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Chapter 1

Introduction

1.1 General review and scientific issues

To give an idea on what a tropical monsoon system is we cite from Holton (2004):

“The term monsoon is commonly used in a rather general sense to designate any

seasonally reversing circulation system. The basic drive for a monsoon circulation

is provided by the contrast in the thermal properties of the land and sea surfaces.”

The absorption of the solar radiation raises the surface temperature over land much

more rapidly than over the ocean. Because of their different heat capacity, thin layer

of the soil responds to the seasonal change in surface temperature more rapidly than

the upper layer of the ocean that responds on a longer (seasonal) timescale. The

warming of the land relative to the ocean leads to enhanced cumulus convection,

and hence to latent heat release, which produces warm temperature throughout

the troposphere.

Beyond the general features shared by all tropical monsoons, West African

monsoon (WAM) has its own structure and variability. Monsoon dynamic involves

a wide range of space (synoptic, regional and local) and time (decadal, interannual,

seasonal and intra-seasonal) scales. Figure 1.1 shows streamlines from mean

ECMWF (European Centre for Medium-Range Weather Forecast) wind fields in
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4 1. Introduction

July 2002, to sketch the main dynamical features, at 850 hPa, 650 hPa and 250hPa.

Usually in July the WAM is in its mature stage and the atmospheric circulation

related with the monsoon is well developed. Low level winds are shown in top

left panel: the Harmattan, driven by the Saharan anticyclone (top right panel),

the south-easterly trade winds and the monsoon flow, driven by the temperature

gradient between the warm Guinean coast and the cold eastern equatorial Atlantic

(Gu and Adler, 2004). Red line in the same panel represents the inter-tropical front

ITF, where moist southwesterly monsoon winds and dry northeasterly Harmattan

converge.

Upper right panel of figure 1.1 shows the atmospheric circulation at 650 hPa:

the Saharan anticyclone, due to the descendent branch of the Hadley cell, and

the African Easterly Jet (AEJ), are highlighted by the shaded area. AEJ is

essentially geostrophic and owes its existence to the presence a strong surface

wetness contrasts between the Sahara and equatorial Africa that leads to a positive

surface temperature gradient , which, according to the thermal wind relation,

induces easterly shear over the surface monsoon westerlies (Cook, 1999). Upper

tropospheric dynamics (250 hPa) is shown in bottom panel of figure 1.1. The

easterly wind blowing, around 10N and during the boreal summer, over Africa and

the Atlantic ocean is the Tropical Easterly Jet (TEJ).

The inter-decadal and inter-annual variability of rainfall in the Sahelian region

is shown by the Sahelian standardized rainfall index presented in figure 1.2. The

rainfall index is evaluated as the difference, between the Sahelian (where sahel is

identified by the lon-lat box: 10N-17.5N 22.5W-17.5E) rainfall for a given year

and the mean over the reference period, divided by the standard deviation of the

rainfall time series. Even if this index hides the spatial differences of precipitation

trends in Sahel (Ali and Lebel, 2009; Lebel and Ali, 2009), it is used to understand

the strong interdecadal variability of rainfall over the Sahelian region as a whole.

Figure 1.2 clearly shows a severe drought period between 1968 and today that
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1.1 General review and scientific issues 5

Figure 1.1: Monthly mean streamlines from July 2002 ECMWF analyses. 850

hPa [upper left]; 650 hPa [upper right] and 250 hPa. Main dynamical features

are written in blue. Inter-tropical front is represented by a red doted line. Red

points symbolize the position of the fires in July. Shaded areas symbolize the AEJ

location. (Adapted from Sauvage et al. (2005))
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6 1. Introduction

represent one of the strongest interdecadal signals on the planet in the 20th century.

As reported by Giannini et al. (2003) Sahel is highly sensitive to sea surface

temperature (SST) variability in all tropical basins, remote (Pacific) and local

(Atlantic and Indian). A positive trend in equatorial Indian Ocean SSTs, between

East Africa and Indonesia, is identified as the proximate cause for the negative

rainfall trend observed in the Sahel from the late 1960s.

Figure 1.2: Sahelian precipitation index computed for period 1905-2006. (From Ali

and Lebel (2009))

On a shorter time scale the seasonal cycle of the WAM is shown in figure

1.3. It represents mean precipitation between 10E and 10W over the 1998-2003

period. Major intense rainfall events appear near the Gulf of Guinea (5N) starting

in April (day 90), move to northward latitudes around 10N during the July mid-

September period and then retreat back to the south after mid-September October,

corresponding to the seasonal migration of the inter tropical convergence zone

(ITCZ) over the Sahelian region.
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1.1 General review and scientific issues 7

Figure 1.3: Seasonal cycles in (a) weekly rainfall (mm day−1) between 9.5W and

9.5E, (b) weekly SST (◦C;4S-4N, 10W-5E), and (c) weekly SST differences between

2N and 0, averaged along 10W-5E. In (b) and (c), solid lines are used for 1998,

dashed lines for 1999, dashed-dotted lines for 2000, dotted lines for 2001, lines with

asterisks (*) for 2002, and lines with crosses (1) for 2003. (Adapted from Gu and

Adler (2004)). Vertical lines in (a) indicates the mean monsoon on-set date with

its standard deviation (Sultan and Janicot, 2003).

7



8 1. Introduction

The monsoon onset is the seasonal migration of rain band between June and

July, it is defined as the abrupt latitudinal shift of the ITCZ from a quasi-stationary

location at 5N in May-June to a second quasi-stationary location at 10N in July-

August. Sultan and Janicot (2003) found that the transition phase between the

two stationary positions of the ITCZ is accompanied by low convective activity

over West Africa and they indicated that the mean date for the WAM onset is 24

June with a standard deviation of 8 days.

As reported by Gu and Adler (2004) intense rainfall in the Gulf of Guinea

begins in April (day 90 in figure 1.3) following the occurrence of warm sea surface

temperature (SST) in the tropical eastern Atlantic. Low-level southerly wind

accelerates and enhances upwelling of the eastern Atlantic ocean resulting in a

decreased SST around the equator. This increases the SST gradient between the

equator and 2N (fig. 1.3c) enhances southerly winds and produces favourable

conditions for convection and rainfall around 5N during days 120-190. The cold

SST zone begins to suppress the convection and rainfall when the mean SST is less

than about 27◦C (around day 180). Then the surface rainfall events near the Gulf

of Guinea disappear and a second rain belt begins to develop around 10N in July

and remains there during the later summer season.

Looking at smaller time-scale and focusing on the Sahelian region, we observe

that there are few intense and short precipitation events that carry the whole

rainfall over the region, as shown by figure 1.4, where drastic increase in time of

precipitation are due to intense events related with mesoscale convective systems

(MCS) in the Sahelian region.

MCS definition includes fast moving squall lines (10 to 15 m/s) that can be

large systems up to 1000 km large, according to Redelsperger et al. (2002), and

responsible for 80% of the annual rainfall in the sub-Saharan region (Mohr et al.,

1999). The annual variability of MCSs in West Africa (WA) is driven by monsoon

circulation, which provides favourable conditions for convection formation in the

8



1.1 General review and scientific issues 9

Figure 1.4: Daily (bars) and cumulated (line) rainfall for 2005 [left] and 2006 [right]

at the Wankama catchment site, 13.65N 2.63E. (From Boulain et al. (2009))

Sahelian area.

The regional-scale environment of MCS development in WA has similar

characteristics, which are common to organized convection (Laing and Fritsch,

2000), i.e. baroclinic zones characterized by large vertical wind shear in the lower

troposphere and high Convective Available Potential Energy (CAPE). At a larger

scale the low level AEJ constitutes the source of the African easterly waves (AEW),

which are well recognised in playing an important role in the organization and

modulation of convection (Mekonnen et al., 2006).

Concerning MCS internal dynamics, a conceptual model of a two-dimensional

steady state squall line was proposed by Rotunno et al. (1988), which stresses the

importance of a strong downwelling density current, a low-level wind shear and

high CAPE value in maintaining a long-lived squall line. Such factors promote

deep lifting at the leading edge of the system and enable it to maintain themselves

and to propagate by mean of the continuous triggering of new convective cells.

Mid-level dry air is important in promoting evaporation, allowing the formation

of the density current. Figure 1.5 shows the sketch of the dynamic of a simplified

2 dimensional MCS. The thick black arrow indicates the density current allowing

the formation of new convective cells, thick white arrow depicts the transport of

boundary layer air up to the level of main convective outflow and thin arrows on

the right shows the vertical wind shear. That picture must be taken just as an

example used to show the main characteristics of a MCS, the real dynamic is more

complicated and fully 3 dimensional.
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10 1. Introduction

Figure 1.5: Schematic sketch of a 2 dimensional squall line. Black arrow indicates

the density current, white arrow depicts the transport of boundary layer air up to

the level of main convective outflow and thin arrows on the right shows the vertical

wind shear. (From Rotunno et al. (1988))

This simplified 2D scheme can be roughly applied to characterise MCSs in west

Africa. Middle level dry air can be also supplied by dry intrusion arriving from the

Saharan area (Roca et al., 2005), while the vertical shear is due to the transition

between the monsoon flow coming from the south-west in the low-level, and the

AEJ in the middle-level (Sultan and Janicot, 2003). Large CAPE values are jointly

provided by the strong heating of the surface and the wet air masses transported

by the monsoon flow.

Concerning MCS lifetime, Laing et al. (2008) studied the propagation and

diurnal cycle of organized convection in the period from May to August and in

northern tropical Africa using five years (1999-2003) of infrared images in the 10.5

µm channel of the Meteosat7 satellite. They reported that convective episodes

tend to initiate in the lee of high terrain, consistent with thermal forcing from

elevated heat sources. Single MCS spans an average distance of about 1000 km

and last about 25 h with a phase speed between 10 and 20 ms−1, but a substantial

fraction of events exhibits systematic propagation over grater space scales (regional

to continental) while undergoing decay and regeneration. An example of an MCS

developing and propagating between 18 and 19 August 2006 in west Africa is given

10



1.1 General review and scientific issues 11

in figure 1.6.

Figure 1.6: MSG cloud top brightness temperature from 15UTC of 18/08/2006 to

15UTC 19/08/2006 at 3 hours intervals. Yellow, orange and red colours correspond

to cloud colder than 230K, 215K and 200K respectively.

Regarding the interaction between organised convection and AEW Laing et al.

(2008) showed that organized mesoscale systems moved faster than the waves with

an average phase speed of 12 and 7.7 ms−1, respesctively. Furthermore they found

that during the peak monsoon period and in the zone between 10 E and 10 W,

more than one third of cold cloud episodes occurred behind the trough of easterly

waves, nearly one-quarter of cloud episodes occurred ahead of the trough and one-

11



12 1. Introduction

tenth occurred within the wave trough. Regarding the diurnal cycle Laing et al.

(2008) report that organised convection most probably occurs between 18 and 2

local time and west of 20 E.

So WAM dynamics is determined by the interaction of atmospheric features that

have different spatial and temporal scale. Furthermore, the two-way interaction

between atmosphere and ocean, soil and vegetation, contributes to increase the

complexity of the picture. For those reasons meteorological and climatic models,

both at global and regional scales, still shows important weaknesses when simulate

rainfall. The other reason that makes modelling of west African monsoon a difficult

task is the scarcity of measurements (Agusti-Panareda et al., 2009).

Numerical weather prediction precipitation forecast is generally poor during

the wet West African monsoon season from June to September, because of the lack

of data available. Particularly lacking are radiosondes data, which are the only

observing system that provide a comprehensive 3-D thermodynamic and dynamic

information of the atmosphere in the lower and mid-troposphere. Radiosonde

observations are particularly important for the Sahel region located between 12N

and 20N which is characterized by large gradients in temperature and moisture in

the lower troposphere.

To overcame those difficulties, huge effort have been done to improve seasonal

forecast of WAM. A correct prediction of the WAM onset is of great help for

agriculture management in West Africa, where marked interannual variations in

recent decades have resulted in extremely dry years with devastating environmental

and socio-economic impacts. In a region were agriculture is mainly rain fed, drought

years represent a serious danger for food and water security for West African

societies.

Together with droughts another hazard for West African region is represented by

floods as reported by United Nation-International Strategy for Disaster Reduction

(www.unisdr.org) 70% of natural disasters in West Africa between 1991 and 2005

12



1.1 General review and scientific issues 13

are due to flooding. Thus short-range (0.5-2 days) forecasts of intense precipitation

events are useful for early warning alert service in West Africa.

