archive.

The ASQuLD SOAP interface, defined in [34] is based on four synchronous opera-

tions and a customised type to define data collections consisting of files accessible over
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the network. Two of the four operations, “Search” and “Present” are based on the

EOLI standard and provide functions to browse the catalogue. As defined in [17] these

functions allow to query the catalogue by date and geographic area. An extension

point is also provided in the standard that can be used to add the thematic content to

the query parameters. Even if the extension is defined as Satellite domain conditions

it is basically an array of key-value pairs that is also well suited for thematic content.

Practically the implemented catalogue recognized specific keys added to the Search op-

eration that correspond to aggregation sets of its output classes paired with a pair of

values to bound its occurrence. This solution allows queries that identify all classified

maps over a given area of interest (a square in the geographic coordinate system), that

is produced from data acquired between two dates with a given thematic content. The

thematic content is expressed by triples in the form of (class, min, max) where: class is

one of the aggregate set while min and max are minimum and maximum percentage of

the given class to be present in the image, with respect to its entire content (e.g Bare

soil between 10 and 40 % of the granule). The identified granules keep reference to

the source dataset that originate them, hence the catalogue provides also a thematic

view over the underlying data archive and can be used as a query system to search the

original data archive based on its thematic content.

The EOLI standard uses the concept of CollectionsId to identify groups of products

and it is assumed that each product is uniquely identified within the same collection

by a resTitle . Under these assumptions, each product (be it raw satellite data or any

derived product) can be uniquely identified by the CollectionId.resTitle pair. From the

perspective of processing automation, considerable overhead is introduced by the EOLI

standard Search operation that provides as minimal output an entire tree of meta-data

while a minimal product identification would suffice to proceed to data retrieval. The

“Present” operation is already defined to provide additional information about any

given result: thematic content is also added to the output of that operation via its

key-value pair array extensibility.

Based on the SSE interface [43], two operations are provided to obtain information

about and use a service. The “RFQ” (Request For Quotation) is used to obtain

information about available product typologies for a given collection. Input to the

operation is a list of collection identifiers and the output provides, for each collection

identifier, the list of available product typologies, as listed in Table 4.3. The “Order”
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operation is used to request the products to be available for direct download.

Product type ID Description Notes
CLS preliminary classification maps

with basic geo-reference informa-
tion

Default format is GeoTIFF

PROJ-AAAA:NNNNN Re-projected outputs, possibly
with improved geo-reference ac-
curacy. Where:

� AAAA can be either
EPSG or ESRI, indicat-
ing the related standard
identification;

� NNNNN is a valid EPSG /
ESRI projection code.

Projection codes are defined by
established standards [44] e.g.,
EPSG:32663 for World Equidis-
tant Cylindrical. Default format
is GeoTIFF.

SAT Original Data (when available) Direct download of original data
from which the map has been de-
rived.

Table 4.3: ASQuLD service interface: defined product typologies.

The Order operation mitigates the meta-data overhead issue by allowing a simple

list of resTitle identifiers, grouped by collection and requested product typology iden-

tifiers, as input. As output, for each requested product, the structured set depicted

in Figure 4.9 is returned. This is a minimal set of information required for an auto-

mated software component to understand and use the provided information: for each

collection a set of dataset links is returned, each in turn composed of links to files

composing it. Status and identification attributes are added to the dataset elements

to allow automatic interpretation of the results. Status can be one of: Complete, In-

complete or Empty and it is set depending on which data types have links provided in

the dataset versus the types requested (e.g. a Complete dataset may contain just one

link to the only requested data type). Available typologies for a given collection are

retrieved with the RFQ operation.

4.3 Remapping on the Earth Fixed Grid

In the DGGS defined in section 3.2, ATSR data belongs to grid level zero that has

a reference GSD of one kilometre. Since the grid is based on the simple cylindrical

projection, a classification map in that projection would already be remapped on a

given grid level. The ASQuLD catalogue delivers such a map, over which the improved

remapping algorithm for AATSR is also applied. This layered approach allows to keep
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Figure 4.9: ASQuLD service: structured output for data provision consisting of one
collection set type for each collection in the input request, in turn containing one
dataset links element for each ordered dataset, in turn consisting of one link for each
requested product typology available for direct download.

the geo-location correction (a task strictly dependant from the specific instrument)

within the system that produces derived products from instrument data (i.e. the

automated classification system).

The availability of a projected map matching a grid level reduces the ingestion

process to the generation of cuts of the map aligned with grid Tiles of 64 by 64 pixels.

At level zero each grid Tile is aligned to quarters of degree and, given the origin of grid

coordinates at (90,−180) the geo-location of a grid Tile is addressed via geographic

coordinates by the following equations, defining also the area covered by corresponding

grid Tiles:

x = floor((90 − Lat) × 4)

y = floor((180 + Lon) × 4)

Each grid Tile covers a geographic area called Tile zone that can be used to address

actual Tile content at a given time or simply a Tile, that is uniquely identified by its

Tile zone and a date at day resolution. The triple (x, y, t) thus addresses a single Tile

containing the 64 ∗ 64 = 4096 land cover class values for day t over Tile zone x, y.

In the Tile mapping process, the original data is sampled using the Nearest Neigh-

bour methodology and data is filtered taking into account the scope of the system,

that is land cover, hence:

� A Land/Sea Mask (LSM), derived from the United States Geological Survey 1Km

Land Sea Mask dataset[45], is used to filter the input. Grid Tiles completely over

sea are not processed by the system: grid Tiles are considered valid (over land)

if at least four of their pixels are mapped to a land pixel (i.e. the they contain

at least 4 land pixels that fall within the land mask);
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� All types of cloud classes are removed, this enables also the removal of completely

cloudy Tiles from the archive, further reducing the archive size;

The LSM implemented for grid level zero consists of an ordered array of pixels

stored in a plain text file, a solution that is suitable for that level but that requires a

structured alternative for deeper levels.

Adequacy of the remapping grid to the application goals has been assessed and

confirmed by an independent study, whose results have been reported in [46]. That

document describes four typologies of tests used in the evaluation:

� Tiles produced from a classified map have been mosaicked to ensure the original

map can be restored from them and confirm correct tiling operation;

� Quantitative analysis test between ATSR reflectance values and remapped image

values has been performed;

� Synthetic datasets has been created and used to verify the remapping process

with known expected results;

� Visual of images from different instruments has been performed for images con-

taining targets with clearly identifiable shapes.

4.4 The Automated Data Ingestion

Following the ingestion rules and control flow defined in section 3.6, an interface is

provided for the management of the data processing system. As shown in Figure 4.10,

a compact tabular display is used to provide an overview of the archive status and

direct control over data processing at month resolution1. This approach allows the

simple management of multiple data sources and related archives by providing the

same functionality and display for each of them.

The ingestion control interface drives the processing system that consists of sev-

eral concurrent processing threads, each operating on a single month. The num-

ber of concurrent threads is configured on a per grid level basis by specification of

(GridLevel, numberOfThreads) pairs plus the number of concurrent threads to be

1To be noted that the ingestion control partitions only the temporal domain of the source archive
while control is applied to the whole globe as its geographic area. Ingestion control limited to geo-
graphic areas is feasible but includes complexities both in interface and meta-data management that
are not addressed by this system.
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Figure 4.10: Automated data processing input rules management interface, each cell
displays status information for a month and can be used to set the rule to be applied
over it.

executed for Rolling Archive processing. The control system loops over the months

configured for each instrument by an ordered set of (year − month, rule) pairs and

executes one thread per instrument, until the allowed number of threads for the cor-

responding grid level is reached. Then, once a thread completes the next month for

the next instrument in that grid level is launched. This configuration allows to ad-

just the processing system resource demand to the hosting hardware configuration and

expected workload.

Each thread performs the same operations, depending on the configured rule for the

given month, in particular, when Update is set: a Search operation is performed on the

data provider interface, constrained by the given month, to get a list of available data.

This Search operation is affected by the aforementioned meta-data overhead detected

in the EOLI standard: when the number of results is high, as is commonly the case

for a global search over an entire month, the time needed to transfer all the unused

meta-data negatively affects the ingestion process, causing a delayed start. Then, the

availability of the re-projected map is assumed and that product typology is ordered

for the images: one hundred maps are requested for each Order operation. As soon as

a map is downloaded it is cut into Tiles that are then stored into the Tile repository

while meta-data for each Tile is computed and stored in the Tile database.
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4.5 The Tile Archive

The goals of the Tile storage system, or Tiles Archive (TAR), is to provide adequate

storage capacity for the Tiles resulting from processing of the entire archive of AATSR

and ATSR-2 dataset and to provide very fast identification of Tiles matching spatio-

temporal and thematic content query parameters. This goals are attained by dividing

the archive in two distinct components: a repository to store the Tiles and a database

to store their meta-data. The use of a Tiling system that does not require use of

GIS extensions to the database, along with a direct mapping for Tile access in the

repository and direct file system storage for fast retrieval provide a solution that aims

at scalability and ease of extension.

4.5.1 Tile meta-data database

The Tile meta-data database, referred to as ”the database” throughout this section, is

the component devoted to fast query provision for spatial-temporal-semantic query for

retrieval of thematic based Tiles. A first version of the database has been presented

in [47]. From the described version only the compact classification field has been kept

while the database structure and access functions have been replaced by the ones herein

described. Detailed tests, performance results and considerations for the meta data

database are reported in section A.3.

The meta-data consists of a single table for each instrument collected in the archive.

The table structure is depicted in Figure 4.11. Geographic location is coded with

integer grid Tile coordinates x (along Longitude) and y (along Latitude); temporal

information is stored with a timestamp; the thematic content is stored in a bit string

field that allows data compression by reducing the number of needed bits to hold it

from 912 to 741, saving 171 bit per record.

The particular typology of data stored and likelihood of subsequent queries over

sub-regions of any geographic location (as it is being studied or searched) drives the

choice of partitioning data along the geographic dimensions, in particular the use of a

two-dimensional addressing allows ease definition of square sub-regions (corresponding

to square selections over the geographic coordinates system). A square sub-region can

be simply defined by four boundaries on the two dimensions as follows:
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Figure 4.11: Tile metadata database: geographic location is coded with integer grid
Tile coordinates x and y; temporal information is stored with a timestamp; the the-
matic content is stored in a bit string field that allows data compression by reducing
the number of needed bits to hold it from 912 to 741.

{
leftmostT ileZone ≤ x < rightmostT ileZone
topmostT ileZone ≤ y < bottommostT ileZone

As reported in section A.3, this scheme permits to keep also the complexity of

queries over rectangular areas minimal with respect to a mono-dimensional addressing

scheme. Moreover, the processing time required to perform a query on the meta-data

stored into a single big table (the number of records managed by the system is about

500 millions) is much larger than the time expected for interactive access, hence a

partitioning scheme for the database is required to improve performances. Partitions

are implemented with native support of the postgresql database management system

(supported since the recent version 9.0). Partitions are defined on the bi-dimensional

grid Tile addressing, as follows:

Xparts = 12° across 360° Longitude

Yparts = 6° across 180° latitude

For grid level zero that means partitions defined in terms of x and y values as follows:

(i = 0..29, j = 0..29)

partitionij =

{
48 ∗ i ≤ x < 48 ∗ (i+ 1)
24 ∗ j ≤ y < 48 ∗ (j + 1)
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For a total of 30 across Latitude * 30 across Longitude + 1 master table = 901 tables

per instrument (sensor). Given the simplicity of constraints defined on each partition

that number of partitions is adequate to provide good query performances to our

implementation.

Further performance improvement could be obtained by having more than one core

processing the same query concurrently (a function not implemented nor foreseen for

implementation in postgresql) or by partitioning also over time on different database

servers. Preliminary results of experiments with a mixed approach to have multi core

queries via parallel query execution on several database instances on the same ma-

chine are reported in section A.2. The rationale is to leverage deployment of multiple

instances on the same server as a mean to obtain multi-core query processing: each

instance processes the same query on a portion of the entire dataset. The resulting

concurrent disk access would present an ideal configuration to leverage the high per-

formance random access feature of SSD technology used to store meta-data. Results

are promising but standard tools seem not yet adequately optimized for parallel query

performances.

An example of a four dimensional query over the database is presented in Listing

4.1 where Tiles in summer time, across 4 years (1999 to 2002) are requested, over

France, having three semantic parameters above 1 percent.

Listing 4.1: Example of spatial-temporal-thematic query for content based retrieval

SELECT zone id x , zone id y , a c q u i s i t i o n s t a r t
FROM t i l e s a t s r 2
WHERE ( (
( a c q u i s i t i o n s t a r t BETWEEN ’ 1999−06−21 00 : 00 : 00 ’ AND ’ 1999−09−22 23 : 59 : 59 ’ ) OR
( a c q u i s i t i o n s t a r t BETWEEN ’ 2000−06−21 00 : 00 : 00 ’ AND ’ 2000−09−22 23 : 59 : 59 ’ ) OR
( a c q u i s i t i o n s t a r t BETWEEN ’ 2001−06−21 00 : 00 : 00 ’ AND ’ 2001−09−22 23 : 59 : 59 ’ ) OR
( a c q u i s i t i o n s t a r t BETWEEN ’ 2002−06−21 00 : 00 : 00 ’ AND ’ 2002−09−22 23 : 59 : 59 ’ ) OR
) AND (
( zone id x BETWEEN 699 AND 753 ) and ( zone id y BETWEEN 155 AND 190)
) AND (
( ( ( c l a s s i f i c a t i o n << (10) * 1 3 ) : : bit ( 13 ) ) >= (40 .96 * 1 ) : : integer : : bit ( 13 ) ) AND
( ( ( c l a s s i f i c a t i o n << (12) * 1 3 ) : : bit ( 13 ) ) >= (40 .96 * 1 ) : : integer : : bit ( 13 ) ) AND
( ( ( c l a s s i f i c a t i o n << (18) * 1 3 ) : : bit ( 13 ) ) >= (40 .96 * 1 ) : : integer : : bit ( 13 ) )
) )

UNION ALL

SELECT zone id x , zone id y , a c q u i s i t i o n s t a r t
FROM t i l e s a a t s r
WHERE ( (
( a c q u i s i t i o n s t a r t BETWEEN ’ 1999−06−21 00 : 00 : 00 ’ AND ’ 1999−09−22 23 : 59 : 59 ’ ) OR
( a c q u i s i t i o n s t a r t BETWEEN ’ 2000−06−21 00 : 00 : 00 ’ AND ’ 2000−09−22 23 : 59 : 59 ’ ) OR
( a c q u i s i t i o n s t a r t BETWEEN ’ 2001−06−21 00 : 00 : 00 ’ AND ’ 2001−09−22 23 : 59 : 59 ’ ) OR
( a c q u i s i t i o n s t a r t BETWEEN ’ 2002−06−21 00 : 00 : 00 ’ AND ’ 2002−09−22 23 : 59 : 59 ’ ) OR
) AND (
( zone id x BETWEEN 699 AND 753 ) and ( zone id y BETWEEN 155 AND 190)
) AND (
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( ( ( c l a s s i f i c a t i o n << (10) * 1 3 ) : : bit ( 13 ) ) >= (40 .96 * 1 ) : : integer : : bit ( 13 ) ) AND
( ( ( c l a s s i f i c a t i o n << (12) * 1 3 ) : : bit ( 13 ) ) >= (40 .96 * 1 ) : : integer : : bit ( 13 ) ) AND
( ( ( c l a s s i f i c a t i o n << (18) * 1 3 ) : : bit ( 13 ) ) >= (40 .96 * 1 ) : : integer : : bit ( 13 ) )
) ) ;

To be noted the built in functions that allow efficient access to the classification

content in compressed form (the 741 bit string classification field) with a shift, a

truncation (bit(13) type cast) and conversion to integer (integer cast operation). The

complexity of the query, in terms of operations per record to be performed, rises as

the number of years and classes to compare rises, while the geographic location of a

square selection (common in case of geographic bounding box) is always determined

by four comparisons (per instrument), independently of its size. It is also notable the

use of the union operator (that could be rendered also concurrent at DBMS level) to

support an arbitrary number of instruments per grid level.

