
Università degli Studi di Ferrara

Dottorato di ricerca in Matematica e Informatica

Ciclo XXIII

Coordinatore: Prof. Luisa Zanghirati

Grid accounting for computing and storage
resources towards standardization

Settore Scienti�co Disciplinare INF/01

Dottorando: Tutore:
Dott. Cristofori Andrea Prof. Luppi Eleonora

Anni 2008/2010

Università degli Studi di Ferrara

Dottorato di ricerca in Matematica e Informatica

Ciclo XXIII

Coordinatore: Prof. Luisa Zanghirati

Grid accounting for computing and storage
resources towards standardization

Settore Scienti�co Disciplinare INF/01

Dottorando: Tutore:
Dott. Cristofori Andrea Prof. Luppi Eleonora

Anni 2008/2010

Contents

Introduction 1

1 The Grid infrastructure 3

1.1 Challenges of modern researches and the Grid 3

1.2 Grid Computing . 4

1.3 Grid architecture . 5

1.4 How to join the Grid . 7

1.5 The EGI-InSPIRE project . 8

1.6 gLite middleware components . 10

1.6.1 User Interface . 12

1.6.2 The Information Service . 13

1.6.3 Workload Management System and Logging & Bookkeeping . 13

1.6.4 Computing Element . 16

1.6.5 Worker Node . 17

1.6.6 Storage Element . 17

2 Accounting of computational resources 19

2.1 Accounting on a distributed environment 19

2.2 DGAS accounting system . 20

2.2.1 Sensors . 21

2.2.2 Home Location Register repository 22

2.2.3 HLR con�gurations . 23

2.2.4 HLRmon . 24

3 DGAS assessment 29

3.1 Accounting complexities . 29

III

IV CONTENTS

3.1.1 cross-check's architecture . 30

3.1.2 cross-check's web interface . 32

3.2 DGAS monitoring . 33

4 Accounting of storage resources 37

4.1 Characteristics of the storage accounting 37

4.2 Existing storage accounting systems 37

4.2.1 GridPP Storage Accounting System 37

4.2.2 HLRmon . 40

4.2.3 SAGE . 41

4.2.4 Amazon S3 . 42

4.3 A proposal for a new system . 43

4.3.1 UR Generation . 47

4.3.2 Distribution . 48

4.3.3 Presentation . 48

4.3.4 Working description . 48

4.3.5 Extension of the Usage Record 50

4.4 Features available on current SEs . 58

4.4.1 dCache . 58

4.4.2 dCache Logging . 58

4.4.3 DPM . 59

4.4.4 Castor . 60

4.4.5 StoRM . 60

5 Storage accounting with DGAS and HLRmon 61

5.1 Storage accounting work�ow with DGAS 61

5.2 Usage Record . 63

5.3 Storage accounting implementation 65

5.4 URs collection . 66

5.5 HLRmon storage interface . 67

6 Tests of DGAS implementation of ActiveMQ 69

6.1 ActiveMQ . 69

6.2 DGAS implementation of ActiveMQ 70

CONTENTS V

6.3 Testbed setup . 71

6.4 Test of ActiveMQ implementation . 72

6.4.1 CE - HLR ActiveMQ test . 73

6.4.2 Communication test with a user de�ned ActiveMQ topic . . . 73

6.4.3 Integrity check . 74

6.4.4 Service reliability . 74

6.4.5 Throughput evaluation . 75

6.5 Test's result analysis . 76

Conclusions 79

Glossary 81

Index of the tables 87

Index of the �gures 89

A cross-check scripts 91

A.1 Generic scripts for data retrieval . 91

A.2 Generic scripts data insert in the database 92

A.3 Con�guration �les . 93

A.4 Generic database populate scripts . 93

A.5 Generic database update scripts . 96

A.6 Site speci�c database populate scripts 99

A.7 Site speci�c database update scripts 99

A.8 CE scripts . 100

A.9 cross-check populate tables . 104

A.10 cross-check update tables . 105

B Scripts for Storage Accounting 109

B.1 DGAS Send Record client . 109

B.2 voStorageAccounting table . 109

B.3 retrieve_info_sys_new.py . 110

B.4 push_sa-ur.sh . 112

VI CONTENTS

C ActiveMQ test scripts 115

C.1 Compilation and installation . 115

C.1.1 APR . 115

C.1.2 APR-util . 115

C.1.3 ACTIVEMQ . 116

C.2 CE con�gurations . 116

C.3 HLR con�gurations . 116

C.4 Job submission script . 117

C.5 JDL for the test job . 117

D Publications 119

Bibliography 127

Introduction

In the last years, we have seen a growing interest of the scienti�c community �rst and

commercial vendors then, in new technologies like Grid and Cloud computing. The

�rst in particular, was born to meet the enormous computational requests mostly

coming from physic experiments, especially Large Hadron Collider's (LHC) experi-

ments at Conseil Européen pour la Recherche Nucléaire (European Laboratory for

Particle Physics) (CERN) in Geneva. Other scienti�c disciplines that are also ben-

e�ting from those technologies are biology, astronomy, earth sciences, life sciences,

etc. Grid systems allow the sharing of heterogeneous computational and storage

resources between di�erent geographically distributed institutes, agencies or univer-

sities. For this purpose technologies have been developed to allow communication,

authentication, storing and processing of the required software and scienti�c data.

This allows di�erent scienti�c communities the access to computational resources

that a single institute could not host for logistical and cost reasons. Grid systems

were not the only answer to this growing need of resources of di�erent communities.

At the same time, in the last years, we have seen the a�rmation of the so called

Cloud Computing. Cloud computing is a model for enabling convenient, on-demand

network access to a shared pool of con�gurable computing resources (e.g.: networks,

servers, storage, applications, and services) that can be rapidly provisioned and re-

leased with minimal management e�ort or service provider interaction[1]. The use of

both computational paradigms and the utilization of storage resources, leverage on

di�erent authentication and authorization tools. The utilization of those technolo-

gies requires systems for the accounting of the consumed resources. Those systems

are built on the top of the infrastructure and they collect all the needed data related

to the users, groups and resources utilized. This information is then collected in

central repositories where they can be analyzed and aggregated. Open Grid Forum

(OGF) is the international organism that works to develop standards in the Grid

1

2 INTRODUCTION

environment. Usage Record - Working Group (UR-WG) is a group, born within

OGF aiming at standardizing the Usage Record (UR) structure and publication for

di�erent kinds of resources. Up to now, the emphasis has been on the accounting for

computational resources. With time it came out the need to expand those concepts

to other aspects and especially to a de�nition and implementation of a standard UR

for storage accounting. Several extensions to the UR de�nition are proposed in this

thesis and the proposed developments in this �eld are described. The Distributed

Grid Accounting System (DGAS) has been chosen, among other tools available, as

the accounting system for the Italian Grid and is also adopted in other countries

such as Greece and Germany. Together with HLRmon, it o�ers a complete account-

ing system and it is the tool that has been used during the writing of the thesis at

INFN-CNAF.

In Chapter 1, I will focus the attention on the paradigm of distributed comput-

ing and the Grid infrastructure will be introduced with particular emphasis on the

gLite middleware and the EGI-InSPIRE project. Following this description, Chap-

ter 2, will discuss some Grid accounting systems for computational resources with

particular stress for DGAS. In Chapter 3, the cross-check monitoring system used to

check the correctness of the gathered data at the INFN-CNAF's Tier1 is presented.

The BASH scripts and SQL code that are part of this tool are available on Appendix

A. Another important aspect on accounting is the accounting for storage resources

that will be discussed in Chapter 4. In the same chapter some extensions to the

current UR de�nition will be proposed. Using the de�nitions introduced in Chapter

4, Chapter 5 will describe a system developed during the last part of the thesis that

implements those UR extensions. Appendix B will collect the scripts used for this

purpose. Another important aspect is the need for the standardization of the com-

munication protocol of the storage accounting tools. Most of those tools on Grid are

adopting ActiveMQ for the exchange of URs. Chapter 6 describes the implementa-

tion of this new messaging system in DGAS and the tests that have been made to

evaluate the new functionality. Appendix C collects the scripts and con�gurations

used during those tests. The last appendix, Appendix D, collects the publications in

which a contribution has been given and where some of the developments and work

discussed on the thesis are shown.

Chapter 1

The Grid infrastructure

�If you think your users are idiots, only idiots will use it.�

Linus Torvalds

1.1 Challenges of modern researches and the Grid

Since the beginning of science and the scienti�c method, researchers needed tools to

make predictions and to verify the results of their experiments. Before the invention

of electronic computers, most calculation, where made manually with the help of

tables or, more recently, with analog calculators. The importance of those tools is

evident as they allow an increasing number of calculations. Researches in physics,

and the related experiments, require huge amount of computational power. For

this reason, since the invention of computers, they have been massively used to

process the simulations and the data coming from the experiments. Some examples

are those underway at CERN. A single institute, agency or university usually do

not have the money, the manpower and structures to host the necessary resources

needed. The idea was then to use the available and heterogeneous resources spread

all around the world to share the computational power, the storage and the network

interconnection through common interfaces and standards creating a Grid that could

optimize their utilization and achieve results that could not have been reached using

classical methods. A common example is the comparison with the electrical grid

where users and providers might be located very far apart from each other. The

user just requires to connect an electronic apparatus to the plug and the electricity,

provided that the bill has been paid, will �ow and the apparatus will work. In a

3

4 CHAPTER 1. THE GRID INFRASTRUCTURE

similar way, in the Grid, the user requires certain resources and, if he meets the

required conditions, his software will run in some facility connected to the Grid

or e.g. his �le will be stored somewhere. In the Grid, the access is not direct to

other sites but it requires some sort of authentication and authorization so that

the site can decide which users, belonging to certain groups, can gain access to

their resources. To solve all those problems, and give the researchers the tools to

exploit the distributed resources, several projects were born. Some of the main aims

is to provide the middleware requested to create an infrastructure suitable for the

operations described and at the same time provide the necessary support for the

communities. Probably, the biggest experience of this kind in Europe has been the

Enabling Grids for E-sciencE (EGEE) project which o�cially ended his third phase

on April 30, 2010. It started back in 2004 taking on from European DataGrid (EDG)

(2002-2004), and helped the adoption and the spread of knowledge on the Grid

through di�erent �eld of research. At the end of the project, it 'represented a world-

wide infrastructure of approximately 250.000 CPU cores, collaboratively hosted by

more than 300 centers around the world with around 13 million jobs executed on the

EGEE Grid each month'[2]. At the end of this project, most of the experience and

the knowledge learned during its life span will be carried on by the European Grid

Initiative - Integrated Sustainable Pan-European Infrastructure for Researchers in

Europe (EGI-InSPIRE) project which will coordinate the European National Grid

Initiatives (NGIs) and allow a sustainable Grid infrastructure in Europe. Thanks to

those projects, the communities that are utilizing the Grid have grown constantly.

The initial users have grown and are now accounting, other than physics, groups in

biology, earth sciences, climatology and many more; making it a rather �exible tool

that can be used to tackle many challenges of today research. The next step is to

allow the use of those technology to the industry and not only for the research. To

reach this fundamental goal, the Grid should became even more reliable and provide

all the tools needed for resources accounting.

1.2 Grid Computing

The Grid, is composed of several components: hardware, software and humans.

Before going in deeper detail to explain some of those components and the interaction

1.3. GRID ARCHITECTURE 5

between them, we will give some de�nition given by di�erent authors:

• �the ability, using a set of open standards and protocols, to gain access to

applications and data, processing power, storage capacity and a vast array of

other computing resources over the Internet. A grid is a type of parallel and

distributed system that enables the sharing, selection, and aggregation of re-

sources distributed across `multiple' administrative domains based on their (re-

sources) availability, capacity, performance, cost and users' quality-of-service

requirements�[3].

• �Computing resources are not administered centrally, open standards are used

and non-trivial quality of service is achieved�[4]. According to Ian Foster's

lists of primary attributes for a Grid.

• �grid computing is a service for sharing computer power and data storage

capacity over the Internet�[5]

As seen from those de�nition we can say that a Grid infrastructure is a mixture

of the three element mentioned. They can inter operate adopting common standards

and agreements between the di�erent groups and researchers which are in di�erent

places and countries. One of those project is EGEE with all the three phases if went

trough and now EGI-InSPIRE. Similar projects have been started in Europe and in

the rest of the world. Following are some examples:

• Enabling Desktop Grids for e-Science (EDGeS): is a European project with the

aim of creating an integrated Grid infrastructure that seamlessly integrates a

variety of Desktop Grids with EGEE type of service Grids[6].

• Uniform Interface to Computing Resources (UNICORE): o�ers a ready-to-

run Grid system including client and server software. UNICORE makes dis-

tributed computing and data resources available in a seamless and secure way

in intranets and the internet[7].

1.3 Grid architecture

Grid components, hardware and software, can be categorized in four layers. Starting

from the lower, where we can �nd the hardware necessary for the infrastructure, up

6 CHAPTER 1. THE GRID INFRASTRUCTURE

to the top layer that provides basic services and user applications. Figure 1.1 shows

this classi�cation which components are:

Figure 1.1: Layers classi�cation on Grid

• Network layer: this layer ensure the connectivity among all the Grid com-

ponents. It includes all the components that are useful to this purpose like

cables, routers, switches, etc.

• Resource layer: it includes all the hardware and software, like computers,

storage systems, operating systems, all kind of sensors that can be connected

together to collect data. Among them we can �nd detectors for a physic

experiment, sensors to register earthquakes or parameters of the air such,

for example, humidity, temperature, images recorded by a telescope or any

medical imagining instrument, etc. All the hardware that can record any kind

of information useful to further study a certain aspect of science, medicine,

economic or other can be classi�ed in this layer.

• Middleware layer: in this part of the stack we can classify the software that

gives the access to the elements in the layer below. The software developed

within many of the previously mentioned projects can be classi�ed here. It

1.4. HOW TO JOIN THE GRID 7

may include, services for authentication, authorization, job submission, job

execution, �le retrieval, etc. It provides the necessary tools, for the Application

layer to exploit the lower levels.

• Application layer: this is the top layer which includes applications written

by scientists, researchers and other users of the Grid. Those applications can

be written speci�cally for the use into the Grid or can be an adaptation of

previously written software. In this part of the stack we can also classify web

portals that give access to information on the utilized resources, accounting

information and, more in general, all the information that can be of some

interest for the user.

As we have seen both the Middleware layer and the Application layer provide

software. The main di�erence between them is that the latter is accessed directly by

the �nal users while the former should be invisible to them. The Middleware layer

is fundamental for the upper layer as it provides all the necessary services.

1.4 How to join the Grid

Providing the hardware layer and software is the �rst necessary step necessary to

join a Grid infrastructure. After that, a series of other requirements must be met:

• No centralized control on the resources: users should be able to access

heterogeneous resources, from di�erent institutes, universities, countries, etc.

The complexity and the details of the infrastructure should be transparent to

the user. The goal is to have the user request some type of resource, the job

requested is sent to this resource independently on his location and the user

pays proportionally to the usage.

• Standards protocols and interfaces are used: standard protocols and

interfaces are necessary to communicates between di�erent systems that might

be installed in the same institute or in di�erent places, countries, etc. A user

should be able to use all the possible resources using a standard interface and

common protocols. Without those standard the result is to have separate Grids

that can not intercommunicate with each other. The aim of projects such as

8 CHAPTER 1. THE GRID INFRASTRUCTURE

Standards and Interoperability for eInfrastructure Implementation Initiative

(SIENA) or the OGF forum is the de�nition of such standards.

• Quality of service: a minimal quality of service is required to be allowed

to join the Grid. A site should sign a Memorandum of Understanding (MoU)

where a set of minimum requirements is de�ned. These requirement should

be met to guarantee a minimum quality of service. An example could be

the percent of time the site has been available and its reliability. If those

requirements are not met for a de�ned amount of time, appropriate actions

can be undertaken. E.g.: the site could be suspended and it would need to

pass all the certi�cation tests to became again member of the Grid.

1.5 The EGI-InSPIRE project

The European Grid Initiative or EGI-InSPIRE represents an e�ort to establish a

sustainable Grid infrastructure in Europe. Driven by the needs and requirements

of the research community, it is expected to enable the next leap in research infras-

tructures, thereby supporting collaborative scienti�c discoveries in the European

Research Area[8]. It represent the follow up and, at the same time the reorganiza-

tion of the knowledge acquired during the last six years with the EGEE projects.

In Figure 1.2 are shown the stages in the organization of this new entity.

Figure 1.2: EGI-InSPIRE timeline

From the beginning of 2010 EGI-InSPIRE has started its work of organization

and coordination of the NGIs that, at this moment, are 42[9]. In Figure 1.3, a

schema with the relationships present between EGI Global Service and the NGIs

Opertaion Centre providing local services is shown.

1.5. THE EGI-INSPIRE PROJECT 9

Figure 1.3: National Grid Initiatives

Application domain # VOs # users

Computer Science and Mathematics 8 22
Multidisciplinary VOs 33 1941
Astronomy, Astrophysics and Astro-
Particle Physics

22 330

Life Sciences 16 709
Computational Chemistry 5 476
Earth Sciences 13 314
Fusion 2 13
High-Energy Physics 45 5732
Infrastructure 31 2042
Others 40 2105

TOTAL 215 13684

Table 1.1: Number of active VOs and users for each VO[10]

10 CHAPTER 1. THE GRID INFRASTRUCTURE

At local level, NGIs are required to perform some task like authentication, au-

thorization, setup of Virtual Organizations (VOs), monitoring of the resources and

the jobs submitted and processed, accounting of the user of a particular NGI, sched-

uled update of the software and maintaining a continuous service of the Grid. Those

operations are necessary to maintain proper interaction with EGI-InSPIRE and the

interoperability with the other NGIs. If we check the numbers involved it became

clear why this kind of organization is necessary. In Table 1.1 is shown the number

of VOs and users divided for each �eld of research. Along with the increase on

the number of VOs and users, Figure 1.4 shows the number of jobs executed from

the beginning of 2004 when EGEE started. It shows a constant increase in the

utilization of the Grid resources during the last 6 years in the 56 countries[11] that

participate in the project for a total of about 350 sites.

Figure 1.4: Number of job in the EGEE and EGI-InSPIRE[12]

1.6 gLite middleware components

The middleware of a Grid system should give, to the end users, a homogeneous view

of the di�erent components that are part of it. It is placed on top of the operat-

ing system and below the user applications. Associated with it are services with

speci�c capabilities as de�ned in the EGI-InSPIRE Uni�ed Middleware Roadmap

1.6. GLITE MIDDLEWARE COMPONENTS 11

(UMD)[13]. It is possible to have di�erent implementations of the same service pro-

vided that there is a standard interface to them. Those di�erent implementation

are usually chosen by the site for some speci�c characteristics that are needed or

preferred in that particular site. The standardization of the interfaces ensure that,

from the point of view of the users, there is no di�erence in using one implemen-

tation or another. In Figure 1.5 is shown a schema of the main components of the

middleware.

Figure 1.5: gLite architecture

The authentication and authorization components are only some of the elements

of the infrastructure but they are central for the correct identi�cation of the user

requesting the Grid resources and they grant or deny the access based on the site

policy. The authorization on EGI-InSPIRE is based on x.509 certi�cates which is an

International Organization for Standardization (ISO) standard. For the Italian NGI,

those certi�cates are distributed by the INFN Certi�cation Authority (INFN CA)

after a procedure that requires the personal identi�cation of the person requiring it.

User credentials are divided in two parts. One is the public certi�cate that is signed

by the CA and the other is the private key of the users. Upon authentication the user

must obtain an authorization to execute the required operations. There are di�erent

levels of authorization, called roles. A user can have administrative privileges, for

example, or only user privileges. The authorization to access the resources at VO

12 CHAPTER 1. THE GRID INFRASTRUCTURE

level, providing support to group membership and roles, is demanded to the Virtual

Organization Membership Service (VOMS) service[14]. After being authenticated

and authorized, the user can utilize all the resources available to its VO and role.

Depending on internal policies, founding or, e.g. �elds of interest, each site can

choose the VOs to support. If a site choose to support a certain VO it should

consequently support all the roles associated to this VO. The next sections will

describe the key components of Grid. The focus will be on the gLite middleware

because it is the one used in the Italian Grid.

1.6.1 User Interface

The User Interface (UI) is the entry point to the Grid. It is usually a standard

Unix system in which a set of client tools and Application Programming Interface

(API) are installed. The user can log in with a standard login and password. After

successfully accessing the system, the tools and API are available. Some other kind

of UI exists like the GENIUS Portal shown in Figure 1.6[15]. It is a web portal

studied to make the process of accessing the Grid resources an easier task.

Figure 1.6: GENIUS Portal

The authentication process, in both cases is based on x.509 certi�cates that

1.6. GLITE MIDDLEWARE COMPONENTS 13

are either copied on the personal account of the UI utilized or installed in the web

browser. When a user submit a request, he or she is mapped to a local user, chosen

from a local user pool determined by the VO membership and role. Thanks to this

mechanism the local resource do not need to have a list of all the possible users that

can have access but they only need to keep a limited pool of user for each VO and

role.

1.6.2 The Information Service

A series of modules collect information on the di�erent resources provided by the

di�erent sites. On the base of the information collected a set of di�erent action can

be taken. For example some of the information provided are the available CPUs,

their type or architecture, software installed, etc. Based on those information the

Workload Management System (WMS) can decide to send a job to a site instead

of another. All data is published by a Berkeley Database Information Index (BDII)

that consists of a Lightweight Directory Access Protocol (LDAP) database which

is updated by an external process. The update process obtains LDAP Data In-

terchange Format (LDIF) fresh information from a number of sources and merges

them. It then compares this to the contents of the database and creates an LDIF

�le of the di�erences. This is then used to update the database[16]. A schema of

this process is shown on Figure 1.7.

The information present in the BDII are published using the Grid Laboratory for

a Uniform Environment (GLUE) schema de�ned by the corresponding GLUE-WG

(GLUE Working Group) which is part of OGF. Moreover the BDII can be organized

in a hierarchy, Figure 1.8, in which the top level BDIIs are con�gured to read from

a set of sites giving, as result, a view of the overall resources available to those

sites[17].

