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Abstract. The steady two-dimensional oblique stagnation-point flow of
an electrically conducting Newtonian fluid in the presence of a uniform
external electromagnetic field (E0,H0) is analyzed, and some physical
situations are examined. In particular, if E0 vanishes, H0 lies in the
plane of the flow, with a direction not parallel to the boundary, and
the induced magnetic field is neglected, it is proved that the oblique
stagnation-point flow exists if, and only if, the external magnetic field
is parallel to the dividing streamline. In all cases it is shown that the
governing nonlinear partial differential equations admit similarity solu-
tions, and the resulting ordinary differential problems are solved numer-
ically. Finally, the behaviour of the flow near the boundary is analyzed;
this depends on the Hartmann number if H0 is parallel to the dividing
streamline.

1. Introduction

Oblique stagnation-point flow appears when a jet of fluid impinges obliquely
on a rigid wall at an arbitrary angle of incidence. From a mathematical point
of view, such a flow is obtained by combining orthogonal stagnation-point flow
with a shear flow parallel to the wall. The steady two-dimensional oblique
stagnation-point flow of a Newtonian fluid has been object of many investiga-
tions starting from the paper of Stuart in 1959 ([16]). The oblique solution was
later studied by Tamada ([17]), Dorrepaal ([3, 5]), Wang ([19, 20]); recently
Drazin and Raley ([6]), and Tooke and Blyth ([18]) reviewed the problem and
included a free parameter associated with the shear flow component, which
is related to the pressure gradient.
Magnetohydrodynamic stagnation-point flow is an area of investigation dis-
cussed by several Authors in recent years (see for example [1, 13, 11, 12,
4, 10]). In this class of problems the fluid is electrically conducting and its
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motion towards the wall occurs in the presence of an applied electromagnetic
field.

The aim of this paper is to study how the steady oblique stagnation-
point flow of a Newtonian fluid is influenced by a uniform external electro-
magnetic field (E0,H0). The motions we find depend upon how the applied
electromagnetic field is oriented relative to the flat boundary.
First of all, we consider an inviscid fluid, and analyze three cases, which are
significant from a physical point of view. In the first two cases, an exter-
nal constant field, either electric or magnetic, is impressed parallel to the
rigid wall. In both cases, we find that an oblique stagnation-point flow exists,
and we obtain the exact induced magnetic field. The presence of the elec-
tromagnetic field modifies the pressure p, which is smaller than the pressure
in the purely hydrodynamical flow. In the third case, we suppose that E0

vanishes and H0 lies in the plane of the flow, with a direction not parallel to
the boundary. Under the hypothesis that the magnetic Reynolds number is
small, we neglect the induced magnetic field, as is custumary in the litera-
ture. We prove that the oblique stagnation-point flow exists if, and only if,
H0 is parallel to the dividing streamline. In regard of this result, we point
out that the analysis contained in [10] appears incorrect, because the Authors
carry out their analysis by supposing the external magnetic field orthogonal
to the boundary, but we prove in Theorem 2.6 that in that case the oblique
stagnation-point flow does not exist for an inviscid fluid.
The presence of H0 parallel to the dividing streamline modifies p, which is
smaller than the pressure in the purely hydrodynamical flow.

In the second part, we consider the same problems for a Newtonian
fluid. As it is customary when one studies the plane stagnation-point flow
for a Newtonian fluid, we assume that at infinity the flow approaches the
flow of an inviscid fluid for which the stagnation-point is shifted from the
origin ([6, 18, 15]). The coordinates of this new stagnation-point contain two
constants: A and B. A is determined as part of the solution of the orthogonal
flow, and B is free.
As far as the flow is concerned, in the first two cases we find the same equa-
tions of the oblique stagnation-point flow in absence of electromagnetic field,
while the induced magnetic field is obtained by direct integration. Hence, the
external uniform electromagnetic field doesn’t influence the flow, and modi-
fies only the pressure.
Moreover ∇p has a constant component parallel to the wall proportional to
B − A. This does not appear in the orthogonal stagnation-point flow. This
component determines the displacement parallel to the boundary of the uni-
form shear flow. The flow is obtained for different values of B by numerical
integration using a shooting method.
We remark that the thickness of the layer affected by the viscosity is larger
than that in the orthogonal stagnation-point flow.
Finally, in the more general case in which H0 is parallel to the dividing
streamline of the inviscid flow, we find that the flow has to satisfy an ordinary
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differential problem whose solution depend on H0 through the Hartmann
number M . The numerical integration is provided using a finite-differences
method. In this case, A (and so the stagnation-point) depends on M and
decreases as M is increased. Further, the influence of the viscosity appears
only in a layer near to the wall depending on M whose thickness decreases
as M increases from zero. This is standard in magnetohydrodynamics.
Some numerical examples and pictures are given in order to illustrate the
effects due to the magnetic field.

The paper is organized in this way:
In Section 2, we formulate the problem in the three cases for an inviscid fluid
and summarize the results in Theorems 2.1, 2.4, 2.6.
Section 3 is devoted to treat the same physical problems for a Newtonian
fluid. Theorems 3.1, 3.3, 3.4 collect our results.
Further, we analyze the behaviour of the flow near the wall. This depends on
the Hartmann number in the third case.
Along the wall, we calculate three important coordinates: the origin towards
which the dividing streamline at infinity is pointed, the point of maximum
pressure, and the point of zero tangential stress (zero skin friction) where the
dividing streamline meets the boundary. These points depend on M in the
third case. As in electrically inert Newtonian fluid, the ratio of the slope of
the dividing streamline at the wall to its slope at the infinity is independent
of the angle of incidence; in the last case it depends on M .
In Section 4, we numerically integrate the previous problems, and discuss
some numerical results.