4.5.2 The Tile repository

Paired with the Tile meta-data database, the Tile repository provides the storage

system for actual Tile maps (thematic maps corresponding to a grid Tile at a given

time). This component is made accessible over the network via a basic HTTP interface

providing a getTiles operation that accepts its input request as ”post data”. A properly

formatted text string is used to request a list of tiles addressed by their identifier, that

is the quadruple (sensor, zonex, zoney, dateT ime). One interface is provided for each

grid level that provides data for all sensors available at that level, that is selected

by the ”sensor” parameter. This interface allows only retrieval of known Tiles by

their identifiers, without any parameterised query capability. That is exactly what is

needed to complement the fast query functionality provided by the separate meta-data

database and to allow straight data retrieval.

The output is provided as an XML document that allows complete interoperability

with any calling component at the expense of some data overhead. The output schema

is provided in Figure 4.12. A list of tiles is returned with one tile element for each

requested Tile; Tile identification information is provided as per the identification

quadruple; Tile data is encoded in the “pixel” element as a hexBinary type that is a

string encoding binary data with hexadecimal digits, doubling the data size (two hex

digits for each byte).

Within the system this is used as an interchange format, while map data to be

displayed is encoded in compressed image files, hence the overhead does not noticeably
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Figure 4.12: Tile repository output schema. A list of tiles is returned with Tile iden-
tification information and Tile data as an hexBinary type that is a string encoding
binary data with hexadecimal digits.

affect performances. An example of output for a request of a single Tile is provided in

Listing 4.2, where Tile data inside pixel element has been omitted for brevity.

Listing 4.2: Example of Tile archive output for a single Tile request; Tile data inside
pixel element is omitted.

<?xml version=” 1 .0 ” ?>
< t i l e l i s t>

< t i l e>
<s enso r>AATSR</ senso r>
<zone id x>281</ zone id x>
<zone id y>45</ zone id y>
<date>2002−08−01 00 : 1 0 : 2 2</date>
<p i x e l>0 3 0 3 0 3 0 3 [ . . . ] 0 0 0 0 0 0</ p i x e l>

</ t i l e>
</ t i l e l i s t>

The repository interface is backed up by an archive based on the XFS file system

that, among other features, provides efficient tree structures for fast searches and

rapid response, even for directories with tens of thousands of entries[48]; furthermore

it allows an unlimited number of files and directories to be stored2. Finally, paired with

Linux, XFS provides a stable and reliable storage system that is capable of providing

throughput levels close to the hardware limits for highly parallel workloads[49].

Given the Tile identification scheme and the requirement to provide only direct

mapping from a list of identifiers to related Tile data, a straightforward approach is

used for the structure of the file system directory tree. The directory structure is based

on a fixed naming convention of both directories and files. Furthermore, it is organized

2Actually the limit is given by the addressing space that allows a million TeraBytes file system.
The ext4 file system supports also an “unlimited” number of files. During stress tests however, the
latter presented erratic behaviour with display of Kernel logs for potential data loss, hence it has been
discarded in favour of the more stable XFS alternative (see section A.4).
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in three levels of depth to keep the number of files in a single directory manageable

from the system administrator point of view. The directory hierarchy levels are defined

as follows:

Level 0 The file system root (for grid level 0);

Level 1 Tile Latitude directories: Latitude of upper left corner of the tile, composed

of six characters according to the template ”sLL.ll” , where:

s is the coordinate ”sign”, can be either “+” (north) or “-” (south);

LL are the two digits of the Latitude’s integer part (zero padded on the left);

ll are the two digits of the Latitude’s decimal part (at grid level 0 these two

digits can be 00, 25, 50 or 75);

Level 2 Tile Longitude directories: Longitude of upper left corner of the tile, composed

of seven characters according to the template ”sLLL.ll” , where:

s is the coordinate ”sign”, can be either “+” (east) or “-” (west);

LLL are the three digits of the Longitude’s integer part (zero padded on the

left);

ll are the two digits of the Longitude’s decimal part (at grid level 0 these two

digits can be 00, 25, 50 or 75);

Level 3 Tile Year directories: the year of the Tile date, represented by four digits.

The aforementioned structure leads, for grid level 0, to 720 first level directories,

each containing 1440 second level directories, each containing one directory for each

year where data is available (that are 16 as of February 2011) for a nominal value of

1036800 directories for the geographic partitioning, times 16 for the time partitioning,

to cover the entire globe across 16 years. The geographic part of that number is

reduced to the number of valid Tiles defined in the Land/Sea Mask as only land data

is considered. The total number of directories is then 372154 times covered years.

Inside each Year directory there are Tile data files, named according to the template

“SSS SpClCC YYYYMMDD HHmmss XXXXYYY” where:

SSS three characters that identify the underlying acquiring sensor;
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SpCl identifies content type, that is spectral classification;

CC two digits identifying the thematic classification level (number of classes);

YYYYMMDD year, month and day of Tile content date;

HHmmss hour, minutes and seconds of the earliest Tile content time;

XXXXYYY seven digits for grid zone coordinates (concatenation of x and y values)3.

An example of the complete path to a Tile file in the repository is:

+35.75/+006.50/2002/ATS_SpCl57_20020727_095649_0313226.

The fixed Tile size of 4096 bytes, without associated meta-data, is also aligned to

the file system parameters: the allocation unit is tuned to store exactly 4096 bytes. The

described file system based Tile access, paired with its web interface, provides a fast

and efficient implementation based on a simple, direct mapping logic, that exploits the

efficiency of the XFS file system to perform the Tile look up and retrieval operations

and delegates the execution of the semantic query to the separate Tile meta-data

database.

3In the first implementation this part of the file name was equivalently used to hold the 7 digit zone
identifier of the linear grid coordinate system. Although this information could be omitted from file
names, thanks to the directory structure, it is kept for completeness; allowing to completely identify
file contents by its name.



Chapter 5

Implementation: providing
interactive analysis

This chapter describes data access and presentation functions, including the Graphical

User Interface (GUI), implemented to provide the features defined in chapter 3. Details

on the model matching engine that allows temporal-thematic searches on the archive

is also presented together with its model editor interface. The components herein

described are built on top of the Tile archive system, described in section 4.5, and

used as interfaces to query and access Tile data.

The first part of this chapter describes the user interfaces that are built using

Django (as the web application development framework) and Python (as the server

side programming language) technologies. Technologies selection were proposed in

[50] and used to implement their early prototype versions and some of them kept

for the first complete prototype described in [51]; the proposed Google�API (as the

provider of geographic map functions) has been replaced by the OpenLayers open

source solution. OpenLayers supports recent and upcoming standards for map content

delivery proposed by the Open Geospatial Consortium (OGC), such as the Web Map

Service (WMS) used to display background maps. The use of OpenLayers also allows

users to easily display their own background maps on the interfaces by publishing and

accessing them via WMS. The Django / Python server side technologies have been

kept as they proved adequate to the system goals and opened also the opportunity to

test alternate ways to distribute processing while the evolution model concepts and

the matching engine have been considerably extended in both expressive power and

data analysis thoroughness.

The second part is about the matching engine that is also implemented using
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server side technologies and distributed over the network using the same web server

framework that provides the user interfaces. Computation is performed at pixel level

and distributed by partitioning the domain over the geographic dimension. A practical

and effective solution that is possible thanks to the single pixel based analysis that does

not require data exchange among ”sibling” processors, controlled by a single parent

process.

5.1 On-line data analysis interfaces

The GUI provided by MEA consists of three main interfaces, all accessible over the

web and built using web 2.0 technologies for a high degree of interactivity. A complete

documentation of the user interfaces and related functions is out of the scope of this

thesis and is provided in [52]. This section describes the main elements of the so called

Expert user Visual Analysis Tool (EVAT), that is the interface devoted to provide the

full set of analysis tools to Expert users (users in the “Expert” role). To recall from

section 3.4, the interface is composed of three tabs devoted to the three main phases

in data analysis and their related functions; these tabs are:

Time Series Analysis is the first tab, devoted to provide exploratory functions fo-

cused on the feature-temporal dimension, contextualised over a geographic map.

This tab allows both Tile and pixel level visual analysis;

Evolution Model Editor is the second tab, devoted to definition of evolution mod-

els. It provides graphical tools to create, display and configure model elements

along with model meta-data management interfaces;

Evolution Model Matching is the third tab, that corresponds to the simplified

view provided to Standard users of the system. It is devoted to provide access to

the thematic-temporal evolution search feature that is provided by the evolution

models matching engine. It provides search results over a geographic map and

includes a tool for detailed matching result analysis at pixel level and results

export for off-line analysis.

5.1.1 Time Series Analysis

The first tab of the Expert user interface is designed to provide tools for visual analysis

that are focused on the temporal domain. It is depicted in Figure 5.1 and is composed
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of three main areas, each devoted to specific functions as follows:

Figure 5.1: The EVAT interface for visual analysis (exploratory ”Time Series Analysis”
tab) provides an upper left map area for the geographic dimension, a time series frame
on the right for the time dimension, and a lower left frame for thematic-temporal pixel
level analysis (screen shot taken from version 1.2 of the system).

Map Area that is the upper left section of the tab and is used to select the grid level

to display, the study area and a pixel of interest within it for the other display

functions. On the map the classification at a selected time is also overlaid on

top of a WMS provided background. This area is oriented toward the geographic

dimension of the archive but can also be used to display thematic maps in time

sequences.

Tiles Time Series that is the columnar area on the right of the tab and is used to

select the temporal range(s) for area level analysis, that is the display of maps

over an area composed by several Tiles in a square, also called the study area.

This area is oriented toward the temporal dimension, providing sorted display

of thematic maps of the study area at different dates. Displayed maps can be

directly overlaid on the map area and the right column of maps can provide a

view filtered only on a specific thematic class to analyse its evolution in the area

over time.

Pixel History that is the lower left section of the tab and is oriented toward thematic-
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temporal analysis. It displays the Pixel History graph, defined in section 3.4 on

page 44 to provide an on screen view of the thematic evolution profile of the single

selected pixel across the entire temporal range covered by database content at

the appropriate grid level. Along with the graph, tools are provided in order to

select an evolution pattern that can be sent to the model editor in the second

tab to be used as reference for the definition of an evolution model.

For the Tiles Time Series (TTS), the use of three dimensional display solutions

(such as animated carousel effects) have been also explored in visualization over the

time dimension but they appeared to add no visual aid in letting the user display

the time series when compared to the simpler plain columnar solution adopted. Con-

versely, superimposition of parts of tiles produced by existing three dimensional display

libraries tends to obstruct user vision of the data while adding client side computational

load. These effects where thus discarded from interface elements.

The TTS feature potentially poses an interactivity burden to the interface as it

downloads study area previews to the browser: if hundreds of previews result from a

query, they fill the browser’s download queue, rendering other elements unresponsive

until all downloads are completed. A prioritized download queue would be a good

solution to be made available on future browsers to allow at least ”urgent” and ”back-

ground” image loading functions. Until then we implemented a workaround by adding

preview links dynamically, as soon as previous ones are loaded. This allows to keep

the interface responsive ”between” downloads to serve user requests to download other

data, such as the Tile overlay allowed from the pixel history graph.

The use of a tabular view to display the thematic evolution subdivided along years

poses some constraint to the minimum width of the interface display in terms of pixels.

In particular, the minimum width of the Pixel History Graph must be multiple of 366

and the minimum multiplier for a clear display is 2, that leads to 732 pixels. Consid-

ering the other graphical elements to be displayed around it, a minimum resolution

of 1280x800 pixels is required. This resolution is standard for modern laptop displays

and is also compatible with 1280x1024 pixels that is commonly available on modern

4:3 monitors.

Several functions do not fit in the interface display and are provided as commands

that can be selected via the panel placed above the columnar view on the TTS area.

The command buttons for that panel, depicted in Figure 5.2, are provided with icons
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related to the following commands (the numbers in the Figure refers to this numbered

list only and are not displayed on the actual panel):

1. Land Cover Type Filter this command gives access to the thematic search

functionality that allows defining percentage ranges for thematic classes (aggre-

gated in macro categories) that must be present in the retrieved Tiles composing

the study area;

2. Get Tile Time series is used to execute a search for tiles, according to the

thematic filter above and the specified geographic area and time range selected

(matching Tiles are previewed in the columnar view, mosaicked at day level over

the study area). To be noted that only one Tile per day is allowed to be shown in

the mosaicked view, that is the one corresponding to the most recent acquisition

if more than one exists in the archive;

3. Remove Tile is used to remove the selected study area map (possibly composed

of several Tiles) from the displayed time series;

4. Discard and Report Tile is the command that integrates user feedback on

thematic data in the system. Via this command users can report problematic, or

so appearing, Tiles to the system maintainers, giving direct feedback on data that

is a valuable asset to improve its quality. Reported data is immediately removed

from the archive as seen by users so that quality of the data is immediately

improved by removal of errors. Users can thus continue their analysis without

requiring administrative assistance;

5. Play Time Series is used to sequentially display on the map area the time

series currently displayed in the time series;

6. View All Tiles displays an almost full-size window overlay that presents an

extended view of the time series currently displayed in the time series left column:

this function provides the user with an overview of many maps of the study area,

sorted by time from left to right then from top to bottom;

7. View All Filtered Tiles is equivalent to the previous one for the time series

right column (Tiles filtered by selected class).
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Figure 5.2: This command panel is displayed above the columnar time series view of
the Tile Time Series area. It provides access to functions of the interface tab that do
not fit directly on it (screen shot taken from version 1.2 of the system).

5.1.2 Evolution Model Editor

The second tab of the EVAT is devoted to graphical editing tools to aid the user in

the definition of an Evolution Model, simply called model throughout this section. All

the content of the interface is placed in its upper area that is depicted in Figure 5.3.

It consists of two bars where models are displayed as sequences of model elements, as

defined in section 3.3. The upper bar, called reference bar, is for reference in editing

the model in the lower bar, called working bar. The reference bar is read only and can

display models from the catalogue of models, provided the user has read access to that

model, or draft models derived from data received from the pixel history area on the

first tab.

Figure 5.3: The EVAT model editor tab displays Evolution Model elements as boxes
on two bars, an upper reference bar and a lower editable (working) bar. Width and
spacing of elements are proportional to their temporal parameters while their color
depends on selected main classes. To the right of each bar, element parameters are
accessible via details form (screen shot taken from version 1.3 of the system).

On the right of each bar a form to display and edit (for the working bar) the

configuration of the selected model element is provided. All the parameters of the

element can be configured from these forms where aiding tools are provided to ease

selection: for example, the class selector that is displayed over the interface when



5.1. ON-LINE DATA ANALYSIS INTERFACES 81

the user chooses to configure one of the class sets of the element, is shown in Figure

5.4. The selector shows three columns, corresponding to three aggregation levels of

thematic classes: the selection can be done at each level to ease configuration of the

element.