1.6.3 Workload Management System and Logging & Book-

keeping

The WMS is the component that allows users to submit jobs and performs all tasks

required to execute them without exposing the complexity of the Grid[16]. The user

provides a description of the job and the requirements in term of resources, software

and others attributes by de�ning a Job Description Language (JDL) �le for that

14 CHAPTER 1. THE GRID INFRASTRUCTURE

Figure 1.7: BDII update schema

Figure 1.8: BDII hierarchy schema

1.6. GLITE MIDDLEWARE COMPONENTS 15

particular job. JDL is the scripting language used to de�ne the requirements, input

and output, resources needed and other details. The WMS decides which resource

is more suitable to execute the job submitted taking decisions based on the JDL �le

submitted. Once the job reaches the WMS it goes trough a series of intermediate

steps to prepare its execution, match it to the appropriate resource, send it for

execution and check its status. After the submission, the WMS, keeps tracks of the

progress. Depending on the con�guration given by the JDL written by the user, it

might resubmit the job in case of errors. Figure 1.9 shows a schema of the di�erent

job statuses and the internal components of the WMS. The interactions between

the WMS and the other Grid components are also shown. The WMS is in fact a

fundamental part of this work�ow, it is the glue between the UI, the Information

System (IS) and the Computing Elements (CEs).

Figure 1.9: WMS job �ow

The Logging & Bookkeeping (LB) is part of the WMS but, in the latest software

distribution, a dedicated machine is recommended. It is essentially a database that

contains all the details available on each job submitted to the WMS, the changes in

their status, errors, resubmissions, etc. A user with the right privileges, using the

16 CHAPTER 1. THE GRID INFRASTRUCTURE

unique job ID that is generated when the job is submitted, can query the LB to

check the status of a given job. On the other hand, the output �les resulting from

the job are stored on the WMS and are not removed till the user clear the job or a

de�ned amount of time, typically two weeks, has passed. In the latest releases, the

LB reside, for convenience, in a di�erent machine. Because of the di�erent utilization

of resources, several WMS can point to the same LB to store their logging data.

1.6.4 Computing Element

The CE is the service that interfaces a Local Resource Management System (LRMS)

like Load Sharing Facility (LSF), Portable Batch System (PBS) or Sun Grid Engine

(SGE), to the rest of the Grid. The available implementations are LHC Computing

Grid CE (lcgCE), based on the Globus Toolkit, an open source software toolkit used

for building Grids that is being developed by the Globus Alliance and many others

all over the world[18], or the Computing Resource Execution And Management

(CREAM CE). The former is the old implementation and is being replaced by the

CREAM CE which is a simple, lightweight service for job management[19]. Jobs

can be sent to the CREAM CE directly or by using the WMS through the Interface

to CREAM Environment (ICE). When using the WMS two possible con�guration

are possible:

• pull mode: the CE requires new jobs to the WMS when it has free resources.

While requesting those new jobs it specify the availability of the free resources

to allow the WMS to choose the right job, if any available. There are two

strategy that can be used when the CE is con�gured in pull mode:

� a job is requested to a WMS, if none satisfy the request another WMS is

contacted;

� a job is requested to a series of WMS and the �rst job sent is accepted

while the others are discarded.

Which choice is the best depends on the particular situation and some test

should be performed for di�erent experiment, workload, etc.

• push mode: in this con�guration the CE waits for jobs coming from an

external source like the WMS or directly from the user.

1.6. GLITE MIDDLEWARE COMPONENTS 17

1.6.5 Worker Node

When the job has been received by the CE it is scheduled on the LRMS. It waits

there for the proper resources, based on the queue, user privileges, etc to be free and

then it is sent to a Worker Node (WN). The WN is the machine that executes the

process requested. It is essentially, a UI that includes commands to manipulate the

jobs and has access to a software area where are installed the programs required.

The job is executed by assigning an appropriate local user to the Grid user.

1.6.6 Storage Element

The Storage Element (SE), using standard interfaces, provides access to the storage

resources deployed in a certain site. Those resources can be heterogeneous, e.g.: disk

servers, Storage Area Network (SAN), tape server, etc. The implementations avail-

able in gLite are Storage Resource Manager (StoRM), dCache or Disk Pool Manager

(DPM). They all implement the Storage Resource Manager (SRM) interface to inter-

act with the underlying storage and, at the same time, keeping the implementation

details hided to the user. They also o�er standard transfer mechanisms for remote

access. Like for all other services, the access to the SE depends on the user creden-

tials. In this way the system can allow or deny access and manage the space with

quota, space reservation and pinning. Because of the intrinsic distributed nature of

the Grid, one problem is to uniquely identify a �le. Moreover, it is important do

identify replicas of the same �le or the same �le present in di�erent location and

with di�erent names.

Figure 1.10: File name in gLite and their relation

18 CHAPTER 1. THE GRID INFRASTRUCTURE

In Figure 1.10 are shown the names and their relationships that a �le can as-

sume. The Globally Unique IDenti�er (GUID) and the Logical File Name (LFN)

are independent from the location of the �le. A �le can be unambiguously identi-

�ed by its GUID which is assigned the �rst time the �le is registered in the Grid.

It is based on the Universally Unique IDenti�er (UUID) standard to guarantee its

uniqueness. The UUID use a combination of a Media Access Control (MAC) address

and a timestamp to ensure that all UUIDs are distinct[16]. To access the desired

�le the user utilize the LFN that are de�ned by the user. Local File Catalog (LFC)

servers are databases containing a list of correspondences between LFN, GUID and

Storage URL (SURL). When accessing a SE, the standard protocols use the Trans-

port URL (TURL) address, given upon request by the SE itself, to write or retrieve

a physical replica. The service that manage the transfers is File Transfer Service

(FTS). It interacts with the SRM source and destination using the gridFTP proto-

col. This allows the transfer of huge amount of data using multiple streams, queue

of transfers, detection of errors and rollback.

Chapter 2

Accounting of computational

resources

�If you want an accounting of your worth, count your friends.�

Merry Brown, Author

2.1 Accounting on a distributed environment

Grid accounting encompasses the production and management of large amount of

accounting data, their reliable transfer to central repositories as well as end users

data access to it. The amount of running jobs on nowadays Grids and the multi

Petabyte data volume already deployed, require an accounting service that collects

di�erent data usage information to allow the presentation of the accounting data

to the experiments, the site and the user. Accounting systems must be capable

of showing the accounting information from di�erent perspectives. In general, the

systems developed up to now build up from existing infrastructure. An accounting

system can be de�ned as one or more applications that allows the storing accounting

information related to resources and should be able to classify them according to

di�erent classes (users, groups, VOs, etc.). To complete the set of applications

we also need instruments to retrieve those information for analysis and for further

billing of the used resources. The steps necessary for this process are the following:

• metering : a set of necessary metering values should be identi�ed for the ac-

counting system, which de�nes what should be measured and the relevant

information;

19

20CHAPTER 2. ACCOUNTING OF COMPUTATIONAL RESOURCES

• distribution and collection: the information can be locally collected and when

necessary they should be sent to one or more distributed accounting reposito-

ries to be stored, e.g. in a database, for further analysis;

• usage analysis : the accounting information can then be analyzed, reports can

be produced and Billing/Pricing can be applied.

Di�erent accounting systems use di�erent methods to collect, distribute and

analyze the information. In general, they all rely on sensors installed on the resource

to be accounted. A record containing the relevant information related to the resource

to be accounted is produced and collected in a repository for further analysis. A web

page or higher level tools might exist to make the last operation easier. The most

important accounting systems, developed on the framework of the European projects

mentioned are SweGrid Accounting System[20] (SGAS), Accounting Processor for

Event Logs[21] (APEL) and DGAS. Among them I have developed my work around

DGAS because of its �exibility and because it is the tool used on the Italian Grid

which counts more than 50 sites.

2.2 DGAS accounting system

DGAS is an accounting system developed for the accounting of computational re-

sources. It has been adopted as the accounting tool for the Italian Grid and thus

deployed in every Italian site. It is worth mentioning that some other countries

and projects are using DGAS, e.g. sites in Greece and Germany and projects

such WeNMR, whose main objective is to provide the European biomolecular Nu-

clear Magnetic Resonance (NMR) user community with a platform integrating and

streamlining the computational approaches necessary for biomolecular NMR data

analysis (e-NMR)[22]. DGAS is composed of:

• specialized sensors that are installed on the computing resource;

• a server that stores the records collected by the sensors.

As we will see in more detail in the following sections, DGAS's design is �exible

and allows a hierarchical structure for the database repositories, where the informa-

tion are collected at di�erent levels in servers called HLR. The records can be stored

2.2. DGAS ACCOUNTING SYSTEM 21

at a site HLR and then forwarded to a national or regional HLR. Finally data can

be accessed through di�erent interfaces as shown in Figure 2.1. Since DGAS has

been designed for a distributed system, there is no need for a central repository and

a �exible con�guration can be made to suit all common scenarios.

Figure 2.1: DGAS layers[23]

Sensors and HLR installation is possible with an automated procedure or manu-

ally. YAIM Ain't an Installation Manager1 (YAIM) is used for the automated pro-

cedure. This tool allows, for each Grid service (included DGAS), a speci�c pro�le

that make the installation and con�guration an automated process. Before starting

the installation, a customization of the pro�les is required; as a result, all the con-

�guration �les will be generated with the proper variables set. Manual installation

uses RPM Package Manager (RPM) packages. Using this method, the con�guration

�les must be manually edited after installation.

2.2.1 Sensors

Each resource needs specialized sensors. For computational resources, speci�c sen-

sors for LSF, PBS and SGE batch systems and for both the CREAM CE and lcgCE

have been developed. Figure 2.2 shows a schema of this process.

1YAIM is a tool developed during EGEE project that provides a simple installation and con-
�guration method that can be used to set up a simple Grid site but can be easily adapted and
extended to meet the need of larger sites[24]

22CHAPTER 2. ACCOUNTING OF COMPUTATIONAL RESOURCES

Figure 2.2: DGAS sensor schema for a CE[25]

The information necessary to build the UR are collected from the CE itself. The

sensor consists of two components:

• urcollector : regularly reads both the grid accounting and the speci�c LRMS

logs to build an accounting record for each corresponding job. Each record is

saved on the CE as an eXtensible Markup Language (XML) �le in a con�g-

urable location. The process of reading and generating URs is customizable

and it is possible to reprocess old log if necessary.

• pushd : this process checks the location where the urcollector stores the URs.

When it �nds a record, it tries to send it to the con�gured HLR. In case of

failure it retries a con�gurable number of times before moving the UR to a

speci�c error directory containing unsent records. This allows to reprocess

URs by simply moving back to the previous location.

2.2.2 Home Location Register repository

The Home Location Register (HLR) consists of two main parts:

• hlrd daemon: this process runs on the HLR and listens for messages coming

from the pushd daemon on the CE. The CE sending the messages can be on

2.2. DGAS ACCOUNTING SYSTEM 23

the same site of the HLR or somewhere else. After being authenticated and

authorized it is in fact possible, for small Grid installations or for a speci�c

VO, to send their URs to a multi site or VO speci�c HLR.

• database: the database stores all the UR received from di�erent sources. Sev-

eral tables have been de�ned, among which the table that contains the list

of resources allowed to account to the speci�c HLR, list of users allowed to

query the database through the HLR interface and the table that contains the

accounting data. This last table is used by higher level tools like HLRmon, a

web interface that allows the visualization and aggregation of the accounting

data, and by authenticated and authorized users, to visualize the accounting

data present in the HLR database.

2.2.3 HLR con�gurations

Due to the �exibility of DGAS architecture, several con�gurations of the HLR are

possible. Some scenarios will be described in this section. In Figure 2.3 a �rst

scenario where each site has its own HLR collecting accounting data from local CEs

and SEs is shown.

Figure 2.3: DGAS sensor example schema 1[26]

A second level HLR collects all data from �rst level HLRs. HLRmon is inter-

faced to the second level HLR. From the second level HLR it is also possible to

send the collected URs to an external repository. For the EGEE and the subsequent

24CHAPTER 2. ACCOUNTING OF COMPUTATIONAL RESOURCES

EGI-InSPIRE projects, the central European repository is hosted at Centro de Su-

percomputación de Galicia (CESGA). A second di�erent scenario is shown on Figure

2.4. In this case HLRs collect accounting data for all the �rst level HLRs within a

NGI in order to have fault tolerance. Data collected from both those second level

HLRs can be then queried by HLRmon. Another second level HLR, that collects

only the records belonging to a subset of VOs, could also be con�gured and it can

get data from di�erent HLRs belonging to di�erent NGIs.

Figure 2.4: DGAS sensor example schema 2[26]

Figure 2.5 shows an extension of the previous scenario where multiple second level

HLRs collect di�erent subset of records belonging to di�erent VOs. This con�gu-

ration is very useful where a VO wants to keep control over the accounting records

belonging to itself. These scenarios have been presented in the poster �Implementing

a National grid accounting infrastructure with DGAS � during the EGEE'09 Confer-

ence held in Barcellona from the 21st to the 25th of September 2010[26].

2.2.4 HLRmon

HLRmon is the tool used to produce reports for the accounting data collected by

DGAS. It can produce di�erent aggregates of data with di�erent level of detail.

The architecture of the system is shown in Figure 2.6. HLRmon server retrieves the

accounting data from the HLR by means of the DGAS client. The client contacts the

2.2. DGAS ACCOUNTING SYSTEM 25

Figure 2.5: DGAS sensor example schema 3[26]

HLR and can be used for advanced queries, such as to retrieve lists of transactions

as well as aggregated information on users, resources, groups, roles and VOs. The

authorization to access the accounting data is based on a valid x.509 certi�cate that

is checked by the HLR server every time a query is submitted. Grid users have access

to all aggregate statistics and can retrieve information related to jobs submitted

using their own x.509 certi�cate. Only users mapped as HLR administrators can

access all the usage records using this DGAS client.

Figure 2.6: HLRmon Architecture[27]

The result of the queries made by HLRmon is saved in a local MySQL[28]

26CHAPTER 2. ACCOUNTING OF COMPUTATIONAL RESOURCES

database after perfoming some aggregation. The process also creates some static

images to allow a faster response of the server. In Figure 2.7 we can observe a snap-

shot of the monthly statistics for the computational resources of the main Italian

Grid site, the INFN-T1. Pages with the details of the per user accounting are acces-

sible only after a registration and authorization procedure available on the website.

The access is based on a x.509 personal certi�cate both at web server and applica-

tion level. The authorization process for the di�erent roles and access to data from

di�erent sites and VOs is done by the administrator of the HLRmon service.

In Figure 2.7 we can see:

• on the left there is a selection form where we can select sites, VOs and the

period of time we want to visualize;

• on the central part of the page, a series of pie charts and line graphs with the

details of the selected accounting data is shown;

• on the top of the page, just over the graphs, it is possible to choose which kind

of information we want to display (e.g.: jobs, CPUtime, Wallclock time, etc.);

• on the top right side of the page a tab to switch the visualization to a tabular

view is also present.

Dedicated pages for the visualization of a summary of sites utilization and the

storage accounting for the LHC experiments are available. The page dedicated to

the storage accounting will be discussed in more detail in Chapter 4.

2.2. DGAS ACCOUNTING SYSTEM 27

Figure 2.7: HLRmon computational resources[29]

Chapter 3

DGAS assessment

�Don't worry if it doesn't work right. If everything did, you'd be out of a job.�

Mosher's Law of Software Engineering

3.1 Accounting complexities

As we saw in the previous sections, accounting systems are, usually, composed of

di�erent parts that must interact with each other. Accounting information must

be produced after the analysis of several log �les and then sent to a �rst level

HLR to be processed. The validation of the collected data is therefore necessary

because all those steps must be working properly in order to have correct accounting

information. When an anomaly is detected, it is possible to track it down following

the accounting path and correct it. However, it is often very di�cult to spot e.g.:

a miscon�guration thus some other method must be devised. The INFN-CNAF's

Tier1 uses a tool, internally developed, called Redeye[30]. Among other things it

provides information on the use of the computational resources of the INFN-T1 and

INFN-CNAF-LHCB sites. Both systems, DGAS and Redeye, analyze the log �les

generated by the batch system that in this particular case is LSF and the grid system

which save important accounting information on the CEs' log �les. Because of the

presence of those two accounting systems on the same site it is possible to compare

the results shown by both. This can highlight possible discrepancies between them

caused by problems in one of the two tools or changes in the con�guration of the

accounted resource, e.g.: a new queue has been added to the batch system but not

in DGAS. For this purpose a dedicated tool called cross-check that queries those two

29

30 CHAPTER 3. DGAS ASSESSMENT

systems and compare them with a third one that, with a simple Perl script, extracts

the same kind of information from the batch log �les has been developed during

the thesis work. After the validation of the accounting data, the tool is helping

in keeping the accounting status of INFN-T1 and INFN-CNAF-LHCB sites under

constant control and to detect possible problems or changes in the con�guration of

the system that could a�ect the accounting itself. For this reason, it is still used

to regularly check the two installation that are in place. Those installations are

independent from each other allowing a separate con�guration and personalization.

3.1.1 cross-check's architecture

cross-check is composed of three parts:

• scripts: a series of scripts queries Redeye and HLR site database and populate

the cross-check local database. A third source of information is also added,

resulting from the analysis of the batch log �les, is added. The information

collected by the three system is slightly di�erent because of the way it is col-

lected and because the systems they were built for were meant for di�erent

purposes. For those reasons another series of scripts is necessary to modify

those information allowing an easier comparison. Finally the data are aggre-

gated in a separated table that is used by the web interface. Because of the

staticity of the information contained in the database, the daily aggregate are

generated o�ine for a faster response. All the updates and aggregation scripts

are run once a day and there is no need to run them more often because the

tool is not intended for real time checks;

• database: cross-check's MySQL database contains all the tables necessary to

store the information extracted with the previously described script as well as

the daily aggregate;

• web interface: the web interface is the front end to the database. Using

that interface the user can check if there are discrepancies on the di�erent

accounting systems. Some of the di�erences might be normal because of the

di�erent way the accounting data are collected. To minimize them, some of

the scripts might be optimized in a speci�c way dependent on the site.

3.1. ACCOUNTING COMPLEXITIES 31

In Figure 3.1 a schema of the scripts that are run daily and their relationships

is shown. The schema is divided in four sections.

Figure 3.1: cross-check script relationships

On the left side is the server that contains cross-check scripts, while on the right

side are the three servers that contains the di�erent data needed by the system.

Starting from the top are: the HLR server, the Redeye server and a CE from which

the batch system log �les are readable. Because of the particular con�guration used

at INFN-T1 and INFN-CNAF-LHCB sites, all the CEs have access to the full log

�les of the batch system. For this reason it is enough to analyze the logs on only

one of the available CEs because the logs are contained in a shared disk area and

is the same for all of them. The information necessary to cross-check is collected in

three Comma Separated Value (CSV) �les. The one on the CE is produced on the

same computer by running the script convert-batch_log.sh every night. The content

of this script, and all the other that are part of cross-check tool, is on Appendix A.

This script must be con�gured, depending on the particular CE and batch system

32 CHAPTER 3. DGAS ASSESSMENT

installed. It requires to know where to �nd log �les and, consequently, which Perl

script needed to analyze them. Two scripts, one for LSF and one for PBS, are

available. The result of the the log analysis (steps 1a and 1b on Figure 3.1) is a

CSV �le that contains the record extracted. The last operation performed is the

copy to the cross-check server (step 2 from the CE to the cross-check server). Next,

the populate_db.sh and update_tables.sh scripts are run. This creates the other two

CSV �les by directly querying the HLR and Redeye (step 1). The result of those

queries are the remaining two CSV �les that are recorded on the local cross-check's

disk (steps 2 from populate_db.sh to the HLR and Redeye CSV �les). When all the

CSV �les are ready to be processed the populate_db.sh proceed by inserting them in

the MySQL database (steps 3 and 4). At this point the populate_db.sh ends and the

update_tables.sh starts. It queries the database, update the tables used to insert

the previous records and prepare them for the visualization on the web interface

(steps 5 and 6). The web interface requires only a web server that supports PHP:

Hypertext Preprocessor (PHP). It is con�gured to access the database to retrieve

the needed records (step 7). It can be installed in the same machine in which the

cross-check system is installed, or in another one. A proper con�guration of MySQL

database might be required to allow the network connection from the web server.

3.1.2 cross-check's web interface

In Figure 3.2 the cross-check web interface for the INFN-T1 site is shown. It is

divided in three parts:

• date range selection: it is the top section where the user can choose the

date range that he or she wants to visualize. When the page is �rst loaded,

the default is to show the last week of data;

• summary accounting: this section is below the date range selection and

shows an aggregation of all the records in the range selected. It is divided only

per VO and the other values are the sum for the period selected;

• daily accounting: can be found on the lower part of the page and shows

similar information as in summary accounting. The only di�erence is that

they are divided in a per day basis on the selected range.

3.2. DGAS MONITORING 33

Figure 3.2: cross-check web interface[31]

The data vertically shown on the summary accounting and daily accounting sec-

tions is divided in three parts. The �rst shows the number of jobs, the second the

CPU time and the third the Wall Clock Time measured by the three systems. Each

group contains six columns where the �rst three show the real data and the other

three the percentage di�erence compared respectively between HLR and Redeye,

HLR and scripts, Redeye and scripts. The only exception is for the values related to

the DGAS accounting system because it can distinguish between local and Grid job.

In this case the value shown is the sum of the two and, if we move the mouse over

this value, the details about the two components, local and grid, that contribute to

the sum, appear.

3.2 DGAS monitoring

In order to verify that DGAS services are working properly we decided to utilize

Nagios to monitor the status of the services on the CEs and on the site HLR. This

monitoring tool has been chosen because already used at the INFN-T1 site and on

34 CHAPTER 3. DGAS ASSESSMENT

the sites part of the EGI-InSPIRE project as monitor and alarm system. Compared

to the checks performed by cross-check it only gives information on the status of

the daemons on the di�erent servers on the accounting system. It does not give any

information about the correctness of data itself but it is nevertheless useful, because

it can promptly raise an alarm if some problem arise. After a warning, that can be

either sent by email, shown in a web page or both, the site administrator can take

actions in order to solve the problem. A dedicated page has been created for the

accounting system and the monitored resources.

Figure 3.3: Service Status Details For Service Group DGAS[32]

The services monitored are those installed in the CEs and in the site HLR. All

the checks are passive and performed with scripts executed regularly on the machine

3.2. DGAS MONITORING 35

that hosts the service. In Figure 3.3 is shown a screen shot of the page described.

