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Abstract. The steady two-dimensional oblique stagnation-point flow of an electrically
conducting micropolar fluid in the presence of a uniform external electromagnetic field
(E0, H0) is analyzed and some physical situations are examined. In particular, if E0

vanishes, H0 lies in the plane of the flow, with a direction not parallel to the boundary,
and the induced magnetic field is neglected. It is proved that the oblique stagnation-
point flow exists if, and only if, the external magnetic field is parallel to the dividing
streamline. In all cases it is shown that the governing nonlinear partial differential
equations admit similarity solutions and the resulting ordinary differential problems are
solved numerically. Finally, the behaviour of the flow near the boundary is analyzed;
this depends on the three dimensionless material parameters, and also on the Hartmann
number if H0 is parallel to the dividing streamline.

76W05, 76D10.
Micropolar fluids, MHD flow, oblique stagnation-point flow.

1. Introduction

The micropolar fluids introduced by Eringen ([9]) physically represent fluids consisting
of rigid randomly oriented particles suspended in a viscous medium which have an intrinsic
rotational micromotion (for example biological fluids in thin vessels, polymeric suspensions,
slurries, colloidal fluids). Extensive reviews of the theory and its applications can be found
in [10] and [20].
The aim of this paper is to study how the steady two dimensional oblique stagnation-point
flow of an electrically conducting micropolar fluid is influenced by a uniform external electro-
magnetic field (E0,H0). The motions we find depend upon how the applied electromagnetic
field is oriented relative to the flat boundary.
Oblique stagnation-point flow appears when a jet of fluid impinges obliquely on a rigid wall
at an arbitrary angle of incidence. From a mathematical point of view, such a flow is ob-
tained by combining orthogonal stagnation-point flow with a shear flow parallel to the wall.
The steady two-dimensional oblique stagnation-point flow of a Newtonian fluid has been
object of many investigations starting from the paper of Stuart in 1959 ([24]). We refer to
[28] and [8] for a review.
The orthogonal plane and axially symmetric stagnation-point flow of a micropolar fluid have
been treated by Guram and Smith ([17]), who reduced the equations to dimensionless form,
including three dimensionless parameters and integrated them numerically. Previously Ah-
madi ([1]) obtained self-similar solutions of the boundary layer equations for micropolar
flow imposing restrictive conditions on the material parameters which make the equations
to contain only one parameter. This restrictive approach has been followed in [18] and [19]
in order to study the oblique stagnation-point flow in the absence of an external electromag-
netic field.
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In this paper we extend the results of [3] about Newtonian fluids to incompressible homoge-
neous micropolar fluids assuming potential flow far from the boundary and prescribing the
strict adherence condition on the flat plane boundary.
First of all, we summarize the results of [3] concerning an inviscid fluid, and analyze three
cases, which are significant from a physical point of view. In the first two cases, an external
constant field, either electric or magnetic, is impressed parallel to the rigid wall. In both
cases, we have found that an oblique stagnation-point flow exists, and we obtained the ex-
act induced magnetic field. In the third case, we suppose that E0 vanishes and H0 lies in
the plane of the flow, with a direction not parallel to the boundary. Under the hypothesis
that the magnetic Reynolds number is small, we neglect the induced magnetic field, as it is
customary in the literature. We have proved that the oblique stagnation-point flow exists
if, and only if, H0 is parallel to the dividing streamline.

Then we consider the same problems for a micropolar fluid, assuming that at infinity, the
velocity v approaches the flow of an inviscid fluid for which the stagnation-point is shifted
from the origin ([8], [26], and [23]), and the microrotation w is given by w = 1

2∇× v, i.e.
the micropolar fluid behaves like a classical fluid far from the wall. The coordinates of this
stagnation-point contain two constants : A and B. A is determined as part of the solution
of the orthogonal flow, and B is free.
As far as the velocity and the microrotation are concerned, in the first two cases we find the
same equations of the oblique stagnation-point flow in the absence of an electromagnetic
field, while the induced magnetic field is obtained by direct integration. Hence, the external
uniform electromagnetic field doesn’t influence the flow, and modifies only the pressure p.
Moreover ∇p has a constant component parallel to the wall proportional to B − A. This
does not appear in the orthogonal stagnation-point flow. This component determines the
displacement parallel to the boundary of the uniform shear flow. The flow is obtained for
different values of B and of the material parameters by numerical integration using a finite-
differences method.
We remark that the influence of the viscosity appears only in a layer lining the boundary
whose thickness is larger than that in the orthogonal stagnation-point flow.
Finally, in the more general case in which H0 is parallel to the dividing streamline of the
inviscid flow, we find that the flow has to satisfy an ordinary differential problem whose
solution depend on H0 through the Hartmann number M . The numerical integration is
provided using a finite-differences method. In this case, A (and so the stagnation-point)
depends on M and decreases as M is increased. Further, when the material parameters are
fixed, the influence of the viscosity appears only in a layer near to the wall depending on M

whose thickness decreases as M increases from zero. This is standard in magnetohydrody-
namics.
Some numerical examples and pictures are given in order to illustrate the effects due to the
magnetic field.

The paper is organized in this way:
In Section 2 we summarize the results in [3] for an inviscid fluid.
Section 3 is devoted to treat the same physical problems for a micropolar fluid. Theorems
1, 2, 3 collect our results.
Further, we study the behaviour of the flow near the wall. We show that it depends on the
three dimensionless material parameters, and also on the Hartmann number in the third
case.
In Section 4, we numerically integrate the previous problems, and discuss some numerical
results.
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2. Inviscid Fluids

Consider the MHD steady plane stagnation-point flow of an inviscid, homogeneous, in-
compressible, electrically conducting fluid filling the region S, given by

S = {x ∈ R
3 : (x1, x3) ∈ R

2, x2 > 0}. (1)

The boundary of S is a rigid, fixed, non-electrically conducting wall.
The equations governing such a flow in the absence of external mechanical body forces are:

ρv · ∇v = −∇p + µe(∇× H) × H,

∇ · v = 0,

∇× H = σe(E + µev × H),

∇× E = 0, ∇ ·E = 0, ∇ · H = 0, in S (2)

where v is the velocity field, p is the pressure, E and H are the electric and magnetic fields,
respectively, ρ is the mass density (constant > 0), µe is the magnetic permeability, σe is the
electrical conductivity (µe, σe = constants > 0). We assume the region

S− = {x ∈ R
3 : (x1, x3) ∈ R

2, x2 < 0}
to be a vacuum (free space), and µe equal to the magnetic permeability of free space.