Figure 5.4: The class selector provided by the
model editor displays three columns, corre-
sponding to three aggregation levels of the
56 thematic classes provided by the classifi-
cation system. The selection can be done at
each level, but actual element configuration
will always use the “Complete” level (screen
shot taken from version 1.3 of the system)

Besides the class selection, temporal parameters can also be configured from the

configuration form. A single level of “Undo” is provided to cancel the effect of the last

operation performed on the model element (or on the model itself in case of addition

of a new element for example). The spacing and width of elements displayed in the

editor bars are proportional to their TSP and TT temporal parameters respectively.

The model editor is thus designed to provide a graphical overview of the selected model,

along with tools for its editing, including drag and drop functions and interactive model

adaptation to insert new elements.

To be noted that the three classification levels shown on the class selector are also

provided for the functions of the first tab of the interface. The rationale for such a

choice is to let users choose the level of detail that they wish to use in data exploration.

It is a user preference and three levels are provided in this implementation, according
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to the classification levels provided by the SOIL MAPPER® software: Small (that pro-

vides only 9 broad classes), Intermediate (that includes 26 main classes) and Complete

(that provides access to all 56 classes). The high number of classes in the Complete

set is more sensitive to issues in the data that can affect the classification accuracy

while the broad classes are much more stable across different acquisitions. Nonetheless,

some of the classes in the complete set may be used to effectively discriminate among

features presenting similar patterns at the broader level.

5.1.3 Evolution Model Matching

Once an Evolution Model has been defined, it is saved in the system catalogue and can

then be used to search the data archive for occurrences of the modelled pattern, the

third tab of the Expert interface is devoted to this function: it provides a geographic

map in the upper area, as shown in Figure 5.5, that is used both for user input in

the geographic dimension and output result maps display. The lower part of the

tab is itself tabbed to provide a different display, based on the processing state and

map configuration. Figure 5.5 shows the sub-tab devoted to collect user input in the

temporal dimension and model selection.

Figure 5.5: Screen shot of the model matching tab of EVAT interface. The upper
portion provides a geographic map display while the lower portion is tabbed to display
content depending on the operational context (screen shot taken from version 1.3 of
the system).

Once an Evolution Model and an AOI over which to search for its occurrences
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are selected, one or more temporal ranges can be selected. The temporal range can

consist in an interval covering exactly the model duration (as appropriate for well

known seasonal phenomena that can be searched at known points along the time line)

or it can be an extended interval where the model will be tested for matches using the

sliding window approach. The four possible outcomes of a matching result are then

displayed for each pixel in a thematic map, coloured according to the outcome: Green

is assigned to matching pixels (”Match”), Yellow to ”Matches within tolerance”, Red

to ”Not matches” and Black to ”No data”. Figure 5.6 shows result maps produced by

running a draft model for detection of rice cultivations over northern Italy across 1998,

as previews in the lower portion of the interface and overlaid on the Earth image on

the upper portion.

Figure 5.6: Screen shot of the model matching tab of EVAT interface with second sub-
tab displaying result maps. The upper map displays results of a model over northern
Italy while the lower portion shows its second tab that permits to manage result maps.
(screen shot taken from version 1.3 of the system, after running a draft model for
detection of rice cultivations over four different years).

Result maps displayed on the map area can be browsed and zoomed and pixel level

information is displayed by hovering the mouse pointer on any pixel covered by the

map. The Export function allows also to download the maps as standard GeoTIFF

files (that the user can load on any external GIS application) and as a text file in

comma separated values format (that can be read by an external software, for example

to perform further processing based on the reported coordinates of match). Moreover,



84 CHAPTER 5. IMPLEMENTATION: PROVIDING INTERACTIVE ANALYSIS

a detailed view of the model matching results at pixel level can be observed clicking

on a pixel of interest on the result map. The detailed result view, shown in Figure 5.7

is then displayed in the lower part of the tab to provide a graphical representation of

the evolution model as a sequence of boxes, each providing detailed information about

the underlying data observed to determine the element outcome.

(a) Pixel Detail panel displaying a matching pixel.

(b) Pixel Detail panel displaying a not matching pixel.

(c) Pixel Detail panel displaying a pixel that cannot be decided (No Data outcome).

Figure 5.7: Pixel level result details provide a detailed view on the model matching
outcome, allowing users to examine the underlying data, observed by the matching
engine. Details are shown for (a) “Match”, (b) ”Not Match” and (c) “No Data” out-
comes. Each box corresponds to a model element and provides details on its outcome
and observed data (screen shots taken from version 1.3 of the system; only the details
portion of the lower sub-tab of the interface is displayed).

The ”Evolution Model Matching” tab of the Expert interface is also known as the

”Visual Analysis Client”, that is the interface to the system as seen by users in the

“Standard” role. It provides these users access to published models (so flagged by

the authors of a model) that they can search through a catalogue and run over their

selected AOI and temporal intervals to obtain result maps interactively. With this
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approach, as soon as a relevant and useful model is available from the Expert users

community, it can be immediately made available to be run on demand.

5.2 The model matching engine

The model matching operation that searches through the data archive for data match-

ing a modelled evolution pattern is by far the most demanding in terms of computa-

tional requirement, since it has to provide reasonably fast responses to user requests

that can cover regional to national scale areas. Following the features provided on

the third tab of the EVAT interface, two distinct matching routines are provided: a

distributed one that provides no detail to be fast over an area of interest that can cover

several Tiles, and a detailed one that is executed on-demand by a single thread over a

single pixel to provide the result details at pixel level.

5.2.1 Concurrent distributed matching over area

This section describes the model matching engine that performs distributed compu-

tation over an AOI, distributing data according to a model aimed at providing fast

response to user requests for interactive on-line analysis. The implemented distribu-

tion model is depicted in Figure 5.8 where three cores are assumed to be available to

the system, one on the first worker server and two on the second one. The depicted

model is an example to explain the model that is then scalable to many cores across

several servers with a change in the configuration of the main thread.

As depicted in Figure 5.8, the distributed matching involves the following message

flow:

1. A model matching request is sent to the main web server, hosting also the user

interface; that request involves one or more time ranges, an AOI, one or more

Tiles and the identifier of a model to be matched;

2. The request is passed to the main tread that takes care of partitioning its spatial

extent into single Tiles, preparing an empty result map to be sent back to the

caller. It then executes a configurable number of local sub-region threads, passing

the request for a single different Tile to each of them in smaller requests: if the

number of Tiles is greater than the number of available processing cores, a list

of the remaining ones is kept on the main thread that waits the completion of
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Figure 5.8: The distribution model of the model matching engine is based on server
side processing, distributed over Apache Web server technology.

one of the running sub-region threads before starting the next one;

3. Each sub-region thread receives a request for a single Tile in the original AOI

that it can process independently, since no communication is required with its

“siblings” for a pixel-based analysis. It sends a remote processing request to an

available worker server that implements the matching algorithm, operating on a

single Tile;

4. Each Worker server receives independent request messages for matching and

executes them on local threads to provide the result over the received sub-region;

5. Local threads execute the matching algorithm over Tile data retrieved from the

Tiles archive to produce (partial) results to be sent back to the caller;

6. The Tile archive receives concurrent requests for different regions and possibly

different time frames and serves the requested data to the processing threads.

The data flow is then the inverse of the message flow as the time series of maps are

distilled into a single (partial) result map that is merged into a single result map by

the main thread, which sends it back to the calling client. This adheres to the model of

the postgresql query plan on partitioned data that is executed by the Tile meta-data

database on its tables. This approach allows efficient and simple load distribution

resulting in a scalable architecture for distributed processing with the only bottleneck



5.2. THE MODEL MATCHING ENGINE 87

being the main thread in its data fusion operation, that is however done as soon as

data arrives from the sub-region threads as a simple copy operation. As reported in

section 6.1.4, the actual implementation is bottlenecked by the Tile Archive in serving

tiles to the processing threads, leading to a linear performance vs. the number of Tiles

to be actually retrieved from the storage.

The choice to use an Apache Web server as a distributed processing platform,

with server side components to perform the computation posed an unforeseen control

issue upon cancelling a request: there is no way to pass a connection lost event from

the server to a running python engine to cancel a task. Investigation suggested that

this kind of communication is probably broken at the scripting engine interface level,

since a property exists to test the connection but it is never changed as seen by the

running process. This issue leaves running instances of the sub-region threads running

upon connection loss or user cancellation request, wasting resources. A second control

issue was related to the management of resources to avoid overload (that can lead to

sensible performance degradation): we tried using Apache itself as the limiting agent,

by specific maximum request limit configuration. The fast processing cycle of some

worker server with respect to the others however, caused resources to appear falsely

available, as further threads are in fact waiting to start, leading to accumulation of

queued requests. Even if that accumulation does not overload the worker nodes, it

causes an overload on the server hosting main threads and unpredictable wait times

for queued tasks as the concurrency level to get resource raises. To solve both issues,

a database centric communication model has been implemented to:

� Keep track of running tasks and flag them as cancelled upon connection loss

(detected by periodic connection polling) or user cancellation by the main thread.

Interleaved status polling by the sub-region threads avoids stale tasks to complete

“long” tasks;

� A table listing resources is provided, these get acquired by running tasks upon

start and released upon termination. Direct resource availability checks allow

accurate overload avoidance.

5.2.2 Detailed on-demand over pixel

The detailed view of the results at pixel level is backed-up by a dedicated model

matching function that is run locally on the main web server to compute the matching
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outcome for a single pixel, provided with additional details on each element. This

separation has been done to avoid computing unwanted details for the entire AOI,

thus reducing the amount of time needed for computation of matching results over

large areas. A dedicate function to get pixel level details is also fast to execute on

demand only for selected pixel since it is very likely to use cached data from the tile

archive and performs computation only for a single pixel.

For that single-pixel analysis the result of the matching process is a series of pa-

rameters to be displayed in the result detail form on the interface, instead of a result

map and this data cannot be directly exported as is the case with result maps.



Chapter 6

Results and discussion

This chapter provides an analytical report on several aspects of the presented sys-

tem. Performance aspects, critical for usability of the system as an interactive tool

are included, along with a description of known and intrinsic system limitations. An

overview of relevant features for visual data analysis and examples of searches that

can be done with evolution models are also provided. Finally, the usability and ef-

fectiveness of MEA as a tool for data exploration, analysis and with capabilities to

characterize features based on temporal evolution has been assessed by a selection of

end users, performing an independent evaluation. Use cases covered were monitoring of

agricultural practices and detection of burned areas, along with the critical evaluation

of system features. A summary of the received feedback concludes this chapter.

6.1 Performance level and response time

Since driving goals of the presented system implementation were fast pixel based clas-

sification of the entire ATSR archive and quick interactive response to users, the fol-

lowing sub-sections provide performance results for the four main processing functions.

Measurements were taken on the system loaded by processing the 15 years of (A)ATSR

data on the hardware detailed in section A.1. After the ingestion was completed, with-

out merging multiple Tiles on the same day (and without including the improved cloud

filter, introduced to reduce cloud contamination in the classification), the number of

records in the database was 498.226.758, with a monthly average of 2.896.667 Tiles.

6.1.1 Classification and remapping performances

The classification system operated a first complete classification with processing ele-

ments deployed on processing nodes (pn1 and pn2) within seven months. Now process-
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ing elements are also deployed on database nodes (db1 and db2). Related measured

performances are reported for an average strip and extrapolated over the entire archive

to provide an estimate and considerations for a second run that is foreseen with an

improved classification system version and the cloud borders filter.

Processing time were taken by processing, on both machines, the strips

"ATS_TOA_1PNPDE20080114_201514_000044542065_00100_30715_7111.N1", and

"AT2_TOA_1PTRAL19990615_073242_000000001043_00306_21703_0000.E2" as rep-

resentatives of an average AATSR and ATSR-2 datasets respectively. The results

reported in Table 6.1 highlight the difference in the processing times, due to the

different processing powers of the two nodes. To be noted that about 20% of the time

is spent to read, calibrate and classify the dataset, while the remaining 80% is spent

to re-sample it to the simple cylindrical projection: a step that includes application

of the accurate geo-location correction system implemented for AATSR.

AATSR Processing ATSR-2 Processing
Machine real time CPU time real time CPU time

pn1 10m36.604s 41m56.350s 11m5.749s 39m57.290s
db1 4m17.676s 18m22.860s 4m6.646s 17m40.720s

Table 6.1: Classification and remapping processing time. There is a clear difference
between times on the two machines, reflecting their difference in processing power and
there is also a factor of four difference among real time (wall clock time) and CPU
time reflecting the efficiency of the parallel implementation of the remapping system.

From both of the two strips, 11 valid granules were produced out of a nominal

total of 20, as expected from the presence of night time acquisition in half of the

covered orbit that leads to the generation of granules with no classification data (the

used classifier needs daylight acquisitions). There are two database nodes available for

processing that, together, are roughly equivalent to five processing nodes in terms of

processing time, hence we can deduce an overall computational speed equivalent to 7

processing nodes. Considering the aforementioned strips representative of the average

strip and rounding up the wall time to 12 minutes, a processing speed of about 7 strips

in 12 minutes can be obtained, equivalent to 60 ∗ 7
12 = 35strips/hour.

Considering a count of 76397 strips available up to all 2010, an estimate of the

processing time required to process both archives is 2183 hours, equivalent to 91 days,

not considering network transfer times. To be noted that a continuous download to the

local buffer allowed us to store enough data locally during periods of high bandwidth
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availability to compensate for the reduced bandwidth periods, thus avoiding network

bottleneck issues on the first run, that used only two processing nodes. Considering an

average strip size of 350 MB, the minimum bandwidth to sustain the data rate required

to continuously process AATSR data is minBW = strip size × processing speed =

11.96GB/h that is more than half the nominal bandwidth capacity of a T3 link (19.20

GB/h). Considering we computed a conservative estimate of the processing speed,

that bandwidth requirement makes even more evident the need to move processing

close to the data in the RS field, especially when the output data size is much lower

than the input one, saving network resources and avoiding network bottleneck issues.

6.1.2 Tile ingestion performances

Tile ingestion is the operation that processes classification maps (granules derived

from ATSR strips) producing Tiles over the Earth Fixed Grid system at level 0. The

process is executed concurrently by the Tile ingestion system that allows to modulate

the resource demand on the specific hardware. In particular, optimal throughput

for data ingestion is obtained when the storage device is just below its overloading

threshold (i.e. under constant 100% utilization). This subsection reports results of

performance tests on the ingestion system executed to determine its configuration for

best throughput.
A query to the database is used to determine the current time and corresponding

number of records at hourly intervals:

select now(), sum(granules)

from ((select count(id) as granules from granules_aatsr)

UNION (select count(id) as granules from granules_atsr2))

as tempTable;

preliminary tests, performed both on the ext4 and XFS file systems gave an estimate

of around 800 granules per hour to generate and store Tiles on an empty file system.

Half of the storage array was used for each file system. Over three hours we got 13

granules/minute on ext4 and 13.3 granules/minute on XFS. Ext4 was still presenting

stability issues, reported in sectionA.4, at the time of testing. A second round of

performance observations was taken in June 2010, with 8 concurrent processes, on an

almost complete archive, leading to an average speed of 6.72 granules/minute (about

403 gr/h).