2. Inviscid Fluids

Consider the steady plane MHD flow of an inviscid, homogeneous, incom-
pressible, electrically conducting fluid near a stagnation point occupying the
region S, given by

S = {x ∈ R
3 : (x1, x3) ∈ R

2, x2 > 0}. (2.1)

The boundary of S, having the equation x2 = 0, is a rigid, fixed, non-
electrically conducting wall.
The equations governing such a flow in the absence of external mechanical
body forces are:

ρv · ∇v = −∇p+ µe(∇×H)×H,

∇ · v = 0,

∇×H = σe(E+ µev ×H),

∇×E = 0, ∇ ·E = 0, ∇ ·H = 0, in S (2.2)

where v is the velocity field, p is the pressure, E and H are the electric and
magnetic fields, respectively, ρ is the mass density (constant > 0), µe is the
magnetic permeability, σe is the electrical conductivity (µe, σe = constants
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> 0).
We assume that the region

S− = {x ∈ R
3 : (x1, x3) ∈ R

2, x2 < 0}
to be a vacuum (free space), and µe is equal to the magnetic permeability of
free space.

To equations (2.2) we append the usual boundary condition for v:

v2 = 0 at x2 = 0.

Further, we suppose that the tangential components of H and E are contin-
uous through the plane x2 = 0.

We are interested in the oblique plane stagnation-point flow so that

v1 = ax1 + bx2, v2 = −ax2, v3 = 0, x1 ∈ R, x2 ∈ R
+, (2.3)

with a, b constants (a > 0).
As known, the streamlines of such a flow are hyperbolas whose asymp-

totes have the equations:

x2 = 0 and x2 = −2a

b
x1.

These two straight-lines are degenerate streamlines too.
Our aim is to study how such a flow is influenced by a uniform external
electromagnetic field (E0,H0). To this end, we consider three cases which,
from a physical point of view, are significant.

2.1. CASE I

x
1

x
2

x
3

HE
0

Figure 1. Flow description in CASE I.

E0 = E0e3, H0 = 0.

Let the induced electromagnetic field (Ei,Hi ≡ H) be in the form

E
i = Ei

1e1 + Ei
2e2 + Ei

3e3,

H = h(x2)e1,

where (e1, e2, e3) is the canonical base of R3.
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The boundary conditions require that

Ei
1 = 0, Ei

3 = 0 at x2 = 0,

h(0) = 0. (2.4)

From (2.2)4 follows that

E ≡ E
i +E0 = −∇ψ,

where ψ is the electrostatic scalar potential.
Moreover (2.2)3 provides ψ = ψ(x3) and

dψ

dx3
(x3) = aµeh(x2)x2 +

h′(x2)

σe
.

From this equation we deduce that both members are equal to the same
constant. Boundary condition (2.4)2 furnishes

h′ + aσeµehx2 = −σeE0, x2 > 0,

ψ = −E0x3 + ψ0, x3 ∈ R. (2.5)

The integration of differential problem (2.5)1, (2.4)3 gives

h(x2) = −σeE0e
−

ax2
2

2ηe

∫ x2

0

e
at2

2ηe dt, x2 ∈ R
+, (2.6)

with ηe =
1

σeµe

= electrical resistivity.

As far as the pressure field is concerned, from (2.2)1 we get

p = −1

2
ρa2(x21 + x22)−

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+,

where h is given by (2.6) and p0 is the pressure in the stagnation point.
We observe that the presence of E0 modifies the pressure field which is

smaller than the pressure in the purely hydrodynamical flow.

Our results can be summarized in the following:

Theorem 2.1. Let a homogeneous, incompressible, electrically conducting in-
viscid fluid occupy the region S. The steady plane MHD oblique stagnation-
point flow of such a fluid has the following form when a uniform external
electric field E0 = E0e3 is impressed:

v = (ax1 + bx2)e1 − ax2e2, H = h(x2)e1, E = E0e3,

p = −1

2
ρa2(x21 + x22)−

µe

2
h2(x2) + p0, x1 ∈ R, x2 ∈ R

+

where

h(x2) = −σeE0e
−

ax2
2

2ηe

∫ x2

0

e
at2

2ηe dt.
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Remark 2.2. We note that the function :

e−x2

∫ x

0

et
2

dt =: daw(x), x ∈ R
+

is known as Dawson’s integral and has the properties:

• x << 1 ⇒ daw(x) ∼ x,

• x >> 1 ⇒ daw(x) ∼ 1

2x
.

Remark 2.3. The solution of the problem relative to the electromagnetic field
in S− is E = E0 = E0e3 and H = H0 = 0.

In order to plot the function h, it is suitable to introduce dimensionless
parameters and variables.
To this end, we denote by V a characteristic velocity and put

L =
V

a
, η =

x2
L
, Ψ(η) =

h(Lη)

σeLE0
.

So (2.5)1 can be written as

Ψ′(η) +RmηΨ(η) = −1

where

Rm =
LV

ηe
is the magnetic Reynolds number.
Therefore

Ψ(η) = −e−Rm
2

η2

∫ η

0

e
Rm
2

t2dt.