For each CE it shows the number of URs created that have not yet been transferred

to the HLR, the number of those in the error directory and the sensors version. On

the section dedicated to the HLR are shown the packages version and the service

status. With this single page is possible to have an overview on the status of all the

services related to the DGAS accounting system. A warning is raised if the number

of records not transferred from the CE to the HLR is higher than 100 and an error

if this number is higher than 1000. An alert is also shown if the HLR or any of

the other services is not active. In conjunction with the cross-check tool, we can

therefore obtain a system that checks the availability with the Nagios tests and its

reliability with the cross-check tool.

Chapter 4

Accounting of storage resources

�Standards are always out of date. That's what makes them standards.�

Alan Bennett

4.1 Characteristics of the storage accounting

As we have introduced in Chapter 2, an accounting system can be de�ned as a

collection of applications that allows the retrieval, the recording of the used resources

and the interfaces necessary for billing, pricing or further analysis. It can also be

possible to aggregate URs using di�erent criteria, e.g.: users, groups, VOs, etc. The

same general de�nition is valid for storage accounting. In the Grid environment, we

can identify some of the values related to the metering for the speci�c resources that

are necessary to account. If we consider the CPU accounting, we could use the Wall

Clock Time (WCT) and the CPU time (CPT). Other metrics might be also useful

to identify the user associated with each UR and the VO whom the user belongs to.

In Chapter 2, we have seen how the problematic related to computational resources

have been solved on the DGAS accounting system. We will now analyze some of

the existing storage accounting systems.

4.2 Existing storage accounting systems

4.2.1 GridPP Storage Accounting System

The approach of the GridPP accounting system is to regularly query a top level

BDII to collect information about the available and used storage for the di�erent

37

38 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

VOs related to the SEs that publish their data on that particular BDII. In particular

the GlueSEUniqueID, the attribute de�ned in the GLUE schema for the Unique

Identi�er of the SE[33], is parsed and the information are collected in a MySQL

database[34]. In Figure 4.1 a screen shot of the visualization page for this system

and the attributes recorded on Table 4.1 are shown.

Column name Type Primary key Can be
NULL

RecordIdentity VARCHAR(255) Yes No
ResourceIdentity VARCHAR(255) No Yes
Grid VARCHAR(50) No Yes
ExecutingSite VARCHAR(50) No Yes
VO VARCHAR(50) No Yes
SpaceUsed INTEGER No Yes
SpaceAvailable INTEGER No Yes
Total INTEGER No Yes
Unit VARCHAR(50) No Yes
SEArchitecture VARCHAR(50) No Yes
Type VARCHAR(50) No Yes
srmType VARCHAR(50) No No
EventDate DATE No No
EventTime TIME No No
MeasurementDate DATE No No
MeasurementTime TIME No No

Table 4.1: GridPP Storage Accounting System: recorded values

Advantages:

• this approach allows the collection of the storage accounting information trans-

parently. The information are collected using a top level BDII. For this reason,

each well con�gured site already publishes all the information needed by this

system;

• no need for the installation of any additional package or sensor.

Disadvantages:

• everything depends on the correct con�guration of the site and top level BDII.

If something in the chain is not working the information can not be retrieved;

4.2. EXISTING STORAGE ACCOUNTING SYSTEMS 39

Figure 4.1: GridPP storage accounting web interface

40 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

• there is not any information between two di�erent checks. If the BDII is

not available for this period of time no information can be collected and no

information can be recovered;

• no information can be recovered also in the case that the accounting system

can not query the top BDII.

4.2.2 HLRmon

HLRmon has been developed as a tool to provide a graphic interface for the account-

ing of computational resources collected with DGAS. It has been then extended to

allow some storage accounting capabilities. Every site that wants to monitor its

accounting capabilities, needs to install a sensor that collects information related to

the storage. Those records contain information on the VO, available disk space and

used disk space. They are written by the sensor in a XML �le sent via email to a

proper account and stored in the HLRmon database. The information are collected

once a day and a cronjob process those data and produces the reports. An example

of the �le, in XML format, is shown below while Figure 4.2 is a screen shot of the

visualization reports produced by the tool.

<?xml version='1.0' standalone='yes'?>
<site name="INFN-NAPOLI-ATLAS">
<SE name="t2-dpm-01.na.infn.it" timestamp="1245916801">

<VO name="atlas">
<class name="DATADISK">
<free>45739683715481</free>
<used>14733455812198</used>

</class>
<class name="MCDISK">
<free>13798870928588</free>
<used>41176710460211</used>

</class>
<class name="PRODDISK">
<free>4837851162214</free>
<used>659706976665</used>

</class>
<class name="USERDISK">
<free>990279872020</free>
<used>109231755755</used>

</class>
<class name="GROUPDISK">
<free>1099511627776</free>
<used>0</used>

</class>
<class name="LOCALGROUPDISK">
<free>2122057441607</free>
<used>11072082091704</used>

</class>
<class name="CALIBDISK">
<free>14502558370365</free>
<used>7487674185154</used>

</class>
<class name="SCRATCHDISK">
<free>5310641162158</free>
<used>186916976721</used>

</class>
<class name="other">
<free>40549859983360</free>
<used>12833362280455</used>

</class>
<class name="total">

4.2. EXISTING STORAGE ACCOUNTING SYSTEMS 41

<free>128951314263569</free>
<used>88259140538863</used>

</class>
</VO>
<free>128951314263569</free>
<size>217210454802432</size>

</SE>
<date>Thu Jun 25 10:00:01 CEST 2009</date>

</site>

Figure 4.2: HLRmon storage accounting web interface[35]

This tool is currently used by Italian NGI, Italian Grid Initiative (IGI). However
it needs further development because it does not provide the needed level of detail
and it does not provide a standard UR.

4.2.3 SAGE

Storage Accounting for Grid Environments's (SAGE) approach to the storage ac-
counting is quite di�erent from the two described earlier. It consists, basically of
two parts:

• a sensor that is installed in each SE available (at the time of writing only DPM
is supported);

• a database where the collected information is stored.

Information about user's activity is composed essentially by:

• time stamp of when an activity started and terminated;

• the type of the activity (e.g.: the �le has been stored, retrieved, etc);

42 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

• the subject of the grid user's certi�cate;

• the name of the �le accessed;

• the amount of bytes added/removed, if any;

• the protocol used to access the �les on the SE;

• the VO which the user belong to[36].

SAGE de�nes a function called Disk Energy as 'the disk energy consumed by a
�le saved on a storage device is given by the integral of its size in time'[36].

Advantages:

• it is a true accounting system that can store information of the activities that
are made on the storage;

• the log �les produced by the SE can be reprocessed in case of problems.

Disadvantages:

• only available for DPM;

• development has been discontinued.

4.2.4 Amazon S3

Amazon Simple Storage Service (Amazon S3) service o�ers an online storage system.
The details of the implementation are not public, but it is interesting to describe
here because of the metrics considered and its billing system that can be used as a
reference. Its purpose is to charge the user depending on the amount of data and
the access to those data. The GBs of storage billed in a month is the average storage
used throughout that month. This includes all object data and meta data stored in
buckets that the user created under his account. Amazon S3 is intentionally built
with a minimal feature set:

• write, read, and delete objects containing from 1 byte to 5 gigabytes of data
each. The number of objects the user can store is unlimited;

• each object is stored in a bucket and retrieved via a unique, developer assigned
key

• authentication mechanisms are provided to ensure that data is kept secure
from unauthorized access. Objects can be made private or public, and rights
can be granted to speci�c users;

• uses standards-based Representational State Transfer (REST) and SOAP in-
terfaces designed to work with any Internet-development toolkit;

4.3. A PROPOSAL FOR A NEW SYSTEM 43

• built to be �exible so that protocol or functional layers can easily be added.
Default download protocol is HTTP but a BitTorrentTM1 interface is also avail-
able. This protocol, when applied to Amazon S3, lower costs for high-scale
distribution. Additional interfaces will be added in the future.

Data transfer �in� and �out� refers to transfers into and out of an Amazon S3 lo-
cation (e.g.: US or EU). Data transferred within an Amazon S3 location via a COPY
request is free of charge. Data transferred via a COPY request between locations is
charged at regular rates. Data transferred between Amazon Elastic Compute Cloud
(Amazon EC2), which is a web service that provides resizable compute capacity in
the cloud and is designed to make web-scale computing easier for developers[38],
and Amazon S3 within the same region is free of charge. Data transferred between
Amazon EC2 and Amazon S3 across regions (e.g.: between US and EU), will be
charged at Internet Data Transfer rates on both sides of the transfer. Storage and
bandwidth size includes all �le overhead[39].

Advantages:

• S3 o�er a complete system for accounting and billing.

Disadvantages:

• it is a proprietary system. API are available for accessing the storage but the
system itself is not available nor it is open;

• it is not possible to dig into the details like user, groups, �le.

4.3 A proposal for a new system

With the exceptions of SAGE and Amazon S3, most of the described systems can not
be de�ned as real storage accounting system but more as monitoring systems. The
general problem, due to the kind of approach is that they tend to present a static
view of the status of the storage in a precise time. No information is usually available
between two di�erent checks. Due to the nature of the source of information it is
not possible to recover old data, because of the limitation of the systems considered,
a new approach has been devised. The goal is to de�ne a reliable system that can
record all the events on the �les stored on a SE. From those events, it must be
possible to e�ciently create URs that can be used for the storage accounting. To
do that a new de�nition of UR has been devised and tested during the thesis work
at INFN-CNAF.

1BitTorrentTM is a protocol for distributing �les. It identi�es content by URL and is designed to
integrate seamlessly with the web. Its advantage over plain HTTP is that when multiple downloads
of the same �le happen concurrently, the downloaders upload to each other, making it possible for
the �le source to support very large numbers of downloaders with only a modest increase in its
load[37].

44 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

Figure 4.3: Example of a �le created and deleted but not reported by most of the
accounting systems

In Figure 4.3, a possible problem that might arise using the systems described
is presented: a �le that is written just after one check, and is then deleted just
before another one does not leave any record of its presence in an accounting system
based on regular scans or checks of the total, used and available storage space. One
solution to this problem could be to increase the frequency of scans on the �le system
to a reasonably level, e.g.: if we want to be sure to spot a user that stores �les of 10
GB, and the transfer rate is 1 Gb/s, we should check the �le system at least every 80
seconds or less. Files produced in High Energy Physics (HEP) experiments are often
written once, read several times and kept on storage for long periods. For those kind
of applications the approach described could be su�cient and the frequency of the
checks could be reduced. But in a more generalized environment it is not possible
to exclude that �les have a shorter life time. In those cases, the regular checks of
the disk is not a viable solution because it would require a scan of the entire storage
every few seconds especially if �les have a smaller size. Another problem related to
this system is that it does not provide any information about the owner of the �les
present in the storage. Information are limited to the VO and Storage Area (SA), a
logical portion of storage assigned to a VO. In future versions of StoRM, Extended
Attributed (EA), supported on ext3[40], XFS[41], General Parallel File System[42]
(GPFS) and Lustre[43], will be used to store user de�ned attribute for each �le or
directory like, e.g.: the owner of the �le. For �le systems that support EA, and
for �eld of research like HEP that store �les for long periods of time, this could
be a viable solution to solve the problem of retrieving the information necessary
for the storage accounting. During the scheduled checks of the disk space it would
be possible to read also those extra attributes and collect information on the user
owning the �le. However this solution is not suitable for all the use cases especially
when the lifetime of the �les is shorter than the periodic check. To obtain more

4.3. A PROPOSAL FOR A NEW SYSTEM 45

precise data on the used resources, the events related to operation in a �le should
be recorded and collected for further analysis as soon as they are produced. When
a request for an operation is made to the storage system, this request should be
logged immediately. In this way, it is possible to record all the events and calculate
the e�ective amount of data stored and the period. In Figure 4.3 we can see the
three moment that should be recorded. When the client start to copy the �le PUT,
when the �le is successfully copied to the storage PUT DONE and when the �le is
�nally deleted DELETE.

Figure 4.4: Time and network dependent way in which a �le might be uploaded on
a SE

On the other hand, as we can see in Figure 4.4, we know only the moment when
the PUT and the PUT DONE are recorded. No information can be retrieved in the
way the �le is transferred. As a consequence, the storage utilized during this interval
of time, can not be precisely determined. For this reason a good approximation could
be to assume that, the speed of the copy of a �le to a storage system is constant
like the one shown in the left part of Figure 4.4. This would be the only way to
account for the space utilized during this process. The center and right part of 4.4
show what could happen if the transfer speed is variable. The storage utilization
between the PUT, PUT DONE and the DELETE, using SAGE's de�nition, is the
disk energy: 'the energy consumed by a �le saved on a storage device is given by the
integral of its size in time'[36]. This allows to simply calculate the energy utilized
by any user, group of users or VOs. Figure 4.5 shows an example of the disk energy
utilized by a �le stored for a certain amount of time.

As opposed to CPU accounting where a record that describes the job executed
is produced at the end of each job, that has a maximum time allowed de�ned,
usually in the batch system data can stored for an unpredictable amount of time.
For practical reasons, it is not possible to wait that the �le is deleted to produce a
UR. If a �le is transferred to a storage device and left there for years, the UR would
be produced at the end of this period. In the schema devised we can de�ne three
records R1, R2 and R3:

• record that describes the operations on a �le is recorded in a data base. The
events PUT DONE, READ, DELETE form type R1 record;

46 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

Figure 4.5: The area represents the disk energy required to store a �le

• every �xed, but con�gurable amount of time T1 (e.g.: every week or every
day), records R1 produced in the previous T1 interval are analyzed and a
record that describe every �le and its disk energy is produced. We can call
this type of record R2;

• every �xed, but con�gurable amount of time T2 (e.g.: every month), records
R2 are analyzed and summarized in a new record R3 that can have the same
information of R2 but for a longer interval of time. In this phase, the infor-
mation related to the single �le can be lost if the aggregation is made also on
the �les of a single user or over all the �les of a single VO. In this case, only
a per user or per VO information will be present in the new records R3;

• records R2 are kept for a con�gurable amount of time after being processed.
This would allow the site managers to reprocess data for previous periods or
to check the correctness of the collected information if necessary. Record R1
should never be deleted but archived only after a DELETE event is present for
a corresponding PUT DONE. If necessary READ operations can be archived
even if a corresponding DELETE for that �le is not present;

• If a �le is still present, R1 records related to the time of creation of this �le
should be kept for all the life of the �le. Keeping those records allows to easily
generate records R2 and consequently R3.

Keeping di�erent level of information will allow the site managers and the users
to track their own records with a decreasing level of detail when moving to older

4.3. A PROPOSAL FOR A NEW SYSTEM 47

data. It will be useful to use this approach because old records are not useful
after a certain amount of time and they should be kept to a minimum to avoid,
or at least reduce the possibility that a huge amount of records, corresponding to
each operation on the storage system �lls the database e.g.: a �le being written or
deleted. The billing of the storage utilized could be made every month. This would
require at least one month of old record R2 to show precisely the �les that the user
is being charged for. To maintain historical information, record R2 can be deleted
after three month and the only information left is record R3. This system could
be tuned depending on the necessity of the site. If a site does not produce a lot
of record R1 it could decide to keep every thing along with record R2 and R3. As
described before �les copied to the storage remain until they are deleted. There is
an exception: �les can have an expiration date. After the expiration date is reached,
the �le is not guaranteed to be available. The accounting system should consider the
expiration date as the end of the billing period for this �le, if it is not deleted before.
The user could still access it but there are no guarantees. In this case, records R1
with a READ event should be produced. It consists of two agents, one collects the
SRM published information and one stores them in the accounting database. The
front-end of the system is a web interface, capable of dynamically generate the plots
required in each view. As for the CPU accounting the three steps necessary for the
accounting process are UR generation, UR distribution and presentation. In the
following section I will describe in more detail the solution proposed to extend the
usage record and collect the required information from the SEs.

4.3.1 UR Generation

In the computing scenario a job is submitted, executed and terminated. Its life
cycle is well de�ned and bounded in time thus a UR for computing purpose should
give information on the job life cycle, the time taken to execute, etc. In terms
of storage resources, things are more complicated: a �le is stored somewhere by
someone in a certain instant, can be retrieved multiple times and can remain there
for undetermined amount of time. We can describe its life cycle, but we can not
wait for its termination before making any related UR. This implies that we have
to account continuously in time while the �le still exists and intercept all activities
on that �le. For those reasons we can de�ne two di�erent types of accounting
information:

• accounting of user access to �les;

• accounting of disk space.

The main source of information to make accounting of disk space is the informa-
tion published by the SE in the IS, following the GLUE Schema described in Section
5.2, Chapter 5. To address this type of accounting, a speci�c SE agent, running on
the site HLR, should be used:

48 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

• InfoAgent: the InfoAgent is in charge of querying the Grid Information Sys-
tem about the information of SEs registered in each of the GRID sites. This
information is then stored in the local accounting database. With the infor-
mation collected by the agent, the disk space occupied at each site, for each
SA and VO can be calculated. All GLUE attribute that will be described in
section 5.2 need to be collected. At the moment we consider the reserved space
as busy and therefore accounted to the VO.

To make accounting of the user activities, we have to intercept the �le related
events like creation, deletion and reading. Those kind of operations can be made
both in a Grid environment and locally. Generally, a mixed scenario is used. For
this kind of accounting we need two agents: one agent will be speci�c to the SE
architecture used, the second is needed to send the UR generated to the site HLR.

• Speci�cSEAgent: The Speci�cSEAgent is in charge of creating the R1 Even-
tRecord previously described. This agent should run on the SE and it is highly
dependent of the SE technology used. It collects all the information needed by
parsing log �les or querying SE speci�c database and merging the requested
data in one �le for each event which represents a R1 record. If a �le has a life
time set, the time of presence accounted on the storage is the lifetime.

Record for this storage accounting is represented in Table 4.2.

4.3.2 Distribution

The command SendRecord is used to distribute R1 records to the site HLR. On
the HLR side, the getRecordEngine instantiated by the HLR server provides a pre-
de�ned storage records table, which is suitable for User and VO based accounting.

4.3.3 Presentation

A web interface is necessary for the presentation of the collected data. It should be
able to show di�erent views of the storage accounting data according to the role of
the users.

4.3.4 Working description

The storage accounting system should be able to:

• collect information on the usage of the storage space for a given SE;

• provide information to users on the status of their �les and how much they
are accessing and using that resource;

4.3. A PROPOSAL FOR A NEW SYSTEM 49

Attribute
name

Type Primary
key

Can be
NULL

Note

RecordIdentity VARCHAR(64) Yes No a unique identi�er for
the UR

GlobalFileId VARCHAR (512) No Yes LFC �le ID
LocalFileId VARCHAR (512) No Yes full path and �le

name on the storage
or SURL

GlobalGroup VARCHAR(64) No Yes As reported in the
VOMS extension, or it
should be deduced in
other way by the spe-
ci�c SE agent in GRID
or another grouping
mechanism in other
cases

GlobalUsername VARCHAR(128) No Yes If the user DN is miss-
ing (local account), it
contain the userId

LocalUserId VARCHAR(64) No Yes Local user ID
Charge FLOAT No Yes the charge associated

with the storage uti-
lization

Status char(64) No Yes status of a request to
the storage system

Host VARCHAR(64) No Yes GlueSEName
SubmitHost VARCHAR(64) No Yes submitting host
ProjectName VARCHAR(64) No Yes It can be the user guid

(local account) or the
group of the VO as re-
ported in the VOMS
extensions

ProjectPartition VARCHAR(64) No Yes GlueSAName
StorageType VARCHAR(64) No Yes StoRM, dCache, etc.
ProtocolType VARCHAR(64) No Yes The protocol used in

the event: PutDone,
Delete, Read, etc.

OperationType VARCHAR(64) No Yes The operation per-
formed

Network INT(10) No Yes The network utiliza-
tion for the operation

50 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

Disk INT(10) No Yes CREATE: total �le
size; DELETE: size
of the deleted �le;
READ: the quantity
of �le read; for aggre-
gate the storage uti-
lization

TimeDuration INT(10) No Yes the time used for the
operation of for ag-
gregate the amount of
time that the storage
has been used

TimeInstant INT(10) No Yes the timestamp of the
event

ServiceLevel VARCHAR(64) No Yes persistent, volatile,
etc.

Table 4.2: Record attributes description

• let site administrators, VO managers, Regional Operation Center (ROC) man-
agers monitor disk space usage.

When the system starts, it can account for user activities and disk space asyn-
chronously. If the accounting system starts on an empty SE, the amount of disk
space used collected by the Speci�cSEAgents for the user activities and the one
published in the IS should be the same. Otherwise, the disk space used, published
in the IS might be greater than the one collected by monitoring the user activities.
At the moment, the user activities done before the starting of the accounting sys-
tem is an open issue. Probably it will not possible to collect old activities for all
SE architectures. Accounting of user activities and accounting of disk space will be
permanently stored in the local site HLR repository. A web interface, like HLRMon,
will be used to show di�erent views of the storage accounting data according with
the role of the users.

4.3.5 Extension of the Usage Record

The UR - Format Recommendation (UR-FR) contains tags that can be used, with
the same meaning or with small modi�cations, in a UR for the storage accounting.
Following is a proposal for the de�nition of the new properties needed for a UR for
storage accounting.

4.3. A PROPOSAL FOR A NEW SYSTEM 51

Property RecordIdentity

A record identity uniquely de�nes a record in the set of all usage record for the grid
implementation.

• This property SHOULD be referred as recordidentity.

• This property MUST contain data of type string.

• This property MUST exist.

• This property MUST be unique.

• Meta-properties:

� Create time of the record MUST be speci�ed.

Property GlobalFileId

The global �le identi�er as assigned by a system such as LFC.

• This property SHOULD be referred as global�leid.

• This property MUST have data of type string.

• This property is optional (to account the time a �le has been stored in a SE
this propriety MUST be speci�ed to have an association between the PUT
END and the DELETE. For other operation, like a GET or a DELETE this
is not necessary).

• Meta-properties:

� Create time of the record MUST be speci�ed.

� Description MAY be speci�ed.

Property LocalFileId

The local �le identi�er as assigned by the local storage system.

• This property SHOULD be referred as local�leid.

• This property MUST have data of type string.

• This property is optional.

• Meta-properties:

� Description MAY be speci�ed.