Lower performances were expected for a filled file system with respect to the early

stages as the tree structures holding file meta-data grow in depth. Finally, the need to
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re-process several months of data provided the opportunity to perform a thorough on

field performance test. The performances attained by the Tiling system with a different

number of concurrent threads are shown in 6.1. It appears that the best throughput

can be obtained by using a number of processors between 3 and 5. Detailed disk sub-

Figure 6.1: Multi-threaded ingestion: performances with different concurrency levels

system workload analysis allowed to highlight a strict dependence between disk device

saturation and throughput performance level. As can be seen in Figure 6.2 using a

high number of concurrent ingestion processes saturates the disk subsystem capabili-

ties, leading to lower throughput, when compared to using a number of processes that

keep the device just below saturation level.

We have seen that device saturation lowers the performance as well as its under-

utilization, hence an adaptive (throttled) solution would be optimal to keep the disk

subsystem close to 90% busyness, for constant optimal performance. Linux provides

several systems for disk subsystem performance control, such as the “ionice” utility,

paired with the CFQ I/O scheduler[53]; preliminary testing seemed to indicate that

the “niceness” only applies to read requests while the ingestion process consists almost

only of writes. XFS provides also a unique feature for disk bandwidth reservation:

Guaranteed rate I/O system (GRIO)[54]. Investigation of these tools was outside the

scope of this work so an ad-hoc configuration was chosen from the measured per-

formances during low system load: 3 concurrent threads are set, delivering the best

average of 450 granules/hour.

Considering the granule count in the ASQuLD storage of 813.664 granules as of

mid February 2011, with an ingestion speed of 450 granules/hour, gives an estimate
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Figure 6.2: Multi-threaded ingestion: device utilization with different concurrency
levels. With one and two processes (blue and red lines) the device is underutilized
while with four processes (violet line) the device is at almost constant saturation level.
Three processes (green line) results in optimal sub-saturation level.

of about 75 days to re-process the entire classified maps archive. An operation that

can be done with a minimal time delay with respect to classified maps production.

From the aforementioned estimate on strip processing we can see that the Tile storage

system would influence the lower bound of processing time for processing a full pass

from the original data if just one processing node is added to the system. Bottleneck

for this operation is confirmed to lie in the disk subsystem for Tile storage, since the

majority of CPU time is spent in IOwait state to copy tiles in the archive. Replacement

of the storage unit with a more performing one will be the best option for immediate

performance gain.

Tile merge operation

Besides ordinary ingestion to load data into the archive, the Tile merge operation is also

to be performed to remove (merge together), multiple observations during the same

day, over the same Tile. This function has not been optimized for performance since

the system can be used without it (the most recent Tile is returned in case of multiple

observations) and its benefit is most relevant close to the poles. Since it provides

considerable reduction of Tiles’ quantity, it is worth to introduce such optimization in
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future developments to allow faster merging. A test on the whole month of January

1997 has been performed: the elaboration started on Mon May 10 11:05:17 CEST

2010 and completed on Tue May 11 17:30:30 CEST 2010, taking 30,5 hours to merge

3.787.371 Tiles into 2.517.648, with a reduction of 1.269.723 Tiles from the archive,

corresponding to 4.84 GB of storage space and 33% of the original Tiles’ quantity.

That gives a rough estimate of six months to perform merge operation on the entire

archive.

6.1.3 Thematic content query performances

Recalling that the thematic content is stored in a bit string that allows to save 171 bits

per record and considering 500 million Tiles, a total reduction of about 10 GB can be

obtained. This can improve performance, in line with the results described in [47] for

tables that can fit in the server’s RAM (data is more likely to stay cached).

The developed catalogue of Tile meta-data provides largely improved performance

in the identification of Tiles, as from the preliminary results reported in [47], from

1.5 seconds, over a single season with linear addressing on a synthetic database of 300

millions records, 4.5 seconds across 12 seasons with two-dimensional addressing on the

real data database with 500 millions records.

Moreover the reported time of our tests is observed after an explicit system cache

clear operation with the command echo 1 > /proc/sys/vm/drop_caches hence in an

almost cold state. Without cache clearing we obtain a query time of about 0.6 seconds

for a semantic query across 12 season over a 2000 Tiles area (approximatively an area

covering France) with three semantic conditions. Given the considerable amount of

RAM on the database servers the latter condition is likely to persist, after the first

query over any given region, for the entire user session with the system. Other solutions

to accelerate the semantic search function have been investigated, including parallel

query execution; a feature not yet available in postgreSQL, up to version 9.0.3. The

pgpool-II middleware[55] has been used for testing and it led to promising results in

the execution times on single database instances; then an unacceptable performance

loss was registered in the final step of providing the unified results, details are provided

in sectionA.2.

Another thematic content query function that is demanding in terms of data access

and that must be served in a reasonable amount of time for interactive analysis is the
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Pixel History graph. It requires analysis of all available maps for a given Tile across

the entire archive to build its land cover profile over time. This function is Tile based,

in the sense that it provides faster responses over the same Tile for subsequent requests

as the time series, once loaded, remains cached for the entire Tile, not only the selected

pixel. For intra-Tile request, besides the first one, the time to generate the graph was

always under 2 seconds for all performed tests. The time elapsed for the first request

displays more variability and higher values, as shown in Table 6.2, with an average

time of 5,65 seconds, however, it is still acceptable for interactive analysis. Figure 6.3

depicts the distribution along Latitude of the test pixels and elapsed times.

Elapsed Time Pixel Lat. Pixel Lon.

4,897588 -14,830078 24,306641
5,161291 -16,763672 15,560547
4,873162 -23,619141 17,626953
5,133647 -27,033203 28,724609
4,834967 -18,595703 47,271484
3,944556 12,166016 75,833984
4,678427 13,791016 44,017578
4,870872 14,802734 37,208984
5,816015 56,638672 13,697266
5,838758 55,583984 26,353516
4,703252 53,560547 -7,044922
6,207648 58,044922 38,392578
5,946446 58,044922 54,654297
6,300115 54,966797 69,154297
5,533276 58,130859 79,087891
5,364648 52,419922 12,291016
8,284396 65,779297 -70,501953
9,486191 63,142578 -98,451172
8,052967 60,591797 -121,568359
5,907955 40,642578 -116,556641
5,656765 30,181641 -106,802734
3,904719 16,998047 -91,947266
3,955887 -0,580078 -72,435547
4,311126 -4,974609 -48,001953
5,004018 -19,826172 -66,458984
5,481127 -42,853516 -68,658203
4,016162 -0,841797 -78,587891
8,016287 62,439453 -156,283203
7,815969 63,228516 15,806641

Table 6.2: Time elapsed for Pixel History Graph generation over 30 test site pix-
els. Pixels where chosen arbitrarily over land areas to represent a sparse geographic
distribution across major continental areas.
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Figure 6.3: Elapsed times for Pixel History Graph generation with respect to pixel
Latitude.

6.1.4 Multi temporal matching performances

The matching engine is distributed across four processing servers with a maximum

availability of 38 cores to service a single request: 12 cores are enabled on database

machines (db) and 7 on processing node (pn) ones. The tests reported in this subsection

are performed varying several parameters for different models in an attempt to profile

the engine performances. The AOI is varied from 4 to 400 Tiles, resulting in a variable

area covered on Earth’s surface for the same AOI size, depending on its Latitude. The

area covered by a 400 Tiles AOI over northern Italy is shown in Figure 6.4. Test

execution was automated for pseudo-random AOI (constrained to be selected over

land) and temporal parameters (constrained by data availability) selection. For test

reproducibility a fixed seed is used for the pseudo-random numbers generator.

Figure 6.4: Area covered by a rectangular selection of 400 Tiles over northern Italy,
Latitude about 45 degrees North.
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Seasonal phenomena Matching

This performance was tested using seasonal models (tested over a fixed temporal refer-

ence for their first element) made of Elements with TT of 15 days, separated by a TSP

of 60 days (resulting in the analysis of Tiles for every other month), with persistence

enabled and all classes selected (full analysis of all available data). The variables are

the AOI and the number of Model Elements. The results are shown in Figure 6.5.

Cached results are obtained by repeating the single test four times, then averaging the

execution time after discarding the first one. The cached result test is aimed at pro-

filing the effect of the storage system hardware (disk subsystem) on model matching

performances. The 8 element model, taking almost the same time to generate results

Figure 6.5: Seasonal Evolution Model matching performance. The graph shows the
time required to produce a result map with respect to the number of Tiles in the AOI
and the number of elements in the model. Cached results are obtained by averaging
the execution time of four consecutive runs, discarding the first one.

for a 225 and a 400 Tiles AOI, reveals a strong dependency of the matching operation

on the actual number of Tiles found (which is almost 20.000 for both observations).

The corresponding reduction of the time with cached results highlights a linear depen-

dence with the AOI when disk subsystem latency is removed. An average response

time of 27 seconds and an average speed of 160 Tile/sec are obtained. A maximum

response time of 70 seconds is obtained for 8 elements and more than 20.000 Tiles to

process over a 400 Tiles AOI, which represent a reasonable upper limit for the expected

use.
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Transitional phenomena Matching

The behaviour of the matching engine is designed to reduce execution time for the

matching of generic evolution models over a search window with “shortcuts” in the

processing logic: as soon as a “Not match” outcome is determined for an element, the

sliding window is moved forward one day (since details of all elements are provided

only for on demand, pixel level requests), moreover, as soon as a ”Match” outcome

is found, the sliding window is moved forward of its duration to avoid multiple count

of the match result. These two features allow an average transitional match to take

an execution time to complete similar to the seasonal ones. Since data acquisition is

the most demanding part of the matching operation in case of frequent “Not Match”

and “Match” outcomes, taking 60-70% of execution time, the effect of the tiles storage

bottleneck is evident. It is the single hardware element to be improved for immediate

performance gain in this operation. The worst case for this matching function would

be a model always returning a match within tolerance, that has not been assessed since

it is not expected to be the common case for the expected use.

This performance was tested using a transitional model made of 4 Elements with

TT of 15 days, separated by TSP of 60 days, with persistence enabled and an infrequent

class was used to test the “Not match” timing (one test on a single tile per day). The

variables are the AOI and the sliding window size (2, 4, 8 months). A test model with

a 4 month window and about 200 Tiles for the AOI should represent a reasonable

upper boundary for the expected system use. As expected, performances are similar

to the seasonal seasonal test, with linear dependency from AOI and number of Tiles

to be processed, as shown in Figure 6.6. Execution time is less than 80 seconds in all

cases with an average processing speed of 150 Tiles/sec and average response time of

30 seconds. The maximum response time is 77.6 sec for 400 Tiles for the AOI and a

test window sliding over 120 days; the number of Tiles found in the archive for this

observation was over 16569, that is the highest of the entire test series. Again cached

data tests show relevant improvement of the response time.

6.2 Extensibility and scalability

The MEA system is highly modular, designed for reuse and extensibility: any of the

main components implementing the main functions can be replaced in favour of a dif-
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Figure 6.6: Generic Evolution Model matching performance. The graph shows the
time required to produce a result map with respect to the number of Tiles in the AOI
and the number of days covered by the test window (that is the difference between the
time coverage of the model and the search window). Cached results are obtained by
averaging the execution time of four consecutive runs, discarding the first one.

ferent solution thanks to the clear boundaries and interoperable networked interfaces

between them. However, use of a different component may result in reduced function-

ality or inapplicability of others if the semantics or data structure are also changed in

the process.

The Evolution Models Engine provides a highly reusable pattern matching engine

that can operate on any bounded categorical feature set of geographic time series Tiled

over the Earth Fixed Grid (EFG) and it has been developed to perform concurrent

distributed computation to accelerate processing over large geographic areas using a

configurable set of processing resources (in terms of nodes and cores) for task distri-

bution. To avoid resource overload, that would increase the amount of time needed

for all tasks, each node is tested for processing slot availability when distributing tasks

to assign them according to actual system load; being an interactive system, if an

overload condition is detected new tasks are rejected to allow faster processing of on-

going requests. The user interface to edit the pattern sequence of evolution models

is also completely reusable for different thematic classifications as its categories def-

inition is provided in a single configuration file and its selector display accounts for

different levels of mutually exclusive aggregation sets. The replacement of a custom

stored function, in favour of native SQL operators (bitString type functions) to ac-
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cess the highly customised tile meta-data database eases also its extension to different

thematic contents (with different number of classes), provided the Tile size remains of

4096 elements.

Presently, the current Tile repository is the bottleneck for processing scalability

as its performance is barely adequate to the current processing power of the system.

However, since it implements a file system based solution with a direct mapping layer

between Tile identifiers and their storage location (file path) and since the identified

bottleneck is I/O bounded (due to hard disks performances), this issue can be solved

by adding an overall mapping level over different storage arrays. The further mapping

layer would provide an efficient solution, allowing to utilize higher-performance (and

cost) storage solutions for immediate performance gain.

With respect to data sources, classification maps coming from additional sensors

can be integrated by extension of the remapping component (or by providing them

directly in simple cylindrical projection) and the addition of a priority system for data

sources can be added to the Tile merge function in case of “duplicate” data. Change

of domain, such as reuse of the system for Particulate Matter (PM) concentration

analysis, requires also a replacement (or extension) of the modelling and matching

component, since the presented system is designed for nominal measurement scale with

a finite set of classes, since lacks operators and functions that would prove essential

for ordinal or interval scales. Current system would however be directly applicable to

Air Quality Index Maps for example, to visually explore the index variation over time

and search for occurrences on transitions to a particular quality class.

6.3 limitations and known issues

6.3.1 Inherent limitation in post-classification

Being the search based on Evolution Models over a classification method, it can be at

most as accurate as the underlying classification system: quality of classification maps

is paramount and an effort in improving them by user collaboration has been made by

including the issue reporting function, inspired by the crowd sourcing philosophy, as a

way to leverage the great benefits of user contribution to a system. Direct feedback on

and exclusion of problematic data (at Tile level) is available to users to continuously

improve the overall data archive quality, since problematic data are reported during

data exploration (reduce errors) and feedback is used to identify problematic areas for
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the data source or classification system (improve classification and detect problematic

data).

6.3.2 Model expressive power

The evolution pattern that can be defined with the presented system, although already

suitable for versatile modelling of known land cover change phenomena, has still rele-

vant features that should be added to improve its applicability to detect a wider range

of evolution patterns:

� With a fixed TSP parameter, the models are limited in temporal flexibility (no

dynamic or range distance between elements can be specified). This is mitigated

but not resolved by Time Tolerance of elements: a phenomenon characterised by

a high variability in the relative distance among its land cover transitions over

time cannot be modelled. Adding a TSP tolerance value could be a potential

solution to model, for example, a burned area followed by vegetation recovery at

a later (undefined) time;

� Compared to the most known patter matching system over text (regular expres-

sions), this system still lacks capabilities that could be assessed for applicability

to the thematic-temporal domain.

6.3.3 Surface calculations

The Simple Cylindrical projection permits easy representation and processing in a

computer. However it has the drawback of making complex the calculations of Earth

surfaces, since it is not equal-area. That issue can be addressed by using geodesic

calculations behind the scene[46]: the area covered by a grid element can be roughly

determined dividing by 64 the surface of the Tile containing it, computed using the

geodesic length (meters) of the Tile’s arc. This solution has not been implemented into

the system and should be added to automatically obtain surface calculations (such as

the extent of the area matched by an Evolution model in hectares). However, surface

calculations can also be performed on the exported result maps, using an external tool,

if needed by a user.
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6.4 A versatile multi-temporal data exploration system

The following subsections provide examples of applications of the provided visual anal-

ysis features over available data, both at pixel and study area levels. Examples of

Evolution Models, demonstrative of some typologies of searches that they allow to

perform over the archive are also provided.