Figures 2 show the graphs of the function Ψ for some values of Rm.
We note that there is a layer lining the boundary beyond which Ψ vanishes.

Its thickness increases if Rm decreases; moreover at η =
1√
Rm

the function

Ψ assumes a minimum whose value decreases as Rm decreases.

2.2. CASE II

E0 = 0, H0 = H0e1.
Let the induced electromagnetic field (Ei ≡ E,Hi) be in the form

E = E1e1 + E2e2 + E3e3,

H = [h(x2) +H0]e1.

We append the boundary conditions (2.4).
By proceeding as in CASE I, we deduce ψ = ψ(x3) and

dψ

dx3
(x3) = aµe[h(x2) +H0]x2 +

h′(x2)

σe
.
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Figure 2. CASE I: plots showing the graphs of Ψ for Rm =
10−3, 10−2, 10−1, 1.
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Figure 3. Flow description in CASE II.

From this relation, we get

h′ +
a

ηe
hx2 = − a

ηe
x2H0, x2 > 0,

h(0) = 0 (2.7)
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and ψ = ψ0 from which E = 0.

The solution of (2.7) is

h(x2) = H0(e
−

ax2
2

2ηe − 1), x2 ∈ R
+, (2.8)

so that

H = H0e
−

ax2
2

2ηe e1.

Moreover by virtue of (2.2)1 we deduce that the pressure field is given by

p(x1, x2) = −1

2
ρa2(x21 + x22)−

µe

2
H2

0e
−

ax2
2

ηe + p0, x1 ∈ R, x2 ∈ R
+.

We observe that the value of the pressure at the stagnation point is p0−µe

H2
0

2
.

Finally also in this case the presence of H0 modifies the pressure which is
smaller than the pressure in the purely hydrodynamical flow.

Therefore we have obtained the following:

Theorem 2.4. Let a homogeneous, incompressible, electrically conducting in-
viscid fluid occupy the region S. The steady plane MHD oblique stagnation-
point flow of such a fluid has the following form when a uniform external
magnetic field H0 = H0e1 is impressed:

v = (ax1 + bx2)e1 − ax2e2, H = H0e
−

ax2
2

2ηe e1, E = 0,

p = −1

2
ρa2(x21 + x22)−

µe

2
H2

0e
−

ax2
2

ηe + p0, x1 ∈ R, x2 ∈ R
+.

Remark 2.5. The solution of the problem relative to the electromagnetic field
in S− is E = E0 = 0 and H = H0 = H0e1.

In dimensionless form h becomes

Ψ(η) = e−
Rm
2

η2 − 1, η ∈ R
+,

where

Ψ(η) =
h(Lη)

H0
.

Figure 4 shows that Ψ has an inflection point at η =
1√
Rm

.

2.3. CASE III

E0 = 0, H0 = H0(cosϑe1 + sinϑe2)
with ϑ fixed in (0, π).
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Figure 5. Flow description in CASE III.

Suppose the induced electromagnetic field (Ei ≡ E, H
i) to be in the

form

E = E1e1 + E2e2 + E3e3,

H
i = h1(x1, x2)e1 + h2(x1, x2)e2.

Taking into account (2.2)3, (2.3) we obtain:

σeE =

[

∂h2
∂x1

− ∂h1
∂x2

− σeµe(v1h2 − v2h1 +H0v1 sinϑ−H0v2 cosϑ)

]

e3.

(2.9)

Hence ψ = ψ(x3) and we conclude that E = 0, as we have in CASE II.

Therefore from (2.2)3

∇×H = σeµev ×H,
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from which it follows

∂h2
∂x1

(x1, x2)−
∂h1
∂x2

(x1, x2) =

σeµe{(ax1 + bx2)[h2(x1, x2) +H0 sinϑ] + ax2[h1(x1, x2) +H0 cosϑ]}.
(2.10)

To this equation we must adjoin (2.2)6, i.e. :

∂h1
∂x1

+
∂h2
∂x2

= 0. (2.11)

So (h1, h2) satisfies the PDE system (2.10), (2.11) with suitable boundary
conditions.
It is very difficult to find an explicit solution to this differential problem; so we
proceed as it is customary in the literature by neglecting the induced magnetic
field (h1, h2). This approximation is motivated by physical arguments for
MHD flow at small magnetic Reynolds number, e.g. in the flow of liquid
metals. Then

(∇×H)×H ≃ σeµe(v ×H0)×H0 =

σeµeH
2
0 [a sinϑx1 + (b sinϑ+ a cosϑ)x2][− sinϑe1 + cosϑe2].

On substituting this approximation in (2.2)1 we get:

∂p

∂x1
= −ρa2x1 −B2

0σe sinϑ[a sinϑx1 + (b sinϑ+ a cosϑ)x2],

∂p

∂x2
= −ρa2x2 +B2

0σe cosϑ[a sinϑx1 + (b sinϑ+ a cosϑ)x2],

∂p

∂x3
= 0 ⇒ p = p(x1, x2), (2.12)

with B0 = µeH0.
It is possible to find a function p = p(x1, x2) satisfying equations (2.12)

if and only if

∂2p

∂x1∂x2
=

∂2p

∂x2∂x1
. (2.13)

Taking into account (2.12), the previous condition furnishes

sinϑ(2a cosϑ+ b sinϑ) = 0. (2.14)

From (2.14), we get

tanϑ = −2a

b
. (2.15)

So the MHD oblique stagnation-point flow is possible if and only if H0 is

parallel to the dividing streamline x2 = −2a

b
x1.