In west Africa lower tropospheric monsoon circulation, inter-hemispheric

transport from central Africa driven by upper and middle tropospheric jet, long

range transport from Asian monsoon region, deep convection, in-mixing across

sub-tropical jet (STJ) from midlatitudes, export downwind and transport into the

lower stratosphere (LS) superimpose their effect, leading to a complex atmospheric

transport pattern (see the sketch in figure 1.7). Since west Africa is an important

source for both biogenic and anthropogenic trace gases that controls the ozone

concentration of the troposphere (e.g. Crutzen and Andreae (1990),Williams et al.

(2009)), the distribution of chemicals and aerosols at local, regional and global

scale is a key issue for atmospheric composition and global radiative budget.

Figure 1.7: Main transport mechanisms influencing atmospheric composition over

west Africa.

The tropospheric concentration of O3 and its precursors (CO, NO, NO2 and

13



14 1. Introduction

volatile organic compound) plays a fundamental role in determining the oxidising

capacity of the troposphere through the formation of the OH radical. Furthermore

oxidised organic compound can lead to the formation of secondary aerosols which

affect cloud formation processes and the radiative budget.

Tropical and deciduous forest in west Africa emits large amount of volatile

organic compounds, which are rapidly oxidised and form secondary organic aerosols

(Capes et al., 2009). Soil emissions of nitrous oxide, due to microbial processes,

are quickly oxidised to NO2, changing the rate of ozone production (Delon et al.,

2008). Quickly growing African cities and megacities as Lagos, emit large amount

of pollutants. Volatile organic compound, CO and NOx emitted by vehicle

combustion, power generation and petrochemical activity put Lagos amongst the

cities with highest emission of the world (Hopkins et al., 2009).

Chemicals and aerosols sources in west Africa are still poorly known because of

lack of direct measurements. Recently a large field campaign in the framework of

AMMA (African Monsoon Multidisciplinary Analysis, Redelsperger et al. (2006)),

devoted to the study of the dynamics and chemical composition of atmosphere in

West Africa, gave some insight into emission processes over west Africa.

Together with local emissions also long range transport of biomass burning

(BB) plumes influences the composition of troposphere and lower stratosphere in

the region. Africa is the continent emitting the largest quantity of BB emissions

with a strong inter-hemispheric transition between West Africa in boreal winter to

central and southern Africa (figure 1.8) in boreal summer (Crutzen and Andreae,

1990) following the location of the dry season in each hemisphere. Production of

O3 downwind from wild fires influences the global oxidizing capacity and thus the

lifetime of greenhouse gases such as CH4.

Layers influenced by BB plumes have been observed in the mid and upper

troposphere over the Atlantic Ocean (Thompson et al., 1996; Jenkins et al., 2008)

and over West Africa (Thouret et al., 2009) during the summer monsoon period.

14



1.1 General review and scientific issues 15

Figure 1.8: Surface mean CO concentration for August 2006 measured by

MOPITT.

Mari et al. (2008) investigated the variability in the transport of BB emissions from

central Africa to the gulf of Guinea (West Africa) and the Atlantic Ocean in the

mid-troposphere during July and August 2006 and suggested that it is driven by

variations in the southern branch of the African easterly jet. During periods when

this jet is less active, BB emissions can be trapped over the continent and injected

into the upper troposphere by deep convection, influencing the ozone concentration

in the upper troposphere.

Vertical transport within the troposphere of chemicals and aerosols over tropical

Africa is mainly due to convection. Other mechanism that are effective in middle

latitude, like frontal uplift or slow isentropic transport, are less relevant with

respect to convective uplift in northern tropical Africa during boreal summer.

The transport within deep convective cloud also determine the exchange between

troposphere and stratosphere. Air masses are transported by deep convection up to

the level of neutral buoyancy, laying within the tropical tropopause layer (TTL), the

interface layer between troposphere and stratosphere. Afterward TTL air masses

15



16 1. Introduction

are slowly uplifted into the stratosphere due to dynamical forcing and radiative

heating (Fueglistaler et al., 2005).

The determination of the height of convective clouds and their subsequent

impact on TTL composition is important to estimate but it is difficult to achieve

from satellite measurements due to the limited vertical resolution of satellite-borne

profilers, on-board of METEOSAT for example, at the tropical tropopause.The

information on the height where deep convection outflow occurs and modifies the

water vapour and trace gas distributions can be derived from in-situ observations

that offer an adequate vertical resolution. Several observational analyses based

on in-situ aircraft data show that deep convection can impact up to the tropical

tropopause (see for example Corti et al. (2008) and Khaykin et al. (2009)).

High vertical resolution observations of chemicals in the UTLS (Upper

troposphere Lower Stratosphere) have been used to assess the role of convection

in determining the atmospheric composition. Trace gases mixing ratios within

recently uplifted air masses have been used to calculate the rate at which UTLS

air is substituted by lower tropospheric air (Bertram et al., 2007), the fraction of

boundary layer air present in the convective outflow (Bertram et al., 2007; Bechara

et al., 2009), the vertical transport timescale within MCS (Bechara et al., 2009)

and the photochemical activity of MCS’ outflow.

It is difficult to distinguish between recent convective outflow and air masses

transported from far away that underwent to chemical and photochemical

processing.In west African atmosphere local convection superimposes its signature

on other transport processes that take place in the troposphere and lower

stratosphere: (1) the tropical easterly jet transport air masses uplifted by deep

convection in the Asian monsoon area (Barret et al., 2008) (2) transport of extra

tropical low stratospheric air masses within the tropical tropopause layer (3)

transport of biomass burning plumes coming from south hemispheric wild fires

and uplifted by deep convection in central Africa (Real et al., 2009).

16



1.2 Thesis structure 17

For this, the use of trajectory simulations, passive tracer transport and

chemistry-transport model simulations can be used to determine the area of

provenience and distinguish between fresh convective outflow and aged air masses.

1.2 Thesis structure

The research presented here addresses a twofold issue: (1) analyse the dynamic of

MCS, their role in precipitation and their predictability; (2) study how convection

during the west African summer monsoon impacts on atmospheric composition.

The approach chosen is based on a synergy between state of the art atmospheric

mesoscale modelling and the analysis of a wide range and typology of observations.

Availability of observations is a key problem for west Africa and the large

international initiative AMMA (African Monsoon Multidisciplinary Analysis), in

the frame of which the present study was conducted, aimed at improving our

knowledge and understanding of chemical and physical processes within the WAM

through balloon, aircraft, satellite, ground and sea based measurements.

One of the final objectives of AMMA is to improve the forecast the WAM on

various time and spatial scales and assess its impact on climate. In this frame, the

synergy between observations and modelling is a of fundamental importance since

models are needed to interpret and homogenise measurements and, on the other

hand, observations are needed to improve and validate models.

The scientific issues presented in the previous section are addresses in the

present work with the aid of the mesoscale model BOLAM (BOlogna Limited

Area Model) and measurements coming from satellite, ground based and aircraft

measurements. Thus the first part of the thesis is devoted to test and improve

BOLAM model while in the second part we use the BOLAM model to analyse

measurements mainly collected in the frame of the AMMA field campaign during

August 2006.

17



18 1. Introduction

In chapter 2 we give a review of the problems that mesoscale models show when

used in west Africa: low reliability of meteorological fields used to initialise regional

models, the difficulty in reproduce the initiation and propagation of organised

convective systems and the incorrect prediction of rainfall amount. Then we

show a case study of intense precipitation due to an organised convective system

and we evaluate the performances of numerous mesoscale models in reproducing

precipitation rain rate and the propagation of the system. Precipitation generated

by mesoscale models is compared with satellite precipitation estimates.

Precipitation related with deep convective events appear to be poorly forecasted

by mesoscale model and often weakly correlates with rainfall measurements. So in

chapter 3 we describe an approach to improve mesoscale model performances in

reproducing the formation and propagation of organised convection and related

precipitation. We present the implementation of a nudging procedure in the

BOLAM model and we evaluate it using cloud top brightness temperature

(CTBT) measured by Meteosat satellite together with precipitation estimates. The

assimilation approach is based on the continuous assimilation of Meteosat infrared

brightness temperatures within the model.

Chapter 4 is dedicated to the description of the field campaign that took

place in west Africa in the frame of the AMMA project. During the campaign

ground-based, ship, balloon, aircraft and satellite measurements were performed

to sample the atmosphere, the ocean, the soil and the vegetation in west Africa.

We particularly focus on atmospheric measurements taken during 2006 wet season.

The measurement strategy is described and a review of the current literature based

on aircraft and balloon measurements is presented together with the analyses of

the average profiles of chemicals and aerosol in WA from aircraft observations.

Moreover the observed role of convection on in situ observations from the M55

research aircraft is analysed.

The improvements achieved with the nudging scheme described in chapter 3

18



1.2 Thesis structure 19

allowed to better simulate tracer transport in chapter 5. Beside the amelioration

of precipitation, the improvement of organised convection position and evolution as

well as the coherent modification of the divergent wind at convection outflow level,

is exploited to evaluate the effect of deep convection over trace gases transport.

In chapter 5 we utilise the BOLAM model, together with the assimilation

scheme, to analyse the impact of convection on the composition of the tropical

tropopause layer in West-Africa. More specifically the model is validated against

observations from M55 aircraft in convectively perturbed conditions and is then

used to quantitatively estimate the impact of deep convection in west African

upper troposphere.

Together with deep convective impact on the upper tropospheric composition,

we also studied the influence of inter-hemispheric transport of biomass burning

emissions from southern hemispheric wild fires. In chapter 6 we used BOLAM

mesoscale model simulation to investigate whether the measurements collected

during the AMMA field campaign were influenced or not by biomass burning

emissions.

Pollutant plumes with enhanced concentrations of trace gases and aerosols were

measured by research aircraft over the southern coast of West Africa during August

2006. We ran the BOLAM mesoscale model including a biomass burning tracer

to confirm that the origin of the plumes are wild fires located in the southern

hemisphere. Furthermore the injection of a tracer per day allowed to evaluate the

time needed by air masses to travel between emission region and west Africa at

different altitudes.

In the chapter 7 a follow-up of the work presented in the thesis is given. A

seasonal mesoscale simulation covering the whole West African area is presented

showing the impact of the nudging scheme on longer time-scales.

In the last section we delineate the general conclusions of this thesis giving an

outline of future developments made possible by the finding of this study.
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Chapter 2

Mesoscale modelling of convection

and Monsoon dynamics

2.1 State of the art of regional modelling in West

Africa

The complex coupling between different spatial and temporal scales involved in west

African atmosphere dynamics, makes precipitation forecast on time scale ranging

from inter-decadal to the single convective event a difficult task to be addressed.

Synoptic atmospheric features like the low tropospheric African easterly jet (AEJ),

the perturbations of this jet (African easterly wave AEW) and the tropical easterly

jet promote and organise deep convection (Mekonnen et al., 2006). On the other

hand, diabatically generated potential vorticity anomalies has a role in sustaining

AEW (Berry and Thorncroft, 2005), soil moisture gradient, also due to MCS

precipitation, determines the formation of the AEJ (Cook, 1999) and convection

contributes to reinforce the monsoon flow at low levels (Diongue et al., 2002).

Another example of scale interaction is reported by Giannini et al. (2003) and

regards the driving of two distinct pattern of rainfall variability by oceanic sea

21



22 2. Mesoscale modelling of convection and Monsoon dynamics

surface temperature (SST) anomalies: on an inter-decadal time scale, Sahel is

highly sensitive to SST variability in all tropical basins, remote (Pacific) and local

(Atlantic and Indian). A positive trend in equatorial Indian Ocean SSTs, between

East Africa and Indonesia, is identified as the proximate cause for the negative

rainfall trend observed in the Sahel from the late 1960s. On a seasonal time

scale anomalies in the equatorial Atlantic ocean drives precipitation anomalies of

opposite sign in coastal west Africa and in the Sahelian region.

Modelling of west African monsoon is a difficult talk also because of the

lack of measurements (Agusti-Panareda et al., 2009) in fact numerical weather

prediction of precipitation forecast is often low reliable during the wet west

African monsoon season. Radiosonde data are particularly necessary because

provide thermodynamic and dynamic profiles of both troposphere and stratosphere.

Radiosonde observation are necessary in particular in the Sahelian region (12N-

20N), that is characterised by strong latitudinal temperature and moisture

gradients in the lower troposphere.