To equations (2) we append the usual boundary condition for v:

v2 = 0 at x2 = 0. (3)

Further, suppose that the tangential components of H and E are continuous through the
plane x2 = 0.

We are interested in the oblique plane stagnation-point flow, so that

v1 = ax1 + bx2, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (4)

with a, b constants (a > 0).
As known, the streamlines of such a flow are hyperbolas whose asymptotes have the

equations:

x2 = 0 and x2 = −2a

b
x1.

These two straight-lines are degenerate streamlines too.
We summarize our results ([3]) concerning the influence upon such a flow of a uniform
external electromagnetic field (E0,H0). To this end, we consider three cases which, from a
physical point of view, are significant.

2.1. CASE I.

E0 = E0e3, H0 = 0.

Let the induced electromagnetic field (Ei,Hi ≡ H) be in the form

Ei = Ei
1e1 + Ei

2e2 + Ei
3e3,

H = h(x2)e1,

where (e1, e2, e3) is the canonical base in R
3.

The boundary conditions require that

Ei
1 = 0, Ei

3 = 0 at x2 = 0,

h(0) = 0. (5)
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Figure 1. Flow description in CASE I.

From (2)4, (2)3 follows that

h(x2) = −σeE0e
−

ax2
2

2ηe

∫ x2

0

e
at2

2ηe dt, x2 ∈ R
+, (6)

with ηe =
1

σeµe

= electrical resistivity.

As far as the pressure field is concerned, from (2)1 we get

p = −1

2
ρa2(x2

1 + x2
2) −

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where h is given by (6) and p0 is the pressure in the stagnation point.

2.2. CASE II.
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Figure 2. Flow description in CASE II.

E0 = 0, H0 = H0e1.
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Let the induced electromagnetic field (Ei ≡ E,Hi) be in the form

E = E1e1 + E2e2 + E3e3,

H = [h(x2) + H0]e1.

We append the boundary conditions (5).
In this case we proved in [3] that

E = 0,

H = H0e
−

ax2
2

2ηe e1,

p(x1, x2) = −1

2
ρa2(x2

1 + x2
2) −

µe

2
H2

0e−
ax2

2

ηe + p0, x1 ∈ R, x2 ∈ R
+.

2.3. CASE III.
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Figure 3. Flow description in CASE III.

E0 = 0, H0 = H0(cosϑe1 + sinϑe2)

with ϑ fixed in (0, π).
Under the hypothesis that the magnetic Reynolds number is small, we neglect the induced
magnetic field, as it is customary in the literature. We proved that E = 0, and that the
MHD oblique stagnation-point flow is possible if and only if H0 is parallel to the dividing
streamline, i.e.

tan ϑ = −2a

b
. (7)

Moreover the pressure field has the form

p = −1

2
ρa2(x2

1 + x2
2) −

σeB
2
0

4a2 + b2

a

2
(2ax1 + bx2)

2 + p0, x1 ∈ R, x2 ∈ R
+.

Remark 1. In order to study oblique stagnation-point flow for micropolar fluids, it is
convenient to consider a more general flow. More precisely, we suppose the fluid obliquely
impinging on the flat plane x2 = A and

v1 = ax1 + b(x2 − B), v2 = −a(x2 − A), v3 = 0, x1 ∈ R, x2 ≥ A, (8)
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with A, B = positive constants.

In this way, the stagnation point is (
b

a
(B − A), A).

In this case, the streamlines are the hyperbolas whose asymptotes are x2 = −2a

b
x1 +2B−A

and x2 = A.
As it is easy to verify, in the absence of (E,H), the pressure field is given by:

p = −1

2
ρa2{[x1 −

b

a
(B − A)]2 + (x2 − A)2} + p0.

We underline that under these new assumptions, all previous results continue to hold by

replacing x1, x2 with x1 −
b

a
(B − A), x2 − A respectively.

3. Micropolar fluids

Consider the steady two-dimensional oblique stagnation-point flow of an electrically con-
ducting homogeneous incompressible micropolar fluid towards a flat surface coinciding with
the plane x2 = 0, the flow being confined to the region S. In the absence of external
mechanical body forces and body couples, the MHD equations for such a fluid are ([20])

v · ∇v = −1

ρ
∇p + (ν + νr)△v + 2νr(∇× w) +

µe

ρ
(∇× H) × H,

∇ · v = 0,

Iv · ∇w = λ△w + λ0∇(∇ ·w) − 4νrw + 2νr(∇× v) = 0 (9)

together with (2)3 − (2)6, where w is the microrotation field, ν is the kinematic newtonian
viscosity coefficient, νr is the microrotation viscosity coefficient, λ, λ0 (positive constants) are
material parameters related to the coefficient of angular viscosity and I is the microinertia
coefficient.
We notice that in [9], [10], eqs. (9) are slightly different, as they are deduced as a special
case of much more general model of microfluids. For the details, we refer to [20], p.23.
As far as the boundary conditions are concerned, of course, we modify condition (3) and
prescribe the appropriate boundary condition for the microrotation w, i.e.

v|x2=0 = 0, w|x2=0 = 0 (strict adherence condition). (10)

Other boundary conditions are possible. We refer to Eringen ([9], p.17-18) for a complete
discussion. In our studies we will always assume the strict adherence condition.
We search v, w in the following form

v1 = ax1f
′(x2) + bg(x2), v2 = −af(x2), v3 = 0,

w1 = 0, w2 = 0, w3 = x1F (x2) + G(x2), x1 ∈ R, x2 ∈ R
+ (11)

where f, g, F, G are unknown functions.
The conditions (10) supply

f(0) = 0, f ′(0) = 0, g(0) = 0,

F (0) = 0, G(0) = 0. (12)

Moreover, as is customary when studying the oblique plane stagnation-point flow for viscous
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fluids, we assume that at infinity, the flow approaches the flow of an inviscid fluid given by
(8) ([8], [23], and [26]).
Therefore, to (11) we must append also the following conditions

lim
x2→∞

f ′(x2) = 1, lim
x2→∞

g′(x2) = 1,

lim
x2→∞

F (x2) = 0, lim
x2→∞

G(x2) = − b

2
. (13)

Conditions (13)3,4 mean that at infinity, w =
1

2
∇× v, i.e. the micropolar fluid behaves like

a classical fluid.
In all the following cases, when we will refer to inviscid fluid, all results have to be modified

by replacing x1, x2 with x1 −
b

a
(B − A), x2 − A respectively.