We underline that in particular if H0 is normal to the plane {x2 = 0}
(i.e. ϑ = π/2), then there is no pressure that satisfies equations (2.12) and
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therefore the oblique stagnation-point flow given by (2.3) does not exist.
Under the condition (2.15), the pressure field has the form

p = −1

2
ρa2(x21 + x22)−

σeB
2
0

4a2 + b2
a

2
(2ax1 + bx2)

2 + p0, x1 ∈ R, x2 ∈ R
+.

(2.16)

Our results can be summarized in the following:

Theorem 2.6. Let a homogeneous, incompressible, electrically conducting in-
viscid fluid occupy the region S. If we impress an external magnetic field
H0 = H0(cosϑe1 +sinϑe2), 0 < ϑ < π, and we neglect the induced magnetic
field, then the steady MHD oblique plane stagnation-point flow of such a fluid
is possible if, and only if,

ϑ = arctan

(

−2a

b

)

, i.e. H0 =
H0√

4a2 + b2
(−be1 + 2ae2).

Moreover:

v = (ax1 + bx2)e1 − ax2e2,

p = −1

2
ρa2(x21 + x22)−

σeB
2
0

4a2 + b2
a

2
(2ax1 + bx2)

2 + p0, x1 ∈ R, x2 ∈ R
+.

Remark 2.7. In order to study oblique stagnation-point flow for Newtonian
fluids, it is convenient to consider a more general motion. More precisely, we
suppose the fluid obliquely impinging on the flat plane x2 = A and

v1 = ax1+b(x2−B), v2 = −a(x2−A), v3 = 0, x1 ∈ R, x2 ≥ A, (2.17)

with A,B = positive constants.

In this way, the stagnation point is not (0, 0), but the point (
b

a
(B −A), A).

In this case, the streamlines are the hyperbolas whose asymptotes are

x2 = −2a

b
x1 + 2B −A and x2 = A.

As it is easy to verify, in the absence of (E,H), the pressure field is given by:

p = −1

2
ρa2{[x1 −

b

a
(B −A)]2 + (x2 −A)2}+ p0.

We underline that under these new assumptions, Theorems 2.1, 2.4, 2.6 con-

tinue to hold by replacing x1, x2 with x1 −
b

a
(B −A), x2 −A respectively.

3. Newtonian fluids

Consider now the steady plane MHD flow of a Newtonian, homogeneous, in-
compressible, electrically conducting fluid near a stagnation point occupying
the region S given by (2.1).
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In the absence of external mechanical body forces, the MHD equations
governing such a flow are the equations (2.2) where (2.2)1 must be replaced
with:

v · ∇v = −1

ρ
∇p+ ν△v +

µe

ρ
(∇×H)×H, (3.1)

where ν is the kinematic viscosity.
As far as boundary conditions are concerned, we modify only the condition
for v, assuming the no-slip boundary condition

v|x2=0 = 0. (3.2)

Since we are interested to the oblique plane stagnation-point flow, we suppose

v1 = ax1f
′(x2)+ bg(x2), v2 = −af(x2), v3 = 0, x1 ∈ R, x2 ∈ R

+ (3.3)

with f, g unknown functions.
The condition (3.2) supplies

f(0) = 0, f ′(0) = 0, g(0) = 0. (3.4)

Moreover, as it is customary when studying oblique plane stagnation-point
flow for a Newtonian fluid, we assume that at infinity, the flow approaches
the flow of an inviscid fluid given by (2.17) ([6], [18]).
Therefore, to (3.4) we must append also the following boundary conditions

lim
x2→∞

f ′(x2) = 1, lim
x2→∞

g′(x2) = 1. (3.5)

In all the following cases, when we will refer to an inviscid fluid, all results

obtained in Section 2 have to be modified by replacing x1, x2 with x1−
b

a
(B−

A), x2 −A respectively.
In particular, the asymptotic behaviour of f , g at infinity is related to the
constants A,B in the following way:

f ∼ x2 −A, g ∼ x2 −B, as x2 → ∞. (3.6)

As we will see, A is determined as part of the solution of the orthogonal flow
([15]), instead B is a free parameter ([6]).
In order to study the influence of a uniform external electromagnetic field,
we consider the three cases analyzed in the previous section.

3.1. CASE I-N

By proceeding as well as for an inviscid fluid, from (2.2)3, (2.2)4 and boundary
conditions for the electromagnetic field, we obtain

h′ +
a

ηe
fh = −ηeE0, x2 > 0, h(0) = 0, (3.7)

ψ(x3) = −E0x3 + ψ0, x3 ∈ R.
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If we regard f as a known function, the integration of the differential problem
(3.7) gives

h(x2) = −σeE0e
−

a
ηe

∫ x2

0
f(t)dt

∫ x2

0

e
a
ηe

∫
s

0
f(t)dtds, x2 ∈ R

+. (3.8)

As is easy to verify, the induced magnetic fields given by (3.8) and (2.6) have

the same asymptotic behaviour at infinity

(

∼ − ηeE0σe
a(x2 −A)

)

.