Before the African Monsoon Multidisciplinary Analysis (AMMA) field

experiment in 2006, the radiosonde network was quite sparse and only few

data were received via the Global Telecommunication System. Therefore, few

radiosonde observations were assimilated in numerical weather prediction models’

analyses. The AMMA project put a large effort on restoring and enhancing the

radiosonde network (Parker et al., 2008). The AMMA radiosonde observations

had a significant impact on the ECMWF analysis. ECMWF re-analyses show

an overall improvement due to the assimilation of AMMA data, with an increase

of deep cloud in the analysis and a precipitation increase in the 1-day forecast

between 10W and 10E. On the other hand, the influence on the forecast is very

short-lived due to large model biases. The soundings reveal large model biases in

boundary layer temperature, which are too low, over northern and eastern Sahel.

Assimilation of soundings east of 15E results in large temperature increments that
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caused unrealistic increments of winds. Thus, although the mean analysis/forecast

is improved over central Sahel, it is actually degraded over eastern Sahel.

The lack of measurements in the region lead to uncorrected or biased global

meteorological models’ analysis used to initialise regional models. Unrealistic initial

and boundary conditions drive mesoscale models to incorrect representation of

convection. Particularly important is the correct initialisation of humidity fields,

and this initial-value problem is increased for the tropics and convective flows as

large-scale forcings are weaker than for midlatitudes and condensation is an all-or-

nothing process.

Diongue et al. (2002) studied the evolution of a squall line over Sahel in August

1992. They report moist bias in the ECMWF ERA-15 (ECMWF Re-Analyses from

December 1978 to February 1994) reanalyses. The moist bias leaded to absolute

instability and moist layers mainly in the deep Saharian boundary layer and at mid-

level over Mali and Nigeria, respectively. Such features appeared to be responsible

for the triggering of convective systems in the simulation at incorrect locations as

compared with Meteosat images. They analysed the initial fields to find region of

spurious instability by mean of the Brunt-Vaisala frequency. They modified the

water vapour profile in order to suppress unrealistic instabilities. The corrections

lead to a successful simulation of formation and propagation of the studied squall

line.

Druyan et al. (2001) used regional model to simulate the Synoptic weather

features over West Africa in the period 8-22 August 1988. They also needed to

develop a methodology to improve ECMWF analyses, in particular moisture fields,

used as initial and boundary conditions for the regional model. They found that

more realistic time-space distribution of precipitation, when compared with rain

gauge observations, were obtained by modifying the initial moisture and circulation

fields to improve their compatibility with the regional model. Thus, a 24 hours

simulation was ran prior then the initial date of the simulation (7 August), the
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humidity fields produced by the regional model were used together with ECMWF

temperatures to evaluate specific humidity profiles, that was then used instead of

the ECMWF ones, to initialise the regional model.

Another way to improve the initial field used to initialise a limited area model

in the tropics have been developed by Ma et al. (2007). They created a technique to

improve initialization of a tropical cyclone prediction model using diabatic heating

profiles estimated from a combination of both infrared satellite cloud imagery

and satellite-derived rainfall. They created reference diabatic heating profiles,

classifying them into three kinds: convective, stratiform or composite types. Then,

during a 24h period prior to the start of the simulation, they used a nudging scheme

to replace model-generated heating profiles by the reference heating profiles on the

basis of the satellite-observed cloud top temperature and rainfall type.

Orlandi et al. (2010) used a similar approach to improve the representation

of mesoscale convective systems in the region of West Africa. They developed

and implemented a nudging procedure in the mesoscale meteorological model

BOLAM (Malguzzi et al., 2006) to assimilate the METEOSAT infrared brightness

temperatures within the model in order to trigger convection, where observations

show the presence of large convective systems and to inhibits convection, when

the model reproduces unrealistic convective precipitation. They showed that the

nudging improves the geographical distribution and time evolution of mesoscale

convective systems reproduced by the model and that the impact of assimilation is

positive up to 13 hours after the end of the nudging period. They also showed that

the nudging improves the simulated amount and spatial distribution of precipitation

and coherently modifies the dynamical fields.
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2.2 Model intercomparison in the frame of

AMMA

In the present section we give an example of precipitation forecasts in the Sahelian

region performed by mesoscale and global models. We participated to a model

inter-comparison conducted in the framework of AMMA project aimed to assess the

capability of meteorological models in reproducing a case of intense precipitation

occurred in Sahel between 28 and 30 August 2005.

Figure 2.1 shows the Hovmoller (longitude versus time) plot of precipitation

and the meridional component of the wind at 700 hPa averaged between 7N and

16N for the period 25-31 August 2005. 700 hPa is the altitude at which African

easterly wave (AEW) forms as instability of the African easterly jet on its southern

and northern side (Berry and Thorncroft, 2005). Interaction between MCS and

AEW has been reported by many authors (e.g. Berry and Thorncroft (2005) and

Mekonnen et al. (2006)), deep convective organisation seems to be favoured by

the presence of AEW and diabatically generated potential vorticity anomalies has

a role in sustaining AEW activity. As captured by time longitude diagrams of

meridional wind at 700 hPa (figure 2.1), numerous African easterly wave developed

and propagated in the period 25 August onward. The propagation of the rain band

produced by the MCS studied here seems to be embedded within the trough of an

African easterly wave.

Figure 2.2 shows the longitude-time diagram of surface rainfall from the satellite

precipitation estimates EPSAT-SG (Chopin et al., 2004; Bergès et al., 2010) and

TRMM-3B42RT (Huffman et al., 2007). Both satellite estimates show a westward

moving MCS propagating at a speed of 15◦/day. Structure and time evolution of

the simulated MCS are similarly described by TRMM and EPSAT products while

the amount of precipitation is higher for TRMM.

Five mesoscale and two global models were involved in this model
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Figure 2.1: Rainfall (shaded) and meridional wind at 700 hPa (interval of 2.5 ms−1

between isolines). (Adapted from Guichard et al. (2010))

Figure 2.2: Longitude-time diagrams of surface rainfall, averaged over [7N,16N].

Contour are 1,2,3,4,5,10,15 and 20. EPSAT-SG (left) and TRMM-3B42RT (right);

the black thick lines delineate the area where the EPSAT-SG rainfall estimate is

greater than 2 mm. (From Guichard et al. (2010))
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intercomparison (see table 2.1), all the mesoscale models have been initialized with

ECMWF analyses. All the mesoscale models include parameterizations, which

vary in complexity, of surface, radiative, turbulent, convective and cloud processes.

The size of the simulated domain differs among models, the horizontal resolution

varies between ten to a few tens of kilometers, therefore, all of them made use of a

parameterization scheme to describe subgrid convection.

Table 2.1: Model used, horizontal grid resolution

Modelname Horizontal Reference

resolution

BOLAM 12 km Malguzzi et al. (2006)

COSMO 28 km Doms and Schattler (2002)

MesoNH 10 km Lafore et al. (1997)

PROMES 15 km Arribas et al. (2003)

WRF 12 km Skamarock et al. (2005)

MOUM 60 km - global Pope et al. (2000)

ECMWF IFS 35 km - global Bechtold et al. (2008)

Figure 2.3 shows the longitude versus time plot for model precipitation, to be

compared with figure 2.2. All the model simulate, as observed, a westward-moving

pattern in this area, with relatively close speeds among models. However, it is

not always the dominant pattern. Indeed, rainfall is predicted at night to the east

of the rainfall line in most models. The rainfall line itself is less well defined in

MesoNH, COSMO and ECMWF IFS. MesoNH and MOUM are also characterized

by widespread daytime convection east of 5E. The BOLAM model overestimates

precipitation with respect to satellite estimates but well reproduce the longitudinal

extension of the MCS. Furthermore it underestimated the speed of propagation

and generates an eastward shifted precipitation pattern.

This example shows that precipitation forecast in the Sahelian area is a difficult
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task for mesoscale models. Despite the fact that all the mesoscale models have been

initialised with the same ECMWF fields and have similar horizontal resolution,

relevant differences are found with respect to satellite estimates and among model’s

representation of precipitation.
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Figure 2.3: As figure 2.2 but for models. (From Guichard et al. (2010))
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Chapter 3

How to improve the model

scores? A simple data

assimilation approach

In the previous chapter we showed that meteorological simulations of deep

convective events and of the precipitation associated with them in West Africa is

a difficult task to be addressed by mesoscale meteorological models. This because

of the complex interaction between processes at different spatial and temporal

scales and because of the scarcity and sparsity of atmospheric measurements in

the region that lead to low reliable global analyses/forecasts used as boundary and

initial conditions for mesoscale models.

In this chapter we describe the implementation of an assimilation scheme aimed

at improving convective representation and precipitation. The scheme is based

on the use of satellite observations of cloud top brightness temperature (CTBT)

to correct the model humidity profiles. In fact the simulation of convection and

precipitation is strongly dependent on an accurate description of water vapour

profiles.

Firstly, observations used for the assimilation and for the evaluation of

31



32

3. How to improve the model scores? A simple data assimilation

approach

results are presented. Then the nudging procedure is tested against an intense

precipitation event occurred between 9 and 12 August 2006 in West Africa.

Precipitation and cloud top brightness temperature are used to evaluate the model

capability in reproducing the deep convective event.

3.1 Observations used

During the monsoon season in West Africa the 80% of precipitation is expected

to come from mesoscale convective systems that have a time-scale ranging from

1 day to few days. Thus for assimilation purposes observations used to improve

convection needs to be at sufficiently high temporal resolution.

Global datasets of precipitation from rain gauges like GPCC (Rudolf and

Schneider, 2004) are sparse and have low temporal resolution (1 month). Combined

satellite and ground precipitation estimates of the Global Precipitation Climatology

Project (GPCP 1DD) (Huffman et al., 2001) have the advantage of being

continuous in space, but have a horizontal resolution of 1◦ and a temporal resolution

of 1 day. Near-real-time satellite precipitation estimates from infrared and merged

infrared and passive microwave instruments have a higher temporal (6 hours to

15 minutes) and spatial (0.7◦ to 0.1◦) resolution, but exhibit a low detection

rate for heavy precipitation in the tropics (Ebert et al., 2007). Moreover multi-

satellite measurements need to be converted into precipitation estimates by means

of parameterization and calibration that could introduce errors.

In the nudging scheme developed herein CTBT from 10.8 µm channel of SEVIRI

radiometer on-board the Meteosat Second Generation Satellite (MSG) is used.

It has been preferred to rainfall because its derivation from MSG radiance is a

straightforward calculation and because it has higher temporal (15 minutes) and

spatial (3 km at the sub-satellite point) resolutions with respect to rainfall estimates

that also uses satellite radiance and has a time resolution of 3 hours and a spatial
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resolution of 0.25◦ (TRMM products).

A CTBT lower than 230 K is considered as a proxy for the occurrence of deep

convection following Fu et al. (1990) where is shown that very little bright-cold

clouds (organised convective systems) occurs at temperature warmer than 230K and

very little dull-cold cloud (thin cirrus) occurs at temperature colder than 230K. A

detailed description of the method used to derive CTBT from radiance is described

in EUMETSAT (2008)

To evaluate the model, CTBT, TRMM 3B42 and GPCP 1DD precipitation

estimates are used. The GPCP algorithm combines precipitation estimates from

several sources, including infra red (IR) and passive microwave (PM) rain estimates,

and rain gauge observations (Huffman et al. (2001) and references therein). The

IR data came mainly from the different geostationary meteorological satellites

but data from polar-orbiting satellites were also used to fill in the gaps at

higher latitudes. The IR-based estimates used the Geostationary Operational

Environmental Satellite (GOES) precipitation index (GPI). The microwave data

come mainly from the Special Sensor Microwave Imager (SSM/I) onboard the

defense meteorological satellite program. The PM estimates were used to adjust the

GPI estimate. Then the multisatellite estimate was adjusted towards the large-scale

gauge average for each grid box. The gauge-adjusted multisatellite estimates were

then combined with gauge analysis using a weighted average, where the weights

are the inverse error variances of the respective estimates. The current products

include a monthly analysis at 2.5◦×2.5◦ grids, a 5-day (pentad) analysis at the

same spatial resolution, and a daily product at a special resolution of one degree.

The GPCP one-degree daily (1DD) product does not use PM rain estimates

and gauge measurements directly (Huffman et al., 2001). SSM/I data were used

within the framework of the threshold-matched precipitation index to delineate

rain areas in the IR data. Gauge data were involved indirectly when the 1DD

product was scaled so that monthly accumulations of 1DD matched the monthly
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GPCP product. The monthly and pentad analyses extend from 1979 to current,

while the daily product is available starting from October 1996. The daily products

are made available 2 to 3 months after the end of each month.