In particular the asymptotic behaviour of f and g at infinity is related to the constants A, B,
in the following way:

f ∼ x2 − A, g ∼ x2 − B as x2 → ∞. (14)

As we will see, A is determined as part of the solution of the orthogonal flow, while B is a
free parameter.
In order to study the influence of a uniform external electromagnetic field, we consider the
three cases analyzed in the previous section.

3.1. CASE I-M. By proceeding as for an inviscid fluid, from (2)3, (2)4 and boundary
conditions for electromagnetic field, we obtain E = E0e3 and the induced magnetic field
h(x2) satisfies

h′ +
a

ηe

fh = −ηeE0, x2 > 0, h(0) = 0. (15)

If we regard f as a known function, we arrive at

h(x2) = −σeE0e
−

a
ηe

∫ x2

0
f(t)dt

∫ x2

0

e
a

ηe

∫

s

0
f(t)dtds, x2 ∈ R

+. (16)

As is easy to verify, the induced magnetic fields given by (16) and (6) have the same asymp-

totic behaviour at infinity

(

∼ − ηeE0σe

a(x2 − A)

)

.

In order to determine p, f, g, F, G we substitute (11) in (9)1,3. After some calculations, we
arrive at

p = p(x1, x2),

ax1[(ν + νr)f
′′′ + aff ′′ − af ′2 +

2νr

a
F ′] + b[(ν + νr)g

′′ + a(fg′ − f ′g) +
2νr

b
G′] =

1

ρ

∂p

∂x1
,

(ν + νr)af ′′ + a2f ′f + 2νrF +
µe

ρ
h′h = −1

ρ

∂p

∂x2
,

x1[αF ′′ + Ia(F ′f − Ff ′) − 2νr(2F + af ′′)] + λG′′ + I(aG′f − bFg)− 2νr(2G + bg′) = 0.

(17)

Then, by integrating (17)3, we find

p(x1, x2) = −1

2
ρa2f2(x2) − ρa(ν + νr)f

′(x2) − 2νrρ

∫ x2

0

F (s)ds − µe

2
h2(x2) + P (x1)
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where the function P (x1) is determined supposing that, far from the wall, the pressure p

has the same behaviour as for an inviscid electroconducting fluid, whose velocity is given by
(8).
Therefore, since the induced electromagnetic fields given by (16), (6) have the same as-
ymptotic behaviour, under the assumption F ∈ L1([0, +∞)), by virtue of (13), (14), we
get

P (x1) = −ρ
a2

2
[x1 −

b

a
(B − A)]2 + p0 + ρa(ν + νr).

Finally, the pressure field assumes the form

p(x1, x2) = − ρ
a2

2
[x2

1 − 2
b

a
(B − A)x1 + f2(x2)] − ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds − µe

2
h2(x2) + p∗0 (18)

with p∗0 = p0 + ρa(ν + νr) − ρ
b2

2
(B − A)2.

In consideration of (18), we obtain the ordinary differential system

ν + νr

a
f ′′′ + ff ′′ − f ′2 + 1 +

2νr

a2
F ′ = 0,

ν + νr

a
g′′ + fg′ − gf ′ +

2νr

ab
G′ = B − A,

λF ′′ + aI(fF ′ − f ′F ) − 2νr(2F + af ′′) = 0,

λG′′ + I(afG′ − bgF ) − 2νr(2G + bg′) = 0. (19)

To these equations we append the boundary conditions (12), (13).
We remark that the system (19) governs the oblique stagnation-point flow of an inert, elec-
tromagnetic micropolar fluid, as is easy to verify. In literature, such a flow has been studied
in [18], and [19] under restrictive assumptions upon the material parameters, and following
a different approach.

Remark 2. If νr = 0, then (19)1 and (19)2 are the equations governing the oblique
stagnation-point flow of a Newtonian fluid.
We observe that (19)1 and (19)3 have the same form as the equations found by Guram and
Smith ([17]) for the orthogonal stagnation-point flow of a micropolar fluid.

Theorem 1. Let a homogeneous, incompressible, electrically conducting micropolar
fluid occupy the region S. The steady MHD oblique plane stagnation-point flow of such a
fluid has the following form when an external uniform electric field E0 = E0e3 is impressed:

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = h(x2)e1, E = E0e3,

w =[x1F (x2) + G(x2)]e3,

p = − ρ
a2

2
[x2

1 − 2
b

a
(B − A)x1 + f2(x2)] − ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds − µe

2
h2(x2) + p∗0

x1 ∈ R, x2 ∈ R
+,
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where (f, g, F, G) satisfies the problem (19), (12), and (13), provided F ∈ L1([0, +∞)), and
h(x2) is given by (16).

Now we write the system (19), together with the conditions (12) (13), in dimensionless
form. To this end we put

η =

√

a

ν + νr

x2, φ(η) =

√

a

ν + νr

f

(

√

ν + νr

a
η

)

,

γ(η) =

√

a

ν + νr

g

(

√

ν + νr

a
η

)

, Φ(η) =
2νr

a2

√

a

ν + νr

F

(

√

ν + νr

a
η

)

,

Γ(η) =
2νr

b(ν + νr)
G

(

√

ν + νr

a
η

)

, Ψ(η) =
1

ηeE0

√

a

ν + νr

h

(

√

ν + νr

a
η

)

.

So system (19) and equation (15) can be written as

φ′′′ + φφ′′ − φ′2 + 1 + Φ′ = 0,

γ′′ + φγ′ − φ′γ + Γ′ = β − α,

Φ′′ + c3(φΦ′ − φ′Φ) − c2Φ − c1φ
′′ = 0,

Γ′′ + c3(φΓ′ − Φγ) − c2Γ − c1γ
′ = 0,

Ψ′ + RmφΨ = −1 (20)

where

c1 =
4ν2

r

λa
, c2 =

4νr(ν + νr)

λa
, c3 =

I

λ
(ν + νr),

α =

√

a

ν + νr

A, β =

√

a

ν + νr

B, Rm =
ν + νr

ηe

= magnetic Reynolds number.

The boundary conditions in dimensionless form become:

φ(0) = 0, φ′(0) = 0, γ(0) = 0,

Φ(0) = 0, Γ(0) = 0,

Ψ(0) = 0,

lim
η→+∞

φ′(η) = 1, lim
η→+∞

γ′(η) = 1

lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = −c1

c2
. (21)

The last equation in (20), if we regard φ as a known function, can be formally integrated to
give

Ψ(η) = −e−Rm

∫

η

0
φ(s)ds

∫ η

0

eRm

∫

t

0
φ(s)dsdt, η ∈ R

+.