Now we proceed in order to determine p, f, g. Substituting (3.3) into (3.1) we
obtain:

p = p(x1, x2),

ax1(νf
′′′ + aff ′′ − af ′2) + b[νg′′ + a(fg′ − f ′g)] =

1

ρ

∂p

∂x1
,

νaf ′′ + a2f ′f +
µe

ρ
h′h = −1

ρ

∂p

∂x2
. (3.9)

Then, by integrating (3.9)3, we find

p(x1, x2) = −1

2
ρa2f2(x2)− ρaνf ′(x2)−

µe

2
h2(x2) + P (x1)

where P (x1) is determined supposing that, far from the wall, the pressure
p has the same behaviour as for an inviscid electroconducting fluid, whose
velocity is given by (2.17).
Therefore, since the induced magnetic fields given by (3.8), (2.6) have the
same asymptotic behaviour, we get, by virtue of (3.5), (3.6)

P (x1) = −ρa
2

2
[x1 −

b

a
(B −A)]2 + p0 + ρaν.

Finally, the pressure field assumes the form

p(x1, x2) = −ρa
2

2
[x21 − 2

b

a
(B −A)x1 + f2(x2)]− ρaνf ′(x2)−

µe

2
h2(x2) + p∗0

(3.10)

with p∗0 = p0 + ρaν − ρ
b2

2
(B −A)2.

Equation (3.9)2 together (3.10) furnishes
ν

a
f ′′′ + ff ′′ − f ′2 + 1 = 0,

ν

a
g′′ + fg′ − f ′g = B −A, (3.11)

with

f(0) = 0, f ′(0) = 0, g(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1. (3.12)

We remark that (f, g) satisfies the same differential problem that governs
the oblique stagnation-point flow in the absence of an electromagnetic field.
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Hence, the external uniform electromagnetic field doesn’t influence the flow.
Moreover, as we can see from (3.10), ∇p has a constant component in the
x1 direction proportional to B−A which determines the displacement of the
uniform shear flow parallel to the wall x2 = 0.
Therefore we have obtained the following

Theorem 3.1. Let a homogeneous, incompressible, electrically conducting New-
tonian fluid occupy the region S. The steady MHD oblique plane stagnation-
point flow of such a fluid has the following form when a uniform external
electric field E0 = E0e3 is impressed:

v = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = h(x2)e1, E = E0e3,

p = −ρa
2

2
[x21 − 2

b

a
(B −A)x1 + f2(x2)]− ρaνf ′(x2)−

µe

2
h2(x2) + p∗0,

x1 ∈ R, x2 ∈ R
+,

where (f, g) satisfies the problem (3.11), (3.12) and h(x2) is given by (3.8).

If we put

η =

√

a

ν
x2, φ(η) =

√

a

ν
f

(
√

ν

a
η

)

, γ(η) =

√

a

ν
g

(
√

ν

a
η

)

, Ψ(η) =

√

a

ν

h
(√

ν
a
η
)

ηeE0
,

then we can write problem (3.7), (3.11), and (3.12) in dimensionless form

φ′′′ + φφ′′ − φ′
2
+ 1 = 0,

γ′′ + φγ′ − φ′γ = β − α,

Ψ′ +RmφΨ = −1,

φ(0) = 0, φ′(0) = 0, γ(0) = 0, Ψ(0) = 0,

lim
η→+∞

φ′(η) = 1, lim
η→+∞

γ′(η) = 1, (3.13)

where

β =

√

a

ν
B, α =

√

a

ν
A, Rm =

ν

ηe
= magnetic Reynolds number.

Notice that the function φ influences the functions γ and Ψ but not viceversa.
The function φ satisfies the well known Hiemenz equation ([15, 6]). We recall
that Hiemenz stagnation flow cannot be analytically solved, but only by a
numerical integration. Existence and uniqueness of the solution to Hiemenz
stagnation flow were shown by Hartmann ([8]), Tam ([14]), and Craven and
Peletier ([2]).
As far as problem (3.13)2, (3.13)6, (3.13)9 is concerned, the solution is for-
mally obtained as ([6])

γ(η) = (α− β)φ′(η) + Cφ′′(η)Φ(η) (3.14)
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with

C = φ′′(0)[γ′(0)− φ′′(0)(α− β)], Φ(η) =

∫ η

0

{

[φ′′(s)]−2e−
∫

s

0
φ(t)dt

}

ds.

(3.15)
We have numerically computed the functions γ, γ′ (as well as φ, φ′, φ′′) for
various values of the parameter β, as we will see in Section 4. Precisely, we
have taken β−α = −5−α, −α, 0, α, 5−α (as in [18]). Other Authors (e.g.
Stuart ([16]), and Tamada ([17])) take β = α, while Dorrepaal takes β = 0
([3, 5]).
We note that the constant C, given by (3.15)1, contains α, φ

′′(0), γ′(0) which
are not assigned. Their values are determined by numerical integration of
problem (3.13).
Finally, the induced magnetic field in dimensionless form is given by:

Ψ(η) = −e−Rm

∫
η

0
φ(s)ds

∫ η

0

eRm

∫
t

0
φ(s)dsdt, η ∈ R

+.