6.4.1 Visual analysis

Area level

At study area level the “Tile Time Series” frame provides spatio-temporal query with

semantic filter capability to browse the evolution of the area across the temporal di-

mension. Among the other features of that frame, there is the possibility to filter and

manipulate results to select maps most relevant to an evolution of interest. Selected

maps can be viewed together, sorted by time to highlight relevant patterns, such as the

time series map display, shown in Figure 6.7. The depicted area is the surroundings of

the city of Vercelli in Piedmont, northern Italy, where there is a vast and diffuse rice

growth agricultural practice[56]. The extent and subsequence of the various phases

of the growth cycle are clearly notable using 1-Km resolution data, including flooding

across April.

Pixel level

At pixel level, the provision of the Pixel History graph representation permits visual

analysis of land cover patterns across several years, with the aim of showing behaviours

potentially leading to insight on the underlying phenomenon, also related to preceding

or following behaviour. As basic cases, the graph for a pixel in a urban area is shown

in Figure 6.8, where the stable profile is evident considering the colour variability is

mostly limited to sub-classes of the bare soil and rangeland macro classes (see in Figure

6.9 an excerpt of the class selector with highlighted classes, observed at different detail

level, that may be used for urban typology characterization). A consistent change in

data availability and typology in the winter season is also made evident, together with

few outliers (with respect to the time series) represented by azure (snow), as well as

green (vegetation) observations in the warm seasons.
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Figure 6.7: Time series view of a study area showing the area around the city of Vercelli
in Piedmont, northern Italy. A major trend for the area is evident from this view and
the large flooding phenomena (blue and light blue pixels in the first three maps of the
second row) is in line with the known presence of vast rice fields in the area.

Figure 6.8: Pixel History Graph of a pixel covering a urban area in the city of Bologna,
in the Emilia Romagna region in northern Italy. Colour variability is limited to specific
sub-classes of the bare soil and rangeland categories across the warm and hot seasons.
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(a) Classes resulting by aggregation
of observations into a model ele-
ment at intermediate classification
level (screenshot of a portion of the
class selector).

(b) Classes resulting by aggregation
of observations into a model element
at complete (56 classes) classification
level.

Figure 6.9: Land cover classes observed for a pixel over a urban area. At intermediate
classification level (a) four macro classes are crossed; at complete (and finer) classifi-
cation level (b) only three very specific classes are observed outside the ”bright barren
land category”, allowing for finer characterization.
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A second example is provided in Figure 6.10, depicting the profile of a pixel subject

to the effects of agricultural practice. Seasonal change patterns are made evident

across all the displayed years: vegetation growth from March to May, persisting high

vegetation levels from June to August then harvest in October.

Figure 6.10: Pixel History Graph of a pixel showing agricultural practice influence.
Three main phases of the change patterns are vegetation growth from March to May,
persisting high vegetation levels from June to August, harvesting in October.

The Pixel History graph is also capable of highlighting disturbance events and

recovery times as is the case for the graph shown in Figure 6.11, profiling a pixel over

an area struck by wild fires in Greece in 2007. It is evident that the area was extensively

burnt by the a wild fire event, identified by the red coloured outlier observation. A

recovery period of sixteen months to return to a vegetated area is also evident for the

underlying area. The definition of variable TSP models, suggested in 6.3.2 would allow

automatic detection of such patterns with determination of recovery times.

6.4.2 Evolution Model examples

Several typologies of EM can be defined with the provided model editor, depending

on the number of elements and the extent of the selected search window. This sec-

tion presents examples of EM explaining possible uses to model expected land cover

evolution behaviours.

Figure 6.11: Pixel History Graph of a pixel showing disturbance and recovery phe-
nomena relating to the wild fires in Greece in 2007. Both the extensive burn occurred
in late August and the sixteen months recovery time for the area are evident.
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Single element models for frequency detection

An EM defined with a single element can be used to obtain the extent of a specific

land cover at a given time, it can also be used to search for periods of persisting

occurrence of that land cover typology over time, such as persistent bare soil across

seasons. Using a low TT the element can count occurrences of a cover type across

a wide search window; an example can be the frequency of snow cover persisting for

three weeks across a year

Two element models for change detection

An EM consisting of two ME provides specific change detection, these kinds of models

can be called transitional if they are not bounded to seasonal references. They can

be used to search for a specific land cover transition of interest in a given area, across

the search window. An example of such model to detect deforestation (and any phe-

nomenon that causes a similar transition) is depicted in Figure 6.12 where a year is

set as TSP to test the land cover of three months (TT of 45 days), with respect to the

same period of the previous year. With a shorter TSP, the transition may represent

seasonal harvesting or candidate burned areas (for example by detailing the bare soil

brightness with a finer classification).

Figure 6.12: An evolution model with two elements to detect deforestation: each
element covers three months and they are one year apart to detect the land cover
transition with respect to the previous year.

Three elements for contextual change detection

An EM consisting of three ME can be used to provide context to an observed class, in

search for isolated anomalies in the classification, as it is the case with the EM depicted

in Figure 6.13. Such model detects sporadic bare soil classification among persistent

vegetation that may represent points worth investigation (e.g. accessing the original
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data to better investigate its spectral properties to improve the classification system

or to discover its underlying cause).

Figure 6.13: Using three elements in an evolution model to search for anomalies in
classification: an isolated bare soil occurrence among persistent vegetation, if occur-
ring frequently in the data archive can be further investigated to determine if it is a
misclassification and its cause.

The SM classification system reports also outliers as a land cover class: contextu-

alization of such observations can be used to determine their meaning or to improve

model discrimination. A strong thermal anomaly is an example of an outlier observa-

tion that, if preceded by vegetation, may indicate a fire event, if then followed by bare

soil may confirm a burned area. Three element models can also be used to search for

a deforestation event followed by vegetation recovery and for any other two-transition

events that may be of interest to the user.

Multiple elements for evolution patterns

An EM consisting of multiple ME can model a complex evolution pattern, presenting

sequential change behaviour with high stability in the temporal intervals between such

changes, like for the phases of crops cultivation. An evolution model designed to po-

tentially detect irrigated winter wheat fields (as identified in the example in Figure 3.7

on page 36) is shown in Figure 6.14. Furthermore, the availability of classes identifying

categories other than those strictly related to the NDVI, such as water and wetlands,

allow for the definition of models for agricultural practices that foresee flooding, such

as rice fields. An example of EM designed to make also use of flood detection for the

identification of summer cycle rice fields is shown in Figure 6.15.
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Figure 6.14: An evolution model with four elements, defined along the NDVI profile of
winter wheat fields. Each element tests observations in the data archive for expected
land cover types at relevant intervals in the seasonal cycle.

Figure 6.15: An evolution model with four elements, based on observations over the
dense rice fields area around Vercelli, in northern Italy. This model makes use of
the water and wetland discrimination capability of the classification to discriminate
between rice and other similar cycle crop fields.
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6.5 Data availability

The MEA system, loaded with 1-Km resolution data from the ATSR archives, provides

a global thematic view over land cover with temporal frequency ranging from daily to

several days, with a nominal rate of once in three days. A heatmap showing the

geographical distribution and the count of Tiles with valid observations across the

entire archive is depicted in Figure 6.16. The map is plotted on Grid Tiles coordinates

on the x and y axes and, for the entire addressing space, provides points coloured

according to the Tile count at that (x, y) address. The depicted count highlights the

great imbalance in observations that present very high count in the 0−100 and 620−720

y intervals; as expected from a near polar typology of orbit of the satellite hosting the

instrument, driving its swaths to overlap with subsequent orbits toward the poles. The

Figure 6.16: This heatmap shows tile count for each Grid Tile coordinate pair, resulting
in a simple cylindrical projection with 0.25 x 0.25 degree dots, coloured according
to data availability across the entire 15 years archive. This map includes all data,
including multiple acquisition for a single day. The imbalance of data toward the poles
is evident.

Tile merge operation has been defined with the purpose of merging together Tile maps

that are acquired several times a day. The projected data availability, over the entire

archive, after a complete merge operation aligning the count to the system temporal

resolution of one day, is depicted in Figure 6.17. The change in data distribution

is evident as we obtain a more uniform count across Latitude. Using a single day

temporal resolution reduces the imbalance and reduces the data volume of about 35%

by ensuring a maximum temporal frequency to once a day. The projected Tile count,



110 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.17: This heatmap shows Tile count for each Grid Tile coordinate pair, result-
ing in a simple cylindrical projection with 0.25 x 0.25 degree dots, coloured according
to data availability across the entire 15 years archive. This map depicts a projection of
available data at single day resolution, that is after the merge of multiple Tiles for the
same day into a single one is completed. A more uniform distribution of data across
Latitude is evident.

at single day resolution, for the most recent complete year (2010) is depicted in Figure

6.18, where the higher data availability provided by the AATSR instrument is made

evident with respect to the ATSR-2 instrument, which provided half of the data for the

cross-sensor year 2002, shown in Figure 6.19, where observations from both ATSR-2

and AATSR are available and the effect of low bandwidth strips over land is evident.

6.5.1 Quality assessment on classified data

Since the system can be at most as accurate as the underlying classification system,

the detection of (known or unknown) issues in it, such as misclassification from cloud

contamination (that may lead to classification of clouds as snow/ice land cover) that

is here used as an example of visual quality assessment and data issue reporting.

An immediate visual identification of outliers in the time series is possible by ex-

amining the PXH and displaying the related Tile on the map, as shown in Figure 6.20.

In the considered pixel (around the northern border of Greece), the presence of a single

snow cover pixel among an hot season’s constant vegetation cover is used to load the

corresponding map of the study area for that day for area level analysis.
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Figure 6.18: This heatmap plots tile count for each Grid Tile coordinate pair, resulting
in a simple cylindrical projection with 0.25 x 0.25 degree dots, coloured according
to data availability. This map depicts a projection of available data at single day
resolution (after Tile merge) for year 2010, data is provided by processing AATSR
datasets only.

Figure 6.19: This heatmap plots tile count for each Grid Tile coordinate pair, resulting
in a simple cylindrical projection with 0.25 x 0.25 degree dots, coloured according
to data availability. This map depicts a projection of available data at single day
resolution (after Tile merge) for year 2002, data is provided by processing both ATSR-
2 (first half of the year) and AATSR datasets.



112 CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.20: Rapid detection of outliers in time series is possible via the Pixel History
graph; the circled observation represents snow cover in summer, that is quite unex-
pected, even across the northern boundary of Greece. Directly loading the correspond-
ing study area map allows detection of a cloud misclassification issue, as suggested by
the “No Data” (cloud pixels are discarded) surrounding the snow pixels.
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Outliers and potential misclassification issues may reduce the accuracy of the pat-

tern matching performed during multi-temporal search operation. Those issues can be

immediately removed from the data archive by the “Expert” user examining the study

area by reporting them to the system administrator. The thematic data provider can

then provide further investigation on the issue to correct it or discover an unexpected

phenomenon causing its occurrence. Use of the “Discard and Report” function to per-

form that operation is shown in Figure 6.21, which is also a collaborative function for

data quality improvement. Further assessment of the detected phenomenon is possible

Figure 6.21: Discard and report of outliers. This function can be used to report
problematic data and remove it from the data archive to continue with a study of an
area without further disturbance and without requiring administrative support.

by defining an evolution model that analyses data to map occurrences of the issue over

time on a given region. An evolution model to detect isolated snow elements during hot

seasons can provide an example of such assessment in terms of extent and frequency

over selected areas. Two selected areas are shown in 6.22 where the issue has been

examined over July-August in 2000 and 2007 taking few minutes to define and match

the evolution model for a preliminary assessment.

Fast interactive detection of areas affected by classification issues can be used to

assess the extent of its occurrence and identify its placement in space and time. With

that information further data analysis can be done in search for hypotheses on the

cause of the problem (e.g. possible correlation with the underlying land cover typology
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(a) Cloud misclassification over northern Italy (b) Cloud misclassification over eastern U.S.

Figure 6.22: Mapped assessment of misclassification issues extent and frequency can
be rapidly obtained over an area of interest by searching for isolated or unexpected
outliers with an Evolution Model, as is the case with snow cover over summer searched
in northern Italy (a) and eastern U.S. (b).

Figure 6.23: Pixel History Graph of a pixel showing systematic alternate classification.
The pixel profiled in the graph shows systematic changes in the classification within
few days at regular intervals (the pattern highlighted with the horizontal line) that
could suggest a study area to search for correlation with its possible cause.

for cloud misclassification). The availability of the multi temporal data archive can

also be leveraged to assess these hypotheses with refined models to obtain an effective

subset identification for further study. Finally, the Pixel History graph profile can

highlight systematic classification issues, such as the alternation shown in Figure 6.23

pinpointing a combination of location, time (or season as it appear to recur also in

other years) and land cover behaviour candidate for further investigation.

6.6 Preliminary case study

The first case study used to verify the applicability of MEA as a system for change

detection was performed attempting to identify flooding and vegetation growth on

flooded areas over the IRAQ marshlands from 2003 to 2007. The study was based
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on visual interpretation of a reference set of images from the Moderate Resolution

Imaging Spectroradiometer (MODIS)

instrument (a higher resolution sensor with respect to ATSR) compared with the

results from the system loaded with a selection of ATSR images taken from the the-

matic catalogue (the loading was performed manually, since automatic loading was not

yet integrated). Two seasonal models to detect transition to water and to vegetation

were used and a visual assessment of the result map done by overlaying them to the

reference data. Results confirmed that the system “has proved to be a very valuable

service for developing and applying land evolution models, moving from a pixel level

to a wide area level of analysis and interpretation. The experience confirmed the suit-

ability of the system toward a wide availability of data, both temporally and spatially,

its speed of use and a user-friendly graphical interface.”[57].

The preliminary version of the model engine allowed only to specify a single class

for a “Match” results, with a fixed classification level of 56 classes. Later analysing of

the results maps produced in the study confirmed that such limitation led part of the

flooded areas to fell in the “Match within tolerance” outcome. After the addition of

class aggregation and the possibility to select multiple expected classes, the model for

flooding detection used in the study was ported to the new engine, with several classes

moved to the main set. This allowed to better characterise (and confirm visually) a

“Match” of the flooding, allowing to use tolerance for its intended meaning. In both

cases no numerical assessment was made: however the visual comparison made evident

the correct detection of the majority of the phenomenon.

6.6.1 Independent validation by user group

The system underwent an independent validation by a group of users selected among

the research user community. Users already working with RS data in their fields of

study were asked to perform an evaluation of the system with respect to usability

metrics and to its ability to assist them in their research topics. The usability was

measured according to the model of attributes defined in[25]: memorability (it is easy

to remember how to perform the main tasks, even after some period without using the

system), learnabilty (“the user can rapidly start getting some work done with the sys-

tem”), efficiency (“once the user has learned the system, a high level of productivity is

possible”), error rate (an error is intended as an action not accomplishing the intended
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results, the system should present a low error rate and no unrecoverable errors) and

satisfaction (“the system should be pleasant to use” in a subjective sense).