The remaining equations have to be integrated numerically.
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Remark 3. Along the wall x2 = 0, there are three important coordinates: the origin
x1 = 0 towards which the dividing streamline at infinity is pointed, the point x1 = xp of
maximum pressure, and the point x1 = xs of zero tangential stress (zero skin friction) where
the dividing streamline of equation

ξφ(η) +
b

a

∫ η

0

γ(s)ds = 0, ξ =

√

ν + νr

a
x1 (22)

meets the boundary.
In consideration of (18), we see that

xp = b

√

ν + νr

a3
(β − α) (23)

and so xp does not depend on h.
The wall shear stress is given by

τ = ρ(ν + νr)
∂v1

∂x2

∣

∣

∣

x2=0
;

the position xs is obtained by putting τ = 0. Hence

xs = −b

√

ν + νr

a3

γ′(0)

φ′′(0)
. (24)

We note that the ratio
xp

xs

= (α − β)
φ′′(0)

γ′(0)
is the same for all angles of incidence.

Finally, we recall that studying the small-η behaviour of

∫ η

0 γ(s)ds

φ(η)
, the slope of the dividing

streamline at the wall is given by:

ms = − 3a[φ′′(0)]2

b{[β − α − Γ′(0)]φ′′(0) + [1 + Φ′(0)]γ′(0)}
and does not depend on the kinematic viscosities. Thus, the ratio of this slope to that of

the dividing streamline at infinity (mi = −2a

b
) is the same for all oblique stagnation-point

flows and is given by

ms

mi

=
3

2

[φ′′(0)]2

[β − α − Γ′(0)]φ′′(0) + [1 + Φ′(0)]γ′(0)
. (25)

This ratio is independent of a and b, depending only upon the constant pressure gradient
parallel to the boundary through B − A, as with Newtonian fluids ([7]).

3.2. CASE II-M. By proceeding as one would with an inviscid fluid, from (2)3, (2)4 and
boundary conditions for electromagnetic field, we get

h′ +
a

ηe

fh = − a

ηe

fH0, x2 > 0, h(0) = 0. (26)

The integration of (26) leads to

h(x2) = H0(e
−

a
ηe

∫ x2

0
f(t)dt − 1), x2 ∈ R

+, (27)

so that

H = H0e
−

a
ηe

∫ x2

0
f(s)ds

e1.
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The pressure field, as is easy to verify, becomes

p(x1, x2) = − ρ
a2

2
[x2

1 − 2
b

a
(B − A)x1 + f2(x2)] − ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds − µe

2
[h(x2) + H0]

2 + p∗0 (28)

where (f, g, F, G) satisfies system (19), together with boundary conditions (12) and (13).
Therefore, in this case as well, the uniform external electromagnetic field does not influence
the flow.

Thus, we obtain the following:

Theorem 2. Let a homogeneous, incompressible, electrically conducting micropolar
fluid occupy the region S. The steady MHD oblique plane stagnation-point flow of such a
fluid has the following form when a uniform external magnetic field H0 = H0e1 is impressed:

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = [H0 + h(x2)]e1, E = E0e3,

w =[x1F (x2) + G(x2)]e3,

p = − ρ
a2

2
[x2

1 − 2
b

a
(B − A)x1 + f2(x2)] − ρa(ν + νr)f

′(x2) − 2νrρ

∫ x2

0

F (s)ds

− µe

2
[h(x2) + H0]

2 + p∗0, x1 ∈ R, x2 ∈ R
+,

where (f, g, F, G) satisfies the problem (19), (12), and (13), provided F ∈ L1([0, +∞)), and
h(x2) is given by (27).

In dimensionless form, h(x2) becomes

Ψ(η) = e−Rm

∫

η

0
φ(t)dt − 1, η ∈ R

+, (29)

where

Ψ(η) =
1

H0
h

(

√

ν + νr

a
η

)

.

Of course, remark 3 continues to hold in this case.

3.3. CASE III-M. Taking into account the results obtained for an inviscid fluid, we assume

H0 =
H0√

4a2 + b2
(−be1 + 2ae2), E0 = 0.

As in CASE III, for inviscid fluid, we deduce

E = 0 ⇒ ∇× H = σeµe(v × H).

Further, we neglect the induced magnetic field, replacing (9)1 with

v · ∇v = −1

ρ
∇p + (ν + νr)△v + 2νr(∇× w) +

µe

ρ
(v × H0) × H0. (30)

This approximation is motivated by physical arguments for MHD flow at small magnetic
Reynolds numbers.
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We substitute (11) into (30) to determine p, f, g, F, G. This yields

p = p(x1, x2),

ax1[(ν + νr)f
′′′ + aff ′′ − af ′2 +

2νr

a
F ′ − 4a2 σe

ρ

B2
0

4a2 + b2
f ′]+

+ b[(ν + νr)g
′′ + a(fg′ − f ′g) +

2νr

b
G′ − 2a2 σe

ρ

B2
0

4a2 + b2
(2g − f)] =

1

ρ

∂p

∂x1
,

(ν + νr)af ′′ + a2f ′f + 2νrF +
σe

ρ

B2
0

4a2 + b2
[2a2bx1f

′ + ab2(2g − f)] = −1

ρ

∂p

∂x2
. (31)

The integration of (31)3 gives

p(x1, x2) = − 1

2
ρa2f2(x2) − ρa(ν + νr)f

′(x2) − 2νrρ

∫ x2

0

F (s)ds

− σe

B2
0

4a2 + b2

{

2a2bx1f(x2) + ab2

∫ x2

0

[2g(s) − f(s)]ds
}

+ P (x1)

where P (x1) has to be found as in CASES I-M, II-M.
After some calculations, we obtain

P (x1) = −ρ
a2

2

(

1 +
4a

ρ

σeB
2
0

4a2 + b2

)

[x1 −
b

a
(B − A)]2 + p′0

with p′0 constant.
So the pressure field is:

p(x1, x2) = − ρ
a2

2
[x2

1 − 2
b

a
(B − A)x1 + f2(x2)] − ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds − σeB
2
0

4a2 + b2

{

2a2bx1f(x2) +

∫ x2

0

[2g(s) − f(s)]ds

+ 2a3[x2
1 −

2b

a
(B − A)x1]

}

+ p∗0, x1 ∈ R, x2 ∈ R
+. (32)

The constant p∗0 represents the pressure at the stagnation point.
Then, (31)2 supplies

ν + νr

a
f ′′′ + ff ′′ − f ′2 + 1 +

2νr

a2
F ′ + M2(1 − f ′) = 0,

ν + νr

a
g′′ + fg′ − gf ′ +

2νr

ab
G′ + M2(f − g) = (1 + M2)(B − A) (33)

where M2 = 4a
σeB

2
0

ρ(4a2 + b2)
is the Hartmann number.