Products from the TRMM multisatellite precipitation analysis algorithm

include the ’TRMM and Other Satellites’ (3B42) described in Huffman et al. (2007).

The 3B42 estimates are produced 3-hourly at a spatial resolution of 0.25◦. The

major inputs into the 3B42 algorithm are IR data from geostationary satellites,

PM data from the TRMM microwave imager (TMI), SSM/I, Advanced Microwave

Sounding Unit (AMSU) and Advanced Microwave Sounding Radiometer-Earth

Observing System (AMSR-E). The 3B42 estimates are produced in four steps:

(1) the PM estimates are calibrated and combined, (2) IR precipitation estimates

are created using the PM estimates for calibration, (3) PM and IR estimates

are combined, and (4) the data are rescaled to monthly totals whereby gauge

observations are also used indirectly. This product is available for a few days after

the end of each month.

34



3.2 The BOLAM model 35

3.2 The BOLAM model

BOLAM is a meteorological model based on primitive equations in the hydrostatic

approximation. It solves the prognostic equations for wind components u and

v, potential temperature, specific humidity and surface pressure. Variables are

defined on hybrid coordinates and are distributed on a non-uniformly spaced

Lorenz grid. The horizontal discretization employs geographical coordinates, with

latitudinal rotation on an Arakawa C-grid. The model implements a weighted

average flux scheme for three-dimensional advection. The lateral boundary

conditions are imposed by means of a relaxation scheme that minimizes wave

energy reflection. The microphysical scheme has five prognostic variables (cloud

water, cloud ice, rain, snow and graupel), as derived from the one proposed by

Schultz (1995). Deep convection is parameterized with the scheme of Kain-Fritsch

(Kain and Fritsch, 1990; Kain, 2004). The boundary layer scheme is based on the

mixing length assumption and the explicit prediction of turbulent kinetic energy

(Zampieri et al., 2005), while the surface turbulent fluxes are computed according

to the Monin-Obukhov similarity theory. The parameterization of the effects of

vegetation and soil processes (Pressman, 1994) is based on the water and energy

balance in a four-layer soil model, and includes the diagnostic computation of

skin temperature and humidity, seasonally dependent vegetation effects, evapo-

transpiration and interception of precipitation. The radiation is computed with

a combined application of the scheme from Ritter and Geleyn (1992) and the

operational one from the ECMWF (Morcrette et al., 1998). Further details of

the model are provided in Malguzzi et al. (2000).

3.3 Description of the MCS event

The event used to perform the test of data assimilation is characterised by the

development of two large mesoscale convective systems observed in the Sahelian
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region from 9 to 12 August 2006. It has been chosen because is one of the strongest

convective event of the 2006 monsoon season and because a validation of the

nudging scheme for this case of intense precipitation was useful for the analysis

of aircraft measurements presented in chapter 5.

Figure 3.1: Meteosat cloud top temperature from 00 UTC 10 Aug. to 00 UTC 12

Aug. 2006, every 12 hours. Colour scale in K.

Figure 3.1 shows the CTBT derived from channel 10.8 of the SEVIRI instrument

on-board the Meteosat Second Generation Satellite (MSG). The top panel refers

to 00 UTC 10 August 2006 and the interval between two images is 12 hours.

Two systems are clearly visible in the top panel: a westward system (WS) around

13E 10N and an eastward system (ES) around 26E 13N. The WS has a lifecycle

longer than two days, with a decreasing phase at 12 UTC 11 August, followed by

regeneration. Its approximate speed of propagation is 11 m/s and the minimum
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Figure 3.2: ECMWF analysis of wind speed at 700hPa on 00 UTC 10 Aug. 2006.

CTBT is 190K. The ES has a shorter lifecycle of 36 hours and dissolves over

northern Nigeria around 12 UTC 11 August. Its propagation speed is similar to

that of the WS system and its minimum brightness temperature is 185K.

The generation of these large systems is related to the intense monsoon flow,

which is well established, providing favourable conditions for the generation of

convection. The relationship of the observed MCS with the AEW activity is less

clear. The wavelet decomposition presented in Janicot et al. (2008) shows that

the AEW activity during the 2006 monsoon season was divided into three peak

periods: mid-June, mid-July and from mid-August to mid-September. According

to Janicot et al. (2008), the analysed event occurs in a period of low AEW activity.

However, it is possible to identify the wave structure in the western part of the

Sahelian region. Figure 3.2 shows the ECMWF (European Centre for Medium-

range Weather Forecast) analysis of wind speed on 10 August at 00 UTC at 700hPa,

considered as the altitude of maximum AEW intensity. A trough of an AEW is

visible over South Mali. The ECMWF analysis 24 hours later (not shown) indicates

that the wave moves westward toward Senegal. Nevertheless, it is difficult to relate

the generation of the observed systems directly to this wave event.
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3.4 Nudging procedure and simulation set-up

The nudging scheme is based on the approach proposed by Davolio and Buzzi

(2004) (which is an evolution of the Falkovich et al., 2000 approach), focusing on

the nudging of precipitation in extratropical regions. The scheme is modified here

to deal with intense convective precipitation in the West African monsoon season:

(1) the separation between convective and stratiform precipitations is not included

and (2) the scheme assimilates the CTBT derived from the SEVIRI infrared channel

centred at 10.8 micrometers, instead of precipitation. This has the advantage of

a high spatial and temporal resolution and overcomes the uncertainty associated

with precipitation estimates (Ebert et al., 2007).

The nudging procedure compares brightness temperature observed from satellite

and evaluated by BOLAM and makes the appropriate modifications on the model

specific humidity profile. Modifications are made when the temperature difference

exceeds 2 K and when model or observed brightness temperatures are below 230

K, the latter condition to select only the grid points where precipitating deep

convection occurs or is forecast by the model (Fu et al., 1990). The model-derived

CTBT is estimated with the RTTOV-8 (Saunders et al., 2005) radiative transfer

model from BOLAM water vapour, temperature and hydrometeors profiles.

The mixing ratio q(k), evaluated by BOLAM at each model level k and each

grid point , is modified for the grid-point column selected for nudging according to

the following equations:

q(k) = q(k)model + ∆q(k)nudg (3.1)

∆q(k)nudg = −ν(k)τ−1[q(k)model
− εqsat(k)] × ∆t (3.2)

where qsat is the saturation mixing ratio with respect to liquid water above

0◦ C. Below 0◦ C a mixed phase cloud is considered and qsat is evaluated using
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a combination of saturation mixing ratio over liquid water and ice from Tetens’

formulas.

ν(k) is a weighting function that identifies the portion of the vertical profile

modified by the nudging procedure. Parameter ν is set to 1 between the ground

and 700 hPa, and then decreases to 0 at 500 hPa following a cubic law, remaining

equal to 0 up to the top of the domain.

Parameter τ is the relaxation time that determines the intensity of nudging,

it has been varied to test the sensitivity of BOLAM to the nudging scheme. The

values used for the test are 2, 4 and 10 hours.

The sign and intensity of the modification applied to the moisture profile depend

on the term in the square brackets in Equation (3.2). If BOLAM CTBT is greater

than the satellite one (less intense convection), parameter ε in equation 3.2 is set

to 1 and the humidity profile is increased toward its saturation value. In the

opposite case, ε is set to 0.5 and the profile is decreased toward a sub-saturated

condition. The subset of grid points where the nudging is applied and the value

of parameter ε are determined by the comparison between model and satellite

CTBT, performed every 20 minutes, while the satellite data are updated once per

hour. The modification to the moisture profile is applied after the evaluation of the

term in the square brackets of Equation (3.2), which is done for every integration

timestep. This allows a smooth forcing of the model and the reduction of the

forcing term, if the model profile approaches the target profile εqsat.

A set of simulations was defined, using nudging with different assimilation

periods and relaxation times, while a simulation without nudging was used as

reference for the assessment of nudging impact. All simulations cover a period of

three days from 00 UTC 09 August 2006 to 00 UTC 12 August 2006: better

performances are obtained with a three day simulation starting when the two

MCSs began to develop, in order to include their complete life cycle. Initial and

lateral boundary conditions are interpolated from the ECMWF 6-hourly analyses
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at 0.5◦×0.5◦ horizontal resolution and at 91 vertical levels.

The BOLAM model (described in section 3.2) is run with 38 vertical hybrid

levels, from the ground to the top of the atmosphere (0.1 hPa), with denser levels

near the ground. The horizontal domain chosen for the simulation has 300×220 grid

points with a horizontal resolution of 12 km (0.108◦ in rotated coordinates). The

domain covers the region of the analyzed convective systems life cycle and ranges

from 8W, 25E in longitude and from 2S to 23N in latitude. The large distance

covered by Sahelian MCSs, due to their speed of propagation, requires the use of

a large domain to describe their whole lifecycle, and, as a practical consequence, a

reduced horizontal resolution. Thus convection cannot be explicitly risolved in the

model and the use of a convective parameterization is needed.

The values of the nudging window and the relaxation times are given in Table

3.1. Assimilation of CTBT through the nudging scheme starts after one day of free

model integration (00 UTC of 10 August). According to sensitivity studies, a longer

assimilation period does not improve the model performance nor the duration of

improvements due to assimilation in the last day of simulation. The Nudg-24h-2

and Nudg-48h-2 simulations will be used to evaluate the impact of nudging duration

on the rainfall and convective life cycle. The Nudg-24h-2, Nudg-24h-4 and Nudg-

24h-10 experiments will be used to evaluate the sensitivity to the relaxation time

τ defined in Equation 3.2

Table 3.1: Characteristics and names of the simulations

Relaxation time τ

Nudging endurance 2 hours 4 hours 10 hours

24 hours Nudg-24h-2 Nudg-24h-4 Nudg-24h-10

48 hours Nudg-48h-2

No nudging Free-run
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3.4.1 Sensitivity tests

In the present section we investigate the response of the BOLAM model to the

modification of the weight assigned to the forcing term modulating the moisture

profile. We focus on the sensitivity to the relaxation time τ , since it has a strong

impact on the scores considering CTBT. The tests were run only on the 24 hour

nudging simulations. The values tested for the τ parameter are 2, 4 and 10 hours.

A further aim of the work was to assess the feasibility of producing accurate

analyses based on radiance temperature nudging. Since τ determines the intensity

of nudging, it is crucial to choose a smooth relaxation of the model towards the

observations, for a long period of nudging. Fractional Skill Score (FSS, Robert

and Lean 2008) was used to evaluate the performance of the model, in terms of

CTBT (and rainfall in the following section). FSS scores belong to the verification

methods based on fuzzy logic (Ebert, 2008), which relax the requirement for exact

matches between forecasts and observations, using instead a spatial window or

neighbourhood surrounding the forecast and observed points.

The percentage of grid points over the domain with CTBT under 220K is shown

in the left panel of Figure 3.3 for the three analyzed simulations. This temperature

threshold was chosen to evaluate the performance of the model in reproducing deep

convective events, because 220K roughly corresponds to a cloud top above 12.5 Km

height (Schmetz, 1997). In both panels the vertical lines indicate the start and the

end of the assimilation period. In left panel it can be seen that the best matching

between the MSG data is obtained with the simulation Nudg-24-2 for the first 62

hours of the run, after which an underestimation of the area covered by convection

is visible. The right panel in Figure 3.3 shows the time evolution of the FSS score

during the nudging period. It shows higher values for the maximum and a more

rapid increase of the score for lower relaxation times. On the third simulation

day, when the nudging scheme was inactive, the best performance of the model is

still obtained with the experiment that has the lowest relaxation time, since the
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simulation with τ=2 h shows the longest endurance of the improvement due to

nudging. Such behaviour can be explained by the fact that a lower relaxation time

implies a stronger forcing of the model toward the target given by the observations.

Nevertheless, it must be stressed that the nudging directly modifies the water

vapour content only in the lower troposphere, and a substantial agreement with

a derived variable like infrared CTBT should be considered as a validation of the

nudging approach. Thus, in the analysis below, we use the value of τ=2 h for both

the 24 hour and the 48 hour nudging experiments.