52 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

Property GlobalGroup

The global group identi�es a way to group, e.g. di�erent URs from di�erent storage
systems that are produced in the same site. It can be reported in the VOMS
extension, or it cab be deduced in other way or con�gured in the sensors.

• This property SHOULD be referred as globalgroup.

• This property MUST have data of type string.

• This property is optional.

Property LocalUserId

The local identity of the user associated with the resource consumption reported in
the UR. This user is often referred to as the requesting user, e.g.: the value might
be the user's login name corresponding to the user's uid in /etc/passwd �le in Unix
systems.

• This property SHOULD be referred as localuserid.

• This property MUST have data of type string.

• This property is optional.

Property GlobalUsername

The global identity of the user associated with the resource consumption reported
in this UR. For example, the value may be the Distinguished Name (DN) from the
user's x.509 certi�cate.

• This property SHOULD be referred as globaluserid.

• This property MUST have data of type string.

• This property is optional.

Property Charge

This property represent the total charge of the job in the system's allocation unit.
The meaning of this charge will be site dependent. The value for this property
MAY include premiums or discounts assessed on the actual usage represented within
this record. Therefore, the reported charge might not be directly reconstructable
from the speci�c usage reported. Note that "Charge" does not necessarily refer to
a currency-based unit unless that is what members on the Grid VO agree to as
de�nition. If charge denotes a value in currency, standard currency codes should be
used to indicate the currency being reported.

4.3. A PROPOSAL FOR A NEW SYSTEM 53

• This property SHOULD be referred as charge.

• This property MUST have data of type �oat.

• This property is optional.

• Meta-properties:

� Units MAY be speci�ed.

� Description MAY be speci�ed.

� Formula MAY be speci�ed that describes how the charge was arrived at.
There is no requirement format for the formula.

Property Status

As de�ned in the UR-FR document, it may represent the exit status of an interactive
running process or the exit status from the batch queuing system's accounting record.
In the case of Storage Accounting this de�nition should be extended to include the
status of a request to the Storage system.

• This property SHOULD be referred as status.

• This property MUST contain data of type string.

• This property MUST exist.

• As in the UR-FR Status MUST support at least the following value with the
corresponding meaning:

� aborted - A policy or human intervention caused the operation (PUT or
READ);

� completed - The operation completed correctly;

� failed - Operation failed without external intervention;

� started - The required operation started on the speci�ed moment.

• This property MAY support other values, as agreed upon within the imple-
mentation context. The UR-FR reccomendation already list other values for
this property.

Property Host

A descriptive name of the SE on which the �le has been stored. This should be a
unique identi�er. In Grid environment it could represent the Fully Quali�ed Domain
Name (FQDN) of the SE.

• This property SHOULD be referred as machine name.

54 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

• This property MUST contain data of type domain name.

• This property MUST exist (in the UR-FR Draft this it is de�ned as optional
but, in the case of storage accounting, this information is necessary).

• Meta-properties:

� Description MAY be speci�ed.

Property SubmitHost

The system hostname from which the �le has been submitted, retrieved or deleted.

• This property SHOULD be referred as submithost.

• This property MUST contain data of type of domain name.

• This property SHOULD exist (in the UR-FR Draft this it is de�ned as optional
but, in the case of storage accounting, this information should be present
at least when a per �le accounting is used; for aggregate records it can be
omitted).

• Meta-properties:

� Description MAY be speci�ed.

Property ProjectName

The project associated with the resource usage reported with this record. In Grid
environment it could be the VO of the user consuming the resources.

• This property SHOULD be referred as projectname.

• This property MAY contain data of type string.

• This property is optional.

• Meta-properties:

� Description MAY be speci�ed.

4.3. A PROPOSAL FOR A NEW SYSTEM 55

Property ProjectPartition

The project's partition associated with the resource usage reported with this record.
In Grid environment could be the user SA associated to the VO of the user consuming
the resources.

• This property SHOULD be referred as projectpartition.

• This property MAY contain data of type string.

• This property is optional.

• Meta-properties:

� Description MAY be speci�ed.

Property StorageType

Is the technology used for the storage system. In Grid it could be, e.g.: StoRM,
dCache, etc.

• This property SHOULD be referred as storagetype.

• This property MUST have data of type string.

• This property is optional.

Property ProtocolType

It is the protocol used for the single operation.

• This property SHOULD be referred as protocoltype.

• This property MUST have data of type string.

• This property is optional.

Property OperationType

It is the operation performed for the single event: PutDone, Delete, Read, etc.

• This property SHOULD be referred as operationtype.

• This property MUST have data of type string.

• This property is optional.

56 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

Property Network

The amount of transferred data, protocol, network characteristics used by the job.

• This property SHOULD be referred as network.

• This property MUST contain data of type positive integer.

• This property is optional.

• Meta-properties:

� Units SHOULD be speci�ed.

� Metric MAY be speci�ed.

� If metric is used, the metrics that MUST be supported are:

∗ average - the average �ow rate over the entire usage window.

∗ total - volume of data transferred in the speci�c unit. This is the
default.

∗ min - minimum �ow rate in the speci�c units.

∗ max - maximum �ow rate in the speci�c units.

Property Disk

Disk storage used.

• This property SHOULD be referred as disk.

• This property MUST contain data of type positive integer.

• This property is optional.

• Meta-properties:

� Units MUST be speci�ed.

� Description MAY be speci�ed.

� Type MAY be speci�ed. The types that MUST be supported are:

∗ scratch

∗ temp

� Metric MAY be speci�ed. The metric that MUST be supported are:

∗ average

∗ total

∗ min

∗ max

4.3. A PROPOSAL FOR A NEW SYSTEM 57

Property TimeDuration

This property identi�es any additional time duration associated with the resource
consumption, e.g.: it might report the connection time within the start of a �le
transfer and its end.

• This property SHOULD be referred as timeduration.

• This property MUST contain data of type duration.

• This property is optional.

Property TimeInstant

This property identi�es any additionally identi�ed discreet timestamp associated
with the resource consumption, e.g. it may represent the moment in which a transfer
is scheduled in the queue or the moment in which the transfer is started.

• This property SHOULD be referred as timeinstant.

• This property MUST contain data of type duration.

• This property is optional.

Property ServiceLevel

This property identi�es the quality of service associated with the resource consump-
tion. For example, service level may represent if the �le can be persistent or volatile.

• This property SHOULD be referred as servicelevel.

• This property MUST contain data of type string.

• Metric MAY be speci�ed. The metric that MUST be supported are:

� persistent

� volatile

Property Extension

For sites that may want to exchange data not de�ned in the UR, the Extension
property can be used to encode any type of usage information. The sites can agree
on the meta properties supported for each extension.

• This property SHOULD be referred as extension.

• This property MUST contain data of type string.

58 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

• This property is optional.

• Meta-properties:

� Units may be supported.

� Metric may be supported.

� Name may be supported.

• The meta-property must have data of type string.

4.4 Features available on current SEs

There are di�erent SE types used on the Grid and each one has its own distinctive
characteristics. For each one a short description of what they provide is given in the
following sections.

4.4.1 dCache

dCache is a SE developed at Deutsches Elektronen-Synchrotron (DESY) and Fermi
National Accelerator Laboratory (FNAL). The goal of this project is to provide a
system for storing and retrieving huge amounts of data distributed among a large
number of heterogeneous server nodes under a single virtual �le system tree with a
variety of standard access methods. Depending on the persistency model, dCache
provides methods for exchanging data with backend (tertiary) storage systems as
well as space management, pool attraction, dataset replication, hot spot determi-
nation and recovery from disk or node failures. Connected to a tertiary storage
system, the cache simulates unlimited direct access storage space. Data exchanges
to and from the underlying Hierarchical Storage Management (HSM) are performed
automatically and invisibly to the user[44].

4.4.2 dCache Logging

The raw information about all dCache activities can be found in:
/opt/d-cache/billing/<YYYY>/<MM>/billing-<YYYY.MM.DD>.

A typical output line is:
05.31 22:35:16 [pool:<pool-name>:transfer] [000100000000000000001320,24675] \

myStore:STRING@osm 24675 474 true {GFtp-1.0 <client-host-fqn> 37592} {0:""}

The �rst brackets contain the pool name and the second the perfectly Normal
File System[45] (pNFS) id and the size of the �le which is transferred. The other
values represent the storage class, the actual amount of bytes transferred and the
number of milliseconds the transfer took. The next entry is true if the transfer was
a wrote data to the pool. In the second line, the �rst brackets contain the protocol,
client Fully Quali�ed Name (FQN), and the client host data transfer listen port.
The �nal brackets contain the return status and a possible error message[46].

4.4. FEATURES AVAILABLE ON CURRENT SES 59

Billing Database

In addition to writing out information to the billing logs, usually in the directory:
/opt/d-cache/billing

dCache can also write the information into a PostgreSQL[47] database from
version 1.6.6 onwards[48].

4.4.3 DPM

DPM is a light weight solution for disk storage management. If o�ers the required
SRM interfaces and it has been developed at CERN. The information are stored in
the DPM database to allow the system to understand what data is being transferred,
which users are accessing them, what protocols are being used, which client hosts
are initiating the transfers, how many transfer errors are reported and which pools
are these errors occurring on[49].

DPM Logging

The log �les are spread over dpns, dpm, srmv1 and gridftp logs. In addition gridftp
transactions on pool nodes are logged on that host, not on the admin node. It is
then far from easy to work out where one should look. DNs get recorded in multiple
places by multiple daemons. Usually the information appears more than once. This
can be a bit confusing. The answer to the basic security question to whom put �le
X on the system is much easier if SRM, as it is normally, is used, e.g.: in a SRM
v.2.2 interface the log �le is:
/var/log/srmv2.2/

and the important part of the logs are:

• for incoming �les look for a PrepareToPut request;

• for outgoing �les look for a PrepareToGet request;

• for deletes look for an rm request.

There are other SRM v.2.2 operations with obvious meanings: Ls, MkDir, RmDir.
If more information are required, depending on the protocol utilized a di�erent set
of log �les should be read[50].

Monitoring Packages

The monitoring is packaged up in an RPM, the GridppDpmMonitor, and uses Brian
Bockleman's GraphTool package[51]. This provides a framework for querying a
database, plotting the results and displaying them on a webpage. The GridppDpm-
Monitor package is strongly in�uenced by Brian's own dCache billing graph pack-
age. Essentially, GridppDpmMonitor is a repackage version, with appropriately
constructed queries for DPM's MySQL database[52].

60 CHAPTER 4. ACCOUNTING OF STORAGE RESOURCES

4.4.4 Castor

The Rutherford Appleton Laboratory (RAL) Tier1 CASTOR accounting is realized
in the following way: SEs publishes information with the GLUE schema. They
publish which SAs are available, and how much space is available in each SA, how
much is used, etc.[53]. The data available from the information system can then be
used to monitor the space utilization in a similar way as for GridPP.

4.4.5 StoRM

Storage Resource Manager (StoRM) is developed at INFN-CNAF and is a light,
scalable, �exible, high-performance, �le system independent SRM for generic disk
based storage system, compliant with the standard SRM interface version 2.2[54].
Developers have planned a new feature that will allow the development of new
sensors that can analyze those �le and produce the records R1 described. At the
moment those events do not leave traces on the system as there is no log �le or
historical database of the operations.

Chapter 5

Storage accounting with DGAS and

HLRmon

�If enough data is collected, anything may be proven by statistical methods.�
Williams and Holland's Law

5.1 Storage accounting work�ow with DGAS

As described in Chapter 2, DGAS has been used as the accounting system for
computing resources on all the Italian sites and also in other countries like Germany
and Greece. Recent versions already in production have introduced user de�nable
tables. Using those tables, it is possible to create a database that contains URs for
storage accounting with �elds that adhere to the de�nitions given in Chapter 4. In
Figure 5.1 is shown a schema of the work�ow with the storage accounting that works
independently from the computing accounting but that can share the same HLR.

Figure 5.1: Accounting work�ow[55]

The URs for the storage accounting are produced on each SEs and sent to the
site HLR. At the same time, URs for computing resources are produced on the CEs

61

62
CHAPTER 5. STORAGE ACCOUNTING WITH DGAS AND

HLRMON

and sent to the same HLR. If necessary, a dedicated HLR for storage accounting
could also be con�gured. Like in the case of the accounting for computational
resources, a speci�c sensor is necessary for each type of SE. As described in Chapter
4, HLRmon collects storage accounting information from sensors on the SEs that
are sent directly to HLRmon with an XML �le attached to an email. Instead of
using a speci�c sensor for each SE the strategy temporarily adopted is to query the
top level BDII and extract the necessary information to build the needed URs. This
is not the optimal solution but it is a �rst step in the implementation of a complete
system that uses standard URs. The next step is to develop sensors that can collect
the same information and gradually phase out the UR generation used now. The
procedure implemented uses the standard DGAS client. In this way we can obtain
the work�ow shown on Figure 5.1 where the DGAS standard client, installed with
the DGAS packages and described in more detail in Appendix B, sends the URs
collected by the sensors directly to the HLR. The DGAS client sends the records to
the HLR where the getRecordEngine instantiated by the HLR listener insert them in
the HLR database. HLRmon will then query the HLR and produce various reports.
Figure 5.2 describes the storage accounting toolkit implemented within DGAS and
exploited to develop this prototype. Green boxes represents the storage related
parts.

Figure 5.2: Storage accounting toolkit

Blue boxes represent the components, which are in common with the CPU ac-
counting. The red box is the component used to forward the URs to the second level
HLR. It is then possible to extend the system capabilities[56], as we have seen, by
de�ning new tables. An implementation that exploit those characteristics has been
developed during the thesis work and will be described in more details in the next
sections.

5.2. USAGE RECORD 63

5.2 Usage Record

Since speci�c sensors for the speci�c SE types are not yet available, URs have been
created based on the data available on the IS. URs are created interrogating the top
level BDII. The information presented in this section, follows the GLUE schema, a
common information schema used for the description of Grid resources and services.
It has been implemented by every middleware component and it is essential for
the inter operability of the Grid infrastructure. The GLUE information schema was
originally introduced back in 2002 as a joint project between the European DataGrid
(EDG), the Data TransAtlantic Grid (DataTAG) projects and the US International
Virtual Data Grid Laboratory (iVDGL). The schema has major components to de-
scribe CEs and SEs Elements and also generic service and site information. It has
been used extensively in the LHC Computing Grid (LCG) and EGEE Grid for job
submission, data management, service discovery and monitoring. The schema itself
is an abstract description of information. The primary use cases for the schema
is for a snapshot of the current state, although, for performance reasons, there will
typically be various caches so information propagation will have some latency. Mon-
itoring use cases may also require historical information to be stored in databases.
The information itself is collected by information providers, pieces of code which
must be tailored to each implementation of the various GRID services. However, it
is desirable to use common code where possible to preserve consistency. In 'Usage of
GLUE Schema v1.3 for Worlwide LCG (WLCG) Installed Capacity information'[57]
document, it is described how to use the GLUE Schema version v.1.3 in order to
publish information to provide the WLCG management with a view of the total
installed capacity and resource used by the di�erent VOs in the on each sites. This
information can also be used by VO operations and management in order to monitor
the VO usage of the resources and, as we have seen, it is possible to extract infor-
mation for the accounting of storage resources. Version 2.0 of the schema is already
available but, as of today, all the implementations of the Grid services utilizes the
v.1.3 de�nition. For this reason the implementation discussed uses the older v.1.3
of the GLUE schema. It is foreseeable that v.2.0 will be implemented in all the
middleware and be available in about one year. By this time specialized sensors for
the di�erent SEs should be written. More details on the meaning of several GLUE
Classes concerning storage resources that can be useful for accounting purpose will
now be shown. The SE Class describes storage resources at a site. There MAY
be more than one SE at one given site. A SE represents a convenient partition of
the storage resources of one or more storage systems as a single Grid entity. The
attributes of the SE Class described in section 4.1 of 'GLUE Schema Speci�cation
v.1.3'[33] have this de�nition:

• SizeTotal, SizeFree, TotalOnlineSize, UsedOnlineSize, TotalNearlineSize and
UsedNearlineSize. They SHOULD be aggregated from what is in the SAs and
they SHOULD summarize the space in the entire SE. For SEs not supporting

64
CHAPTER 5. STORAGE ACCOUNTING WITH DGAS AND

HLRMON

tapes, TotalNearlineSize and UsedNearlineSize MUST be published with a
value of 0.

The description of the GlueSA and GlueVOInfo classes are the most relevant
for the publication of storage resource installation and usage. The GlueSA class
describes a logical view of a portion of physical space that can include disks and
tape resources. SAs MAY overlap. Shared portions of storage MUST be represented
with a singleGlueSA object, with multipleGlueSAAccessControlBaseRule attributes
and optionally with multiple VOInfo objects pointing to it. Normally a SA is used
to represent SRM reserved space. It is RECOMMENDED that a SA object is
published for portions of storage con�gured but not yet reserved. In this case the
SA MUST publish ReservedOnlineSize=0 and ReservedNearlineSize=0. A special
capability attribute must be used to describe the total installed capacity which is
the InstalledCapacity attribute and will be described later. To be noted that for
overlapping published SA, in order to avoid double counting of resources, only some
of them MUST publish a value for the InstalledCapacity attribute greater than 0.
The sum of all InstalledCapacity attributes over all SA of an SE MUST be equal to
the physical storage capacity for that SE.

• Reserved[Online|Nearline]Size MUST be published. It is a portion of avail-
able storage physically allocated to a VO or to a set of VOs. The value of
this attribute MUST be 0 for a SA representing an unreserved space. The
Reserved[Online|Nearline]Size MUST NOT be negative. For WLCG usage
Online refers to space on disk while Nearline refers to space on tape. For
tapes, sizes MUST be reported publishing the actual size on tape after com-
pression;

• Total[Online|Nearline]Size is the total Online or Nearline space available at a
given moment. It SHOULD not include broken disk servers, draining pools,
etc. This attribute MUST be published. In the absence of unavailable pools
the TotalSize is equal to the ReservedSize if the ReservedSize is greater than 0.
The Total[Online|Nearline]Size MUST NOT be a negative number and MUST
NOT exceed the Reserved[Online|Nearline]Size if the Reserved[Online|Nearline]Size
is greater than 0;

• Used[Online|Nearline]Size is the space occupied by available and accessible
�les that are not candidates for garbage collection. This attribute MUST be
published. For CASTOR, since all �les in T1D0 are candidates for garbage
collection, it has been agreed that in this case UsedOnlineSize is equal to
GlueSATotalOnlineSize. For T0D1 classes of storage this is the space occupied
by valid �les. Size MUST NOT be a negative number and MUST NOT exceed
the Total[Online|Nearline]Size;

• Free[Online|Nearline]Size MUST be published and MUST be equal to
Total[Online|Nearline]Size-Used[Online|Nearline]Size.

5.3. STORAGE ACCOUNTING IMPLEMENTATION 65

The value to assign to the ServiceLevel attribute can be deduced from the storage
class assigned to a certain SA. Those storage classes are meant to distinguish among
di�erent data management policies. The di�erent storage classes available are:

• Disk0-Tape1 D0T1: data migrated to tape and deleted from disk when the
staging area is full;

• Disk1-Tape0 D1T0: data always available on disk, never migrated to tape,
never deleted by the system;

• Disk1-Tape1 D1T1: large bu�er on disk with a tape back-end[58].

5.3 Storage accounting implementation

A table that has the �elds listed in Table 5.1 has been created on the HLR. The
name of the table is free but since it is user de�ned, it must start with sysDef. For
this reason the name sysDefStorageAccounting has been chosen.

Column name Type Primary
key

Can be
NULL

RecordIdentity char(64) Yes No
GlobalFileId char(512) No Yes
LocalFileId char(512) No Yes
GlobalGroup char(64) No Yes
GlobalUsername char(128) No Yes
LocalUserId char(64) No Yes
Charge �oat No Yes
Status char(64) No No
Host char(64) No No
SubmitHost char(64) No No
ProjectName char(64) No Yes
ProjectPartition char(64) No Yes
StorageType char(64) No Yes
ProtocolType char(64) No Yes
OperationType char(64) No Yes
Network int(10) No Yes
Disk int(10) No Yes
TimeDuration int(10) No Yes
TimeInstant int(10) No Yes
ServiceLevel char(64) No Yes

Table 5.1: UR used in the DGAS Storage Accounting

66
CHAPTER 5. STORAGE ACCOUNTING WITH DGAS AND

HLRMON

The records are then created on the SE and sent, to the HLR, with the command
(described in more detail in Appendix B):

glite-dgas-send-record <OPTIONS> [USAGE RECORD LIST]

According to the de�nition given in Table 4.2 in Chapter 4 a new table has
been created on a test HLR installed at INFN-CNAF. The �elds of this table are
those shown in Table 5.1. In this implementation the attribute SubmitHost is always
empty because the script that analyzes the SE gives simply an aggregate of the usage
utilization. In this case SubmitHost can not assume any value. More speci�cally,
also the GlobalFileId, LocalFileId, GlobalUsername, LocalUserId attributes are never
utilized for the same reason and their content is always empty but, for further
development, it is useful to have the table already able to accept all those attributes.
Also the attribute Charge has not been used at this time as the measurement of
the utilized storage space was the only parameter taken in consideration. In this
table the �eld Extension has not been used because not necessary in the current
implementation.

5.4 URs collection

In this prototype, the creation of the URs is demanded to a Python script (Appendix
B). It reads the storage information by contacting the top level BDII and creates the
URs for all the con�gured sites. This script creates records that have the attributes
discussed. This is a simpli�cation and a temporary solution as the records generated
do not have the accuracy of a true accounting system and they do not have precise
information about the single event e.g.: when the single �le was copied in the storage
and when it was deleted. However, they can be considered as aggregate records. For
those reasons it is also not possible to have any information on the accessed �les
and on the number of times those �les are accessed. The storage measured in the
current implementation is those used mostly by the LHC experiments. This means
that the �les are written once and read many times thus this can be considered an
acceptable approximation. Using this temporary solution it is possible to create and
test the infrastructure and in future, when specialized sensors for each SE will be
available, to collect the URs from those sensors. The specialized sensors will produce
URs directly on the site hosting the storage by parsing the logs of the SEs or the
database that contains the operation performed on the storage. The URs created
during the test which are sent to a the test HLR, a virtual machine with the latest
production version of the DGAS packages (v.3.4.0-23) installed on a Scienti�c Linux1

(SL) 4, 32 bit Linux distribution. The DGAS client is used to send the records to

1SL is a Linux release put together by Fermilab, CERN, and various other labs and universities
around the world. Its primary purpose is to reduce duplicated e�ort of the labs, and to have a
common install base for the various experimenters. The base SL distribution is basically Enterprise
Linux, recompiled from source[59].