Remark 3.2. As pointed out by Dorrepaal ([3, 5]), along the wall x2 = 0,
there are three important coordinates: the origin x1 = 0 towards which the
dividing streamline at infinity is pointed, the point x1 = xp of maximum
pressure, and the point x1 = xs of zero tangential stress (zero skin friction)
where the dividing streamline of equation

ξφ(η) +
b

a

∫ η

0

γ(s)ds = 0, ξ =

√

ν

a
x1 (3.16)

meets the boundary.
In consideration of (3.10) and (3.3), we see that

xp = b

√

ν

a3
(β − α), xs = −b

√

ν

a3
γ′(0)

φ′′(0)
. (3.17)

We note that xp does not depend on h and the ratio (≥ 0 as we will see in

Section 4)
xp
xs

= (α− β)
φ′′(0)

γ′(0)
is the same for all angles of incidence. Finally,

we recall that studying the small-η behaviour of

∫ η

0
γ(s)ds

φ(η)
([3]), the slope of

the dividing streamline at the wall is given by ([6]):

ms = − 3a[φ′′(0)]2

b[(β − α)φ′′(0) + γ′(0)]

and does not depend on the kinematic viscosity. Thus, the ratio of this slope

to that of the dividing streamline at infinity (mi = −2a

b
) is the same for all

oblique stagnation-point flows and is given by

ms

mi

=
3

2

[φ′′(0)]2

[(β − α)φ′′(0) + γ′(0)]
. (3.18)

This ratio is independent of a and b, depending only upon the constant pres-
sure gradient parallel to the boundary through B −A. ([5])
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3.2. CASE II-N

By proceeding as one would with an inviscid fluid, from (2.2)3, (2.2)4 and
boundary conditions for the electromagnetic field, we get

h′ +
a

ηe
fh = − a

ηe
fH0, x2 > 0, h(0) = 0, (3.19)

ψ(x3) = ψ0 ⇒ E = 0.

The integration of (3.19) leads to

h(x2) = H0(e
−

a
ηe

∫ x2

0
f(t)dt − 1), x2 ∈ R

+, (3.20)

so that

H = H0e
−

a
ηe

∫ x2

0
f(s)ds

e1.

The pressure field, as is easy to verify, becomes

p(x1, x2) = −ρa
2

2
[x21 − 2

b

a
(B −A)x1 + f2(x2)]− ρaνf ′(x2)−

µe

2
[h(x2) +H0]

2 + p∗0,

(3.21)

p∗0 = p0 + ρaν − ρ
b2

2
(B −A)2

and (f, g) satisfies problem (3.11).
Therefore, in this case as well, the external uniform electromagnetic field does
not influence the flow.
Thus, we obtain the following:

Theorem 3.3. Let a homogeneous, incompressible, electrically conducting New-
tonian fluid occupy the region S. The steady MHD oblique plane stagnation-
point flow of such a fluid has the following form when a uniform external
magnetic field H0 = H0e1 is impressed:

v = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, H = [H0 + h(x2)]e1, E = 0,

p = −ρa
2

2
[x21 − 2

b

a
(B −A)x1 + f2(x2)]− ρaνf ′(x2)−

µe

2
[h(x2) +H0]

2 + p∗0,

x1 ∈ R, x2 ∈ R
+

where (f, g) satisfies the problem (3.11), (3.12), and h(x2) is given by (3.20).

In dimensionless form, h(x2) becomes

Ψ(η) = e−Rm

∫
η

0
φ(t)dt − 1, η ∈ R

+, (3.22)

where

Ψ(η) =
h(
√

ν
a
η)

H0
.

Of course, remark 3.2 continues to hold in this case.
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3.3. CASE III-N

Taking into account the results obtained for an inviscid fluid, we assume

H0 =
H0√

4a2 + b2
(−be1 + 2ae2), E0 = 0.

By means of the same arguments of CASE III, we deduce

E = 0 ⇒ ∇×H = σeµe(v ×H)

and we neglect the induced magnetic field, replacing (3.1) with the equation:

v · ∇v = −1

ρ
∇p+ ν△v +

µe

ρ
(v ×H0)×H0. (3.23)

We substitute (3.3) into (3.23) to determine p, f, g. This yields

p = p(x1, x2),

ax1(νf
′′′ + aff ′′ − af ′2 − 4a2

σe
ρ

B2
0

4a2 + b2
f ′)+

+ b[νg′′ + a(fg′ − f ′g)− 2a2
σe
ρ

B2
0

4a2 + b2
(2g − f)] =

1

ρ

∂p

∂x1
,

νaf ′′ + a2f ′f +
σe
ρ

B2
0

4a2 + b2
[2a2bx1f

′ + ab2(2g − f)] = −1

ρ

∂p

∂x2
. (3.24)

The integration of (3.24)3 gives

p(x1, x2) =− 1

2
ρa2f2(x2)− ρaνf ′(x2)

− σe
B2

0

4a2 + b2
[2a2bx1f(x2) + ab2

∫ x2

0

(2g(s)− f(s))ds] + P (x1)

where P (x1) has to be found in CASE I-N, II-N.
After some calculations, we obtain

P (x1) = −ρa
2

2

(

1 +
4a

ρ

σeB
2
0

4a2 + b2

)

[x1 −
b

a
(B −A)]2 + p′0

with p′0 constant.
So the pressure field is:

p(x1, x2) =− ρ
a2

2
[x21 − 2

b

a
(B −A)x1 + f2(x2)]− ρaνf ′(x2)

− σeB
2
0

4a2 + b2

{

2a2bx1f(x2) + ab2
∫ x2

0

(2g(s)− f(s))ds

+ 2a3[x21 −
2b

a
(B −A)x1]

}

+ p∗0, x1 ∈ R, x2 ∈ R
+. (3.25)
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The constant p∗0 represents the pressure at the stagnation point.
Then, (3.24)1 supplies

ν

a
f ′′′ + ff ′′ − f ′2 + 1 +M2(1 − f ′) = 0,

ν

a
g′′ + fg′ − gf ′ +M2(f − g) = (1 +M2)(B −A), (3.26)

where

M2 = 4a
σeB

2
0

ρ(4a2 + b2)
= Hartmann number.