Figure 3.3: Evolution in time of the percentage of grid points characterized by a

CTBT exceeding 220 K [left panel]. FSS score versus time for CTBT, temperature

threshold is 220 K and spatial window is 60 Km [right panel].
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3.5 Comparison of simulated MCS lifecycle with

observations

3.5.1 Cloud top brightness temperature

The first objective was to evaluate the spatial and temporal distribution of the

convective systems reproduced by the Free-run and the nudged simulations. The

purpose was to assess the impact of the nudging procedure on the convective system

representation and to evaluate the duration of the improvements derived from

nudging. The evaluation here was carried out using observed and model-derived

CTBT, because it is a good proxy for the intensity of convection. The simulations

analyzed were Nudg-24h-2, Nudg-48h-2 and the Free-run; it has been chosen to use

τ=2 h because it gives the best scores for CTBT, compared to the other relaxation

times tested, as discussed in Section 3.4.1.

The CTBT at 18 UTC 10 August 2006 for the three simulations and MSG

observations are shown in Figure 3.4. The Westward mesocale convective system

(WS) and Eastward one (ES) are visible in the observations (top left panel) over

northern Nigeria (WS) and southern Chad (ES), respectively. The ES appears

to be more intense in terms of brightness temperature and area coverage. Sparse

intense convective activity is also observed in northwestern Niger, Eastern Mali

and Burkina Faso. The brightness temperature from the Free-run (Fig. 3.4, top

right panel) is severely underestimated: convective systems in the latitude belt

ranging from 5N and 15N appear to be smaller, less intense and less organised

than observed. The Free-run simulation reproduces two distinct areas of intense

convection: a western one over Nigeria, which is southerly displaced and less

intense compared to satellite observations; an eastern one over southern Chad,

now reproduced as sparse and intense convective activity and displaced eastward.

Nudg-24h-2 and Nudg-48h-2 (Fig. 3.4, bottom panel) are identical, since

the nudging process is still active at the analyzed time for both simulations.
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The nudging provides a substantial improvement on the MCS distribution and

propagation. Both the position and the overall structure of ES and WS agree well

with observations, even if the simulated MCSs are more scattered. The BOLAM

brightness temperatures now lies within the same range as the MSG ones, even if

the area covered by the MCS seems to be underestimated. The nudging reduces

the cloud coverage and the intensity of the unrealistic convective activity at the

boundaries between Nigeria and Cameroon, and allows the generation of small

MCSs in the northern part of the domain.

Figure 3.4: Cloud top temperature at 18 UTC 10 Aug. 2006. MSG (top left),

Free-run (top right), nudged simulations (bottom left). Colour scale is in K.

Figure 3.5 shows the observed and simulated brightness temperature at 18 UTC

11 August. It should be stressed that the simulation Nudg-24h-2 had 18 hours of

run without assimilation after the 24 hour nudging, while Nudg-48h-2 was still
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forced with MSG data. The observations show that the WS system is located in

the 9N-18N belt around 5W longitude. The WS is weakening (as displayed by

the lower BT values), while the ES is nearly dissolved, except three smaller cloud

systems located above Benin and western Nigeria. Apart from the WS system

and a small one in middle of Chad, convective activity north of 10N is absent.

The Free-run simulation (Fig. 3.5, top right panel) shows a much more intense

convective activity than the satellite. It reproduces organized convective activity

in three areas, plus some small and intense convective systems.

The bottom left panel of Figure 3.5 (Nudg-24h-2) shows the evolution of the

WS and the ES described above. The former is located between 10N and 17N

and between 5W and 0, while the latter is the convective complex with its highest

convective activity centred at 13N 5E. Both systems have moved slower than the

observed ones and are slightly displaced northward. As regards the system evolving

from the ES, it is still in an active (and intensifying) phase, rather than in a

decreasing phase, as observed in the satellite data. The Nudg-48h-2 simulation (Fig.

3.5, bottom right panel) is in better agreement with the observations, as expected,

since the nudging process is active throughout the entire run. Nevertheless, the 48

hour nudged simulation does not completely dissipate the WS, as in the case of

Nudg-24h-2 simulation.

Figure 3.6 shows the 12.5 percentile of grid points where the CTBT exceeds the

thresholds of 210K, 220K, 230K and 240K, for each fixed longitude in the domain,

as a function of time. The cloud fraction colder than the threshold from MSG

observations (Fig. 3.6, upper left panel) shows the time and longitude evolution

of the two large MCSs described in section 2. Both systems are characterized

by a marked diurnal cycle with development of convection after 12 UTC, a

maximum around 18 UTC and a rapid decrease from 6 UTC to 12 UTC. This

is in agreement with the convection cycle evaluated from the MSG climatology

over Africa presented in Laing et al. (2008).
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Figure 3.5: As in Fig. 3.4 but at 18 UTC 11 Aug. 2006.
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The Free-run simulation (Fig. 3.6, top right panel) forms three convective

systems, which propagate westward with a reduced speed compared with

observations. A realistic diurnal cycle is reproduced with generation of convection

at 12 UTC on each simulation day and a maximum around 18 UTC. From CTBT

maps at 14 UTC (not shown), it is possible to observe that convection initiates on

the lee side of the Darfur mountains, in agreement with the analyses of Laing et

al. (2008) and Mekonnen et al. (2006).

The Nudg-24h-2 simulation (Fig. 3.6, bottom left panel) has a correct position

and propagation speed of the MCSs during the assimilation period (00 UTC 10

August - 00 UTC 11 August). After the end of the nudging period the speed of

the two systems decreases and their lifecycle is not correctly reproduced. In fact,

the ES does not totally dissipate at 6 UTC 11 August, but grows again at 12

UTC 11 August, while the WS decreases after 12 UTC 11 August. In general, the

convective systems reproduced during the portion of simulation without nudging

are characterized, as in the Free-run, by a lower westward propagation speed, but

display a diurnal lifecycle of the systems in agreement with observations. It is also

possible to argue that nudging has a relevant impact throughout the run since the

convection on the last day of simulation, despite the mentioned differences, seems

to be more realistic than in the Free-run. Figure 3.6 confirms that the Nudg-48h-2

simulation is in good agreement with the observed lifecycle and propagation speed

of the MCS, even if it can be observed that convection is still active after 6 UTC

10 August between 0E and 10E, as in the case of the Nudg-24h-2 simulation.

The left panel in Figure 3.7 shows the percentage of grid points with CTBT

under 220K. For both panels the vertical lines indicate the start of the assimilation

period for both the nudged simulations and the end for the Nudg-24h-2 simulation.

MSG observations again show the diurnal cycle of the convective activity, which

is also, at least on a qualitative basis, reproduced by all simulations. Compared

to the Free-run, the amount of convection is much better reproduced when the
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Figure 3.6: Hovmoller plots for the 12.5 percentile of grid points whose CTBT

exceeds the temperature thresholds of 210K, 220K, 230K and 240K, for each fixed

longitude in the domain. Solid lines in the left borders indicate the nudging period.
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assimilation is applied. The Free-run underestimates the average convective

activity during the first two days of the simulation and overestimates it during

the last one, while the nudged simulations underestimate the convective activity

for just the first 30 hours, and capture a secondary maximum at 4 UTC 10 August

as well as the rapid increase after 12 UTC 10 August. It is also worth noticing

that, during the third day of the run, the Nudg-24h-2 simulation still shows a

better agreement with MSG observations than the Free-run does. The right panel

in Figure 3.7 shows the time evolution of the FSS. A maximum threshold of 230 K to

calculate the FSS is chosen to apply the score only to the model grid points where

the nudging procedure was active. The FSS analysis also shows a quantitative

improvement as a result of the nudging procedure. From the start of the nudging

period FSS rapidly increases up to values close to 0.85, after which the FSS for

Nudg-48h-2 remains higher than in the Free-run until the end of the simulation,

while the FSS for Nudg-24h-2 drops to values close to those of the Free-run after

13 hours from the end of nudging. This also provides an estimate of the endurance

of the improvement due to assimilation.

Figure 3.7: Evolution in time of the percentage of grid points characterized by a

CTBT exceeding 220 K [left panel]. FSS score versus time for CTBT, temperature

threshold is 220 K and spatial window is 60 Km [right panel].
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3.5.2 Rainfall

The next step was to assess to what extent the nudging improved the spatial

distribution and intensity of the precipitation field. The comparison was performed

for the last 24 hours of simulations, i.e. 11 August 2006. The rainfall observations

came from the daily accumulated precipitation at 1 degree of the GPCP project

(Huffman et al., 2001) and from the Tropical Rainfall Measuring Mission (TRMM)

(Kummerov et al., 2000) 3 hourly product at 0.25 degree of resolution. Nicholson et

al. (2003 I and II) used a rain gauge database, different from the one used by GPCP

and TRMM estimates, to validate both TRMM and GPCP rainfall products over

West Africa on 1998. They used an horizontal resolution of 2.5 degrees and showed

that GPCP relative error lies between -2% and 14% in August. They showed also

that TRMM relative error is around 8% in August, considering 1 degree boxes.

Figure 3.8 shows the accumulated precipitation for GPCP, TRMM and the

simulations. Both rainfall datasets show two main precipitation areas associated

to the ES and WS convective systems: West of 5E and between 10E and 15E.

The precipitation of the Free-run simulation is associated to the three systems

described in Figure 3.5, which produce rainfall throughout the 10N-15N latitude

band. The comparison between the Free-run and rainfall observations shows that

the simulated precipitation is more spread, and that the geographical position of

the intense precipitation (> 20 mm) does not agree with the observed one.

A clear improvement is obtained with nudging for both the Nudg-24h-2 and

Nudg-48h-2 simulations. The first shows a remarkable coincidence with GPCP and

TRMM for the areas of intense precipitation and a general reduction of the rainfall

area. The agreement is further improved with the 48 hour nudging. This result

is also confirmed by the FSS score, calculated for two precipitation thresholds,

10 and 20 mm, and a longitude-latitude window of 3◦×3◦ for GPCP product

and 0.75◦×0.75◦ for TRMM. FSS scores have been evaluated by remapping the

BOLAM daily accumulated precipitation over TRMM and GPCP grids. The FSS
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scores are reported in Table 3.2. As expected, the FSS score is in general higher

for the Nudg-48h-2 simulation. The improvement is particularly relevant for the

highest threshold (20 mm), where both Nudg-48h-2 and Nudg-24h-2 simulations

give markedly higher scores compared to the Free-run. For the lower threshold (10

mm) the nudging still provides an improvement in terms of FSS score. Nevertheless,

the difference compared to the Free-run simulation score is less pronounced, a

finding that can be explained by observing that low precipitation is distributed

over a larger area, located in the same latitudinal band for observations and all the

simulations.

Table 3.2: FSS score for precipitation evaluated for three thresholds: 10 and 20 mm.

The reference values are GPCP [top] and TRMM [bottom]. The neighbourhood

window considered is 3◦×3◦ for GPCP and 0.75◦×0.75◦ for TRMM.

Nudg-48h-2 Nudg-24h-2 Free-run

GPCP

10 mm 0.88 0.74 0.65

20 mm 0.64 0.64 0.43

TRMM

10 mm 0.77 0.58 0.43

20 mm 0.65 0.53 0.24

Table 3.3 reports the total rainfall amounts from GPCP, TRMM and the

simulations. Total rainfall is the accumulated precipitation over the whole model

domain for the 11 August. Three range (< 0.5; 0.5 ÷ 5; > 20 mm) are chosen to

estimate the performance of the simulations for total, low and intense precipitation,

respectively. area values are the percentage of grid points where precipitation lies

within the above mentioned ranges. It is worth noticing that the GPCP and

TRMM product does not only use MSG radiances, which are assimilated into the

model, but also passive microwave satellite and gauge measurements, to evaluate
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Figure 3.8: 24 hour cumulated rainfall on 11 Aug. 2006. GPCP (top left), TRMM

(top right), Free-run simulation (centre left), Nudg-24h-2 (center right) and Nudg-

48h-2 (bottom).Black solid contours on the three simulation panels reproduce the

GPCP rainfall for the threshold of 10 and 30 mm.
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the daily rainfall. Therefore the agreement between measured and model rainfall

can be considered as a validation for the nudging scheme used.