5.5. HLRMON STORAGE INTERFACE 67

the HLR. It accept a list of attributes and values separated by a blank space. The
TimeDuration attribute can not be calculated from the actual events on the �les
but is measured as the time since the previous measure of the space consumed on
the SE. In this implementation, the RecordIdentity attribute is calculated using an
hashing function applied on the a combination of the GlobalGroup, ProjectName
and TimeInstant attributes. The corresponding command used to send an usage
record takes this form:

/opt/glite/libexec/glite-dgas-sendRecord -v 3 -s dgas-test-vm01.cnaf.infn.it -t sysDefStorageAccounting "ID=''"
"RecordIdentity='fa4e77d2286fd8f3d32dcd7cf9080e28019ac584'" "GlobalFileId=''" "LocalFileId=''" "GlobalGroup='INFN-T1""
"GlobalUsername=''" "LocalUserId=''" "Charge=''" "Status=''" "Host='storm-fe-archive.cr.cnaf.infn.it'" "SubmitHost=''"
"ProjectName='magic'" "ProjectPartition='magic:custodial:nearline'" "StorageType=''" "ProtocolType=''" OperationType=''"
"Network=''" "Disk='0'" "TimeDuration='33'" "TimeInstant='1300062872'" "ServiceLevel=''"

The options speci�ed sets the verbosity to level 3, the DGAS's HLR where the
records are sent to dgas-test-vm01.cnaf.infn.it and the table used to store the records
to sysDefStorageAccounting. An extra attribute is also present: ID. This is not an
attribute related to the UR but it is just needed for the particular implementation
of the DGAS table on the HLR. The script responsible for the generation of the
URs is available on Appendix B as well the script that take cares of the execution
of the DGAS's client. This script checks for the presence of URs in a con�gurable
place (UR directory). For each UR available it tries to send it to the HLR. In case
of failure it moves it in an error directory (UR error directory) or it removes it
otherwise. Errors could arise if the network connection between the client and the
HLR server is not present or e.g.: the HLR server is not accepting records. After
having removed the source of error it is su�cient to move the UR from the UR error
directory to the UR directory to have them reprocessed on the next execution of the
script.

5.5 HLRmon storage interface

HLRmon interface that already shows storage data collected by means of the simple
method described in Chapter 4, has been modi�ed to overcome the email method
used for collecting UR by querying the HLR and populate its internal database.
Figure 5.3 shows a screen shot of the storage web page. For each site, VO and SA,
a graph is produced using the URs provided by the HLR. The information on the
claimed usage in each graph is recorded in a separate table.

68
CHAPTER 5. STORAGE ACCOUNTING WITH DGAS AND

HLRMON

Figure 5.3: HLRmon storage accounting page

Chapter 6

Tests of DGAS implementation of

ActiveMQ

�Before software should be reusable, it should be usable.�
Ralph Johnson.

6.1 ActiveMQ

ActiveMQ is an open source (Apache 2.0 licensed) message broker which fully im-
plements the Java Message Service (JMS) 1.1. It provides �Enterprise Features� like
clustering, multiple message stores, and the ability to use any database as a JMS
persistence provider[60]. Its success is also due to the support to a large number
of programming languages: Java, C, C++, C#, Ruby, Perl, Python and PHP. It
consists of a host called broker that collects the messages produced by a series of
clients called producers. Those messages are grouped in di�erent channels divided
with a logic of some kind decided by the organization or by the system adminis-
trators. Another group of computers called consumers reads those messages and
might take decisions or produce some kind of output based on the content of the
consumed messages. In the last three years, the message system described has been
adopted as the standard transport protocol in the EGI-InSPIRE project. One of the
implementation of this transport mechanism is for the monitoring of the services. In
Figure 6.1, a schema of the messaging distribution for the Nagios monitoring system
is shown. The result of the tests that each regional instance of Nagios publishes on
the broker are then consumed by di�erent consumers. In the example, we can see the
ticketing interface, data warehouse and the alarm system. The same host that acts
as a consumer can be at the same time a producer and publish messages on another
channel. Because of its success it has been evaluated by di�erent groups and among
them, those dealing with the accounting. Both APEL and DGAS have planned the
migration to the ActiveMQ messaging system. The currently used DGAS's pro-
prietary system has been proved stable and performant but it can not provide the
interoperability needed with other accounting tools. The adoption of ActiveMQ in

69

70
CHAPTER 6. TESTS OF DGAS IMPLEMENTATION OF

ACTIVEMQ

conjunction with the use of a standard UR will allow the mix of di�erent sensors,
accounting system and the exchange of UR between them.

Figure 6.1: ActiveMQ implementation on Nagios[61]

6.2 DGAS implementation of ActiveMQ

The DGAS production team has decided to adopt ActiveMQ as the communication
mechanism for the di�erent components of the accounting system. The �rst step
is the implementation of ActiveMQ on the channel of communication between the
CEs and the HLR. In the following sections, tests are made in this new method of
communication between CEs and HLR will be presented. The next step will be to
implement and test the ActiveMQ communication between HLRs of di�erent levels
and from the HLR to the central repository at Cesga. This is the �rst implemen-
tation step and it is the most important because it should prove the feasibility of
an accounting system that relies on ActiveMQ as the transport layer. The migra-
tion to ActiveMQ will be gradual and the proprietary transport mechanism will be
supported until necessary. The tests on the ActiveMQ implementation and the the
coexistence of both communication methods (proprietary and ActiveMQ) has been
undertaken in a dedicated testbed. The results of those tests have been compared
to ensure the reliability of the new transport mechanism. The proprietary com-
munication protocol has been already widely tested and represent a good index of
performance. After a short description of the testbed, the tests that are made and
their results will be presented.

6.3. TESTBED SETUP 71

6.3 Testbed setup

To test the functionality of the new transport mechanism and the new version of
the HLR server, a dedicated testbed has been setup. Its con�guration is shown
of Table 6.1. The CE, the 2 WNs and the 2 HLRs have been installed at INFN-
CNAF while the two ActiveMQ servers were already installed one at INFN in Turin,
speci�cally for this tests, and one used as a general purpose and for tests at CERN.
The hosts installed at INFN-CNAF were all Virtual Machines (VMs) installed on
this hardware:

• Dual quad core Intel(R) Xeon(R) CPU E5520;

• 24 GB RAM;

• 2 hard disk SAS, 10.000 RPM, 300 GB con�gured with Redundant Array of
Independent Disks (RAID) 1.

Role OS

1 CE with ActiveMQ enabled sensors SL 5, 64 bit
2 WN SL 5, 64 bit
1 HLR with the latest production version, v.3.4.0-23 (with

legacy transport protocol)
SL 5, 32 bit

1 HLR prototype with ActiveMQ as transport protocol
v.3.4.1-0

SL 5, 32 bit

1 dedicated ActiveMQ Broker installed at INFN-Torino
1 general purpose ActiveMQ installed at CERN

Table 6.1: Testbed con�guration

The Operating System (OS) utilized for the computer hosting the VMs was SL 5,
64 bit. Each VM, has been virtualized using Kernel-based Virtual Machine1 (KVM).
With the use of KVM the need of real servers has been dramatically reduced and
the entire testbed, with the exception of the two brokers already active, has been
possible using only the computer described. Each VM has been con�gured with the
following features:

• 1 Virtual CPU core;

• 1 GB RAM;

• 1 10 GB hard disk2.

1KVM is a full virtualization solution for Linux on x86 hardware containing virtualization
extensions for Intel VT or AMD-V. It consists of a loadable kernel module, kvm.ko, that provides the
core virtualization infrastructure and a processor speci�c module, kvm-intel.ko or kvm-amd.ko[62].

2The virtual hard drive has been created using an LVM partition and, for better performances,

72
CHAPTER 6. TESTS OF DGAS IMPLEMENTATION OF

ACTIVEMQ

6.4 Test of ActiveMQ implementation

After the installation of the operating system on the real machine, the setup of
the virtualization software and the preparation of the virtual machines with the
OS speci�ed in Table 6.1, the middleware necessary for the tests has been installed
and con�gured. For the CE and the 2 WNs, the installation and con�guration
was accomplished using the standard YAIM pro�les for gLite 3.2[64]. After this
procedure, only an upgrade of the following packages, that includes the producer for
ActiveMQ, was necessary on the CE:

• glite-dgas-common-3.4.1-0.centos5.x86_64.rpm

• glite-dgas-hlr-clients-3.4.1-0.centos5.x86_64.rpm

For the two HLR, on the other hand, a speci�c pro�le was not available. For
this reason a manual installation of the RPM packages and a manual setup of the
con�guration �les has been required. The software packages installed in the standard
HLR were:

• glite-dgas-pa-clients-3.4.0-3.centos5

• glite-dgas-hlr-clients-3.4.0-12.centos5

• glite-dgas-hlr-service-3.4.0-23.centos5

• glite-dgas-common-3.4.0-4.centos5

While those for the HLR wiht ActiveMQ capability enabled were:

• glite-dgas-pa-clients-3.4.1-0.centos5

• glite-dgas-hlr-clients-3.4.1-0.centos5

• glite-dgas-hlr-service-3.4.1-0.centos5

• glite-dgas-common-3.4.1-0.centos5

In addition some other packages and their dependencies have been installed and
con�gured on the CE and on the ActiveMQ enabled HLR:

• autoconf, automake, libtool, cppunit-devel, cppunit, gcc-c++, gcc, e2fsprogs-
devel, expat-devel

virtio has been utilized both for disk access and for network emulation. Virtio is a Linux standard
for network and disk device drivers where just the guest's device driver �knows� it is running in a vir-
tual environment, and cooperates with the hypervisor. This enables guests to get high performance
network and disk operations, and gives most of the performance bene�ts of paravirtualization[63].

6.4. TEST OF ACTIVEMQ IMPLEMENTATION 73

This allowed the compilation and installation of the ActiveMQ libraries necessary
for the producer on the CE and the consumer on the HLR to run. Those steps are
described in more detail in Appendix C. The tests were divided into several rounds
to verify all the di�erent aspects and compare the two methods. Di�erent sets of
test to validate the communication, integrity, reliability and throughput evaluation
have been carried out. Plain text �rst and then Secure Socket Layer (SSL) enabled
transmission which provides the encryption with asymmetric keys to the single UR
transmitted have also been performed for all rounds.

6.4.1 CE - HLR ActiveMQ test

The purpose of the initial tests is to check the communication between the CE and
the ActiveMQ enabled HLR. The �rst thing to do is to ensure that the messages are
correctly produced on the CE and consumed on the HLR. To accomplish this, only
the consumer has been started on the HLR. The procedure starts all the standard
process necessary to the HLR and some that are new for the ActiveMQ enabled
HLR. glite_dgas_AMQRecordManager is one of them and should be terminated.
This allowed us to check that the UR were sent to the broker and then consumed
by the HLR. At this point all the accounting process on the CE could be started
and some job were submitted to the CE to produce some UR. Having terminated
the glite_dgas_AMQRecordManager process on the HLR, the accounting chain is
not complete and we veri�ed the content of the UR retrieved from the broker that
were present in this folder:
/tmp/dgasamq/

The �les contained in this directory were in plain text or encrypted in accord
with the con�guration on the CE and on the HLR. This is because it is not the
channel that is encrypted but the single UR. This is necessary to reach the required
con�dentiality for the information transferred to the broker. In fact the broker
could be outside the site that is producing those information or even in another
country. Encryption of each UR is obtained using the public key of the HLR of
destination allowing this HLR to be the only one able to access the content of the
UR. To switch between clear text and encrypted is su�cient to switch between the
two con�gurations and restart the services on the CE and the HLR.

6.4.2 Communication test with a user de�ned ActiveMQ topic

The purpose of this test is to verify that the site administrator can freely change the
topic used to publish the usage records and at the same time to set another channel
on the consumer HLR. This will be the case e.g. when a site administrator is setting
up an installation on its site and needs to use the speci�c channel assigned for his
site. This same channel should be set both on the producer and the consumer. The
test only required to change, on both con�guration �le on the CE and on the HLR,
of this attribute:

74
CHAPTER 6. TESTS OF DGAS IMPLEMENTATION OF

ACTIVEMQ

dgasAMQTopic = "DGAS.TEST"

to another value like this:
dgasAMQTopic = "DGAS.ACTIVEMQ"

A restart of the accounting services on both machine is the only operation needed.
The test has been performed once again with SSL disabled �rst and then enabled.

6.4.3 Integrity check

To perform this test the database needed to be cleaned. To do that the two databases
that contains the accounting information on both HLRs have been completely re-
moved and recreated using the scripts provided with the installation packages. The
aim of this test is in fact to verify that the content of the records stored on the
database, based on the URs produced, correspond exactly to those that are present
on the CE that in turn correspond to the number of jobs that are executed on the
WNs. The con�guration �le on the CE has been set in a way to publish the URs
on both HLRs. To do that the attribute:
res_acct_bank_id

dgas_sensors.conf �le on the CE has been set to point to the legacy HLR and
at the same time the con�guration for the ActiveMQ publisher has been added.
This allowed to publish the same URs on both HLR at the same time and allow a
simple comparison of the two databases. The test consisted in the submission of a
�xed number of jobs to the CE present on the testbed. In Appendix C, is the script
that sends a con�gurable number of jobs to the CE. The JDL job utilized was the
simple execution of the command /usr/bin/whoami. It was not important to have
heavy jobs on the WNs. Instead, it was only required the production of a certain
known number of URs. The entire process, submission, processing, execution on
the WNs and �nally the production of the URs sent to the HLRs required about
two days. After this period of time, about 10.000 of records about three quarter
without SSL and the rest with SSL enabled were present on both HLR The one
running the proprietary communication protocol and the one using ActiveMQ. The
test consisted in checking the number of job present in the two HLR and the sum of
the CPU time and Wall Clock Time for the two round of execution. In both cases
a subset of a dozen of jobs has been successfully checked in detail to ensure that all
the information present on the log �les of the batch system and the Grid logs agreed
with the information present in the correspondent UR recorded on the two HLRs.

6.4.4 Service reliability

This test was divided in several parts. Its purpose was to verify the reliability of the
services under normal utilization or in the event that one of its components became
inactive for any reason. One of the daemons could be dead or simply unavailable
for network problems. The tests performed are the followings:

6.4. TEST OF ACTIVEMQ IMPLEMENTATION 75

• all the services have been kept active for two days with normal submission
of jobs to the CE and consequent production of URs that were then sent to
the ActiveMQ HLR. This test is in fact the same as the previous because, as
before, the service was kept functional for two days under constant utilization.
For this reason it has not been repeated but the result of the previous test
have been considered valid also in this case;

• the same test as before has been performed but with the hlrd service turned o�
on both HLRs. This allowed to simulate a temporary freeze or unavailability
of this service. After two days the services were restored in both HLRs and
the URs started to be processed again. On the ActiveMQ enabled HLR this
allowed the consumer to retrieve the URs present on the broker while in the
production HLR the normal the URs were sent again and the corresponding
�le present in the folder dgasURBox started to be progressively processed;

• the last part of the test consisted on the simulation of the complete unavailabil-
ity of the HLRs. This circumstance has been very well tested on the production
HLR but was never tested on a ActiveMQ enabled HRL. After other two days
of normal activity on the CE and URs sent to the brokers, the services on the
new HLR have been restarted and the record were retrieved from the broker.

All the round of this test proved the reliability of the services also in the event
of malfunction.

6.4.5 Throughput evaluation

The purpose of the last test was to compare the proprietary transport mechanism
with the new one. This test requires, necessarily, to check the performances of the
HLR with the proprietary communication protocol for comparison. This is due to
the limitations of the testbed utilized. Even with good performances provided by
the KVM virtualization technology, the VMs used can not be compared to those
of a dedicated hardware that is normally used for a service of this kind. For this
reason the test using the standard HLR were �rst performed and then, with the
same number of jobs, the new version of DGAS using the two brokers available.
On the utilized testbed with only a CE e two WNs was not possible to put under
stress the transport layer. For those reasons three months worth of logs copied from
a INFN-T1's CE were utilized. The procedure required only a recon�guration of
the testbed CE to use those logs instead of the real ones produced by the software
installed. Even if the two CE were of di�erent type, the testbed was PBS while
the logs copied from the INFN-T1's CE were produced by LSF, this did not a�ect
the tests because the DGAS sensors only analyze the logs �le without checking
anything else. At this point it was su�cient to completely clean the database and
remove the �le corresponding to the attribute in collectorBu�erFileName on the
dgas_sensors.conf con�guration �le on the CE each time a new round of test were

76
CHAPTER 6. TESTS OF DGAS IMPLEMENTATION OF

ACTIVEMQ

started. This allows the sensors on the CE to reprocess all the logs as if they were
never processed before and obtain at the same time a reproducible behavior. In
all the cases analyzed, the sensors on the CE and all the other process were kept
running for 24 hours. The results of the tests are shown in Table 6.2. The test shows
that the ActiveMQ throughput is lower than the proprietary messaging system and
that the performances are not a�ected by the SSL encryption.

HLR SSL Broker # jobs received
by the HLR

ActiveMQ no Turin 165346
ActiveMQ yes Turin 163289
ActiveMQ yes CERN 168853
Legacy - - 328338

Table 6.2: Throughput test summary

6.5 Test's result analysis

The main problem during the installation of this new version of DGAS has been the
resolution of the packages' dependencies that required a very speci�c version of the
libraries. Wrong version of the packages would make the producer and the consumer
not run at all. The correct combination of version has been shown in Section 6.4
in this chapter and in Appendix C. All the tests described, with few exceptions
have been carried out using both ActiveMQ brokers, the one at INFN in Turin and
the one at CERN that were already installed. At the same time a production HLR
installed in the testbed was also used to compare the results of the two systems.
All the tests were successful and they showed that ActiveMQ transport mechanism
is as reliable as the proprietary transfer protocol. The encryption layer, that is
necessary when using a broker outside the site that produce the URs and in general
should be used to keep con�dentiality on the utilization of the resources, does not
a�ect the performance noticeably. In the test carried out the content of the URs
itself was always correct and in accordance with the proprietary system. At the
moment the only di�erence is on the performances that resulted to be noticeably
lower with the ActiveMQ method. The number of URs transferred from the CE to
the HLR in 24 hours with ActiveMQ is half of the number of URs transferred with the
proprietary method in the same period of time as shown if Table 6.2. We expected
some di�erences caused by the overhead due to the use of the new method but this
test can not be considered satisfying. However, all the other tests were positive,
the advantages in the use of ActiveMQ and the possibility to optimize the current
code we are optimistic that future versions will show an increase in performances.
It should be also noted that DGAS is an accounting system and not a monitoring
system thus even if the URs arrive with some delay this is not a problem. The

6.5. TEST'S RESULT ANALYSIS 77

most important thing is that they are all processed correctly as veri�ed with all the
other tests. Another less severe problem that arose during this study was the huge
amount of logs written on the CE's local disk by the producer, pushdAscii.log and
by the consumer on the HLR, dgas-hlr-amq-manager.log and hlr_qmgrd.log. Often
the size of the logs �lled the space available on the VMs in a very short amount of
time blocking all the operations. Special cronjobs have been set in place to rotate
those logs and restart the services when needed. Without those operations it would
have not been possible to continue the tests scheduled. Future version should allow
to set the verbosity of those log �les or give the choice of enable, for debugging
purpose, or disable them them when not needed. The results of those tests will also
be presented, in a poster, during the �EGI User Forum 2011� that will take place in
Vilniuls, Lithuania from the 11st to the 15th of April 2011[65].

Conclusions

The utilization of Grid technologies in di�erent �eld of research has greatly expanded
in the last few years and it is foreseeable that it will keep growing in the years
to come. In Chapter 1, an overview of some European projects with particular
emphasis to EGI-InSPIRE and the gLite middleware has been given. Those projects
are aimed to promote and develop an innovative and sustainable Grid. Grids are
composed of several di�erent services that must interact with each others. One of
the key aspects that is getting more and more attention is the accounting of the
utilized resources. Computational resources have been studied for some years now
and there are di�erent solutions available while accounting for storage resources has
just started to receive the deserved attention. In light of those problematic, the work
thesis focused, on Chapter 3, on the implementation of a system for the assessment of
the computational accounting provided by DGAS. This proved to be a useful activity
allowing the INFN-T1 and INFN-CNAF-LHCB sites to validate their accounting
data and to detect when problems arose after a miscon�guration. The focus on
Chapter 4, moved to the accounting systems for storage where the available tools
were shown along with some of their distinctive characteristics. In the same chapter,
the work continued with the de�nition of a standard UR for storage accounting and
a description of the features present in the current SE implementations. A series of
attributes has also been de�ned based on the information that are relevant to this
type of accounting. In Chapter 5, the work has been focused on the implementation
of a new accounting system for the storage using the previously given de�nitions.
Temporarily, this implementation relies on a top level BDII to build the URs. URs
generated are then collected using DGAS and visualized in a HLRmon web page.
This separation between the URs generation, the storing and the visualization is
an essential feature and will allow the implementation of new sensors that gather
the information necessary for the production of the URs directly on the SE. New
sensors will also provide more precise measurement and information e.g.: the users
owning the �le, number of times a �le has been accessed, etc. In Chapter 6, the
�nal focus of the thesis moved on the testing of the performances and reliability
of the latest release of DGAS. It is not a public release yet, but it is a �rst step
toward the migration to a standard communication protocol. Together, with the use
of a standard UR both for the storage and computation resources, it will ensure a
system that uses standard protocols and interfaces. The work done is an important
step toward the de�nition and implementation of a system of this type. It has been

79

80 CONCLUSIONS

proved the feasibility of a storage accounting system by de�ning a UR, developing
a general basic sensor for the SE and reusing some of the tools already available.
More development is required especially for the implementation of speci�c SE sensors
that can provide more detailed UR. Nevertheless, the work done demonstrate the
feasibility of this system. Once all the accounting systems will share the same
standard protocols for both communication and URs it will be possible to exchange
URs and mix di�erent components.