Of course (f, g, F, G) also satisfies the equations (19)3,4. We append boundary conditions
(12) and (13) to the system in (33) and (19)3,4.
We remark that, unlike the previous cases, the external electromagnetic field modifies the
flow; if M = 0, then the system (33) and (19)3,4 reduces to the system (19).
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Theorem 3. Let a homogeneous, incompressible, electrically conducting micropolar
fluid occupy the region S. If we impress the external magnetic field

H0 =
H0√

4a2 + b2
(−be1 + 2ae2)

and if we neglect the induced magnetic field, then the steady MHD oblique plane stagnation-
point flow of such a fluid has the form

v =[ax1f
′(x2) + bg(x2)]e1 − af(x2)e2,

w =[x1F (x2) + G(x2)]e3, E = 0,

p = − ρ
a2

2
[x2

1 − 2
b

a
(B − A)x1 + f2(x2)] − ρa(ν + νr)f

′(x2)

− 2νrρ

∫ x2

0

F (s)ds − σeB
2
0

4a2 + b2

{

2a2bx1f(x2) +

∫ x2

0

[2g(s) − f(s)]ds

+ 2a3[x2
1 −

2b

a
(B − A)x1]

}

+ p∗0, x1 ∈ R, x2 ∈ R
+,

where (f, g, F, G) satisfies problem (33), (19)3,4, (12), and (13), provided F ∈ L1([0, +∞)).

In dimensionless form, we arrive at the following ordinary differential problem:

φ′′′ + φφ′′ − φ′2 + 1 + Φ′ + M2(1 − φ′) = 0,

γ′′ + φγ′ − φ′γ + Γ′ + M2(φ − γ) = (1 + M2)(β − α),

Φ′′ + c3(φΦ′ − φ′Φ) − c2Φ − c1φ
′′ = 0,

Γ′′ + c3(φΓ′ − Φγ) − c2Γ − c1γ
′ = 0. (34)

To system (34), we append boundary conditions (21).
Problem (34) and (21) will be solved numerically in Section 4 for some values c1, c2, c3, M .

Remark 4. The points x1 = xp of maximum pressure and x1 = xs of zero tangential
stress on x2 = 0 are formally the same as in CASE I-M and II-M. However, these points
depend on M .
Finally the slope of the dividing streamline at the wall is given by:

ms = − 3a[φ′′(0)]2

b{[(β − α)(1 + M2) − Γ′(0)]φ′′(0) + [1 + M2 + Φ′(0)]γ′(0)} .

4. Numerical results and discussion

In this section we discuss the numerical solutions of the problems studied in CASES I,
II, III-M.

4.1. CASE I-M. We have solved problem (20), (21) numerically by using a difference finite
algorithm.
The values of the parameters c1, c2, c3 were choosen according to Guram and Smith ([17])

and are given in Table 1, where we also assign some values to β (i.e. β − α = −α, 0, α).
The consequent values of α, φ′′(0), γ′(0), Φ′(0), Γ′(0),

xp

xs
, ms

mi
, ηφ, ηγ are reported in this

table. We denote by ηφ the value of η at which φ′ = 0.99 ( so when η > ηφ, then φ ∼ η−α),
while ηγ is the values of η at which γ′ = 0.99 (if β − α ≥ 0). or γ′ = 1.01 (if β − α < 0). So
when η > ηγ then γ ∼ η − β.
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Table 1

c1 c2 c3 α β − α φ′′(0) γ′(0) Φ′(0) Γ′(0)
xp

xs

ms

mi
ηφ ηγ

0.1 1.5 0.1 0.6446 -0.6446 1.2218 1.3647 -0.0532 -0.0892 0.5771 3.6492 2.5556 3.0667
0 ” 0.5771 ” -0.0550 0 3.6495 ” 3.1944

0.6446 ” -0.2105 ” -0.0207 3.7415 3.6498 ” 3.2370
0.5 0.6448 -0.6448 1.2231 1.3651 -0.0510 -0.0889 0.5777 3.6455 2.5556 3.0667

0 ” 0.5765 ” -0.0560 0 3.6455 ” 3.1944
0.6448 ” -0.2121 ” -0.0231 3.7177 3.6455 ” 3.2370

3.0 0.1 0.6453 -0.6453 1.2250 1.3817 -0.0444 -0.0658 0.5721 3.6871 2.5556 3.0667
0 ” 0.5912 ” -0.0372 0 3.6872 ” 3.1944

0.6453 ” -0.1993 ” -0.0085 3.9656 3.6872 ” 3.2370
0.5 0.6454 -0.6454 1.2256 1.3822 -0.0434 -0.0652 0.5723 3.6871 2.5556 3.0667

0 ” 0.5912 ” -0.0372 0 3.6871 ” 3.1944
0.6454 ” -0.1998 ” -0.0092 3.9577 3.6871 ” 3.2370

0.5 1.5 0.1 0.6311 -0.6311 1.1780 1.1970 -0.2659 -0.4280 0.6211 3.2546 2.2148 2.5556
0 ” 0.4534 ” -0.2602 0 3.2560 ” 2.7259

0.6311 ” -0.2903 ” -0.0923 2.5611 3.2574 ” 2.7259
0.5 0.6321 -0.6321 1.1848 1.1987 -0.2553 -0.4275 0.6248 3.2381 2.2148 2.5556

0 ” 0.4498 ” -0.2661 0 3.2383 ” 2.7259
0.6321 ” -0.2991 ” -0.1047 2.5034 3.2385 ” 2.8963

3.0 0.1 0.6351 -0.6351 1.1943 1.2825 -0.2220 -0.3200 0.5914 3.4426 2.3852 2.9389
0 ” 0.5240 ” -0.1790 0 3.4429 ” 3.0667

0.6351 ” -0.2345 ” -0.0380 3.2343 3.4433 ” 3.0667
0.5 0.6356 -0.6356 1.1972 1.2846 -0.2173 -0.3174 0.5923 3.4426 2.3852 2.9389

0 ” 0.5237 ” -0.1793 0 3.4426 ” 3.1596
0.6356 ” -0.2372 ” -0.0412 3.2074 3.4427 ” 3.0667

We see that ηγ is always greater than ηφ, as in the Newtonian case ([3]). Hence the in-
fluence of the viscosity on the velocity appears only in a layer of thickness ηγ lining the
boundary. We remark that the thickness of the layer affected by the viscosity is propor-

tional to

√

ν + νr

a
and it is larger than that in the orthogonal stagnation-point flow.