Table 3.3: Total rainfall (109kg/day) and percentage of domain corresponding to

values of rainfall exceeding three thresholds: low (0.5 mm<rainfall <5 mm) intense

(rainfall>20 mm) and total (rainfall>0.5 mm)

Total Low Intense

rain>0.5 0.5<rain< 5 rain>20

Nudg-48h-2
Tot 41277 5359 13603

Area 50% 22% 3%

Nudg-24h-2
Tot 43241 4500 21116

Area 43% 20% 5%

Free-run
Tot 48834 4570 27261

Area 46% 21% 6%

GPCP
Tot 42723 3124 24384

Area 38% 14% 9%

TRMM
Tot 36156 2857 22511

Area 31% 13% 6%

We observe that total precipitation from TRMM and GPCP are different. As

expected, GPCP rainfall values are higher with respect to TRMM in West Africa

as showed by Nicholson et al. (2003 I). Comparison with observations shows

that the Free-run and the Nudg-24h-2 simulations slightly overestimate the total

rainfall, while Nudg-48h-2 precipitation lies between GPCP and TRMM values.

By contrast, all simulations overestimate the area where precipitation occurs. The

simulations overestimate by a factor around 1.3 the total amount of rainfall and the

area interested by low precipitation (0.5 ÷ 5). For intense precipitation the Nudg-

24h-2 and Free-run simulations give a reasonable agreement with the observations

for the total rainfall and the area while Nudg-48h-2 underestimates by a factor
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around 2 both the total precipitation and the area. However, it should be stressed

that in the Nudg-48h-2 simulation the nudging procedure greatly improves the

precipitation distribution, as well as the position, as is clearly shown in Figure 3.8

and as can be deduced by the FSS score in Table 3.2.
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3.6 Nudging impact on model dynamics

It is likely that the nudging of water vapour has an impact on the dynamical and

thermodynamical variables of the model. So it is important to verify that such

changes are coherent with the modification in MCS position and dynamics due

to the assimilation procedure. Firstly, the divergence of horizontal wind field at

150 hPa has been chosen because it reveals upward vertical motion of air masses

related to convective activity. 150 hPa is approximately the height where air

masses decrease their vertical speed due to convective uplift and diverge from uprise

column. Figure 3.9 shows divergence of horizontal wind fields together with 230 K

cloud top brightness temperature isotherms for the three simulations at 18 UTC

11 August. The free-run simulation (top left panel (Fig. 3.9)) has, as expected, a

coincidence of areas with low CTBT and high positive value of divergence for all the

three MCS discussed in section 3.5.1. Regarding the westernmost MCS, it is worth

noticing that within the 230 K isotherm two different areas can be distinguished: a

front part exhibiting high value of divergence and thus strong convective uplift

and the anvil part with low values of divergence at the rear. Top right and

bottom panels of figure 3.9 regards Nudg-24h-2 and Nudg-48h-2 simulations,

respectively.The same correlation with low CTBT and high divergence is found

for both experiments. Upper tropospheric wind fields are modified by the nudging

procedure with respect to the free-run even 18 hours after the end of assimilation.

Both top right and bottom panels show an area with low CTBT and low divergence

corresponding to the ES described in section 5.1. The divergence at 250 hPa (not

shown) is higher than at 150 hPa for the ES in both the nudged simulations,

revealing that these MCSs are in a decreasing phase. The analysis of the divergence

at lower levels and of the related explicit vertical velocity (not shown) indicates that

the model reacts to the increments on the thermodynamic variables (temperature

and humidity) applied by the convective parameterization scheme with changes in

the 3-D velocity field that are consistent with the cumulative effects of organized
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convection in the area of interest. Therefore, the nudging scheme appears to be

effective in modifying the explicit model dynamics in a coherent way.

Figure 3.9: Horizontal wind divergence (10−5 s−1) at 150 hPa on 11 August 18UTC.

Free-run [top left], Nudg-24h-2 [top right] and Nudg-48h-2 [bottom]. Solid contours

are 230 K CTBT isotherms.
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In summary, in chapter 3 we proposed a method to overcome low reliability of

global models’ analysis and improve the performances of the mesoscale models

in reproducing organised convective events. We presented the implementation

into the BOLAM model of a nudging scheme which forces water vapour in the

lower troposphere using CTBT observations from the 10.8 µm channel of the MSG

satellite. We tested the assimilation scheme in a case of intense precipitation due

to the development of two intense MCSs occurring over West Africa during the

2006 monsoon season.

A comparison is performed among three model simulations and observations of

cloud top brightness temperature (CTBT; derived from MSG-SEVIRI data) and

of precipitation fields (from the GPCP daily and TRMM 3-hourly product), in

order to assess the model score without assimilation and the improvement due to

nudging. Two different set-up for the nudging scheme has been used: (1-forecast)

the nudging is activated for one day and then switched-of for the last 24 hours of

simulation. (2-analysis) the nudging is left active until the end of the simulation.

Set-up (1) is used to evaluate the capability of the nudging scheme in improving

the forecasting ability of the model. Set-up (2) is used to produce a reanalysis that

uses CTBT to improve representation of convection.

The comparison of observed and simulated CTBT shows that the simulation

without nudging underestimates intensity and area interested by convection,

furthermore it shows that the position and speed of the MCSs are far from

observations. Conversely, the diurnal cycle is in reasonable agreement with

observations and the recent climatology given by Laing et al. (2008). Using CTBT,

we estimated that the nudging procedure (in forecast set-up) has a positive impact

in terms of the FSS score for 13 hours after the end of the assimilation period. The

best agreement with observations is found with the analysis nudging set-up, with

which the fractional skill score for CTBT remains high (> 0.6 over 1.) throughout

the integration period. Furthermore the position and speed of propagation of the

57



58

3. How to improve the model scores? A simple data assimilation

approach

MCSs is close to observations.

The comparison of accumulated model and measured precipitation shows

a positive impact in reducing the overestimation of total precipitation and in

improving the spatial patterns for both nudging set-up. As encountered in the

comparison with CTBT, the FSS scores for precipitation is highest for the analysis

nudging set-up. Nevertheless, a clear improvement for the last 24 hours of

simulation is also obtained for the forecast nudging set-up. Finally a comparison

of horizontal wind field divergence at 150 hPa between nudged and non-nudged

simulations has been performed revealing that the nudging procedure is able to

modify the dynamical fields of the simulation according to the observed convection.

For the forecast nudging set-up these modifications persist after the assimilation

period leading to an assimilation impact quantified above.

The analysis of the simulation with forecast set-up for the nudging scheme

has shown that it is possible to improve the forecasting capabilities on a time

window of about 12 hours after the end of the assimilation. Thus it can be used in

an operational weather forecast frame to improve at least short-range forecast of

precipitation events. It has been also shown that continuous nudging can simulate

a correct distribution and propagation of MCSs, also improving precipitation. This

could be particularly useful for the detailed analysis of the water cycle and transport

related to convection in the Sahelian region, which requires a correct positioning

of MCSs and an accurate quantification of precipitation.

Future improvements of the nudging procedure could be obtained with the

combined use of CTBT and satellite rainfall products, even if it would reduce the

temporal and spatial resolutions of the data assimilated. A further improvement

can be obtained with the use of a climatological profile in the cases of dehydratation.

At present a constant relative humidity profile, equal to half of the saturated value,

is used to dehidratate the layer between 1000 and 500 hPa when the model produces

unrealistic convective activity. A climatological profile of non-convective cases over
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West Africa could be obtained and used in the whole troposphere to drive the

model water vapour profile to more realistic undersaturated conditions.
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Chapter 4

The AMMA field campaign

In this chapter we describe measurements of chemicals and aerosols performed

during the AMMA field campaign and analysed in chapters 5 and 6 have been . In

section 4.1 we provide an overview of the AMMA field campaign and of the mean

atmospheric concentration of trace gases and aerosols during wet season 2006. For

sake of comprehension of the analyses carried out in the following chapters, a review

of the current literature based on aircraft and balloon measurements is presented in

section 4.2. A more detailed analysis of the impact of convection on measurements

collected by the high altitude research aircraft M55 Geophysica is carried out in

section 4.3 and then compared with BOLAM simulation results in chapter 5.

4.1 Description of the AMMA field campaign

The African Monsoon Multidisciplinary Analysis (AMMA) international project

aimed at improving our knowledge and understanding of the West African monsoon

and the socio-economic impacts of its variability (Redelsperger et al., 2006). The

achievement of the AMMA project relies on a field measurements programme which

is the largest and most extensive ever attempted in Africa. Ground-based, sea-

based and aircraft measurements have been performed in the frame of AMMA
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field campaign which is organised in nested time-scales.

Figure 4.1 shows the time scales involved: the long-term monitoring programme

(LOP, 2001-2009) based on existing infrastructure; Enhanced Observing Period

(EOP, 2005-2007), which saw the implementation of specific land-based and sea-

based instruments; Special Observing Periods (SOPs) in 2006, when intensive land-

based, sea-based, aircraft and balloons measurements took place.

Figure 4.1: Space-time schematic of the AMMA observation programme. (From

Lebel et al. (2009b))

The objective of LOP is to document and analyse the interannual variability of

some components of the WAM which have characteristic long time-scales (sea-

surface temperature and salinity, ground water balance, vegetation dynamics,

anthropogenic forcing). Radiosoundings network active during the LOP is shown

in figure 4.2(a).

EOP is designed to provide a detailed documentation of the annual cycle of

the surface and atmospheric parameters from convective scales of a few kilometres

up to regional scales. The regional coverage is obtained through various actions

including a restoration and upgrade of the operational networks, the installation of
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Figure 4.2: The AMMA measurement network. Panel (a) shows cruises performed

with research ship during both the EOP and SOP periods, research aircraft bases

activated during the SOP together with radiosounding network active during the

LOP. In panel (b) balloon sounding bases operating during EOP in Niamey and

Cotonou are shown. Grey shaded areas represent the AMMA-CATCH (AMMA-

Coupling the Tropical Atmosphere and the Hydrological Cycle) sites of Gourma,

Niamey and Oueme. (From Lebel et al. (2009b))
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new instruments and two annual cruises with research vessels (see figure 4.2(a)).

SOP focused on specific processes and weather systems at various key stages

of the annual cycle of the WAM, with intensified observations occurring over the

following periods: (1) the dry season (SOP0; 10 January-20 February), (2) Monsoon

onset (SOP1; 15 May-30 June), (3) Peak monsoon (SOP2; 1 July-30 August) and

(4) Late monsoon (SOP3; 15 August - 30 September).

SOP1 and SOP2 represent the core of the AMMA observational programme and

were aimed at the most intensive study of the physical processes, and associated bio-

chemical processes, which control the monsoon during the wet season. The main

scientific objectives of SOP1 and SOP2 were to obtain a comprehensive description

of: (1) atmospheric dynamics on time-scales ranging from hours to a few days;

(2) land-atmosphere coupling, including rainfall feedback with soil moisture and

with vegetation and the control of biogenic chemical emissions by vegetation and

soils; (3) water cycle processes, coupled between the land, ocean and atmosphere

systems; (4) chemical and aerosol processes, including emission from the land and

ocean, transport and transformation in the atmosphere and lower stratosphere.

To accomplish the latter objective a multi-aircraft and a balloons campaigns

took place over West Africa. Measurements on board 5 research aircraft and

almost daily balloon launches from three bases provided the first detailed, in-

situ, characterisation of the chemical composition of the troposphere and lower

stratosphere in this region. Figure 4.2(a) shows the research aircraft bases in

Ouagadougou and Niamey while balloons measurements bases active during SOP

are shown in figure 4.2(b). The research aircraft, widely used in this study, were

equipped with instruments to make measurements of ozone (O3), many of its

precursor species (e.g. carbon monoxide (CO), nitrogen oxides (NOx) and volatile

organic compounds (VOCs), as well as photochemical products (e.g. radicals

species and oxygenated VOCs (OVOCs) and aerosols (for a comprehensive overview

of balloon and aircraft payloads see Cairo et al. (2009)).
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Previous in-situ observations in this region, during the wet season, have been

confined to the MOZAIC programme (Measurements of OZone, water vapour,

carbon monoxide and nitrogen oxides by in-service AIrbus airCraft Marenco et al.

(1998)), which involved measurements on commercial aircraft flying in the upper

troposphere, with vertical profiles at airports of Abidjan, Ivory Coast and Lagos,

Nigeria (Sauvage et al., 2005). The MOZAIC measurements have been limited

to O3, CO, water vapor and total odd nitrogen (NOY). Other field campaign

have been devoted to measure biomass burning emissions in West Africa during

the dry season (DECAFE -Dynamic and Atmospheric Chemistry in Equatorial

Forest-(Delmas et al., 1995), (Fontan et al., 1992); TROPOZ -Tropospheric Ozone

Campaign- (Jonquieres et al., 1998)); furthermore measurements in Central and

Southern Africa have also focussed on the dry season when there is widespread

biomass burning (SAFARI -Southern African Fire Atmosphere Research Initiative-

(Swap et al., 2002); DECAFE (Fontan et al., 1992), (Andreae et al., 1992)).