The users’ focus was on the “Expert” user interface and on data analysis features,

low to no attention was given to content management functions (such as permissions,

administrative functions and interfaces separation for different user roles) at this stage

of assessment. Overall, the system was rated as pleasant to use with an attractive and

clear interface and presented no catastrophic errors. A more detailed output of the

evaluation can be summarized according to the three main functions provided by the

interface:

Time Series Analysis was considered very easy to learn, well structured and highly

efficient to use; no error was reported for it and in resulted to have a very

high memorability. The Pixel History graph was reported to be a remarkable

visualization tool to display data for pattern identification. The availability of a

15 years time series at the disposal of the user (without the need to search for,

collect and prepare it for temporal oriented analysis) was also notified as a highly

improving feature in research activities. Improvements were also proposed, most

notably the need to display the full Pixel History graph at user’s request to

give a complete and intuitive visual impression of the thematic behaviour of the

location over time;

Evolution Model Editor together with its definition and EM concepts were evalu-

ated hard to learn features that may require too much effort from the user to be

learned without a practical (task oriented) user guide. Furthermore, the graphi-

cal display has been reported to not provide adequate temporal scale information

to be intuitively compared with the patterns identifiable on the Pixel History

graph. Nonetheless, once the concepts and parameters have been learnt they

have been successfully used to define simple patterns to characterise searched

phenomena. The accuracy levels reached however suggested that: higher resolu-

tion data should be added to the system, classification accuracy further assessed

and model editing features improved toward a more intuitive interface;

Evolution Model Matching was evaluated as easy to learn and very intuitive in its

results display functionality.

Besides direct feedback by the users a questionnaire was prepared to get an objective
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metric to evaluate the system along the aforementioned usability attributes. The ques-

tionnaire consisted of both semantic differential and likert scales on a 1-7 rating scale.

Some of the metrics listed in [25] were used to evaluate the various parts of the system

and its overall performance, such as: Pleasing/Irritating, Complete/Incomplete, Sim-

ple/Complicated. All the most relevant components of the interface on all three tabs

were also rated for usefulness on a four level rating scale: Very useful, Improving, Not

so useful and Unnecessary. Most of the elements and functions were rated Very useful

to Improving with few exceptions in the Not so useful rank (intended as not needed

by the user but that may be useful to perform a different task).

In conclusion, although the group consisted of six users, that are not enough to

provide an aggregation that can be considered an objective evaluation, the feedback

received from the independent assessment of the system confirmed its high potential

in being an aiding visualization tool to improve research activities, especially for its

provision of a time oriented view on large data archives. The suitability of the system

for efficient modelling and detection of phenomena characterised by simple patterns

(change detection) has also been confirmed (considering the intrinsic limitation of

moderate ground resolution data), while its direct applicability to provide accurate

masks of studied phenomena would seem to require more validation activities (also

in terms of classification accuracy). The desirability of consolidation of the thematic

data archive, with the integration of more datasets coming from different sources, to

mitigate data scarcity for some periods, apparently due to frequent cloud coverage,

had also emerged. The possibility to provide, with the same access methodology, addi-

tional thematic views over satellite image archives, even at lower semantic level (such

as vegetation indexes and surface temperature values) and their integration into the

modelling system has been also confirmed to be a very promising development direction

to fully exploit the data archives. Finally the need to include data at higher resolution

levels emerged as the 1-Km resolution, although adequate to roughly characterize phe-

nomena under study, was perceived by most users as a limiting factor to obtain more

effective results at sub-regional scales.
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Chapter 7

Future work and improvements

This chapter proposes possible solutions to overcome current limitations of the pre-

sented system and improve its usability and usefulness, considering also the feed-back

received form users invited to perform an independent evaluation of its features and

performances and to participate in usability assessment. Aspects of the system that

are good candidates for further study and improvement are also summarized with di-

rections for future work. It has to be noted however that almost every main component

of this integrated system can benefit from further improvements and present an op-

portunity for further applied research, since each of them covers a different field of

study by itself. The presented system, without any pretence of being the optimal so-

lution for multi-temporal analysis, implements a working example on the possibilities

offered by the synergistic integration of the diverse technologies available to the EO

user community to provide an enabling framework to exploit large data archives. Both

data visualization and interactivity are made available over the web via a highly usable

and responsive user interface that fosters thematic-temporal pattern identification and

analysis. The MEA system makes readily available to its user community an unprece-

dented view over a global dataset that can provide insightful information in a very

short amount of time when compared to classical multi-temporal study methodologies

requiring time consuming data collection and preparation activities. At its present

state of development the system is readily usable as a companion tool for researchers

and it is designed to already support a broader set of RS data users typologies. This

system represents a building block toward a methodological consolidation of the large

amount of information and knowledge already present in the EO filed.
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7.1 On models and the model editor

Improve usability of the model editor

Following end user feed-back, which has to be the driving element in designing user

interfaces that have chances to be really useful and adequate to meet their functional

goals, the primary effort in future developments should be directed to provide an im-

mediate, clear and intuitive display of the temporal dimension in the model editor.

There are issues to overcome in providing such a functionality without losing general-

ity of display. The presented implementation provides a display of the model elements

with some proportionality to their temporal parameters: the width of an element is

directly proportional to its TT value, while de distance from its preceding element is

directly proportional to its TSP. Two key issues have to be managed with this linear

display approach: the minimum width and the need to avoid scattering elements too

far apart. A minimum width is of greater relevance considering that a more direct

manipulation of the model sequence (along with the current form based input) is also

highly desirable to improve usability. If we assume a minimum of three pixels for an

element’s area to be easily used to perform a “drag” action, and considering three

possible options (extend an element to left or right and move it along the time line)

a minimum of 9 pixel have to be used for its representation. With a time resolution

of one day, to allow specification of elements covering a single day and to avoid over-

lap of elements close together, 9 pixels should then represent one day on the model

editor bars; resulting in a quite impractical size of 3285 pixels required to represent

a single year. Moreover, models can be defined to search for the thematic evolution

across several years (such as to provide maps of urbanization changes over 2, 5 or even

10 years), in this case a “gap” would cause a discontinuity in the temporal represen-

tation (presently the issue is addressed by a limitation in the maximum distance of

the elements and of their width, dynamically adjusted according to the screen width).

Two possible modification to solve these issues could be the constraint to a minimum

temporal coverage of three or five days for model elements, which would be reasonable

considering the common practice to “aggregate” multiple temporal acquisitions (e.g.

weekly or monthly averages) when performing multi-temporal analysis, and the provi-

sion of a scrollable miniature overview of the model, allowing an integral display of a

“long” model that could be used to quickly move its visualization along the time line.
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While several technologies already exist to implement direct manipulation of elements

in a web application, future implementations should be oriented toward portability and

minimal requirement of additional software components with respect to the standard

browsers implementations. The development of the HTML5 specification is a promis-

ing effort toward availability of a web platform ensuring development of more direct

manipulation elements with standard implementation. In the meantime, an improving

addition toward immediate display of temporal information would be direct element’s

labelling, as shown in Figure 7.1.

Figure 7.1: Improved time dimension visibility for model editor elements.

Data-driven alternatives

The presented user interface fosters visual pattern identification and provides a simple

tool for its selection at pixel level over a single temporal interval, it provides also user

controlled aggregation of sets of observed classes into model elements but still offers

limited automation in direct model definition from the observed data. One if its de-

sign goals was to provide a modelling tool allowing users to precisely define patterns to

search, it may however also be a limiting factor for interface efficiency not to increase

the automation in model definition from selected patterns. The interactive pattern

selection features give also the opportunity to test alternative modelling techniques to-

gether with the applicability of the selection features to provide an intuitive system for

interactive specification of input elements to data driven techniques. The exploratory

features offered by the system can thus be leveraged to ease also driven analysis (es-

pecially in the temporal domain where the selection of time windows relevant to the

characterization of patterns to be modelled is one of the crucial aspects in temporal

pattern recognition). Thanks to the modular design of the presented system, integra-
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tion of data driven modelling into the system would be eased, enabling reuse of its

thematic archive. A different model editing interface can then be displayed, depending

on the model type.

Hierarchical approach automation

For mixed pixels (observations covering a varied set of features on the surface, within

the same pixel), the overall observed behaviour results from the mixed contribution of

all the various underlying features. The potential availability of an integrated dataset

with multiple resolution data can also be an opportunity to explore options to auto-

mate multi-level searches. A multi-level model may be an effective tool to execute

a fast search through the archive over large areas. Such multi-level model can be

implemented by defining a raw characterization of features as seen at coarse resolu-

tion (considering possible mixture with surrounding features), then testing on search

results for finer discrimination with a model suited for more precise detection (with

more specificity in thematic evolution). The addition data at higher resolution layers is

then required to verify this approach. This multi-scale approach could greatly reduce

the time required to perform a thematic search over vast regions by quickly sub-setting

the spatial domain.

The geographic location is also another candidate attribute for automatic selection

of different versions of a model to detect the same searched feature that may be strongly

influenced by location in its thematic-temporal behaviour. The inclusion of geographic

information to the model to indicate its area of applicability, in a machine readable

form (such as Geography Markup Language, which is an XML based standard for geo-

referenced vector data), can enable a collaborative effort toward globally applicable

models that include specific versions with increased local accuracy. For example, a

model for an agricultural crop cycle can be defined at large scale and, when used to

search for data, a more specific version can be automatically selected for use if available

for the search area, to improve search results. A model ranking scale would complete

the frame by allowing precedence to be applied for overlapping models.
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7.2 On data availability

Increase interoperability

An integrated system should take advantage of standardization efforts to provide the

higher level of standards-based interoperability. With respect to data archives pro-

duced by the system, interoperable elements are already provided and their standard-

ization would be the the direction to pursue to increase system interoperability. The

temporal dimension is a recent addition to supported features of existing open source

spatial data management products supporting open standards, such as MapServer[58]

and partly supported by others, such as GeoServer[59]. The use of standard proto-

cols to interface the classification maps catalogue and Tiles archive, such as WMS[60]

or Web Coverage Service (WCS)[61] should be investigated as further interoperabil-

ity improvement. Particular care should be taken in ensuring that a standards based

implementation can provide adequate performance levels for the kind of interactive

browsing and visualization features provided by the presented interfaces. Nonetheless,

the use of standard protocols to serve map data would permit further direct exploita-

tion of thematic maps produced by MEA ingestion system. A second component of

the system that provides an opportunity for implementation of the recently standard-

ised Web Processing Service (WPS)[62] protocol for geo-spatial processing services is

the model matching engine. Providing geospatial content as output of a processing

request, parametrized over the model and the search window, this function is not suit-

able for the other map or content oriented protocols. It has to be noted that both

elements of the system (the tiled maps archive and the model matching engine) are

already accessible over the HTTP protocol with a well defined interface specification,

that is the basis for interoperability. Their adherence to open standards would enable

accessibility also with standard client implementations.

Leverage extensibility

The modularity of the system is the key to its extensibility, as suggested also by its

users, this extensibility has to be leveraged to fully exploit the potential of the pro-

posed system. The integration of other thematic layers of information would provide

a more diverse view on a study area, increasing the potential of insight coming from

exploratory data analysis. The applicability of the proposed system to provide air

quality map information within the presented framework is ongoing, as well as the
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implementation of different spatio-temporal display and management solutions for or-

dinal and numerical measurements. Other candidate thematic information layers for

land cover information have been also proposed to make well known properties avail-

able to users, even if these are at a lower semantic level with respect to a land cover

classification. Plain Normalized Difference Vegetation Index and Land surface tem-

perature are examples of properties that, profiled interactively over time can foster

pattern identification.

Integration of multiple sources

Time series of satellite data are an adequate tool for mapping land use through the anal-

ysis of the evolution profile of observed data over time, [12] recently confirmed the ap-

plicability of time-series MODIS 250 m NDVI data as a cost-efficient and time-efficient

means for large-area crop mapping in the U.S. Central Great Plains and the MODIS

sensor has been widely applied for many studies, also thanks to its free of charge dis-

tribution policy: as the next step towards implementation of a multi-resolution, global

land cover analysis system, the extension of the MEA system to the MODIS archive

should be pursued and the availability of a baseline dataset for specific applications

can be leveraged to explore the possibility to use the high discrimination capability

of the SM software to better characterize land use, while greatly increasing the data

availability of the MEA system. The two datasets at similar resolution levels could also

be exploited to integrate pan-sharpening applications across them as their resolution

ratio would allow[63]. Moving toward higher resolution levels, the need to avoid data

duplication in the storage units becomes more relevant and the integration of more

efficient solutions to provide efficient storage of data, while maintaining fast interac-

tive display capabilities should be pursued. A continued availability of high resolution

satellite data will be ensured by the open access data policy for the upcoming Sentinel

missions, which “ensures free-of-charge access to all Sentinel data as well as the prod-

ucts generated via the Internet to anyone interested in using them”[64]. The possibility

to sample the data into an equal-area DGGS, that is congruent with respect to the

Earth surface would optimize data storage by removing data duplication caused by

projection distortions. On the other hand it will introduce the need to re-project data

at the time of display request. The advantages of processing data without duplication

and the use of pre-calculated “mapping tables” between two different DGGS, one used
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for storage and the other for visualization is likely to provide increased performances.

A comparative study to assess possible advantages of using two different discrete sys-

tem for storage and display would be desirable. Existing solutions for geo-spatial data

management are capable of on-the-fly projections, that is an operation usually requir-

ing complex computations over raster data. Performance levels attainable with these

solutions for temporal aggregation has not been investigated in this study, but they

may be feasible at high performance levels among discrete grid system as they can be

defined with fixed, direct mappings to one another.

7.3 Support to validation activities

When a data analysis system supports decision making, the accuracy that can be ob-

tained with it becomes an even more critical aspect to be considered. Decision makers

require accurate products (to a given precision, dependant on their informative needs),

product validation and accuracy estimate becomes necessary to provide these users

with this information. Two factors have to be considered: accuracy of the base layer

used to visualize time series and to search for patterns in its evolution and the accuracy

that can be obtained with a given model in search of a modelled behaviour. For evolu-

tion models, its associated metadata can be used to provide validation information in

the form of a textual description, describing the output of validation activities. More

integrated approached could also be followed and should be investigated, as outlined

hereafter.

User feedback

The collaborative environment that can be provided by an integrated and centralized

system can be further exploited, extending users’ feedback collection features to the

models themselves. At its present state, the system integrates features to collect user

feedback on interface and system problems (problem reporting), system improvement

(suggest features) and thematic data issues (report Tiles), all directed to the system

maintainer. For evolution models user feedback should be directed to the model owner

and include a clear rating scale to permit assessment user’s impressions on it. A model

may then require a minimum rating score before it can be published for use by the

whole users community.
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Validation data layers

The use of the OpenLayers client, supporting standard protocols, such as WMS allows

for comparative display of existing thematic layers for cross-reference and validation.

These layer are usually more “static” in nature, in the sense that they provide aggregate

temporal information at broader temporal intervals (e.g. bi-monthly to yearly in the

case of the GlobCover products[13]) but they can provide also a higher semantic level

such as classification of land use in the Corine Land Cover products[65]. These thematic

layers, used as background map can provide a reference for accuracy assessment of both

the base thematic classification and the evolution model search accuracy in the land

cover domain.