Glossary

A

Amazon EC2 Amazon Elastic Compute Cloud;
Amazon S3 Amazon Simple Storage Service;
APEL Accounting Processor for Event Logs;
API Application Programming Interface;

B

BDII Berkeley Database Information Index;

C

CE Computing Element;
CERN Conseil Européen pour la Recherche Nucléaire (Euro-

pean Laboratory for Particle Physics);
CESGA Centro de Supercomputación de Galicia;
CNAF Centro Nazionale per la Ricerca e Sviluppo nelle Tec-

nologie Informatiche e Telematiche;
CPT CPU time;
CPU Central Processing Unit;
CREAM CE Computing Resource Execution And Management CE;
CSV Comma Separated Value;

D

DataTAG Data TransAtlantic Grid;
DESY Deutsches Elektronen-Synchrotron;
DGAS Distributed Grid Accounting System;
DN Distinguished Name;
DPM Disk Pool Manager;

81

82 GLOSSARY

E

EDG European DataGrid;
EDGeS Enabling Desktop Grids for e-Science;
EGEE Enabling Grids for E-Science in Europe;
EGI-InSPIRE European Grid Initiative - Integrated Sustainable Pan-

European Infrastructure for Researchers in Europe)
;

F

FNAL Fermi National Accelerator Laboratory;
FQAN Fully Quali�ed Domain Name;
FQN Fully Quali�ed Name;
FTP File Transfer Protocol;
FTS File Transfer Service;

G

GGUS Global Grid User Support;
GLUE Grid Laboratory for a Uniform Environment;
GLUE-WG GLUE - Working Group;
GPFS General Parallel File System;
GUID Grid Unique IDenti�er;

H

HEP High Energy Physics;
HLR Home Location Register;
HTML HyperText Markup Language;
HSM Hierarchical Storage Management;

I

ICE Interface to CREAM Environment;
IGI Italian Grid Initiative;
INFN Istituto Nazionale di Fisica Nucleare;
INFN CA INFN Certi�cation Authority;
IS Information System;
iVDGL International Virtual Data Grid Laboratory;

GLOSSARY 83

J

JDL Job Description Language;
JMS Java Message Service;

K

KVM Kernel-based Virtual Machine;

L

LB Logging & Bookkeeping;
LCG LHC Computing Grid;
lcgCE LHC Computing Grid CE;
LDAP Lightweight Directory Access Protocol;
LDIF LDAP Data Interchange Format;
LFC Local File Catalog;
LFN Logical File Name;
LHC Large Hadron Collider;
LHCb LHC beauty experiment;
LRMS Local Resource Management System;
LSF Load Sharing Facility;
LVM Logical Volume Manager;

M

MAC Media Access Control;
MoU Memorandum of Understanding;

N

NGI National Grid Initiative;
NMR Nuclear Magnetic Resonance;

O

OGF Open Grid Forum;
OS Operating System;

84 GLOSSARY

P

pNFS perfectly Normal File System;
PHP PHP Hypertext Preprocessor;
PBS Portable Batch System;

R

RAL Rutherford Appleton Laboratory;
RAID Redundant Array of Independent Disks;
REST Representational State Transfer;
ROC Regional Operation Center;
RPM RPM Package Manager;

S

SA Storage Area;
SAGE Storage Accounting for Grid Environments;
SAN Storage Area Network;
SGAS SweGrid Accounting System;
SGE Sun Grid Engine;
SIENA Standards and Interoperability for eInfrastructure Im-

plementation Initiative;
SL Scienti�c Linux;
SRM Storage Resource Manager;
SSL Secure Socket Layer;
StoRM Storage Resource Manager;
SQL Structured Query Language;
SURL Storage URL;

T

TURL Transport URL;

GLOSSARY 85

U

UI User Interface;
UMD Uni�ed Middleware Roadmap;
UNICORE Uniform Interface to Computing Resources;
UR-FR UR - Format Recommendation;
UR-WG Usage Record - Working Group;
URL Uniform Resource Locator;
UUID Universally Unique IDenti�er;

V

VM Virtual Machine;
VO Virtual Organization;
VOMS VO Membership Service;

W

WeNMR Worldwide e-Infrastructure for NMR and structural bi-
ology;

WLCG Worldwide LCG;
WMS Workload Management System;
WTC Wall Clock Time;

X

XML eXtensible Markup Language;

Y

YAIM YAIM Ain't an Installation Manager;

List of Tables

1.1 Number of active VOs and users for each VO[10] 9

4.1 GridPP Storage Accounting System: recorded values 38
4.2 Record attributes description . 50

5.1 UR used in the DGAS Storage Accounting 65

6.1 Testbed con�guration . 71
6.2 Throughput test summary . 76

87

List of Figures

1.1 Layers classi�cation on Grid . 6
1.2 EGI-InSPIRE timeline . 8
1.3 National Grid Initiatives . 9
1.4 Number of job in the EGEE and EGI-InSPIRE[12] 10
1.5 gLite architecture . 11
1.6 GENIUS Portal . 12
1.7 BDII update schema . 14
1.8 BDII hierarchy schema . 14
1.9 WMS job �ow . 15
1.10 File name in gLite and their relation 17

2.1 DGAS layers[23] . 21
2.2 DGAS sensor schema for a CE[25] . 22
2.3 DGAS sensor example schema 1[26] 23
2.4 DGAS sensor example schema 2[26] 24
2.5 DGAS sensor example schema 3[26] 25
2.6 HLRmon Architecture[27] . 25
2.7 HLRmon computational resources[29] 27

3.1 cross-check script relationships . 31
3.2 cross-check web interface[31] . 33
3.3 Service Status Details For Service Group DGAS[32] 34

4.1 GridPP storage accounting web interface 39
4.2 HLRmon storage accounting web interface[35] 41
4.3 Example of a �le created and deleted but not reported by most of the

accounting systems . 44
4.4 Time and network dependent way in which a �le might be uploaded

on a SE . 45
4.5 The area represents the disk energy required to store a �le 46

5.1 Accounting work�ow[55] . 61
5.2 Storage accounting toolkit . 62
5.3 HLRmon storage accounting page . 68

89

90 LIST OF FIGURES

6.1 ActiveMQ implementation on Nagios[61] 70

D.1 Implementing a National grid accounting infrastructure with DGAS[26]120
D.2 Storage accounting with DGAS and HLRmon[66] 121

Appendix A

cross-check scripts

A.1 Generic scripts for data retrieval

populate_db.sh

#!/bin/bash

source ./conf_site/populate_db_site.conf
source ./conf/populate_db.conf
source ./conf/update_tables.conf

cd $BASEDIR

case "$1" in
hlr)

$QUERY_DIR/populate_hlr.sh 2>&1 $LOGDIR/$LOGFILE_HLR
;;

redeye)
$QUERY_DIR/populate_redeye.sh 2>&1 $LOGDIR/$LOGFILE_REDEYE

;;

batch)
$QUERY_DIR/populate_batch.sh 2>&1 $LOGDIR/$LOGFILE_BATCH

;;

all)
$QUERY_DIR/populate_hlr.sh 2>&1 $LOGDIR/$LOGFILE_HLR
$QUERY_DIR/populate_redeye.sh 2>&1 $LOGDIR/$LOGFILE_REDEYE
$QUERY_DIR/populate_batch.sh 2>&1 $LOGDIR/$LOGFILE_BATCH

;;

*)
echo $"Usage: $0 {hlr|redeye|batch|all}"

exit 1
esac

update_db.sh

#!/bin/bash

source ./conf_site/update_tables_site.conf
source ./conf/update_tables.conf

cd $BASEDIR

case "$1" in
hlr)

$QUERY_DIR/update_hlr_table.sh 2>&1 $LOGDIR/$HLR_LOG
;;

91

92 APPENDIX A. CROSS-CHECK SCRIPTS

batch)
$QUERY_DIR/update_batch_table.sh 2>&1 $LOGDIR/$BATCH_LOG

;;

redeye)
$QUERY_DIR/update_redeye_table.sh 2>&1 $LOGDIR/$REDEYE_LOG

;;

all)
$QUERY_DIR/update_batch_table.sh 2>&1 $LOGDIR/$BATCH_LOG
$QUERY_DIR/update_hlr_table.sh 2>&1 $LOGDIR/$HLR_LOG
$QUERY_DIR/update_redeye_table.sh 2>&1 $LOGDIR/$REDEYE_LOG

;;

*)
echo $"Usage: $0 {hlr|batch|redeye|all}"

exit 1

esac

A.2 Generic scripts data insert in the database

The populate_db.sh and update_tables.sh are run every night with the cronjob:

0 6 * * * cd /home/cristofori/cross_check_INFN_CNAF_LHCB/ && ./populate_db.sh all && ./update_tables.sh all

update_db.conf

HLR settings (Default: 10 get, 10 delete) (should be the same)
export INTERVAL_HLR_GET=10
export INTERVAL_HLR_DELETE=10

HLR local settings
export DIR_HLR=/tmp
export FILENAME_HLR=$DIR_HLR/"hlr_"$SITE"_`date +%F`.csv"
export LOGFILE_HLR=log_query_hlr.log

REDEYE settings (Default: 10 get, 10 delete)
export INTERVAL_REDEYE_GET=10 #(should be the same as $INTERVAL_REDEYE_DELETE in update_tables.conf)

REDEYE local settings
export DIR_REDEYE=/tmp
export FILENAME_REDEYE=$DIR_REDEYE/"redeye_"$SITE"_`date +%F`.csv"
export LOGFILE_REDEYE=log_query_redeye.log

BATCH local setting
export DIR_BATCH=/tmp
export FILENAME_BATCH=$DIR_BATCH/"batch_"$SITE"_`date +%F`.csv"
export LOGFILE_BATCH=log_query_batch.log

GLOBAL setting
export QUERY_DIR=$BASEDIR/query
export QUERY_SITE_DIR=$BASEDIR/query_site

update_tables.conf

BATCH local setting
export BATCH_LOG=update_batch_table.log
export INTERVAL_BATCH_VIEW_DEL=120

HLR settings
export HLR_LOG=update_hlr_table.log
export INTERVAL_HLR_VIEW_UPDATE=10
export INTERVAL_HLR_VIEW_DEL=7

A.3. CONFIGURATION FILES 93

REDEYE settings
export REDEYE_LOG=update_redeye_table.log
export INTERVAL_REDEYE_DELETE=10 #(should be the same as $INTERVAL_REDEYE_GET in populate_db.conf)

GLOBAL setting
export YESTERDAY=`date --date="1 day ago" "+%Y-%m-%d"`
export QUERY_DIR=$BASEDIR/query
export QUERY_SITE_DIR=$BASEDIR/query_site

A.3 Con�guration �les

populate_db_site.conf

#!/bin/bash

COMMON SETTINGS
export BASEDIR="/home/cristofori/cross_check_INFN_CNAF_LHCB" # Check This!!!
export LOGDIR=$BASEDIR/log

Local database
export DBHOST=localhost
export DBNAME=cross_check_INFN_CNAF_LHCB # Check This!!!
export DBUSER=cross_check
export DBPASS=ch3ck
export SITE="INFN-CNAF-LHCB" # Check This!!!

HLR database
export HLRHOST=hlr-t1.cr.cnaf.infn.it
export HLRNAME=hlr
export HLRUSER=*****
export HLRPASS=*****

REDEYE database
export REDEYEHOST=log3.cnaf.infn.it
export REDEYENAME=accounting
export REDEYEUSER=*****
export REDEYEPASS=*****

update_tables_site.conf

COMMON SETTINGS
export BASEDIR=/home/cristofori/cross_check_INFN_CNAF_LHCB # Check this!!!
export LOGDIR=$BASEDIR/log

Local database
export DBHOST=localhost
export DBNAME=cross_check_INFN_CNAF_LHCB # Check this!!!
export DBUSER=*****
export DBPASS=*****
export SITE=INFN-CNAF-LHCB # Check this!!!

A.4 Generic database populate scripts

populate_batch.sh

#!/bin/bash

echo "###########################" >>$LOGDIR\/$LOGFILE_BATCH
echo `date "+%Y-%m-%d %T"` >>$LOGDIR\/$LOGFILE_BATCH
echo "###########################" >>$LOGDIR\/$LOGFILE_BATCH

#Get the data for the last 10 days from the HLR and save them in $FILENAME_BATCH

94 APPENDIX A. CROSS-CHECK SCRIPTS

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "LOAD DATA LOCAL INFILE \
'$FILENAME_BATCH' \
IGNORE \
INTO TABLE \

batch \
FIELDS TERMINATED BY ';' \
(endtime, \
lrmsid, \
userid, \
vo, \
que, \
starttime, \
cputime, \
walltime, \
subhost); \

show warnings" >> $LOGDIR\/$LOGFILE_BATCH

#Set the SITE name for the new jobs

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "UPDATE \
batch \

set \
site='$SITE' \

where \
site=''; \

show warnings" >> $LOGDIR\/$LOGFILE_BATCH

#Set walltime to 0 where start time is 0 and the wall time is bigger than 1 month (job cancelled)

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "update \
batch \

set \
walltime=0 \

where \
starttime=0 and \
walltime/(3600*24) > 30" >> $LOGDIR\/$LOGFILE_BATCH

###End Common part
#Execute site-specific query

$QUERY_SITE_DIR/populate_batch_site.sh

populate_hlr.sh

#!/bin/bash

echo "###########################" >>$LOGDIR\/$LOGFILE_HLR
echo `date "+%Y-%m-%d %T"` >>$LOGDIR\/$LOGFILE_HLR
echo "###########################" >>$LOGDIR\/$LOGFILE_HLR

#Get the data for the last 10 days from the HLR and save them in $FILENAME_HLR

mysql --skip-column-names -B -s --database $HLRNAME -h $HLRHOST -u $HLRUSER -p$HLRPASS -e "select \
DATE(enddate), \
siteName, \
userVo, \
count(*) as NJobs, \
sum(cpuTime)/3600 as cpuTime, \
sum(wallTime)/3600 as wallTime, \
voOrigin \

from \
jobTransSummary \

where \
DATE(enddate)>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_HLR_GET' day) and \
DATE(enddate) < DATE(CURDATE()) and \
siteName='$SITE' \

group by \
date(enddate), \
userVo, \
voOrigin, \

A.4. GENERIC DATABASE POPULATE SCRIPTS 95

siteName" > $FILENAME_HLR

#Delete HLR data for last 10 days

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "delete \
from \

hlr \
where \

DATE(date)>=DATE_SUB(CURDATE(), INTERVAL '$INTERVAL_HLR_DELETE' day) and \
DATE(date) < CURDATE() and\
SITE='$SITE'; show warnings" >> $LOGDIR\/$LOGFILE_HLR

#Import last 10 days data from HLR

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "LOAD DATA LOCAL INFILE \
'$FILENAME_HLR' \
INTO TABLE \

hlr \
FIELDS TERMINATED BY '\t' \
LINES TERMINATED BY '\n' \
(DATE, \
SITE, \
VO, \
NJOBS, \
CPUTIME, \
WALLTIME,
VOORIGIN); \

show warnings" >> $LOGDIR\/$LOGFILE_HLR

###End Common part
#Execute site-specific query

$QUERY_SITE_DIR/populate_hlr_site.sh

populate_redeye.sh

#!/bin/bash

echo "###########################" >>$LOGDIR\/$LOGFILE_REDEYE
echo `date "+%Y-%m-%d %T"` >>$LOGDIR\/$LOGFILE_REDEYE
echo "###########################" >>$LOGDIR\/$LOGFILE_REDEYE

#Get the data for the last 10 days from REDEYE and save them in $FILENAME_REDEYE

mysql --skip-column-names -B -s --database $REDEYENAME -h $REDEYEHOST -u $REDEYEUSER -p$REDEYEPASS -e "select \
DATE(date), \
queue, \
njobs, \
cpt_hours, \
wct_hours, \
'$SITE'

from \
all_jobs \

where \
date>=DATE_SUB(CURDATE(), INTERVAL '$INTERVAL_REDEYE_GET' day) and \
date < CURDATE() and \
queue not in \

('ams', \
'babar', \
'babar_build', \
'babar_objy', \
'babar_xxl', \
'babar_test', \
'lost_and_found', \
'pps', \
'quarto', \
'Tier1', \
'wnod')" > $FILENAME_REDEYE;

96 APPENDIX A. CROSS-CHECK SCRIPTS

#Delete REDEYE data for last $INTERVAL_REDEYE_DELETE

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "delete \
from \

redeye \
where \

DATE(date)>=DATE_SUB(CURDATE(), INTERVAL '$INTERVAL_REDEYE_DELETE' day) and \
DATE(date) < CURDATE(); \

show warnings" >> $LOGDIR\/$LOGFILE_REDEYE

#Import last 10 days data from REDEYE

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "LOAD DATA LOCAL INFILE \
'$FILENAME_REDEYE' \
INTO TABLE \

redeye \
FIELDS TERMINATED BY '\t' \
LINES TERMINATED BY '\n' \
(DATE, \
QUEUE, \
NJOBS, \
CPUTIME, \
WALLTIME, \
SITE); \

show warnings" >> $LOGDIR\/$LOGFILE_REDEYE

###End Common part
#Execute site-specific query

$QUERY_SITE_DIR/populate_redeye_site.sh

A.5 Generic database update scripts

update_batch_table.sh

#!/bin/bash

echo "###########################" >>$LOGDIR\/$BATCH_LOG
echo `date "+%Y-%m-%d %T"` >>$LOGDIR\/$BATCH_LOG
echo "###########################" >>$LOGDIR\/$BATCH_LOG

export YESTERDAY=`date --date="1 day ago" "+%Y-%m-%d"`

#Delete the last days informations
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "UPDATE \

batch_grouped \
SET

njobs=0, \
cputime=0, \
walltime=0 \

where \
date>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_BATCH_VIEW_DEL' day) and \
site='$SITE';

show warnings" >> $LOGDIR\/$BATCH_LOG

#Update the batch_grouped table with the aggregate values
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "REPLACE INTO \

batch_grouped \
(date, \
vo, \
queue, \
njobs, \
cputime, \
walltime, \
site) \

SELECT \
date(from_unixtime(endtime)) as date, \

A.5. GENERIC DATABASE UPDATE SCRIPTS 97

vo, \
que as queue, \
count(*) as njobs, \
sum(cputime)/3600 as cputime, \
sum(walltime)/3600 as walltime, \
site \

FROM \
batch \

WHERE \
que<>'pps' and \
vo<>'unknown' \

group by \
date, \
vo, \
que, \
site; \

show warnings" >> $LOGDIR\/$BATCH_LOG

###End Common part
#Execute site-specific table query

$QUERY_SITE_DIR/update_batch_table_site.sh

update_hlr_table.sh

#!/bin/bash

echo "###########################" >>$LOGDIR\/$HLR_LOG
echo `date "+%Y-%m-%d %T"` >>$LOGDIR\/$HLR_LOG
echo "###########################" >>$LOGDIR\/$HLR_LOG

#Delete hlr_local_view table record for the last 7
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "DELETE \

FROM \
hlr_local_view \

where
date>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_HLR_VIEW_DEL' day); \

show warnings" >> $LOGDIR\/$HLR_LOG

#Update and insert hlr_local_view record for the last 10 days with the aggregate values
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "REPLACE INTO \

hlr_local_view \
(date, \
vo, \
njobs, \
cputime, \
walltime, \
site) \

SELECT \
date, \
vo, \
sum(njobs) as njobs, \
sum(cputime) as cputime, \
sum(walltime) as walltime, \
site \

FROM \
hlr \

WHERE \
voorigin='map' and\
date>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_HLR_VIEW_UPDATE' day)

group by \
date, \
vo, \
site; \

show warnings" >> $LOGDIR\/$HLR_LOG

#Delete hlr_grid_view table record for the last 7
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "DELETE \

FROM \
hlr_grid_view \

98 APPENDIX A. CROSS-CHECK SCRIPTS

where
date>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_HLR_VIEW_DEL' day); \

show warnings" >> $LOGDIR\/$HLR_LOG

#Update and insert hlr_grid_view record for the last 10 days with the aggregate values
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "REPLACE INTO \

hlr_grid_view \
(date, \
vo, \
njobs, \
cputime, \
walltime, \
site) \

SELECT \
date, \
vo, \
sum(njobs) as njobs, \
sum(cputime) as cputime, \
sum(walltime) as walltime, \
site \

FROM \
hlr \

WHERE \
(voorigin='fqan' or voorigin='pool') and\
date>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_HLR_VIEW_UPDATE' day)

group by \
date, \
vo, \
site; \

show warnings" >> $LOGDIR\/$HLR_LOG

#Delete hlr_all_view table record for the last 7
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "DELETE \

FROM \
hlr_all_view \

where
date>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_HLR_VIEW_DEL' day); \

show warnings" >> $LOGDIR\/$HLR_LOG

#Update and insert hlr_all_view record for the last 10 days with the aggregate values
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "REPLACE INTO \

hlr_all_view \
(date, \
vo, \
njobs, \
cputime, \
walltime, \
site) \

SELECT \
date, \
vo, \
sum(njobs) as njobs, \
sum(cputime) as cputime, \
sum(walltime) as walltime, \
site \

FROM \
hlr \

WHERE \
date>=DATE_SUB(CURDATE(),INTERVAL '$INTERVAL_HLR_VIEW_UPDATE' day)

group by \
date, \
vo, \
site; \

show warnings" >> $LOGDIR\/$HLR_LOG

###End Common part
#Execute site-specific table query

$QUERY_SITE_DIR/update_hlr_table_site.sh

update_redeye_table.sh

#!/bin/bash

A.6. SITE SPECIFIC DATABASE POPULATE SCRIPTS 99

echo "###########################" >>$LOGDIR\/$REDEYE_LOG
echo `date "+%Y-%m-%d %T"` >>$LOGDIR\/$REDEYE_LOG
echo "###########################" >>$LOGDIR\/$REDEYE_LOG

###End Common part
#Execute site-specific table query

$QUERY_SITE_DIR/update_redeye_table_site.sh

A.6 Site speci�c database populate scripts

populate_batch_site.sh

#Site-specific query for the batch record

populate_hlr_site.sh

#Site-specific query for the hlr record

#Rename vo pillhcb in lhcb
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "UPDATE \

hlr \
SET \

VO='lhcb' \
WHERE \

VO='pillhcb'; \
show warnings" >> $LOGDIR\/$LOGFILE_HLR

populate_redeye_site.sh

#Site-specific query for the redeye record

A.7 Site speci�c database update scripts

update_batch_table_site.sh

#Site-specific query for the batch table

#Create empty lines for YESTERDAY
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "INSERT IGNORE INTO \

batch_grouped \
(date, \
vo, \
queue, \
njobs, \
cputime, \
walltime, \
SITE)

VALUES \
('$YESTERDAY', \"lhcb\", '', 0, 0, 0, \"$SITE\"); \

show warnings" >> $LOGDIR\/$BATCH_LOG

#Rename queue dteam in ops
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "UPDATE \

batch_grouped \

100 APPENDIX A. CROSS-CHECK SCRIPTS

SET \
VO='ops' \

WHERE \
VO='dteam'; \

show warnings" >> $LOGDIR\/$BATCH_LOG

update_hlr_table_site.sh

#Site-specific query for the hlr table

#Rename queue dteam in ops
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "UPDATE \

hlr \
SET \

VO='ops' \
WHERE \

VO='dteam'; \
show warnings" >> $LOGDIR\/$REDEYE_LOG

update_redeye_table_site.sh

#Site-specific query for the redeye table

#Delete the records non belonging to INFN-CNAF-LHCB

mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "delete from\
redeye \

where \
DATE(date)>=DATE_SUB(CURDATE(), INTERVAL '$INTERVAL_REDEYE_DELETE' day) and \
queue not in\

('lhcb_tier2', \
'cert_t2')" >> $LOGDIR\/$REDEYE_LOG

#Rename queue lhcb_tier2 in lhcb
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "UPDATE \

redeye \
SET \

QUEUE='lhcb' \
WHERE \

QUEUE='lhcb_tier2'; \
show warnings" >> $LOGDIR\/$REDEYE_LOG

#Rename queue cert_t2 in cert
mysql -vv --database $DBNAME -h $DBHOST -u $DBUSER -p$DBPASS -e "UPDATE \

redeye \
SET \

QUEUE='ops' \
WHERE \

QUEUE='cert_t2'; \
show warnings" >> $LOGDIR\/$REDEYE_LOG

A.8 CE scripts

convert-batch_log.sh

#!/bin/bash

export SITE=INFN-T1 #Check this!!!
export BASEDIR=/root/lsf-analysis/INFN-T1 #Check this!!!

export BATCH_BASEDIR=/usr/share/lsf/work/tier1-lsf/dgas/Tier1/ #Check this!!!
export FILENAME=batch.acct #Check this!!!

export YESTERDAY=`date --date='2 days ago' +%Y-%m-%d`
export TODAY=`date +%Y-%m-%d`

export BATCH_SCRIPT=lsfCheck.pl #Check this!!!