From Table 1 it appears that if we fix two parameters among c1, c2, c3, then the values of
α, φ′′(0), γ′(0), Φ′(0), Γ′(0) have the following behaviour :
they increase as c2 increases,
they lower as c1 or c3 increases.
Moreover, the influence of c1 appears more considerable also on the other quantities quoted
in the table.
We have displayed some representative graphs to elucidate the trends of the functions de-
scribing the velocities.
In particular, Figures 4, 5, and 6 show φ, φ′, φ′′, Φ, Φ′, γ, γ′, Γ, Γ′ for c1 = 0.5, c2 =
3.0, c3 = 0.5. The other choices of these parameters modify the trends of these functions
very slightly.
Of course, the behaviour of φ, Φ doesn’t depend on β − α, unlike γ, Γ.
If we compare the velocity profile with the solution for classical viscous flow ([3]), we note
that the trend is very similar, as was found in [17] for orthogonal stagnation-point flow.
Figures 7, 8, and 9 elucidate the dependence of the functions φ′, γ, Φ, Γ on the parameters
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c1, c2, c3. We can see that the functions which appear most influenced by c1, c2, c3 are
Φ, and Γ - in other words the microrotation. More precisely the profile of Φ rises as c3

or c2 increases and c1 decreases, while the profile of Γ rises as c2 increases and c1 or c3

decreases. Moreover c1 is the parameter that most influences the microrotation. The other
two functions, φ′, and γ, do not show considerable variations as c1, c2, c3 assume different
values.

0 1 2 3 4 5
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0

0.5

1
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2
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4

η

 

 
φ

φ′

φ′ ′

0 1 2 3 4 5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

η

 

 
Φ

Φ′

Figure 4. CASE I-M: plots showing the behaviour of φ, φ′, φ′′ and Φ, Φ′

respectively for c1 = 0.5, c2 = 3.0, c3 = 0.5.
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γ

0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

η

γ′

Figure 5. CASE I-M: Figures 51 and 52 show γ and γ′ for c1 = 0.5, c2 =
3.0, c3 = 0.5 and with, from above, β − α = −α, 0, α, respectively.

Observing φ′′(0), γ′(0) in Table 1 we notice that xs (given by (24)) has the sign of b if
β − α > 0 and the sign of − b if β − α ≤ 0. Moreover if b is positive (negative) xs increases
(decreases) as β −α increases. As far as |xs| is concerned, if β −α increases from a negative
value to zero, |xs| decreases and so xs approaches the origin, otherwise, as β − α increases
from zero to a positive value, |xs| increases and so xs departs from the origin. The same
results were also found for Newtonian fluids in [3].
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Figure 6. CASE I-M: Figures 61 and 62 show Γ and Γ′ for c1 = 0.5, c2 =
3.0, c3 = 0.5 and with, from above, β − α = −α, 0, α, respectively.

Moreover from Table 1 we see that xp and xs lie on the same side of the origin, and
ms

mi

is

constant once c1, c2, c3 are fixed.
Figure 10 shows the streamlines and the points

ξp =

√

ν

a
xp, ξs =

√

ν

a
xs (35)

for
b

a
= 1 and β − α = −α, 0, α, respectively.

Finally, figure 111 shows the behaviour of the induced magnetic field Ψ with Rm = 1,
that is similar to the behaviour of Ψ in CASE I (inviscid fluid), as we can see. Figure 112

shows the behaviour of Ψ with Rm = 10−6; for η ∈ [0, 4.6] the graph is approximately linear,
because in this interval, for very small values of Rm, the equation (27)3 reduces to Ψ′ ∼ −1.

4.2. CASE II-M. In this case the ordinary differential problem governing φ, γ, Φ, Γ is
the same as in (20); we have only to compute Ψ(η), given by (29).
Figure 12 shows that Ψ has a similar behaviour as in CASE II, as we can see.

4.3. CASE III-M. We have solved the problem (34), (21) with the boundary conditions
(21) by using a finite-differences method.
Table 2 shows the numerical results of the quantities listed in Table 1 for the same c1, c2, c3, β,
and choosing M = 1, 2, 5, 10.
If we fix M , we see that the considerations of CASE I-M continue to hold.
As far as the dependence on M is concerned, we can see that α and Φ′(0) decrease and
φ′′(0) increases as M is increased from 0, as we would expect physically.
As far as the dependence of γ′(0) and Γ′(0) on M are concerned, from 2 we can see that
their values increase as M increases if β − α < 0, otherwise they decrease.

In Figure 131, we have plotted the profiles φ, φ′, φ′′ for M = 2 and c1 = 0.5, c2 =
3.0, c3 = 0.5, while Figure 16 shows the behaviour of φ′ for different M and the same values
of c1, c2, c3.
Figures 141, 142 show the profiles of γ(η), γ′(η), for M = 2, c1 = 0.5, c2 = 3.0, c3 = 0.5
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Figure 7. CASE I-M: plots showing the behaviour of φ′, γ, Φ and Γ for
c1 = 0.5, c2 = 3.0 fixed, and for different values of c3.

and for some values of β − α, i.e. β − α = −α, 0, α. In Figures 17 and 18, we provide the
behaviour of γ′ for different M when c1 = 0.5, c2 = 3.0, c3 = 0.5 and β − α is fixed.
In Figure 132, we can see the profiles Φ, Φ′ for M = 2 and c1 = 0.5, c2 = 3.0, c3 = 0.5.
Figures 151, 152 show the graphics of Γ(η), Γ′(η), for M = 2, c1 = 0.5, c2 = 3.0, c3 = 0.5
and for some values of β − α, i.e. β − α = −α, 0, α.
We have only plotted the profiles of φ, φ′, φ′′, γ, γ′, Φ, Φ′, Γ, Γ′ for M = 2 and
c1 = 0.5, c2 = 3.0, c3 = 0.5, because they have an analogous behaviour for M 6= 2 and
different c1, c2, c3.