Ground control points

An improving addition would be the connection with vector data, such as ground

control points or reference ground truth datasets that can be used for immediate

display but should also be considered for the implementation of automated validation

procedures on the base thematic data layers. Integration of vector data could also

enable investigation of multi-source data fusion[66] to deliver improved content maps

for decision making. Once again the ongoing standardization effort in geo-spatial

data access proves to be an enabling effort: serving these vector features via Web

Feature Service (WFS) would enable their prompt inclusion in the visualization system,

while further analysis is required on their use for automatic validation, including their

mapping to raster data in the system archive and to its thematic content.
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Conclusions

Archives of satellite data contain large amounts of information that can be exploited

both for research activities and decision support. Accessibility to satellite data is a key

requirement for researchers that use them to extract meaningful information to gain

knowledge about observed phenomena. To exploit such information an interactive sys-

tem for thematic-temporal analysis has been proposed and a working implementation

realized to confirm its feasibility. The MEA system provides a foundation for further

development toward an integrated system to deliver information to users in a way that

fosters exploratory data analysis. This implementation, loaded with a global scale

dataset has been used to assess on the field its provided benefits and its usability.

In this thesis I have proposed a series of graphical interfaces specifically designed

to provide a thematic view over the temporal domain to users interested in studying

the dynamic behaviour of the Earth’s surface. To give a dynamic view of the data,

an interactive environment is provided, that requires implementation of an efficient

spatio-temporal query and storage system, designed for fast identification and retrieval

of data. On modern commodity hardware, the system delivers adequate performances

for interactive analysis allowing the execution of complex spatio-temporal-thematic

queries within few seconds to identify data units and deliver access performances close

to hardware limits over an archive of about five hundred millions data elements. The

set of provided data access and analysis features is thus suitable for on-line, interactive

use with a response time of few seconds for time series analysis elements, and an

average performance of less than 6 seconds to profile a pixel’s evolution over 15 years.

The user interfaces are designed not only to foster identification of thematic-

temporal patterns over time series of data but also to define models to automate

detection of these patterns in the archive. I have proposed a basic pattern matching
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system that can be used to define expected behaviour of the classes in time at pixel

level. Being based on a sequential pattern definition, such system has several known

limitations in its expressive power but has also the advantages to allow the imple-

mentation of a fast, distributed matching engine, suitable for interactive use and to

let the user directly define models in terms of expected thematic content over time,

enabling direct investigation of search outcomes at pixel level directly on the graphical

user interface. The implemented system can be used to perform thematic evolution

searches over regional extent areas and possibly larger areas, depending on the tem-

poral coverage of the model. For large scale searches (national areas and above) the

system can still be used but the response time would not be adequate for interactive

mode as it can take minutes to deliver results. Over small study areas, this interac-

tive pattern matching system and its detailed results analysis function can be used to

quickly define and verify models based on the behaviour of selected study areas, either

based on knowledge of the area or assess the occurrence of an interesting observed

behaviour to investigate its cause. Or even simply to test and verify patterns over the

data archive to explore its content or search for problematic areas for the classification

system that may uncover issues in the source dataset. The data reporting function

enables also direct feedback from the users on data quality, that is a valuable asset for

its continuous validation and improvement. Furthermore, the potential of this interac-

tive pattern matching system is to deliver masks of any modelled phenomenon at the

user’s request that can be a practical surveying tool to be used for decision making, for

the identification of interesting areas for further study or for further processing with

external systems. The presented system is thus a tool provided to its user community

to directly support research activities and to enable prompt usability of its products

to the wider public.

I have designed a highly modular system for the implementation of a prototype ad-

equate to demonstrate and assess the potential advantages of the principles of usability

and exploratory data analysis, applied to an interactive data access system over satel-

lite data at global scale. All the data handling components provide an interoperable

(although yet non standard) interface accessible over the HTTP protocol, allowing for

almost transparent technology changes in any of the components. Finally the system

is ready to support multi-resolution data and is easily extensible to other thematic

domains. A discrete global grid system has been used to define a multi-scale Earth
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Fixed Grid enabling system extensibility to multiple sensors at different resolutions.

The verification of this solution for cross-resolution data analysis has not been verified

in this work but its support has been coded into the various component of the system

to ease its implementation in future work. Furthermore an authorisation policy model

and a data processing management systems have been defined that can be applied to

other systems accepting editable user provided content, allowing multi-user access and

dealing with data archives with long temporal coverage.

EO data users, participating in validation activities and asked to provide an in-

dependent assessment of the system for measurement of its usefulness, agreed on the

suitability of such a data visualization system to provide an insightful view of the dy-

namics of phenomena that can be characterised over time. The model editor interface

has been reported as the only component to require improvement for a higher degree

of usability. It is required to flatten its learning curve by securing the user orienta-

tion on the temporal dimension and providing direct manipulation of the graphical

representation of the model to configure its parameters. Nonetheless, the modelling

functionality has been reported adequate to quickly model (once the user familiarises

with the interface) and detect relevant patterns in the thematic classification1.

The availability of a large scale archive of thematic data, already mapped to a

reference system permitting temporal analysis has been also valued for its potential

to greatly reduce the data gathering and preparation phases required in almost ev-

ery study involving satellite data. Even if direct access to raw data is not enabled,

the availability of one (and possibly more) thematic layers (including well known pa-

rameters, such as the NDVI), directly browsable toward the time dimension has been

recognized as one of the most improving features of the presented system. The Pixel

History graph, in particular, has been reported as a very insightful way of displaying

classification data for pattern detection.

Its user interfaces are designed to permit users to access the underlying data with

two different models of interaction: an exploratory analysis to visually identify relevant

pattern in the classification over time and a model based analysis to define an expected

land cover evolution over time, that can then be automatically searched for occurrences

1The data used for this implementation has still unresolved issues in geo-location that may require
the definition of a systematic co-registration process and provide a radiometric detail that lowers the
accuracy attainable by the selected classification system, yet promising results are already attainable
with the analysed data.
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through the time series with pattern matching. For both models, the same interface

layout is used as it fosters adherence to the three main steps in research: examine data

(visual analysis), make an hypothesis (model definition), hypothesis testing (match-

ing of the defined model), then further verification of its results (export and off-line

verification). Results provided can be used both to gain knowledge of the modelled

phenomena and to obtain specific thematic views of an area under study.

The ubiquity of World Wide Web and the recent development of web 2.0 tech-

nologies are basic conditions to ease keeping the computation close to the data, while

interactively deliver results to remote users. All the interface features of the system

are made accessible over the web, fostering the abstraction of underlying technology to

the user, in line with the Application as a Service (AaaS) paradigm of cloud comput-

ing. Web 2.0 is the key element in obtaining the desired high level of interaction and

ease of use on the interface, without requiring installation of specific software packages

on the client system: a standard modern web browser is all that is needed to access

the application. The modular design of the system defines all components with clear

function separation and each component presents networked interfaces based on stan-

dard protocols (HTTP and SQL connectors), making the system ready to scale up by

adding computing and storage resources. The advantages of web based and distributed

platforms applied to the RS field are thus made evident. Finally, when compared to

existing web-based GIS solutions, MEA provides an unique, multi-temporal, thematic

view over a world-wide archive of RS data, that is made available to the scientific

community to foster data exploitation.

During the last three years I have been working on the analysis and development

of data access and processing elements in the framework of the ESA ground segment,

working with emerging technologies and systems in support of research and satellite

data exploitation. I have been in contact with both satellite data users and service

maintainers while studying systems for, data access, data processing, systems design

and integration practices and theoretical background in Remote Sensing for Earth Ob-

servation. I have realised the potential of systems integration to deliver a user oriented

framework to foster data exploitation. During my PhD studies I have been deeply in-

volved in all phases of the realization of the presented system applying a methodological

approach to the design, verification, assessment and validation of all system compo-

nents. Performing investigation on critical aspects and research on the various fields
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covered by an integrated system that crosses all the main activities in satellite data

processing: data storage and archiving systems, Earth Observation and geo-spatial

data processing elements, parallel and distributed processing models, concurrency and

resource management, database optimization, data access and presentation, user in-

terfaces design, validation and assessment methodologies. I have also coordinated the

installation and configuration of the system at ESRIN premises, dealing with con-

straints and requirements related to the deployment of hardware and software systems

in an operational environment of an international agency and its contextual interaction

with other systems.

The presented system provides a building block toward a methodological consol-

idation of the large amount of information and knowledge present in the EO filed,

made available to the EO scientific community. It provides a highly modular design

supporting extension to different data sources and thematic domains. Provided the

features to be analysed are in nominal finite set domain, the pattern definition and

matching system can operate with a simple change in its configuration, while the clear

interface model can be used to dynamically integrate other data visualization tools for

different data types.
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Appendix A

Additional Details

This chapter contains relevant details about some of the elements of the system that

have been assessed during system development and the hardware configuration used

for performance measurements.

A.1 hardware system details

This section provides details on the hardware system where the implementation of the

system has been deployed. Three kind of nodes plus a direct attach storage units are

used. The Operating system on all nodes was “Ubuntu 10.04.1 LTS” Linux distribu-

tion.

Application server and central storage: STOR

This node is the core of the system, hosting the web application server, and all pro-

cessing coordination components; its hardware characteristics are provided in Table

A.1. Connected to an internal SAS controller is a Sun StorageTek� 2530 SAS Array,

providing storage for the Tile repository. It holds 8 x 1TB 3GB SATA 7,2 Krpm drives

in Raid 5 configuration with 1 hot spare, for a total storage capacity of 6 TB.

Subsystem Configuration Total capacity

CPU 2 x Intel Quad-Core Xeon E5310 @ 1.60GHz 8 procs
HDD 6 x 3.5” SATA 500 GB 7.2krpm GB RAID5 + 1 spare 2 TB
RAM 8 x 1024 MB DDR2 667 MHz 8 GB
NET 2 x Dual 1 Gbit NIC (4 x 1Gbit ports) 1 x 2 Gbit/s (2 ports)

Table A.1: Application server and storage controller hardware.
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Processing Node: PN

There are two of those systems that are devoted to provide processing power for dis-

tributed processing elements. Hardware configuration is provided in Table A.2.

Subsystem Configuration Total capacity

CPU 2 x Intel Quad-Core Xeon E5310 @ 1.60GHz 8 procs
HDD 4 x 2.5” 73 GB 10krpm GB RAID5 227 GB
RAM 4 x 512 MB DDR2 667 MHz (2 GB)

4 x 1024 MB DDR2 667 MHz (4 GB) 6 GB
NET 1 x Dual 1 Gbit NIC 1 x 2 Gbit/s (2 ports)

Table A.2: Processing Node hardware.

Database server

There are two of those systems, whose main function is to provide high performance

databases for fast Tile metadata query. They are also used to provide processing

power for distributed processing elements with lower priority. Hardware configuration

is provided in Table A.3.

Subsystem Configuration Total capacity

CPU 2 x Intel Quad-Core Xeon X5560 (2.8GHz) 16 procs (HTT)
HDD (system) 2 x 146 GB SAS (RAID1) 146 GB

HDD (database) 5 x 32 GB 2.5-Inch SATA Solid State Drive (RAID 0) 160 GB
RAM 12 x 4096 MB RDIMM DDR3-1333 MHz 48 GB
NET 2 x Dual 1 Gbit NIC (4 x 1Gbit ports) 1 x 2 Gbit/s (2 ports)

Table A.3: Database node hardware.

A.1.1 Solid State Disk performances

This section reports on SSD device performance tests. Several configuration have

been tested in search for optimal device configuration but none of them delivered

the expected nominal random read performance levels. Since the cause has not been

discovered, results are reported here for reference and further study. The fio[67] bench-

mark tool has been used, which comes with a specific solid state device test suite: the

default configuration options for SSD testing delivered with fio packaged distribution

were used.

As expected from the drives specification[68] a single drive should deliver 35000

IOPS at 4k data size, for a 136.71 MB/sec bandwidth with random reads. A 5

units RAID 0 configuration should be able to deliver five times the performance of
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a single drive, hence the expected nominal bandwidth performance is: 5 ∗ 136.71 =

683MB/sec.

Considering only one physical connector (i.e. four distinct SATA 3 Gb ports at

300MB/sec each) can be connected to the drive bay due to cabling constraints on

the SAS/SATA controller for the Fire X4270 Sun servers, the maximum theoretical

bandwidth for the drive subsystem is: 4 * 300 MB/sec = 1200 MB/sec. For random

reads the full SSD potential of 683 MB/sec should then be exploitable, while for

sequential reads the higher limit of 1250 MB/sec would not be attainable.

Test results

Table A.4 summarizes test results with several configurations. None of the tested

configurations provided performance levels close to the theoretical performances. Par-

tition misalignment is known to be a common factor of performance degradation for

solid state drives and the hardware controller may be a cause of misaligned reads if

it writes unaligned meta-data at the beginning of the devices. Other sources of per-

formance degradation should be searched along the data transfer chain (e.g. in the

controller firmware routines themselves, in the kernel driver). Software RAID was con-

figured with the standard Linux kernel software RAID driver (md) after configuring

the hardware controller to show the SSD drives as simple volumes.

Number of Raid Partition Stripe IOPS Bandwidth Queue
Devices type alignment (sec) unit (KB) (KB/s) Depth

5 Hardware default 256 9765 39060 4
5 Hardware 128 64 8352 33412 4
5 Hardware 640 64 - - 4
5 Hardware 0 64 9150 36604 4
5 Hardware 0 64 14829 59319 32
1 Simple vol 0 n/a 8241 32965 4
1 Simple vol 0 n/a 12702 50810 32
5 Software 0 128 7363 29456 4
5 Software 0 4 8672 34692 4
5 Software 0 1024 7326 29307 4

5 Hardware default 256 11303 45215 4
5 Hardware 0 16 11081 44327 4
5 Software 0 1024 6659 26638 4

elevator=noop

Table A.4: Bandwidth and IOPS for different SSD configurations (4k reads with libaio)
The second half of the table shows results with hardware controller read cache disabled.
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Hardware details

Ubuntu distribution with Kernel:

Linux 2.6.32-22-server #36-Ubuntu SMP x86_64 GNU/Linux.
The disk controller, as seen by the system:

$ sudo lspci -vv | grep -A 29 13:

13:00.0 RAID bus controller: Adaptec AAC-RAID (rev 09)

Subsystem: Sun Microsystems Computer Corp. Device 0286

Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop-

ParErr+ Stepping- SERR+ FastB2B- DisINTx-

Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort-

<TAbort- <MAbort- >SERR- <PERR- INTx-

Latency: 0, Cache Line Size: 256 bytes

Interrupt: pin A routed to IRQ 26

Region 0: Memory at fae00000 (64-bit, non-prefetchable) [size=2M]

Expansion ROM at fad80000 [disabled] [size=512K]

Capabilities: [98] Power Management version 2

Flags: PMEClk- DSI- D1+ D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)

Status: D0 PME-Enable- DSel=0 DScale=0 PME-

Capabilities: [a0] Message Signalled Interrupts: Mask- 64bit+ Queue=0/1 Enable-

Address: 0000000000000000 Data: 0000

Capabilities: [d0] Express (v1) Endpoint, MSI 00

DevCap: MaxPayload 512 bytes, PhantFunc 0, Latency L0s unlimited, L1 <1us

ExtTag- AttnBtn- AttnInd- PwrInd- RBE+ FLReset-

DevCtl: Report errors: Correctable+ Non-Fatal+ Fatal+ Unsupported-

RlxdOrd+ ExtTag- PhantFunc- AuxPwr- NoSnoop+

MaxPayload 128 bytes, MaxReadReq 512 bytes

DevSta: CorrErr+ UncorrErr+ FatalErr- UnsuppReq+ AuxPwr- TransPend-

LnkCap: Port #0, Speed 2.5GT/s, Width x8, ASPM L0s, Latency L0 <128ns, L1 unlimited