In this chapter we focus on the Special Observational Period 2 (SOP2), which

targeted the monsoon maximum in July and August 2006 with the aircraft

instrumented for chemical measurements. During July and August 2006 five

research aircraft made comprehensive chemical measurements from the boundary

layer to the lower stratosphere (around 50 hPa), from 2N to 21N, and between

10W and 7E (Figure 4.3).

Three research aircraft used were based in Niamey, Niger: NERC BAe-

146 (Natural Environment Research Council, www.nerc.ac.uk/); CNRS Falcon

and ATR (Centre National de la Recherche Scientifique, www.cnrs.fr). Two

in Ouagadougou, Burkina Faso: DLR Falcon (Deutsches zentrum fur Luft und

Raumfahrt, www.dlr.de) and Geophysica M55.

The horizontal and vertical ranges covered by each aircraft are illustrated in

figure 4.3. The ATR focussed on the lower troposphere, the BAe-146 on the

lower and mid-troposphere, the two Falcons on the upper troposphere and the
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M55 on the upper troposphere/lower stratosphere (UTLS). In combination aircraft

measurements provide coverage throughout the full depth of the troposphere and

the lower stratosphere.

Figure 4.3: Longitude-latitude [upper panel] and longitude-pressure [lower panel]

plots of the 5 research aircraft flights tracks during SOP. Reeves 2010, personal

communication.
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4.2 Aircraft campaign background

Here we focus on the results from the M55 campaign data that are most extensively

analysed in this study. Further details on the payloads and instrumental features

are given in Cairo et al. (2009). The strategy adopted for the aircraft measurement

was to perform various types of flights to sample different air masses: (1) affected

by recent deep convective outflow (2) influenced by polluted plumes transported

from both southern hemispheric wild fires and from the Asian monsoon region (3)

loaded with local biogenic and anthropogenic emissions and (4) representative of

background concentrations.

Five local flights and one transfer flight have been performed by M55 Geophysica

aircraft and flight tracks are reported in figure 4.4. Flight paths on 1 and 16 August

are the transfer flights between Marrakesh and Ouagadougou. Flights going more

southward (4 and 13 August) were aimed to provide background concentrations

and sample air masses impacted by long range transport of biomass burning plumes

and Asian monsoon air masses respectively. Two flights (8 and 13 August) have

been performed to sample the atmosphere over the same trajectory and at the

same time of the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observation) satellite overpass to compare measurements taken from the aircraft

and the satellite and validate the satellite products. Two flights were specifically

dedicated to the sampling of air masses influenced by recent MCS outflow (7 and

11 August), moreover almost all the flights included a dive at 200 hPa to make

measurements in the main convective outflow (4.3 right panel). Figure 4.5 shows

profiles of H2O, CO, CO2, O3, NO and particles with diameter greater than 14

µm (N14) measured on board of M55 during the 5 local flights of the AMMA field

campaign in 2006.

Deep convection is very effective in transporting air-masses from the lower

troposphere to the lower part of the tropical tropopause layer (TTL). It can impact

the upper part of the TTL via 2 main mechanisms: convective uplift of air masses
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Figure 4.4: Flights tracks of M-55 Geophysica research aircraft.

up to the level of neutral buoyancy, followed by slow uplift due to dynamical forcing

and radiative heating, and direct injection within lower stratosphere. Which is the

more efficient mechanism among the two is still question of debate (Fueglistaler

et al., 2009).

Signatures of convection can be identified as deviations of tracer concentrations

from mean profile due to rapid vertical transport from the planetary boundary

layer. The typical effect of deep convection is to pull boundary layer air-masses

at the level of convective outflow, leaving almost unperturbed the air-masses at

intermediate tropospheric levels. Because each of the chemicals used to asses the

role and importance of convective transport is expected to have different mean

vertical profile, signatures of convection are different for each chemicals. For a

chemical with a mixing ratio that is constant with height, vertical mixing would

not lead to any changes in mixing ratios and thus it would not be possible to infer

any information about deep convective transport.

Ozone profile measured far from ozone precursors sources is expected to slowly

increase with height in the troposphere and then to quickly increase in stratosphere

because of to the fotodissociation of molecular oxygen. The minimum in the

boundary layer and the slow increase in the troposphere is due to the fact that

the principal sink of ozone is surface deposition. The effect of deep convection on
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Figure 4.5: Profile of H2O, CO, CO2, O3, NO and particles with diameter greater

than 14 µm measured on board of M-55 during the 5 local flights of the AMMA

field campaign in 2006. Colours indicate latitude. Black thick line is the mean

profile. 69
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such a kind of vertical profile lead to a decrease in ozone mixing ratios at the level

of mean convective outflow. In the tropical areas deep convection frequently occurs

leading to the typical S-shape profile for ozone. This is more clearly visible over

areas where boundary layer concentrations are weakly influenced by anthropogenic

and biogenic sources of ozone precursors (for instance Pacific Ocean) (Fueglistaler

et al., 2009).

In West Africa anthopogenic and biogenic emissions, together with long-range

transport of ozone enriched air-masses from middle-east, India and southern Africa,

lead to a less pronounced S-shape mean vertical profile. In fact, M55 sampled

several typologies of air masses with both enhanced or reduced values of CO, CO2

and O3 concentrations depending on the emissions in the region where convection

occured and subsequent chemical processing in the upper troposphere. O3 profiles

measured during AMMA over West Africa by Fast Ozone ANalyzer (FOZAN) are

reported in figure 4.5 middle-right panel. As expected the S-shape of the mean

profile (black line in figure) is clearly visible even if is less pronounced than over

an area with an unpolluted boundary layer as observed in Australia (see green line

in Homan et al. (2009), figure 3) than over west Africa.

Carbon monoxide (CO) is produced by incomplete combustion in urban areas

and biomass burning injected into the troposphere from the ground. CO is also

produced by oxidation of hydrocarbons emitted from the surface. The principal

sink of CO is oxidation by OH radical that is formed throughout the troposphere.

Because its sources are mainly at the surface and it is destroyed through the

troposphere, it is expected to have high value in the boundary layer and to have

a decreasing profile in the troposphere. Thus an enhancement of CO at the main

convective outflow is considered as a convective signature. Observations from

COLD (Cryogenically Operated Laser Diode) instrument (figure 4.5 upper right

panel) shows clearly slowly decreasing concentrations up to 350K (200 hPa) and

a rapid decrease above. Around 350K enhanced concentrations (measured on the
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7 August) is a clear signature of convective transport of CO enriched air from the

boundary layer.

This easy picture is complicated by the long lifetime of CO (1-2 months): long

range transport of CO enriched air-masses could lead to layers of enhanced mixing

ratios that superimpose on convective transport signatures. Barret et al. (2008)

studied the long range transport of air masses with high CO concentrations in

west African upper troposphere (above 150 hPa) uplifted by convection within the

Indian monsoon and then transported over Africa by easterly winds. Sauvage et al.

(2007) and Mari et al. (2008) report long range transport of wild fires plumes with

elevated CO concentration from central and south Africa in the middle troposphere

and Real et al. (2009) demonstrated the biomass burning origin of a polluted layer

measured in the west African upper troposphere (200 hPa).

CO2 is well mixed in troposphere with a minimum during daytime in the

boundary layer due to vegetation uptake. Thus the effect of deep convection results

in a minimum of CO2 mixing ratio at the level of main convective outflow. CO2

profiles measured by the High Altitude Gas Analyzer (HAGAR) are presented

in figure 4.5 middle-left panel. Those profiles show distinct minima in the TTL,

reflecting the outflow of boundary layer air depleted in CO2. These reductions

suggest that i) convective influence in the TTL is quite significant in the sampled

air masses and that ii) the main convective outflow was usually located at potential

temperature levels around 350-360 K (220-140 hPa), and for the flight of 11 August

(orange crosses) even reached up to 370 K ( 115 hPa). In the same figure a bunch

of black crosses with mixing ratios well above the mean profile can be seen around

350-370 K (220 - 115 hPa). As well as a CO2 increase, a large concentration of N14

(particles larger then 14µm) were measured on the same flight around 200 hPa, as

shown in figure 4.5 lower-right panel. These measurements have been performed

on the 13 August and, as we will see in chapter 6, they could be explained as a

signatures of biomass burning plume transport.
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Figure 4.5 upper left panel shows water vapour measurements. It is highly

variable up to 370K because of great difference between hydrated air masses out-

flowed by deep convective events and background values. Above the highest level

reached by deep convection measured during the M55 campaign (370K on 11

August), water vapour concentration are almost constant with height. NO data

(lower left panel of figure 4.5) shows clear enhancements below 355K probably due

to production by lightening and hence signatures of recent convective processing.

The analyses conducted here is complemented by several works focussing on

AMMA obsrvations. Bechara et al. (2009) analysed Volatile Organic Compounds

(VOC) measured by the new instrument AMOVOC onboard the two French aircraft

(ATR-42 and F-20) aiming to estimate the fraction of boundary layer air contained

in deep convective outflow and the vertical transport timescale during convective

events

Firstly they distinguish between convective and non-convective air masses using

CO, O3 and relative humidity observations. As previously discussed, CO, O3

present some characteristics that make them suitable for infer air masses’ convective

history. For what concern relative humidity, Bechara et al. (2009) report that

average condition shows RH values of 70% in lower troposphere (particularly

above the tropical forest influenced by the wet monsoon flow). With altitude,

air mass layers get dryer up to RH value of 20%. The use of a single tracer is

not sufficient for convective case distinction, for example high CO concentrations

could be due to transport of biomass burning pollutants. Thus only concomitant

variations of tracer vertical shapes are considered by Bechara et al. (2009) as a

situation perturbed by convection. Apart from their properties, they choose CO

and O3 because of their high sampling time resolution (1-30 s) and because their

atmospheric lifetime is longer than MCS duration (2 months for CO and several

days for O3) versus MCS life time of 0.5-2 days.

Once filtered out non-convective flight, Bechara et al. (2009) used non methane
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hydrocarbons (NMHC) measurements to estimate the fraction of low tropospheric

air in fresh convective outflow. Averaging between all the NMCH compound and

all the convective flight selected, they found a mean value for this fraction of 40±

15% (see figure 4.6 Bechara et al. (2009)). Furthermore they estimate a vertical

transport timescale during convective events of 25 ± 10 minutes.

Figure 4.6: Deep convection characteristics in West Africa. Left plot: Fraction of

low tropospheric air in fresh convective outflow for each MCS. Vertical lines are

error bars, mean fraction is in red, transparent grey area is standard deviation and

dashed lines are minimum and maximum literature data comparison. Right plot:

Vertical transport timescale for each MCS and theoretical time Calc. calculated

considering a vertical speed of 15ms−1 to reach 12 km altitude. Red line indicates

mean time, transparent grey area is the standard deviation. (From Bechara et al.

(2009))

Superimposed on deep convective transport, long range transport of biomass

burning plumes from southern hemisphere has a fundamental role in determining

the vertical profile of tracer gases and aerosols in the troposphere and lower

stratosphere above west Africa. During northern hemispheric wet season the

rainfall band migrate northward and local populations of central and south Africa

use fires for agricultural purposes. Many authors studied the direct transport of air

masses from wild fires region to west African middle troposphere through the Gulf
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of Guinea (see Sauvage et al. (2007); Mari et al. (2008) and references therein). Also

upper tropospheric composition can be influenced by inter hemispheric transport

of biomass burning plumes as showed by Real et al. (2009).

Thouret et al. (2009) analysed a total of 98 ozone vertical profiles measured over

Cotonou, Benin, during a 26 month period (December 2004-January 2007). The

24 vertical profiles recorded in June-July-August (JJA) 2006, during the AMMA-

SOP period, are presented in Thouret et al. (2009) and reported here in figure 4.7.