We append boundary conditions (3.4), and (3.5) to the system (3.26).
We remark that, unlike the previous cases, the external electromagnetic field
modifies the flow, and ifM = 0 the system (3.26) reduces to the system (3.11).

Theorem 3.4. Let a homogeneous, incompressible, electrically conducting New-
tonian fluid occupy the region S. If we impress the external magnetic field

H0 =
H0√

4a2 + b2
(−be1 + 2ae2)

and if we neglect the induced magnetic field, then the steady MHD oblique
plane stagnation-point flow of such a fluid has the form

v = [ax1f
′(x2) + bg(x2)]e1 − af(x2)e2, E = 0,

p = −ρa
2

2
[x21 − 2

b

a
(B −A)x1 + f2(x2)]− ρaνf ′(x2)

− σeB
2
0

4a2 + b2

{

2a2bx1f(x2) + ab2
∫ x2

0

(2g(s)− f(s))ds

+ 2a3[x21 −
2b

a
(B −A)x1]

}

+ p∗0, x1 ∈ R, x2 ∈ R
+,

where (f, g) satisfies problem (3.26), (3.4), and (3.5).

System (3.26) in dimensionless form becomes

φ′′′ + φφ′′ − φ′
2
+ 1 +M2(1− φ′) = 0,

γ′′ + φγ′ − φ′γ +M2(φ− γ) = (1 +M2)(β − α) (3.27)

and we adjoin boundary conditions (3.13)4−9.
Notice the one-way coupling, that the function φ influences the function γ
but not viceversa.

Remark 3.5. We recall that the solution of the differential problem (3.27)1,
(3.13)4, (3.13)5, and (3.13)8 exists and it is unique as proved by Hoernel in
[9].
As far as γ is concerned, it satisfies a linear second order non-homogeneous
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differential equation, if we regard φ as a known function. After some calcu-
lations, we obtain that γ is formally expressed by

γ(η) = (α− β)φ′(η) + Cφ′′(η)Φ(η)

+M2φ′′(η)
{

∫ η

0

Φ(s)φ(s)φ′′(s)e
∫

s

0
φ(t)dtds− Φ(η)

∫ η

0

φ(s)φ′′(s)e
∫

s

0
φ(t)dtds

}

(3.28)

with C, Φ(η) are given by (3.15) again. We note that if M = 0, then (3.28)
reduces to (3.14).

Remark 3.6. The points x1 = xp of maximum pressure and x1 = xs of zero
tangential stress on x2 = 0 are formally the same as in CASE I-N and II-N.
However, these points depend on M .
Finally, the slope of the dividing streamline at the wall is given by:

− 3a[φ′′(0)]2

(1 +M2)b[(β − α)φ′′(0) + γ′(0)]
.

4. Numerical results and discussion

In this section, we discuss the numerical solutions of the problems studied in
CASES I, II, III-N.

4.1. CASE I-N

We have solved problem (3.13) numerically by using a shooting algorithm.
Figure 6 shows the graphics of Hiemenz function and its derivatives. As one

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

η

φ

φ′

φ′′

Figure 6. CASE I-N: plot showing the behaviour of φ
(Hiemenz function), φ′, φ′′.

can see, lim
η→+∞

φ′′(η) = 0, lim
η→+∞

φ′(η) = 1. At η = 2.4, one has φ′ = 0.99 and,

if η > 2.4, then φ ∼ η−0.6479, so α = 0.6479. From the numerical integration,
we get φ′′(0) = 1.2326. Our results are consistent with the previous studies.
Figures 71, and 72 show the profiles of γ(η), γ′(η), for some values of β − α,
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Figure 7. CASE I-N: Figures 71 and 72 show γ and γ′ with,
from above, β − α = −5− α, −α 0, α, 5− α respectively.

Table 1

β − α γ′(0) C
xp

xs

ms

mi
ηγ

-5.6479 7.5693 0.7490 0.9197 3.7501 3.0
-0.6479 1.4065 0.7493 0.5678 3.7489 3.2

0 0.6080 0.7494 0 3.7483 3.2
0.6479 -0.1906 0.7494 4.1899 3.7483 3.4
4.3521 -4.7562 0.7496 1.1279 3.7471 3.6

i.e. β − α = −5− α, −α, 0, α, 5− α.
As far as γ′(0) is concerned, we show in Table 1 its values for different β
(β = −5, 0, α, 2α, 5).
We note that the constant C, given by (3.15)1, contains α, φ

′′(0), γ′(0) which
are not assigned, but their values have been determined by the numerical
integration of problem (3.13). Table 1 points out that C has always the
same value, ≃ 0.749, according to the value determined by Stuart ([16]) and
Glauert ([7]) by means of asymptotic estimate of the integral Φ(η) at infinity.
In Table 1, we list also the numerically computed values of η (denoted by ηγ)
at which γ′ = 0.99 (if β−α ≥ 0), or γ′ = 1.01 (if β−α < 0). So when η > ηγ ,
then γ ∼ η − β. We have that ηγ is greater than 2.4. Hence the influence
of the viscosity appears only in a layer lining the boundary whose thickness
is ηγ . We remark that the layer affected by the viscosity is proportional to
√

ν

a
and its thickness is larger than in the orthogonal stagnation-point flow,

which is 2.4

√

ν

a
(see Figures 6, 7).