In Table 2, we also list the values of ηφ, ηγ beyond which φ ∼ η − α and γ ∼ η − β

respectively. We note that ηγ is greater than the corresponding value of ηφ; so the influence

of the viscosity appears only in the region η < ηγ , i.e. x2 <

√

ν + νr

a
ηγ . Further we

underline that the thickness of this layer depends on M and it decreases as M increases (as
easily seen in Figures 16, 17, and 18). This effect is normal in magnetohydrodynamics.
Finally, we notice that the points xp, xs, given by (23) and by (24), lie on the same side of



18 ALESSANDRA BORRELLI, GIULIA GIANTESIO, AND MARIA CRISTINA PATRIA

0.5 1 1.5 2 2.5 3 3.5
0.7

0.75

0.8

0.85

0.9

0.95

1

← c
2
=1.5

η

φ′

← c
2
=3

c
1
=0.5

c
3
=0.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

← c
2
=1.5

η

γ

← c
2
=3

c
1
=0.5

c
3
=0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

← c
2
=1.5

η

Φ

← c
2
=3

c
1
=0.5

c
3
=0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

← c
2
=1.5

η

Γ

← c
2
=3

c
1
=0.5

c
3
=0.5

Figure 8. CASE I-M: plots showing the behaviour of φ′, γ, Φ and Γ for
c1 = 0.5, c3 = 0.5 fixed, and for different values of c2.

the origin. Their location depends on M , c1, c2, c3 and β − α, as seen in Table 2. The

Figure 19 shows the streamlines and the points ξp, ξs for
b

a
= 1, c1 = 0.5, c2 = 3.0, c3 = 0.5,

β − α = −α, 0, α, and M = 1, 5.
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Figure 11. CASE I-M: plots showing Ψ with Rm = 1, 10−6.
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Figure 13. CASE III-M: plots showing φ, φ′, φ′′ and Φ, Φ′ (respectively)
for c1 = 0.5, c2 = 3.0, c3 = 0.5 and M = 2.
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Figure 14. CASE III-M: plots showing γ, γ′ with M = 2, c1 = 0.5, c2 =
3.0, c3 = 0.5 and, from above, β − α = −α, 0, α respectively.
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Table 2

c1 c2 c3 M α β − α φ′′(0) γ′(0) Φ′(0) Γ′(0)
xp

xs

ms

mi
ηφ ηγ

0.1 1.5 0.1 1 0.5386 -0.5386 1.5751 1.3886 -0.0582 -0.0876 0.6110 3.2715 2.3000 2.6833
0 ” 0.5402 ” -0.0562 0 3.2716 ” 2.7259

0.5386 ” -0.3082 ” -0.0249 2.7526 3.2716 ” 2.8111
2 0.3924 -0.3924 2.3375 1.4271 -0.0663 -0.0857 0.6426 3.0859 1.6611 2.0444

0 ” 0.5100 ” -0.0597 0 3.0859 ” 2.1722
0.3924 ” -0.4071 ” -0.0337 2.2527 3.0859 ” 2.1722

5 0.1905 -0.1905 5.1417 1.4739 -0.0804 -0.0836 0.6646 3.0120 0.9370 1.0222
0 ” 0.4944 ” -0.0683 0 3.0120 ” 1.1074

0.1905 ” -0.4852 ” -0.0530 2.0190 3.0120 ” 1.1926
10 0.0987 -0.0987 10.0708 1.4890 -0.0888 -0.0830 0.6678 3.0026 0.4543 0.5537

0 ” 0.4947 ” -0.0743 0 3.0026 ” 0.5963
0.0987 ” -0.4997 ” -0.0655 1.9900 3.0026 ” 0.6389

0.5 1 0.5388 -0.5388 1.5762 1.3887 -0.0560 -0.0879 0.6116 3.2702 2.3000 2.6833
0 ” 0.5394 ” -0.0577 0 3.2702 ” 2.7259

0.5388 ” -0.3098 ” -0.0275 2.7411 3.2702 ” 2.8111
2 0.3924 -0.3924 2.3383 1.4269 -0.0640 -0.0870 0.6431 3.0853 1.6611 2.0444

0 ” 0.5092 ” -0.0619 0 3.0853 ” 2.1722
0.3924 ” -0.4084 ” -0.0368 2.2469 3.0853 ” 2.1722

5 0.1905 -0.1905 5.1421 1.4735 -0.0784 -0.0866 0.6649 3.0119 0.9370 1.0222
0 ” 0.4938 ” -0.0717 0 3.0119 ” 1.1074

0.1905 ” -0.4859 ” -0.0567 2.0162 3.0119 ” 1.1926
10 0.0987 -0.0987 10.0710 1.4887 -0.0874 -0.0871 0.6680 3.0026 0.4685 0.5537

0 ” 0.4943 ” -0.0785 0 3.0026 ” 0.5963
0.0987 ” -0.5001 ” -0.0698 1.9883 3.0026 ” 0.5963

3.0 0.1 1 0.5392 -0.5392 1.5778 1.4024 -0.0497 -0.0642 0.6066 3.2902 2.3000 2.6833
0 ” 0.5517 ” -0.0374 0 3.2902 ” 2.8111

0.5392 ” -0.2990 ” -0.0106 2.8451 3.2902 ” 2.9389
2 0.3926 -0.3926 2.3395 1.4370 -0.0584 -0.0622 0.6392 3.0932 1.6611 2.0444

0 ” 0.5185 ” -0.0393 0 3.0932 ” 2.1722
0.3926 ” -0.4000 ” -0.0163 2.2964 3.0932 ” 2.3000

5 0.1905 -0.1905 5.1426 1.4787 -0.0748 -0.0596 0.6627 3.0132 0.9370 1.0222
0 ” 0.4988 ” -0.0453 0 3.0132 ” 1.1074

0.1905 ” -0.4810 ” -0.0311 2.0369 3.0132 ” 1.1926
10 0.0987 -0.0987 10.0711 1.4915 -0.0851 -0.0586 0.6667 3.0028 0.4685 0.5537

0 ” 0.4971 ” -0.0502 0 3.0028 ” 0.5963
0.0987 ” -0.4974 ” -0.0418 1.9994 3.0028 ” 0.6389

0.5 1 0.5392 -0.5392 1.5783 1.4027 -0.0487 -0.0638 0.6068 3.2902 2.3000 2.6833
0 ” 0.5516 ” -0.0376 0 3.2902 ” 2.8111

0.5392 ” -0.2995 ” -0.0114 2.8417 3.2902 ” 2.9389
2 0.3927 -0.3927 2.3399 1.4372 -0.0572 -0.0622 0.6393 3.0932 1.6611 2.0444

0 ” 0.5184 ” -0.0397 0 3.0931 ” 2.1722
0.3927 ” -0.4004 ” -0.0173 2.2947 3.0931 ” 2.3000

5 0.1905 -0.1905 5.1428 1.4786 -0.0736 -0.0603 0.6627 3.0131 0.9370 1.0222
0 ” 0.4987 ” -0.0463 0 3.0131 ” 1.1074

0.1905 ” -0.4813 ” -0.0323 2.0361 3.0131 ” 1.1926
10 0.0987 -0.0987 10.0712 1.4914 -0.0842 -0.0598 0.6668 3.0028 0.4685 0.5537