A.8. CE SCRIPTS 101

export LOG_FILE=convert-batch.log

cd $BASEDIR

INFN-T1

cat ${BATCH_BASEDIR}/lsb.acct.1 ${BATCH_BASEDIR}/lsb.acct.2 > ${BASEDIR}/${FILENAME} #Check this!!!

${BASEDIR}/${BATCH_SCRIPT} ${FILENAME} \'${YESTERDAY}\' \'${TODAY}\' >> ${BASEDIR}/${LOG_FILE}

scp ${BASEDIR}/all_lsb_acct.txt root@gstore.cnaf.infn.it:/tmp/batch_${SITE}_`date +%F`.csv >> ${BASEDIR}/${LOG_FILE} #Check this!!!

lsfCheck.pl

This script extract the UR information from LSF batch system log �les. The initial
development of the script has been made by Riccardo Brunetti[67].

#!/usr/bin/perl

use Text::ParseWords;
use Time::Local;
#use strict;

my $i = 0;
my $cpuTime = 0;
my $wallTime = 0;
my $line;

($yyyy, $mm, $dd) = $ARGV[1] =~ /(\d+)-(\d+)-(\d+)/;
calculate epoch seconds at midnight on that day in this timezone
$epoch_seconds = timelocal(0, 0, 0, $dd, $mm-1, $yyyy);
my $begints=$epoch_seconds;
print "$begints\n";

($yyyy, $mm, $dd) = $ARGV[2] =~ /(\d+)-(\d+)-(\d+)/;
calculate epoch seconds at midnight on that day in this timezone
$epoch_seconds = timelocal(0, 0, 0, $dd, $mm-1, $yyyy);
my $endts=$epoch_seconds;
print "$endts\n";

$mindate = $endts;
$maxdate = $begints;

open(OUTPUT, "> all_lsb_acct.txt");
open(FILE, $ARGV[0]) || &error("Error: Cannot open configuration file: $ARGV[0]\n");

while($line = <FILE>)
{

&parseUR_lsf($line,$i);
}

while (($key,$value) = each(%njobsVO)) {
print "Number of jobs of $key is $value\n";

}
while (($key,$value) = each(%cpuTimeVO)) {

print "Total cpuTime of $key is $value\n"
}
while (($key,$value) = each(%wallTimeVO)) {

print "Total wallTime of $key is $value\n"
}
while (($key,$value) = each(%njobsVOzero)) {

print "Number of jobs with zero time for $key is $value\n"
}
while (($key,$value) = each(%njobsVOnotQueue)) {

print "Number of jobs in different queue for $key is $value\n"
}
print "Mindate = $mindate; Maxdate = $maxdate\n";

sub parseUR_lsf
{

my @ARRAY = split(" " , $_[0]);
if ((scalar(@ARRAY) > 3) && ($ARRAY[0] eq "\"JOB_FINISH\"")) {
#print "$_[1]:";

my $URString = $_[0];
my @new = quotewords(" ", 0, $URString);
if ($new[2] >= $begints && $new[2] < $endts) {

$mindate = $new[2] if ($new[2] <= $mindate);
$maxdate = $new[2] if ($new[2] >= $maxdate);
my $shift1 = $new[22];
my $shift2 = $new[23+$shift1];

102 APPENDIX A. CROSS-CHECK SCRIPTS

#$urAcctlogInfo{server}=$new[16].".".$domainName;
attention: LSF log might already contain a complete hostname
(with domain name) ...
cross-check, instead of just adding the CE's domain name:

my $user=$new[11];
my $queue=$new[12];
$VO = findVO($user);
$njobsVO{$VO}++;
if ($queue ne $VO) {

$njobsVOnotQueue{$VO}++;
}

we now know the user's UNIX login, try to find out the group, that
isn't available in the LSF log file:

my $lrmsId=$new[3];
if ($new[28+$shift2] == -1) {

indicates that the value is not available!
$new[28+$shift2]=0;

}
if ($new[29+$shift2] == -1) {

indicates that the value is not available!
$new[29+$shift2]=0;

}
if ($new[10] == 0 && $new[28+$shift2] == 0 && $new[29+$shift2] == 0) {

job startTime is zero; happens if job was cancelled before executing?
in this case we consider wallTime = 0 and cpuTime = 0 is it correct?

$njobsVOzero{$VO}++;
$cpuTime = 0;
$wallTime = 0;

} else {
$cpuTime=int($new[28+$shift2])+int($new[29+$shift2]);
$wallTime = $new[2]-$new[10]; # are we sure?

}
$cpuTimeVO{$VO} += $cpuTime;
$wallTimeVO{$VO} += $wallTime;
my $start=$new[10];
my $end=$new[2];
#if ($VO eq "ops") {
printf OUTPUT "$new[2];$lrmsId;$user;$VO;$queue;$start;$cpuTime;$wallTime;$new[16]\n";
#}
$_[1]++;

}
}

}

sub findVO {

Finding the VO from the username of the job submitter.
The following combinations are admitted:
1) ^(.*)sgm$ ex: alicesgm
2) ^(.*)prd$ ex: aliceprd
3) ^(.*)sgm\d{3}$ ex: alicesgm001
4) ^(.*)prd\d{3}$ ex: aliceprd001
5) ^pil(.*)\d{3}$ ex: pilatlas001
6) ^pil(.*)$ ex: pilatlas
7) ^sgm(.*)\d{3}$ ex: sgmalice001
8) ^prd(.*)\d{3}$ ex: prdalice001
9) ^sgm(.*)$ ex: sgmalice
10) ^prd(.*)$ ex: prdalice
11) ^(.*)\d{3}$ ex: alice001

my $VO = "unknown";
my $user = $_[0];
if ($user =~ /^(.*)sgm$/ || $user =~ /^(.*)prd$/

|| $user =~ /^(.*)sgm\d{3}$/ || $user =~ /^(.*)prd\d{3}$/
|| $user =~ /^sgm(.*)\d{3}$/ || $user =~ /^prd(.*)\d{3}$/
|| $user =~ /^pil(.*)\d{3}$/ || $user =~ /^pil(.*)$/
|| $user =~ /^sgm(.*)$/ || $user =~ /^prd(.*)$/
|| $user =~ /^(.*)\d{3}$/) {

$VO = $1;
}
return ($VO);

}

It is run every night with the following cronjob:

0 1 * * * /root/lsf-analysis/INFN-T1/convert-batch_log.sh >> /root/lsf-analysis/INFN-T1/convert-lsf_log.log

pbsCheck.pl

This script extract the UR information from PBS batch system log �les. The initial
development of the script has been made by Riccardo Brunetti[67].

A.8. CE SCRIPTS 103

#!/usr/bin/perl

use Text::ParseWords;
use Time::Local;
#use strict;

my $line;

($yyyy, $mm, $dd) = $ARGV[1] =~ /(\d+)-(\d+)-(\d+)/;
calculate epoch seconds at midnight on that day in this timezone
$epoch_seconds = timelocal(0, 0, 0, $dd, $mm-1, $yyyy);
my $begints=$epoch_seconds;
print "$begints\n";

($yyyy, $mm, $dd) = $ARGV[2] =~ /(\d+)-(\d+)-(\d+)/;
calculate epoch seconds at midnight on that day in this timezone
$epoch_seconds = timelocal(0, 0, 0, $dd, $mm-1, $yyyy);
my $endts=$epoch_seconds;
print "$endts\n";

$mindate = $endts;
$maxdate = $begints;

open(OUTPUT, "> all_pbs_acct.txt");
open(FILE, $ARGV[0]) || &error("Error: Cannot open configuration file: $ARGV[0]\n");

while($line = <FILE>)
{

&parseUR_pbs($line,$i);
}

while (($key,$value) = each(%njobsVO)) {
print "Number of jobs of $key is $value\n";

}
while (($key,$value) = each(%cpuTimeVO)) {

print "Total cpuTime of $key is $value\n"
}
while (($key,$value) = each(%wallTimeVO)) {

print "Total wallTime of $key is $value\n"
}
while (($key,$value) = each(%njobsVOzero)) {

print "Number of jobs with zero time for $key is $value\n"
}
while (($key,$value) = each(%njobsVOnotQueue)) {

print "Number of jobs in different queue for $key is $value\n"
}
print "Mindate = $mindate; Maxdate = $maxdate\n";

sub parseUR_pbs
{

my $start=0;
my $cpuTime = 0;
my $wallTime = 0;
my $lrmsId = 0;
my $user = "";
my $queue = "";
my $VO = "";
my $subhost = "";
my %elements = ();

my @inarray = split(";" , $_[0]);
if ($inarray[1] eq "E") {

$strange = 0;
$lrmsId=$inarray[2];
my @inarraydata = split(" ", $inarray[3]);
foreach $value (@inarraydata) {

my @tmp = split("=",$value);
$elements{$tmp[0]} = $tmp[1];

}
$start = $elements{"start"};
$end = $elements{"end"};
$user = $elements{"user"};
$queue = $elements{"queue"};
$VO = findVO($user);
$njobsVO{$VO}++;
if ($queue ne $VO) {

$njobsVOnotQueue{$VO}++;
}
if (exists($elements{"resources_used.cput"})) {

my @inarraycputime = split(":",$elements{"resources_used.cput"});
$cpuTime = $inarraycputime[0]*3600 + $inarraycputime[1]*60 + $inarraycputime[2];

} else {
$strange = 1;

}
if (exists($elements{"resources_used.walltime"})) {

my @inarraywalltime = split(":",$elements{"resources_used.walltime"});
$wallTime = $inarraywalltime[0]*3600 + $inarraywalltime[1]*60 + $inarraywalltime[2];

} else {

104 APPENDIX A. CROSS-CHECK SCRIPTS

$strange = 1;
}

$subhost = $elements{"exec_host"};

if ($start == 0) {
$njobsVOzero{$VO}++;
$cpuTime = 0;
$wallTime = 0;

}
if ($end >= $begints && $end < $endts && $strange==0) {

$mindate = $end if ($end <= $mindate);
$maxdate = $end if ($end >= $maxdate);
$cpuTimeVO{$VO} += $cpuTime;
$wallTimeVO{$VO} += $wallTime;
printf OUTPUT "$end;$lrmsId;$user;$VO;$queue;$start;$cpuTime;$wallTime;$subhost\n";

}
}

}

sub findVO {

Finding the VO from the username of the job submitter.
The following combinations are admitted:
1) ^(.*)sgm$ ex: alicesgm
2) ^(.*)prd$ ex: aliceprd
3) ^(.*)sgm\d{3}$ ex: alicesgm001
4) ^(.*)prd\d{3}$ ex: aliceprd001
5) ^sgm(.*)\d{3}$ ex: sgmalice001
6) ^prd(.*)\d{3}$ ex: prdalice001
7) ^sgm(.*)$ ex: sgmalice
8) ^prd(.*)$ ex: prdalice
9) ^(.*)\d{3}$ ex: alice001

my $VO = "unknown";
my $user = $_[0];
if ($user =~ /^(.*)sgm$/ || $user =~ /^(.*)prd$/

|| $user =~ /^(.*)sgm\d{3}$/ || $user =~ /^(.*)prd\d{3}$/
|| $user =~ /^sgm(.*)\d{3}$/ || $user =~ /^prd(.*)\d{3}$/
|| $user =~ /^sgm(.*)$/ || $user =~ /^prd(.*)$/
|| $user =~ /^(.*)\d{3}$/) {

$VO = $1;
}
return ($VO);

}

A.9 cross-check populate tables

Following are the commands used to create the di�erent tables used to store the
records present in the CSV �les.

hlr

This table contains the records retrieved from the HLR server with the popu-
late_hlr.sh script and then updated with the populate_hlr_site.sh script. The
information is already aggregated by day and VO.

CREATE TABLE hlr (
DATE date not null,
SITE char(50),
VO char (100),
NJOBS integer,
CPUTIME float,
WALLTIME float

);

A.10. CROSS-CHECK UPDATE TABLES 105

redeye

This table contains the records retrieved from the Redeye server with the popu-
late_redeye.sh script and then updated with the populate_redeye_site.sh script.
The information is already aggregated by day and VO and is directly used for the
information shown on the web interface.

CREATE TABLE redeye (
DATE date not null,
QUEUE char(50),
NJOBS integer,
CPUTIME float,
WALLTIME float,
SITE char(50),
primary key (DATE,QUEUE,SITE)

);

batch

This table contains the records retrived from the Redeye server with the popu-
late_redeye.sh script and then updated with populate_redeye_site.sh. Each record
correspond to a single job accounted.

CREATE TABLE batch (
endtime integer(32) NOT NULL,
lrmsid integer NOT NULL,
userid varchar(255) NOT NULL default '',
vo varchar(255) NOT NULL default '',
que varchar(255) NOT NULL default '',
starttime integer(32) NOT NULL,
cputime integer NOT NULL,
walltime integer NOT NULL,
subhost varchar(255) NOT NULL default '',
site varchar(50) NOT NULL default '',
primary key (lrmsid, starttime, vo)

) ENGINE=MyISAM;

A.10 cross-check update tables

Following are the commands used to create the di�erent tables and views used to
store and access the records resulting from the processing of the previous shown
tables. The last view, daily_view_rounded, is the one used by the web interface.

hlr_local_view

This table contains the daily and VO aggregated records for DGAS accounting
system for the local resources.

CREATE TABLE hlr_local_view (
DATE date not null,
SITE char(50),
VO char (100),
NJOBS integer,
CPUTIME float,
WALLTIME float,
primary key (DATE,VO,SITE)

);

106 APPENDIX A. CROSS-CHECK SCRIPTS

hlr_grid_view

This table contains the daily and VO aggregated records for DGAS accounting
system for the Grid resources.

CREATE TABLE hlr_grid_view (
DATE date not null,
SITE char(50),
VO char (100),
NJOBS integer,
CPUTIME float,
WALLTIME float,
primary key (DATE,VO,SITE)

);

hlr_all_view

This table contains the daily and VO aggregated records for DGAS accounting
system for the Grid and local resources aggregated.

CREATE TABLE hlr_all_view (
DATE date not null,
SITE char(50),
VO char (100),
NJOBS integer,
CPUTIME float,
WALLTIME float,
primary key (DATE,VO,SITE)

);

batch_grouped

This table contains the daily and VO aggregated records for the batch log analysis.

CREATE TABLE batch_grouped (
date DATE,
VO char(255),
queue char(255),
njobs integer,
cputime float,
walltime float,
site varchar(50)

) ENGINE=MyISAM;

batch_view

This view makes a proper aggregation of the information contained in the batch_grouped
table.

CREATE VIEW
batch_view (

date,
vo,
njobs,
cputime,
walltime,
site

) as
SELECT

date,
vo,
sum(njobs),
sum(cputime),
sum(walltime),
site

FROM

A.10. CROSS-CHECK UPDATE TABLES 107

batch_grouped
GROUP BY

date,
vo,
site;

daily_view_rounded

This view aggregates records coming from hlr_local_view, hlr_grid_view, hlr_all_view,
redeye and batch_view. It is the only view used by the web interface and contains all
the necessary data including the calculated di�erences between the three systems.

CREATE VIEW
daily_view_rounded (

DATE,
VO,
HLR_local_jobs,
HLR_grid_jobs,
HLR_all_jobs,
REDEYE_jobs,
BATCH_jobs,
DIFF_njobs_hlrall_redeye,
DIFF_njobs_hlrall_batch,
DIFF_njobs_redeye_batch,
HLR_local_walltime,
HLR_grid_walltime,
HLR_all_walltime,
REDEYE_walltime,
BATCH_walltime,
DIFF_walltime_hlrall_redeye,
DIFF_walltime_hlrall_batch,
DIFF_walltime_redeye_batch,
HLR_local_cputime,
HLR_grid_cputime,
HLR_all_cputime,
REDEYE_cputime,
BATCH_cputime,
DIFF_cputime_hlrall_redeye,
DIFF_cputime_hlrall_batch,
DIFF_cputime_redeye_batch,
SITE

) as
select

batch_view.date as date,
batch_view.vo as vo,
hlr_local_view.njobs as HLR_local_jobs,
hlr_grid_view.njobs as HLR_grid_jobs,
hlr_all_view.njobs as HLR_all_jobs,
redeye.njobs as REDEYE_jobs,
batch_view.njobs as BATCH_jobs,
round(((hlr_all_view.njobs-redeye.njobs)/redeye.njobs)*100, 2) as DIFF_njobs_hlrall_redeye,
round(((hlr_grid_view.njobs-batch_view.njobs)/batch_view.njobs)*100, 2) as DIFF_njobs_hlrall_batch,
round(((redeye.njobs-batch_view.njobs)/batch_view.njobs)*100, 2) as DIFF_njobs_redeye_batch,
round(hlr_local_view.walltime, 2) as HLR_local_walltime,
round(hlr_grid_view.walltime, 2) as HLR_grid_walltime,
round(hlr_all_view.walltime, 2) as HLR_all_walltime,
round(redeye.walltime, 2) as REDEYE_walltime,
round(batch_view.walltime, 2) as BATCH_walltime,
round(((hlr_all_view.walltime-redeye.walltime)/redeye.walltime)*100, 2) as DIFF_walltime_hlrall_redeye,
round(((hlr_grid_view.walltime-batch_view.walltime)/batch_view.walltime)*100, 2) as DIFF_walltime_hlrall_batch,
round(((redeye.walltime-batch_view.walltime)/batch_view.walltime)*100, 2) as DIFF_walltime_redeye_batch,
round(hlr_local_view.cputime, 2) as HLR_local_cputime,
round(hlr_grid_view.cputime, 2) as HLR_grid_cputime,
round(hlr_all_view.cputime,2) as HLR_all_cputime,
round(redeye.cputime, 2) as REDEYE_cputime,
round(batch_view.cputime, 2) as BATCH_cputime,
round(((hlr_all_view.cputime-redeye.cputime)/redeye.cputime)*100, 2) as DIFF_cputime_hlrall_redeye,
round(((hlr_grid_view.cputime-batch_view.cputime)/batch_view.cputime)*100, 2) as DIFF_cputime_hlrall_batch,
round(((redeye.cputime-batch_view.cputime)/batch_view.cputime)*100, 2) as DIFF_cputime_redeye_batch,
batch_view.site

from
(((batch_view

LEFT JOIN
hlr_local_view on (hlr_local_view.vo=batch_view.vo and hlr_local_view.date=batch_view.date and hlr_local_view.site=batch_view.site))

LEFT JOIN
hlr_grid_view on (hlr_grid_view.vo=batch_view.vo and hlr_grid_view.date=batch_view.date and hlr_grid_view.site=batch_view.site))

LEFT JOIN
hlr_all_view on (hlr_all_view.vo=batch_view.vo and hlr_all_view.date=batch_view.date and hlr_all_view.site=batch_view.site))

LEFT JOIN
redeye on (redeye.queue=batch_view.vo and redeye.date=batch_view.date and batch_view.site=redeye.site)

order by

108 APPENDIX A. CROSS-CHECK SCRIPTS

date,
vo;

Appendix B

Scripts for Storage Accounting

B.1 DGAS Send Record client

This is the DGAS Send Record client provided with the DGAS packages and used
to send the custom storage URs to the HLR:

${GLITE_LOCATION}/libexec/glite-dgas-sendRecord

which has the following syntax:

DGAS Send Record client
Author: Andrea Guarise <andrea.guarise@to.infn.it>
Version:0.13.2.0
Usage:

glite-dgas-send-record <OPTIONS> [USAGE RECORD LIST]
Where options are:
-h --help Display this help and exit.
-v --verbosity <verbosity> (0-3) default 3 maximum verbosity
-s --server <HLR contact> Contact string of the Site HLR.
-t --table <HLR table> table on the HLR.

The HLR an PA contact strings have the form: "host:port:host_cert_subject".