Observing again Table 1, we notice that xs (given by (3.17)2) has the
sign of b if β − α > 0 and the sign of − b if β − α ≤ 0. Moreover if b is
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positive (negative) xs increases (decreases) as β − α increases. As far as |xs|
is concerned, if β − α increases from a negative value to zero, |xs| decreases
and so xs approaches the origin, otherwise, as β −α increases from zero to a
positive value, |xs| increases and so xs departs from the origin.
Figures 81, 82, 83 show the streamlines and the points

ξp =

√

ν

a
xp, ξs =

√

ν

a
xs (4.1)

for
b

a
= 1 and β − α = −α, 0, α, respectively.

Figure 91 shows the behaviour of the induced magnetic field Ψ with Rm = 1,
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Figure 8. CASE I-N: plots showing the streamlines and the

points ξp, ξs for
b

a
= 1 and β − α = −α, 0, α, respectively.

that is similar to the behaviour of Ψ in CASE I (inviscid fluid). Figure 92
shows the behaviour of Ψ with Rm = 10−6; for η ∈ [0, 4.6] the graph is
approximately linear, because in this interval, for very small values of Rm,
the equation (3.13)3 reduces to Ψ′ ∼ −1.
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Figure 9. CASE I-N: plots showing Ψ with Rm = 1, 10−6.

4.2. CASE II-N

In this case the ordinary differential problem governing (φ, γ) is the same as
in CASE I-N; we have only to compute Ψ(η), given by (3.22).
Figure 10 shows that Ψ has a similar behaviour as in CASE II.
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Figure 10. CASE II-N: plot showing Ψ for Rm = 1

4.3. CASE III-N

We have solved the problem (3.27) with the boundary conditions (3.13)4−9

by using a finite-differences method, because the usual shooting does not
produce the desired accuracy ([1]).

We remark that the values of α and φ′′(0) depend on M , as we can
see from Table 2. More precisely, α decreases and φ′′(0) increases as M is
increased from 0, as we would expect physically.
Table 3 shows numerical results of some parameters significant from a physi-
cal point of view forM = 0, 1, 2, 5, 10 and β−α = −5−α, −α, 0, α, 5−α.
As far as the dependence of γ′(0) onM is concerned, from Table 3 we can see
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Figure 11. CASE III-N: plots showing φ, φ′, φ′′ for M = 2.
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Figure 12. CASE III-N: plots showing γ, γ′ with M = 2
and, from above, β − α = −5−α, −α, 0, α, 5− α, respec-
tively.

that its value increases whenM increases if β−α < 0, otherwise it decreases.
In Figure 11, we can see the profiles φ, φ′, φ′′ for M = 2, while Figure 13
shows the behaviour of φ′ for different M .
Figures 121, 122 show the profiles of γ(η), γ′(η), for M = 2 and for some
values of β − α, i.e. β − α = −5−α, −α, 0, α, 5− α. In Figures 14, 15, 16,
we provide the behaviour of γ′ for different M when β − α is fixed.
We have plotted the profiles of φ, φ′, φ′′, γ, γ′ for M = 2 because they have
an analogous behaviour for M 6= 2.
Moreover, we observe (see Table 3) that the constant C in (3.28) has approx-
imately always the same value if we fix M and it decreases as M decreases.
In Table 3, we also list, for some M and β − α = −5− α, −α, 0, α, 5− α,
the values of ηφ, ηγ beyond which φ ∼ η−α and γ ∼ η− β, respectively. We
note that ηγ is greater than the corresponding value of ηφ; so the influence
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Figure 13. CASE III-N: plots showing φ′ for different M .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

40

45

50

η

γ′

M=0M=1
M=2

M=5

M=10

0 1 2 3 4 5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

η

γ′ M=0

M=1

M=2
M=5

M=10

Figure 14. CASE III-N: plots showing γ′ for different M .
In the first picture β−α = −5−α, in the second β−α = −α
.

of the viscosity appears only in the region η < ηγ , i.e. x2 <

√

ν

a
ηγ .

Further we underline that the thickness of this layer depends on M and de-
creases whenM increases (as easily seen in Figures 13, 14, 15, 16). This effect
is normal in magnetohydrodynamics.

Table 2

M α φ′′(0)

0 0.6479 1.2326
1 0.5410 1.5853
2 0.3936 2.3467
5 0.1907 5.1480
10 0.0988 10.0747
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Figure 15. CASE III-N: plots showing γ′ for different M .
In the first picture β − α = 0, in the second β − α = α .
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Figure 16. CASE III-N: plots showing γ′ for different M
with β − α = 5− α.

Finally we notice that the points xp, xs, given by (3.17), lie on the
same side of the origin. Their location depends on M and β − α, as seen in

Table 3. Figures 17 shows the streamlines and the points ξp, ξs for
b

a
= 1,

β − α = −α, 0, α, and M = 1, 5. We can observe that
xp
xs

tends to 1 as M

increases.
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