0 ” 0.4969 ” -0.0515 0 3.0028 ” 0.5963
0.0987 ” -0.4975 ” -0.0432 1.9989 3.0028 ” 0.6389
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c1 c2 c3 M α β − α φ′′(0) γ′(0) Φ′(0) Γ′(0)
xp

xs

ms

mi
ηφ ηγ

0.5 1.5 0.1 1 0.5290 -0.5290 1.5335 1.2465 -0.2913 -0.4247 0.6508 3.0440 2.0444 2.3000
0 ” 0.4353 ” -0.2706 0 3.0442 ” 2.4278

0.5290 ” -0.3760 ” -0.1165 2.1577 3.0443 ” 2.4278
2 0.3874 -0.3874 2.3005 1.3193 -0.3315 -0.4208 0.6755 2.9716 1.5333 1.6611

0 ” 0.4281 ” -0.2924 0 2.9716 ” 1.9167
0.3874 ” -0.4630 ” -0.1639 1.9246 2.9716 ” 1.9167

5 0.1896 -0.1896 5.1166 1.4170 -0.4022 -0.4159 0.6847 2.9810 0.8519 0.9370
0 ” 0.4467 ” -0.3396 0.0000 2.9810 ” 1.0222

0.1896 ” -0.5236 ” -0.2634 1.8533 2.9810 ” 1.1074
10 0.0986 -0.0986 10.0552 1.4581 -0.4440 -0.4145 0.6798 2.9931 0.4543 0.5111

0 ” 0.4668 ” -0.3707 0 2.9931 ” 0.5537
0.0986 ” -0.5245 ” -0.3270 1.8901 2.9930 ” 0.5963

0.5 1 0.5299 -0.5299 1.5392 1.2469 -0.2802 -0.4267 0.6541 3.0373 2.0444 2.1722
0 ” 0.4313 ” -0.2783 0.0000 3.0373 ” 2.4278

0.5299 ” -0.3843 ” -0.1298 2.1222 3.0373 ” 2.4278
2 0.3878 -0.3878 2.3048 1.3181 -0.3199 -0.4272 0.6781 2.9686 1.6611 1.6611

0 ” 0.4242 ” -0.3031 0 2.9686 ” 1.7889
0.3878 ” -0.4696 ” -0.1790 1.9033 2.9686 ” 1.9167

5 0.1897 -0.1897 5.1184 1.4146 -0.3921 -0.4307 0.6864 2.9802 0.8519 0.9370
0 ” 0.4437 ” -0.3563 0 2.9802 ” 1.0222

0.1897 ” -0.5272 ” -0.2819 1.8416 2.9802 ” 1.1074
10 0.0986 -0.0986 10.0559 1.4562 -0.4368 -0.4347 0.6808 2.9929 0.4685 0.5111

0 ” 0.4648 ” -0.3916 0 2.9929 ” 0.5537
0.0986 ” -0.5266 ” -0.3486 1.8826 2.9929 ” 0.5963

3.0 0.1 1 0.5317 -0.5317 1.5475 1.3160 -0.2487 -0.3140 0.6253 3.1370 2.0444 2.5556
0 ” 0.4931 ” -0.1818 0 3.1371 ” 2.5556

0.5317 ” -0.3297 ” -0.0496 2.4958 3.1371 ” 2.7259
2 0.3886 -0.3886 2.3108 1.3689 -0.2922 -0.3066 0.6560 3.0081 1.6611 1.9167

0 ” 0.4708 ” -0.1930 0 3.0081 ” 2.0444
0.3886 ” -0.4272 ” -0.0795 2.1021 3.0081 ” 2.0444

5 0.1898 -0.1898 5.1209 1.4407 -0.3738 -0.2965 0.6746 2.9867 0.8519 0.9370
0 ” 0.4689 ” -0.2255 0 2.9867 ” 1.0222

0.1898 ” -0.5030 ” -0.1546 1.9322 2.9867 ” 1.1074
10 0.0986 -0.0986 10.0568 1.4703 -0.4257 -0.2926 0.6744 2.9941 0.4685 0.5111

0 ” 0.4787 ” -0.2506 0 2.9941 ” 0.5537
0.0986 ” -0.5129 ” -0.2086 1.9335 2.9941 ” 0.5963

0.5 1 0.5321 -0.5321 1.5501 1.3175 -0.2434 -0.3124 0.6261 3.1373 2.0444 2.5556
0 ” 0.4926 ” -0.1829 0 3.1373 ” 2.7259

0.5321 ” -0.3323 ” -0.0534 2.4827 3.1373 ” 2.7259
2 0.3889 -0.3889 2.3129 1.3696 -0.2862 -0.3066 0.6567 3.0078 1.6611 1.9167

0 ” 0.4701 ” -0.1953 0 3.0078 ” 2.0444
0.3889 ” -0.4293 ” -0.0840 2.0951 3.0078 ” 2.0444

5 0.1898 -0.1898 5.1219 1.4403 -0.3678 -0.3000 0.6750 2.9864 0.8519 0.9370
0 ” 0.4681 ” -0.2302 0 2.9864 ” 1.0222

0.1898 ” -0.5041 ” -0.1604 1.9284 2.9864 ” 1.1074
10 0.0986 -0.0986 10.0572 1.4698 -0.4209 -0.2986 0.6747 2.9940 0.4685 0.5111

0 ” 0.4781 ” -0.2571 0 2.9940 ” 0.5537
0.0986 ” -0.5136 ” -0.2156 1.9310 2.9940 ” 0.5963
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Figure 15. CASE III-M: plots showing Γ, Γ′ with M = 2, c1 = 0.5, c2 =
3.0, c3 = 0.5 and, from above, β − α = −α, 0, α respectively.
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Figure 16. CASE III-M: plots showing φ′ with c1 = 0.5, c2 = 3.0, c3 = 0.5
and for different M .
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Figure 17. CASE III-M: plots showing γ′ with c1 = 0.5, c2 = 3.0, c3 = 0.5
and for different M . In the first picture β−α = −α, in the second β−α = 0.
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Figure 18. CASE III-M: plot showing γ′ with c1 = 0.5, c2 = 3.0, c3 = 0.5,
β − α = α and for different M .
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Figure 19. CASE III-M: Figures (19)1,3,5 show the streamlines and the

points ξp, ξs for
b

a
= 1, c1 = 0.5, c2 = 3.0, c3 = 0.5 and β − α = −α, 0, α,

respectively and M = 1. Figures (19)2,4,6 for M = 5.