ClockPM- Suprise- LLActRep- BwNot-

LnkCtl: ASPM Disabled; RCB 64 bytes Disabled- Retrain- CommClk-

ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-

LnkSta: Speed 2.5GT/s, Width x8, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-

Capabilities: [90] Vital Product Data <?>

Capabilities: [100] Advanced Error Reporting <?>

Kernel driver in use: aacraid

Kernel modules: aacraid

The Kernel driver configuration:

$ sudo modinfo aacraid

filename: /lib/modules/2.6.32-22-server/kernel/drivers/scsi/aacraid/aacraid.ko

version: 1.1-5[2461]-ms

license: GPL

description: Dell PERC2, 2/Si, 3/Si, 3/Di, Adaptec Advanced Raid Products,

HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver

author: Red Hat Inc and Adaptec

srcversion: 1BF4B6F7B8DDD726B5421FC

alias: pci:v00009005d00000288sv*sd*bc*sc*i*

[...]

alias: pci:v00001028d00000001sv00001028sd00000001bc*sc*i*

depends:

vermagic: 2.6.32-22-server SMP mod_unload modversions

The disk controller as seen by the kernel driver:
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----------------------------------------------------------------------

Controller information

----------------------------------------------------------------------

Controller Status : Optimal

Channel description : SAS/SATA

Controller Model : Sun STK RAID INT

Physical Slot : 1

Installed memory : 256 MB

Copyback : Disabled

Background consistency check : Disabled

Automatic Failover : Enabled

Global task priority : High

Stayawake period : Disabled

Spinup limit internal drives : 0

Spinup limit external drives : 0

Defunct disk drive count : 0

Logical devices/Failed/Degraded : 2/0/0

--------------------------------------------------------

Controller Version Information

--------------------------------------------------------

BIOS : 5.2-0 (16732)

Firmware : 5.2-0 (16732)

Driver : 1.1-5 (2461)

Boot Flash : 5.2-0 (16732)

The SSD Drives:

Device #2

Device is a Hard drive

State : Online

Supported : Yes

Transfer Speed : SATA 3.0 Gb/s

Reported Channel,Device(T:L) : 0,10(10:0)

Reported Location : Enclosure 0, Slot 2

Reported ESD(T:L) : 2,0(0:0)

Vendor :

Model : SSDSA2SH032G1SB

Firmware : 845C8855

Size : 30517 MB

Write Cache : Disabled (write-through)

FRU : None

S.M.A.R.T. : No

S.M.A.R.T. warnings : 0

NCQ status : Disabled

Logical device information:

Logical device number 1

Logical device name : ssdArray

RAID level : 0

Status of logical device : Optimal

Size : 151990 MB

Stripe-unit size : 16 KB

Read-cache mode : Disabled

Write-cache mode : Enabled (write-back)

Write-cache setting : Enabled (write-back)

Partitioned : No

Protected by Hot-Spare : No

Bootable : No

Failed stripes : No

Power settings : Disabled
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--------------------------------------------------------

Logical device segment information

--------------------------------------------------------

Segment 0 : Present (0,10)

Segment 1 : Present (0,11)

Segment 2 : Present (0,12)

Segment 3 : Present (0,13)

Segment 4 : Present (0,14)

A.2 Parallel concurrent queries tests

This section provides preliminary results obtained by experimentation with a mixed

approach to leverage concurrency and parallelism for improved query performances.

The basic idea was to take advantage of multiple cores (a feature not available in

current versions of postgreSQL, up to 9.0) using parallel query configuration. Having

an SSD enabled database a configuration is set to host several instances of the DBMS

running concurrently on the same physical server, each hosting a partition of the

database. The standard pgpool-II middleware is used[55], along with a specialized

routine written in C++. The resulting multi-core concurrent disk access would present

an ideal configuration to leverage the high performance random access feature of SSD

technology, used to store meta-data.

Single Module 4 Module 8

Thread 1 7,445 4,185 0,722
Thread 2 — 4,266 1,045
Thread 3 — 5,141 1,152
Thread 4 — 5,295 2,969
Thread 5 — — 3,072
Thread 6 — — 3,181
Thread 7 — — 3,392
Thread 8 — — 3,766

Pg-pool 6,492 19,234 15,300
C++ module 7,445 5,348 3,889

Table A.5: The parallel query execution time reports measured times at each interface
level: Thread N indicates time to get results from each database server instance while
Pg-pool and C++ module refers to the front end (middle-ware) interface. Instances
have been loaded with data according to the year module the server instance (source
[69]).

From results reported in Table A.5, it is evident that single tasks (reported in the

table as Thread N) take advantage of data partitioning and deliver good performance

levels, the pgpool-II tool (version 3.0.1 was used) however, providing support for that

configuration, appears to negate the concurrency benefits adding considerable overhead
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in the results fusion phase. Conversely, a prototype function written in C++ language

that puts unsorted results together seem to confirm the performance gain possibility.

The standard solution however has the advantage to support a vast range of query

types, while the test implementation supported only sorted or unsorted select queries.

Nonetheless, the approach of using parallel queries is confirmed to be a good direction

to follow for increased performances as it allows a second level partitioning of the data

archive that in our case has been done over the time domain.

A.3 A note on mono-dimensional geographic addressing

A first version of the Tile archive meta-data was designed to take advantage of the

Earth Fixed Grid and Tiling concepts to reduce the classical two dimensional geo-

location problem (based on the geographic latitude and longitude coordinate system)

to a mono-dimensional problem (based on linear Grid Tile zone identification).

Since AOI selections are mainly not linear on a 2D map, (in the sense that they do

not consists of an horizontal line), domain subset caused query planner to issue many

(one per crossed Tile line) filter conditions on index scans that provide sub-optimal

queries and results in partitioning complexity. Only bands of latitude could be defined

using two zone identifiers boundary values.

Another factor that reduces performance was inherent to the grid structure and

addressing scheme, that is to define rectangular area wider that a quarter degree in

latitude, an additional zone id range has to be defined and tested for each quarter of

degree. That leads to complex calculations for bitmap OR and AND over indexes.

Listing A.1: Excerpt of query check condition with mono dimensional Tile addressing.
One condition has to be check for each Tile line crossed along Latitude by the AOI

(
( z o n e i d t i l e s BETWEEN 232530 AND 232675 ) OR
( z o n e i d t i l e s BETWEEN 233970 AND 234115 ) OR
( z o n e i d t i l e s BETWEEN 235410 AND 235555 ) OR
( z o n e i d t i l e s BETWEEN 236850 AND 236995 ) OR
( z o n e i d t i l e s BETWEEN 238290 AND 238435 ) OR
( z o n e i d t i l e s BETWEEN 239730 AND 239875 ) OR
( z o n e i d t i l e s BETWEEN 241170 AND 241315 ) OR
( z o n e i d t i l e s BETWEEN 242610 AND 242755 ) OR
( z o n e i d t i l e s BETWEEN 244050 AND 244195 ) OR
( z o n e i d t i l e s BETWEEN 245490 AND 245635 ) OR
( z o n e i d t i l e s BETWEEN 246930 AND 247075 ) OR
( z o n e i d t i l e s BETWEEN 248370 AND 248515 ) OR
( z o n e i d t i l e s BETWEEN 249810 AND 249955 )
)

Listing A.2: Excerpt of query check condition with two-dimensional Tile addressing.
Only four conditions has to be check independent of AOI size
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( ( zone id x BETWEEN 699 AND 753 ) and ( zone id y BETWEEN 155 AND 190))

Testing the check condition has to be done for each record found, leading to notice-

able overhead in case of hundreds of thousands checks. Moreover a two-dimensional

addressing allows a more efficient partitioning of data as it allows partitions to be

defined across both dimensions. Conversely, mono-dimensional addressing leads to

“latitude bands” partitions (defined with a pair of tile zone values).

A.4 The ext4 issue

During stress tests on the Tiles archive storage unit, the ext4 file system presented

erratic behaviour that we were unable to resolve or trace to a possible cause, it is

reported for reference in Listing A.3. The issue occurred during a Tile merge operation

that intensively read, modifies, deletes and rewrites millions of 4 kB files. Note that

only the last digit of seconds in the temporal log reference has been kept and the kernel

log reformatted for clarity.

Listing A.3: The ext4 file system error observed during stress tests

[ 8 . 8 3 4 4 1 7 ]
mptscs ih : i o c0 : attempting task abort ! ( sc=f f f f 8 80213450200 )

[ 8 . 8 3 4 4 2 6 ]
sd 3 : 0 : 0 : 0 : [ sdb ] CDB: Synchronize
Cache ( 1 0 ) : 35 00 00 00 00 00 00 00 00 00

[ 9 . 3 2 8 5 4 7 ]
mptbase : i o c0 : LogInfo (0 x31140000 ) :
Or ig ina to r={PL} , Code={IO Executed } , SubCode (0 x0000 )

[ 9 . 3 2 8 6 2 4 ]
mptscs ih : i o c0 : task abort : SUCCESS ( sc=f f f f 8 80213450200 )

[ 9 . 3 4 8 7 7 5 ]
end reques t : I /O error , dev sdb , s e c t o r 5856032200

[ 9 . 3 4 9 0 5 9 ]
Aborting j ou rna l on dev i c e sdb1−8.

[ 9 . 3 6 1 1 2 1 ]
EXT4−f s ( sdb1 ) : de layed block a l l o c a t i o n f a i l e d
f o r inode 808452097 at l o g i c a l o f f s e t 0 with
max b locks 1 with e r r o r −30

[ 9 . 3 6 1 6 6 9 ]

[ 9 . 3 6 1 6 7 1 ]
This should not happen ! ! Data w i l l be l o s t

[ 9 . 3 6 1 9 1 4 ]
EXT4−f s e r r o r ( dev i ce sdb1 ) in
ex t4 da wr i t epage s : Journal has aborted

[ 9 . 3 6 2 9 2 1 ]
EXT4−f s e r r o r ( dev i ce sdb1 ) :
e x t 4 j o u r n a l s t a r t s b : Detected aborted j ou rna l

[ 9 . 3 6 3 3 9 1 ]
EXT4−f s ( sdb1 ) : Remounting f i l e s y s t em read−only

[ 9 . 3 6 3 7 4 7 ]
EXT4−f s ( sdb1 ) : ex t4 da wr i t epage s :
j b d 2 s t a r t : 347 pages , ino 808452097; e r r −30
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The reported error drove the choice to stop the assessment of the two solutions in

favour of the XFS file system that presented no errors under the same workload on the

same device.

A.5 Data duplication assessment

Moving away from equator, the Earth-fixed grid chosen as the fixed spatial reference

system introduces distortion on the tiles equivalent to that produced by the simple

cylindrical projection. To assess the amount of data duplication introduced ad different

latitudes an empirical approach is used. Selected classified granules are processed

replacing the classification value with an unique value for each pixel, while keeping

the geo-location information unaltered. Over the obtained synthetic dataset, selected

Tiles belonging to 1x1 degree boxes are re-sampled into Tiles. In the resulting Tiles,

approximately four pixel are expected to present the same value inside a tile (re-

sampling is done at least at twice the original resolution): exceeding pixel are counted

as duplicates; zero valued pixels are also counted. Results of an assessment over an

early prototype of the re-sampling system are presented in Table A.6.

LAT LON Duplication % Zeroes

74 -93 78,77 60
70 -90 73,76 83
65 -85 67,69 95
60 -81 61,92 81
55 -78 56,53 13
50 -75 51,31 32

45 -73 46,61 0
24 -80 31,52 0
20 -81 29,62 0
15 -81 27,77 0
9 -82 26,17 0
0 -75 25,15 0
-1 -75 25,19 0

Table A.6: Empirical measure of data duplication across Latitude: LAT and LON are
upper left coordinates of the 1x1 degree box used to count synthetic values. Duplication
is the amount of values above the expected count.

The presence of zeroes at high Latitude indicated a problem in the remapping

software that has been corrected. As expected, the duplication increased toward the

North pole. This test methodology proved useful in the assessment of software imple-

mentation correctness. To ensure correctness of the assessment software it was also

run on the synthetic granule, leading to the expected zero duplication and a single zero
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valued pixel (present by design at a corner of the granule, that is never used as test

area).

The number of Tiles produced by processing a granule varies also in consequence of

the distortion of the sampling grid: At the equator about 1200 are produced, raising

to about 2214 at 40-58N and reaching its maximum around the South Pole (where

the Land/Sea Mask discards fewer Tiles with respect to the northern polar region)

of about 9000 Tiles (e.g. a granule from 2005-01-16 11:56:47 to 2005-01-16 12:02:59

delivers 8929 valid Tiles over the South Pole, from Lat -76 to -84).
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Acronyms

(A)ATSR AATSR and ATSR-2

AaaS Application as a Service

AATSR Advanced Along Track Scanning Radiometer

ACL Access Control List

AJAX Asynchronous JavaScript and XML

AOI Area Of Interest

API Application Programming Interface

ASQuLD Advanced Semantic Query system for Large satellite Database

ATSR Along Track Scanning Radiometer

ATSR-2 Along Track Scanning Radiometer 2

AVNIR-2 Advanced Visible and Near-Infrared Radiometer 2

CARD Classification Application-services and Reference Datasets

CFQ Completely Fair Queuing

CMP Classified Maps Provider

CT Class Tolerance

DAS Direct-Attached Storage

DB Data Base

DBMS Data Base Management System
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152 ACRONYMS

DGG Discrete Global Grid

DGGS Discrete Global Grid System

EDA Exploratory Data Analysis

EFG Earth Fixed Grid

EM Evolution Model

EO Earth Observation

EOLI Earthnet OnLine Interactive

ESRIN European Space Research INstitute

ES Earth Science

ESA European Space Agency

ESM Enhanced SOIL MAPPER

EVAT Expert user Visual Analysis Tool

FTP File Transfer Protocol

GDGG Geodesic Discrete Global Grid

GIS Geographic Information System

GRIO Guaranteed rate I/O system

GSD Ground Sampling Distance

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

KIM Knowledge-based Information Mining

LEAC Land and Ecosystem Accounts

LSM Land/Sea Mask
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LULCC Land Use and Land Cover Change

ME Model Element

MEA Multi-sensor Evolution Analysis

MEEO Meteorological and Environmental Earth Observation

MODIS Moderate Resolution Imaging Spectroradiometer

NDVI Normalized Difference Vegetation Index

NOAA National Oceanic and Atmospheric Administration

OGC Open Geospatial Consortium

PM Particulate Matter

PXH Pixel History graph

RAL Rutherford Appleton Laboratory

RAM Random Access Memory

RS Remote Sensing

RSS Research and Services Support

RTD Research and Technology Development

SM SOIL MAPPER®

SPA Support by Pre-classification to specific Applications

SSD Solid State Drive

SSE Service Support Environment

TAR Tiles Archive

TOA Top Of Atmosphere

TSP Time Since Previous

TT Time Tolerance
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TTS Tiles Time Series

VO Virtual Observatory

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

XML EXtensible Markup Language
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