[voStorageRecords USAGE RECORD LIST]:
["timestamp=<int>"] "vo=<string>" "voDefSubClass=<string>"
"storage=<string>" "storageSubClass=<string>" "usedBytes=<int>"
"totalBytes=<int>"

B.2 voStorageAccounting table

This table, created on a test HLR, contains the custom URs discussed on Chapter
5:

CREATE TABLE sysDefStorageAccounting (
ID bigint(20) not null auto_increment, key(ID),
RecordIdentity char(64) not null, primary key(RecordIdentity),
GlobalFileId char(512),
LocalFileId char(512),
GlobalGroup char(64),
GlobalUsername char(128),
LocalUserId char(64),
Charge float,
Status char(64) not null,
Host char(64) not null,
SubmitHost char(64),
ProjectName char(64),
ProjectPartition char(64),
StorageType char(64),

109

110 APPENDIX B. SCRIPTS FOR STORAGE ACCOUNTING

ProtocolType char(64),
OperationType char(64),
Network int(10),
Disk int(10),
TimeDuration int(10),
TimeInstant int(10),
ServiceLevel char(64)

);

B.3 retrieve_info_sys_new.py

This script generates the URs for the system tested in Chapter 5.

#!/usr/bin/env python

##
#
Python client to query an ldap server (gLite top bdii)
and retrieve info about the GlueSubClusterLogicalCPUs
attribute value.
Originally written by:
Giuseppe Misurelli
giuseppe.misurelli@cnaf.infn.it
Peter Solagna
peter.solagna@pd.infn.it
#
Last modification: Oct 14th, 2009
#
#
Adapted for the creation of UR for Storage Accounting by:
Enrico Fattibene
enrico.fattibene@cnaf.infn.it
Andrea Cristofori
andrea.cristofori@cnaf.infn.it
#
Last modification: Mar 04th, 2011
#
##

import ldap, os, sys, time, hashlib

#
#PARSING CONF FILE
#

fconf='./retrieve_info_sys_new.conf' #temporary solution
f=open(fconf,'r')
content=f.readlines()
f.close()
string_to_exec = ""

for l in content:
if l[0]=='#' or l.find('=') <= 0: continue
string_to_exec += l #exec l.rstrip('\n')

exec string_to_exec # In this way it's possible to write configuration directives in more than one line. Peter.

Main function that execute all the functions defined
def main():

Server bdii to bind
server_uri = top_bdii
global l
l = ldap.initialize(server_uri)

try:
Functions that will be invoked and executed
out_list = infoSys_query(l)
commands = generate_ur(out_list)

except ldap.LDAPError, e:
print "LDAP ERROR:"
print e

for command in commands:
print command

def daystamp (today_yesterday):
if today_yesterday == 1:

unixtime = int(time.time() - 60*60*24)
else:

B.3. RETRIEVE_INFO_SYS_NEW.PY 111

unixtime = int(time.time())
return unixtime

Searching for accounting information published by sites
def infoSys_query(l):

res_dict = {}

output_list = []
for site_name_search in sites:

Querying info system for a single site.
search_scope = ldap.SCOPE_SUBTREE
timeout = 15
site_used_space = 0
site_vo = 0
site_sa = 0
site_host = 0
try:

result_id = l.search("mds-vo-name=" + site_name_search + ",mds-vo-name=local,o=grid", search_scope, search_filter, search_attribute)
result_set = []

print result_id

site_dict = {}
n = 0
while 1:

site_dict[n] = {}
result_type, result_data = l.result(result_id, 0, timeout)
if result_data == []:

break
else:

if result_type == ldap.RES_SEARCH_ENTRY:
become_list = list(result_data[0])
The list contains: a first element that is the search parameters, and the second that is a dictionary with the\

output values.
grab_dict = become_list[1]
We need to convert in number the strings got from ldap:
try:

int_usedspace = int(grab_dict['GlueSAUsedOnlineSize'][0])
except ValueError:

int_usedspace = 0
try:

str_vo = str(grab_dict['GlueSAAccessControlBaseRule'][0])
except ValueError:

str_vo = ''
try:

str_sa = str(grab_dict['GlueSALocalID'][0])
except ValueError:

str_sa = ''
try:

str_host = str(grab_dict['GlueChunkKey'][0])
except ValueError:

str_host = ''

The site storage information:
site_used_space = int_usedspace
site_vo=str.replace(str_vo, 'VO:', '')
site_sa=str_sa
site_host=str.replace(str_host, 'GlueSEUniqueID=', '')

Build a dictionary for this site:
site_dict[n]['Site'] = site_name_search
site_dict[n]['Host'] = str(site_host)
site_dict[n]['VO'] = str(site_vo)
site_dict[n]['SA'] = str(site_sa)
site_dict[n]['UsedSpace'] = str(site_used_space)
site_dict[n]['RecordIdentity'] = hashlib.sha1(site_dict[n]['Site']+site_dict[n]['VO']+str(daystamp(0))).hexdigest()
output_list.append(site_dict[n])
n += 1

except ldap.LDAPError, e:
print "LDAP ERROR: "
print e

return output_list

Generating the usage record files
def generate_ur(input_list):

today_stamp = daystamp(0)
yesterday_stamp = daystamp(1)

try:
time_file = open(buffer_time_instant_file, 'r')
instant = time_file.read()
time_file.close()

except IOError, e:
time_duration=0

112 APPENDIX B. SCRIPTS FOR STORAGE ACCOUNTING

print "READ ERROR: "
print e

else:
try:

time_duration=today_stamp-int(instant)
except ValueError, e:

time_duration=0
print "VALUE ERROR: "
print e

ur_line_list = []
n = 0
for single_dict in input_list:

ur_line="RecordIdentity=%s GlobalFileId= LocalFileId= GlobalGroup=%s GlobalUsername= LocalUserId= Charge='' Status= Host=%s SubmitHost=\
ProjectName=%s ProjectPartition=%s StorageType= ProtocolType= OperationType= Network='' Disk='%s' TimeDuration='%s' TimeInstant='%s'\
ServiceLevel="%(single_dict['RecordIdentity'], single_dict['Site'], single_dict['Host'], single_dict['VO'],\
single_dict['SA'], single_dict['UsedSpace'], time_duration, today_stamp)

output = open(output_file_path + prefix_name + str(today_stamp) + "-" + single_dict['RecordIdentity'], 'w')
output.write(ur_line)
output.close()
ur_line_list.append(ur_line)
n += 1

try:
time_file = open(buffer_time_instant_file, 'w')
time_file.write(str(today_stamp))
time_file.close()

except IOError, e:
print "WRITE ERROR: "
print e

return ur_line_list

if __name__=='__main__':
main()

Its con�guration �le, retrieve_info_sys_new.conf :

Empty lines or starting withs # are skipped
Multiple lines are allowed, respecting python syntax.

sites = ["INFN-MILANO-ATLASC","INFN-BARI"]
top_bdii = "ldap://gridit-bdii-01.cnaf.infn.it:2170"

search_filter = "objectClass=GlueSA"
search_attribute = ["GlueSAUsedOnlineSize","GlueSAAccessControlBaseRule",\ "GlueSALocalID","GlueChunkKey","GlueSAName"]

buffer_time_instant_file = "/home/GUEST/cristofori/testStorage/bufferTimeInstant"
output_file_path = "/home/GUEST/cristofori/testStorage/"
prefix_name = "testStorage-"

It needs a Python interpreter and the following additional libraries if not installed
already:

python-ldap
python-hashlib

B.4 push_sa-ur.sh

This script is responsible for the execution of the DGAS client and the error handling:

#!/bin/bash

source ./push_sa-ur.conf

/opt/globus/bin/grid-proxy-init -cert /etc/grid-security/hostcert.pem -key /etc/grid-security/hostkey.pem

for i in $SAUR_DIR/$PREFIX*; do

echo $i

ATTRIBUTES=`cat $i`

$PUSH_COMMAND -v $VERBOSITY -s $HOST_NAME -t $TABLE_NAME "ID=''" $ATTRIBUTES >> $LOG_FILE

B.4. PUSH_SA-UR.SH 113

EXIT_STATUS=$?
if [$EXIT_STATUS != 0]; then

echo `date +"%F %T"` $EXIT_STATUS - ERROR, moving $i to $SAUR_ERRDIR dir >> $LOG_FILE_ERR
mv $i $SAUR_ERRDIR

else
echo `date +"%F %T"` $EXIT_STATUS - OK, removing $i >> $LOG_FILE
rm $i

fi
done;

Its con�guration �le, push_sa-ur.conf :

export PUSH_COMMAND=/opt/glite/libexec/glite-dgas-sendRecord

export SAUR_DIR=/home/GUEST/cristofori/testStorage # Check this
export SAUR_ERRDIR=$SAUR_DIR/ERR
export PREFIX="testStorage-" # Check this

export VERBOSITY=3
export HOST_NAME=dgas-test-vm01.cnaf.infn.it
export TABLE_NAME=sysDefStorageAccounting

export LOG_DIR=$SAUR_DIR/log
export LOG_FILE=$LOG_DIR/push_sa-ur.log
export LOG_FILE_ERR=$LOG_DIR/push_sa-ur_ERR.log

Appendix C

ActiveMQ test scripts

C.1 Compilation and installation

C.1.1 APR

APR: apr-1.3.12.tar.gz

• tar zxvf apr-1.3.12.tar.gz

• cd apr-1.3.12

• ./con�gure

• make

• make install

C.1.2 APR-util

APR-util: apr-util-1.3.9.tar.gz

• tar zxvf apr-util-1.3.9.tar.gz

• cd apr-util-1.3.9

• ./con�gure

• make

• make install

115

116 APPENDIX C. ACTIVEMQ TEST SCRIPTS

C.1.3 ACTIVEMQ

ACTIVEMQ: activemq-cpp-library-3.1.0-src.tar.gz

• tar zxvf activemq-cpp-library-3.1.0-src.tar.gz

• cd activemq-cpp-library-3.1.0

• On the CE: ./con�gure �pre�x=/opt/activemq/lib/

• On the HLR AMQ: ./con�gure �pre�x=/usr/local/lib/

• make

• make install

• ldcon�g

C.2 CE con�gurations

On the CE, the con�guration �le $GLITE_LOCATION/etc/dgas_sensors.conf has
been set with those extra parameters:

printAsciiLog = "yes"
asciiLogFilePath = "/opt/glite/var/log/pushdAscii.log"
amqBrokerUri = "URI del broker AMQ"
transportLayer = "legacy;amq"
recordComposer = "/opt/glite/libexec/glite_dgas_recordComposer"
amqProducer = "/opt/glite/libexec/glite_dgas_hlrProducer"
dgasAMQTopic = "DGAS.TEST"

to enable SSL the parameter amqProducer has been changed with:

amqProducer = "openssl smime -binary -encrypt HLR_public_certificate.pem | /opt/glite/libexec/glite_dgas_hlrProducer"

C.3 HLR con�gurations

On the HLR the con�guration �le $GLITE_LOCATION/dgas-activemq-consumer.conf
has been edited with the following parameters:

lockFileName = "/opt/glite/var/dgas-hlr-amq-consumer.lock"
logFileName = "/opt/glite/var/dgas-hlr-amq-consumer.log"
amqBrokerUri = "URI del broker AMQ"
recordsDir = "/tmp/dgasamq/"
dgasAMQTopic = "DGAS.TEST"
hlr_user = "root"
dgas_var_dir = "/opt/glite/var/"

managerLockFileName = "/opt/glite/var/dgas-hlr-amq-manager.lock"
messageParsingCommand = "cat MESSAGEFILE"
AMQRecordsDir = "/tmp/dgasamq/"

managerLogFileName = "/opt/glite/var/dgas-hlr-amq-manager.log"

#Those parameters are the same present in dgas_hlr.conf
hlr_sql_server = "localhost"
hlr_sql_user = "root"
hlr_sql_password = "database password"
hlr_sql_dbname = "hlr database"
hlr_tmp_sql_dbname = "hlr_tmp database"

C.4. JOB SUBMISSION SCRIPT 117

to enable SSL the parameter messageParsingCommand has been changed as
following:

messageParsingCommand = "cat MESSAGEFILE |
openssl smime -decrypt -inkey /etc/grid-security/hostkey.pem -keyform PEM -recip /etc/grid-security/HLR_private_key.pem"

C.4 Job submission script
#!/bin/bash

COUNTER=0
while [$COUNTER -lt $1]; do

echo Sending the job number $COUNTER
let COUNTER=COUNTER+1

glite-wms-job-submit -o jobs.txt -c wms_grid_lab.conf -r dgas-test-vm03.cnaf.infn.it:8443/cream-pbs-cert -a test.jdl
sleep 12

done

C.5 JDL for the test job
[
Executable = "/usr/bin/whoami";
StdOutput = "hnam.out";
StdError = "hnam.err";
OutputSandBox = {"hnam.out", "hnam.err"};
OutputSandbox = {"stderr.log", "stdout.log"};
LBAddress = "lb007.cnaf.infn.it:9000";
]

Appendix D

Publications

Following is a collection of posters related to the accounting and, in particular, on
DGAS, that have been presented in di�erent occasions. During the last three years,
in which I participated both with my personal contribution of contents and on the
preparation of the poster itself.

119

120 APPENDIX D. PUBLICATIONS

Figure D.1: Implementing a National grid accounting infrastructure with DGAS[26]

121

Figure D.2: Storage accounting with DGAS and HLRmon[66]

Bibliography

[1] The nist de�nition of cloud computing. Website. "http://csrc.nist.gov/

groups/SNS/cloud-computing/cloud-def-v15.doc".

[2] George D. Greenwade. Egee-iii project publishable summary. Website,
2010. "http://www.eu-egee.org/fileadmin/documents/publications/EGEEIII_

Publishable_summary.pdf".

[3] Ibm solutions grid for business partners: Helping ibm business partners to grid-
enable applications for the next phase of e-business on demand., 2002. U.S.A.

[4] I. Foster. What is the grid? a three point checklist, July 2002.

[5] What is grid computing? "http://www.gridcafe.org/version1/whatisgrid/

whatis.html".

[6] Enabling desktop grids for e-science. "http://www.edges-grid.eu/".

[7] Unicore uniform interface to computing resources. "http://www.unicore.eu/".

[8] European grid initiative design study. Website. "http://web.eu-egi.eu/".

[9] What is egi? Website. "http://web.eu-egi.eu/about/about/".

[10] Registered egee vos. Website. "http://cic.gridops.org/index.php?section=

home&page=volist".

[11] Production total number of countries connected to egi per date. Website. "http:
//www3.egee.cesga.es/gridsite/metrics/CESGA/tree_rcs.php".

[12] Egi accountin portal. Website. "http://www3.egee.cesga.es/gridsite/

accounting/CESGA/egee_view.php".

[13] Umd roadmap. Website. "https://documents.egi.eu/secure/ShowDocument?

docid=272".

[14] Virtual organization membership service. Website. "https://twiki.cnaf.infn.
it/twiki/bin/view/VOMS/WebHome".

123

124 BIBLIOGRAPHY

[15] Genius portal - overview. Website. "http://egee.cesnet.cz/cms/export/sites/
egee/en/user/genius-guide.pdf".

[16] glite 3.1 user guide. Website. "https://edms.cern.ch/file/722398/1.3/

gLite-3-UserGuide.html".

[17] Berkeley database information index. Website. "https://twiki.cern.ch/twiki/
bin/view/EGEE/BDII".

[18] Welcome to the globus toolkit homepage. Website. "http://www.globus.org/

toolkit/".

[19] Cream ce home page. Website. "http://grid.pd.infn.it/cream/".

[20] T. Sandholm, P. Gardfjaell, E. Elmroth, L. Johnsson, and O. Mulmo. An
OGSA-based accounting system for allocation enforcement across HPC cen-
ters. In Proceedings of the 2nd international conference on Service oriented
computing, pages 279�288. ACM, 2004.

[21] R. Byrom, R. Cordenonsi, L. Cornwall, M. Craig, A. Djaoui, A. Duncan,
S. Fisher, J. Gordon, S. Hicks, D. Kant, et al. APEL: An implementation
of Grid accounting using R-GMA. In UK e-Science All Hands Conference,
2005.

[22] About us | deploying and unifying the nmr e-infrastructure in system biology.
Website. "http://www.e-nmr.eu/eNMR-about-us".

[23] Dgas distributed grid accounting system. Website. "http://www.to.infn.it/

dgas/".

[24] Yaim home. Website. "http://www.yaim.info/".

[25] Dgas guide. Website. "http://www.to.infn.it/grid/INFNGRID/TESTING/

TESTING/files/Documentation/DGAS-guied_0_6_1.htm".

[26] A. Guarise; S. Bagnasco; R. Brunetti; A. Cristofori; S. Dal Pra; E. Fattibene;
P. Veronesi; L. Gaido; G. Misurelli; G. Patania; P. Solagna. Implementing
a national grid accounting infrastructure with dgas. Proceeding of EGEE'09
Conference; Barcellona 21st to 25th September 2010.

[27] SD Pra, E. Fattibene, G. Misurelli, F. Pescarmona, and L. Gaido. HLRmon: a
role-based grid accounting report web tool. In Journal of Physics: Conference
Series, volume 119, page 052012. IOP Publishing, 2008.

[28] Mysql. Website. "http://dev.mysql.com/".

[29] Hlrmon home page. Website. "https://dgas.cnaf.infn.it/hlrmon/".

BIBLIOGRAPHY 125

[30] Monitoring@cnaf. Website. "http://tier1.cnaf.infn.it/monitor/".

[31] Check incrociato dgas - redeye - batch. Website. "https://cert-wms-05.cnaf.
infn.it:8443/cross_check_INFN_CNAF_LHCB/".

[32] Service status details for service group dgas. Website. "https://gstore.cnaf.

infn.it/nagios/cgi-bin/status.cgi?servicegroup=DGAS&style=detail".

[33] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya, M. Mambelli, JM Schopf,
M. Viljoen, A. Wilson, and R. Zappi. GLUE Schema Speci�cation�version 1.3.
OGF: https://forge. gridforum. org/sf/go/doc14185, 2005.

[34] Storage accounting - gridppwiki. Website. "http://www.gridpp.ac.uk/wiki/

StorageAccounting".

[35] Hlrmon home page. Website. "https://dgas.cnaf.infn.it/hlrmon/".

[36] F. Scibilia. Accounting of Storage Resources in gLite Based Infrastructures.
16th IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE 2007), Paris, pages 273�278.

[37] Bittorrent.org. Website. "http://www.bittorrent.org/beps/bep_0003.html".

[38] Amazon elastic compute cloud (amazon ec2). Website. "http://aws.amazon.

com/ec2/".

[39] Amazon s3 pricing. Website. "http://aws.amazon.com/s3/pricing/".

[40] M. Cao, T.Y. Tso, B. Pulavarty, S. Bhattacharya, A. Dilger, and A. Tomas.
State of the art: Where we are with the ext3 �lesystem. In Proc. of the Linux
Symposium. Citeseer.

[41] Xfs: A high-performance journaling �lesystem. Website. "http://oss.sgi.com/
projects/xfs/".

[42] General parallel �le system. Website. "http://www-03.ibm.com/systems/

software/gpfs/".

[43] Lustre. Website. "http://www.lustre.org/".

[44] dcache - main page. Website. "http://www.dcache.org/".

[45] The perfectly normal �le system. Website. "http://www-pnfs.desy.de/".

[46] Chapter 25. accounting. Website. "http://www.dcache.org/manuals/Book-1.9.
10/cookbook/cb-accounting.shtml".

[47] Postgresql: The world's most advanced open source database. Website. "http:
//www.postgresql.org/".

126 BIBLIOGRAPHY

[48] Chapter 22. postgresql and dcache. Website. "http://www.dcache.org/manuals/
Book-1.9.5/cookbook/cb-postgres.shtml".

[49] Dpm - grid data management. Website. "https://svnweb.cern.ch/trac/lcgdm/
wiki/Dpm".

[50] Dpm log �le tracing. Website. "http://www.dcache.org/manuals/Book/start/

in-additional.shtml".

[51] Graphtool overview. Website. "http://t2.unl.edu/documentation/graphtool".

[52] Dpm monitoring. Website. "http://www.gridpp.ac.uk/wiki/DPM_Monitoring".

[53] Ral tier1 castor accounting. Website. "http://www.gridpp.ac.uk/wiki/RAL_

Tier1_CASTOR_Accounting".

[54] home [storm]. Website. "http://storm.forge.cnaf.infn.it/home".

[55] Features. Website. "http://www.to.infn.it/dgas/features/features.html".

[56] Dgas guide. Website. "http://www.to.infn.it/grid/INFNGRID/TESTING/

TESTING/files/Documentation/DGAS-guied_0_6_1.htm".

[57] Usage of glue schema v1.3 for wlcg installed capacity in-
formation. Memo. "https://twiki.cern.ch/twiki/pub/LCG/

WLCGCommonComputingReadinessChallenges/WLCG_GlueSchemaUsage-1.8.pdf".

[58] Storage. Website. "http://web.infn.it/argo/index.php/produzione-/

storage".

[59] Welcome to scienti�c linux (sl). Website. "https://www.scientificlinux.org/".

[60] Apache activemq. Website. "http://activemq.apache.org/".

[61] Using activemq at cern. "http://fusesource.com/collateral/download/82/".

[62] Main page - kvm. Website. "http://www.linux-kvm.org/".

[63] libvirt virtualization api. Website. "http://wiki.libvirt.org/page/Virtio".

[64] Infngrid installation and con�guration guide for glite 3.2 sl5 x86_64.
Website. "http://igrelease.forge.cnaf.infn.it/doku.php?id=doc:guides:

install-3_2".

[65] M. Bencivenni; R. Brunetti; A. Cristofori; E. Fattibene; L. Gaido; A.Guarise; G.
Patania. Dgas implementation of activemq transport mechanism. EGI User
Forum 2011, Vilniuls, Lithuania from the 11st to 15th April 2011.

BIBLIOGRAPHY 127

[66] S. Bagnasco; R. Brunetti; A. Cristofori; S. Dal Pra; E. Fattibene; L. Gaido; A.
Guarise; G. Misurelli; G. Patania; P. Solagna; P. Veronesi. Storage accounting
with dgas and hlrmon.

[67] Riccardo Brunetti. Infn torino.

128 BIBLIOGRAPHY