Layers with enhanced ozone concentrations are visible (and highlighted by circles)

between 3 and 5 km attributed to southern biomass burning products. These

southern intrusions were rare in June (only the 30th) and July (2 on 8) whilst they

were nearly a daily occurrence during August 2006. Regarding the inter-annual

variability Thouret et al. (2009) found that years 2005 and 2006 seem to have had

more favourable conditions for intrusions of southern hemispheric biomass burning

plumes. Within the MOZAIC (Marenco et al., 1998) data set , 28% of the profiles

in JJA 2003 presented such layers while the soundings time series (2005 and 2006)

exhibited this phenomenon for 41% of the samples.
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Figure 4.7: Time series of the ozone profiles from the surface up to 17 km during

June-July-August 2006. Dates with O3 enhancement are circled. (From Thouret

et al. (2009))
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Andrés-Hernández et al. (2009) analysed Peroxy radical measurements made

on board the DLR-Falcon research aircraft during AMMA field campaign. They

focused on photochemical activity in the outflow of mesoscale convective systems.

Hydroperoxyl and alkyl peroxy radicals, are involved in most of the oxidation

mechanisms taking place in the troposphere. Knowledge of their amounts and

distributions provides essential information about the aging and history of an air

mass. Using these measurements they individuate 2 flights (4 and 15 August 2006)

with measurements performed within the fresh outflow of MCSs.

Andrés-Hernández et al. (2009) performed simulation with a simplified chemical

box model and found O3 production rates of 1.0 ppb h−1 for the 15 August flight

and between 0.4 and 1.2 ppb h−1 for the 4 August flight. Furthermore they report

observation of biomass burning plumes on 4 and 13 August over West Africa in

the layer from 500 to 650 hPa. Back-trajectory calculations using the FLEXTRA

model (Stohl et al., 1995) indicate the origin of biomass burning plume measured

on 4 August in continental Africa while 13 August one originates from Cameroon-

Congo, close to the Gulf of Guinea.

Ancellet et al. (2009) used CO, O3, NOx, H2O and hydroperoxide concentrations

measured on board of the French research aircraft F-20 to distinguish between

different types of air masses. They identified 5 types of air masses undergone to

different transport processes and loaded with different sources of trace gases. To

confirm the sources responsible for the chemical characteristics of each group, they

determine the transport processes associated to the different air masses using the

Lagrangian transport model FLEXTRA.

Regarding the ozone production in air masses away from the direct outflow of

MCS, Ancellet et al. (2009) found that it is related to (i) the transport of biomass

burning emission from the SH, (ii) local anthropogenic sources like the city plume

near Cotonou. Regarding the chemical composition of the outflow of the different

MCSs, Ancellet et al. (2009) showed that the increase of CO and H2O2 and the
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associated chemical reactivity necessary for subsequent O3 formation, are directly

related to the position and the lifetime of the MCS during its evolution. Increased

lifetime (>1.5 days) allows more H2O2 formation, while a trajectory of the MCS

crossing the 10N latitude increases the CO transport to the upper troposphere.
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4.3 Convective outflow measurements

Here the analysis is restricted to M55 flights potentially influenced by local

convection (7, 8 and 11 August 2006). Data collected on these specific flights

is used to examine signatures of local deep convection on the measured trace gases

and aerosols. Satellite observations will be used to analyse the convective activity

during the 24 hour before the flights took place and to hypothesise which are, among

various candidates, the MCS outflow that influenced the aircraft measurements.

4.3.1 Satellite observations

CTBT at 10.8 µm measured by the Meteosat second generation satellite provides

information about MCSs lifetimes and positions. Figure 4.8 shows the evolution

of MCSs before each M55 flight. A temperature threshold (CTBT < 210 K) was

applied to select deep convective clouds (Schmetz et al., 1997). CTBT evolution

during 24 hours before the observations are reported with time resolution of 6 hours

and horizontal resolution of 4 km together with the M55 flight path.

August 7 2006 The top panel in Figure 4.8 shows the MSG CTBT evolution

from August 6 at 15 UTC to August 7 at the same time. Four MCSs, identified

as organized convection, are visible during this period: (1) a first one propagating

north of the measurement area; (2,3) two systems crossing and merging above

south-west Chad; and a last one (4) in Sudan. Furthermore, sparse convection (5)

develops at the boundary between Niger and Nigeria from 24 to 12 hours before the

observations. Assuming an average wind speed of 19 m/s derived from ECMWF

analyses, it is possible to argue that the region where the M55 flew could have been

influenced both by the simultaneous local convection (1) and by sparse convection

(5) that occurred between 12 and 24 hours before the flight above Niger.
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August 8 2006 The CTBTs prior to 8th August flight are shown in middle panel

of Figure 4.8. Two MCSs formed between August 7 and August 8, one dissolving

between Sudan and Chad 12 hours before measurements (1) and the second (2)

dissolving over South Niger 10 hours before the measurement. In that case, the

mean zonal wind speed from ECMWF is 16 m/s, and it is possible to argue that

the outflow of system (2) could have reached the M55 area at the time of the

measurement. Furthermore, less organized convection forms at the same time of

M55 observations on both the east and west sides of the flight path.

August 11 2006 The CTBTs before the 11th August flight are shown in bottom

panel of Figure 4.8. Two vast MCSs are observed: a westward moving one (1)

crossing the measurements area 6 hours before the flight, and an eastward one (2)

dissolving over eastern Nigeria, 9 hours before measurements. Using a mean zonal

wind speed of 13 m/s, it is possible to argue that M55 likely sampled the outflow

of system (1).

4.3.2 M55 observations

In this section bservations of aerosol backscatter ratio (BSR), aerosol depolarization

(D), ozone (O3), water vapour (H2O), carbon dioxide (CO2) and particles

fine fraction (N6−14) are used. Relative humidity with respect to ice freezing

(RHI) is estimated from observed H2O, temperature and pressure using the

formula prescribed by the World Meteorological Organization and the Marti and

Mauersberger (1993) formula for saturation pressure over ice. The description of

the campaign and the overview of each flight is provided in Cairo et al. (2009)

where a list of available observations are presented.

Enhanced values of BSR indicate the presence of aerosols and values of D above

10 % indicate the presence of ice crystals (Cairo et al., 1999). The mechanism

of cirrus formation in the uppermost troposphere is still matter of debate, in
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Figure 4.8: Meteosat Cloud top brightness temperature time evolution during 24

hours prior to the M55 flight on August 7 2006 (top panel), August 8 2006 (middle

level), and August 11 2006 (lower panel). Clouds are shown as colored regions

where CTBT < 210 K. Colors indicates the time (in hours) prior to observations.

Flight path is shown by the black line; numbers identify different MSCs described

in the text.
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particular whether ice particles formation can be directly linked to deep convective

systems (see for instance Pfister et al. (2001)). The use of ice particles as tracer

for convection may be ambiguous.

Ultrafine particles (N6−14) are estimated as the difference between the

concentration of particles larger than 6 nm and larger than 14 nm; enhanced

values of N6−14 (up to 1000 cm−3) indicate that formation must be recent because

nucleation mode particles exist only for few hours to one day. Such values can

be observed in recent outflow of deep convective clouds (Curtius, 2006). Non

convective average profile, used to identify observed outliers, was calculated from

data collected on the 4 and 13 August flights. These flights were large-scale

north-south transects and provide information on the background conditions in

the uppermost troposphere.

Figure 4.9 shows the M55 observations on August 7, there and in the following

figures 4.10 and 4.11 dashed lines represent non-convective average profile. The

flight was carried out between 11N and 13N and sampled a region east of the

MCSs indicated by (1) in the upper panel of figure 4.8. Two layers of enhanced

aerosol depolarization were observed at 350 and 370 K. Observations with enhanced

aerosol concentrations (BSR > 1.2) are labeled with open triangles. It can be seen

that particles are in solid phase since D is larger than 20 % when BSR is enhanced.

Total water is enhanced with respect to the average profile in both aerosol layers

where RHI exceeds 100 %. O3 concentrations range between 45 and 60 ppbv at

350 K (where BSR is enhanced) and increases steadily above 360 K. N6−14 shows

enhanced values (above 100 cm−3) in the lower aerosol layer. In the higher layer,

enhanced BSR were observed together with O3 concentrations of 80 ppbv which

is above the values measured below 360 K. CO2 data were not available for this

event.

Figure 4.10 shows the observations for August 8; the M55 performed a north-

south cross section between 8N and 18N (see Figure 4.8, middle panel), and
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Figure 4.9: Vertical profiles of observed depolarization D ozone O3 , carbon dioxyde

CO2, particle fine fraction N6-N14, water vapour H2O and relative humidity with

respect to ice RH on August 7, 2006. Colors indicate the measurement latitude;

triangles indicate the observations within air parcels containing aerosol (BSR >

1.2). Dashed lines indicates average value ± one standard deviation of O3, CO2

and H2O.
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measurements are likely to have been influenced by MCS outflow 10 to 20 hours

prior to observation. Enhanced BSR and D were observed between 11N and 14N

below 355 K, at 17N at 365 K and at lower latitudes (11N) between 370 and 375

K. In the lower layer, H2O concentrations are much larger (15 to 200 ppmv) at 14N

with respect to 11N. Values of RHI are above 100 % inside the three aerosol layers.

O3 shows again a constant profile below 360 K with concentrations ranging

between 40 and 70 ppbv in correspondance to the enhanced BSR (triangles). Higher

concentrations of ozone are seen above. CO2 concentrations are quite variable below

350 K (larger values at 11N than at 14N) and steadily increase above. Slightly

reduced CO2 concentrations were observed between 365 and 375 K. This could be

interpreted as a signature of convective outflow that transport depleted CO2 from

below since convection uplifts air poor in CO2 originating from the surface (Park

et al. (2007)).

The aerosol layer at 365 K is also associated with enhanced H2O (15 ppmv) and

saturated RHI. No clear signature on CO2, CO and O3 is visible. The highest layer

at 372 K is associated with enhanced H2O and RHI > 100 % while CO2 do not

show any deviation with respect to the average profile. N6−14 cannot be estimated

since observations have a partial coverage. However the analysis of total number

of particles available above 360 K height do not show any increase in concentration

due to nucleation event.

Figure 4.11 shows the observations for 11 August, taken between 12N and

16N (see figure 4.8, bottom panel). Several layers with enhanced BSR and D

are observed up to 376 K. H2O is enhanced in the 355-365 K layer at 18N of

latitude where no particles were observed while RHI were unsaturated. Increased

H2O was also observed between 365 and 380 K at 14N of latitude at the same time

as enhanced ice particles.

N6−14 is higher (with values between 100 and 3000 cm−3) up to 370 K and
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Figure 4.10: As Figure 4.9 but for August 8, 2006
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larger values are observed with background BSR. Moreover, large N6−14 is in general

correlated to depleted CO2. O3 concentrations range between 45 and 60 ppbv below

355 K. Between 355 and 370 K O3 is highly variable (45 to 90 ppbv) depending on

the sampled latitude and increses steadily above that level. CO2 shows constant

concentrations below 355 K (377 ppbv) and reduced concentrations (374 ppbv)

from 355 to 368 K.

Figure 4.11: As figure 4.9 but for August 11, 2006

From the data collected during the flight considered influenced by recent (less

than 4 days) convection (namely 7,8 and 11 August), it is evident that convective

impact is visible below 355 K with simultaneous enhancements in water vapour,
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BSR and aerosol fine fraction, together with reduced concentrations of CO2 and

nearly-constant O3. Enhanced concentration of ice particles were also observed up

to these altitudes indicating that in the main outflow they were formed as a result

of deep convection.

Above 355 K several layers of particles under saturated conditions were

observed. During August 7 and 8 these layers were less ubiquitous with respect

to the main outflow below 355 K and were, on average, not correlated to a clear

signature on chemical tracers. Nevertheless, small and sporadic signatures in CO2

(and NO - not reported here) were observed above the main convective outflow

level.

Observations on 11 August show a different picture with ice aerosol observed

throughout the vertical profile up to 375 K. In this case, convective impact reached

up to 365 and 370 K based on the presence of reduced CO2 concentrations and the

presence of ultrafine particles.

The identification of convective signatures in O3 is less straightforward due to

high ozone variability in West Africa troposphere. Local sources of O3 over West

Africa which can be convectively uplifted are mixed with air masses advected from

upwind regions and air from the lower stratosphere in the upper TTL. Observations

of ice particles and outliers in chemical species (and ultrafine particles) are often

uncorrelated in the layer between the average convective outflow at 355 K and the

tropopause, leading to the qualitative conclusion that this region is composed of

airmasses with different processing and lifetime in the TTL.
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Chapter 5

Impact of deep convection in the

tropical tropopause layer in West

Africa

In section 3.6 we showed that the assimilation of CTBT into the BOLAM

model improves the positioning of deep convection and coherently modifies model

dynamics, generating divergent wind fields above the top of MCSs and convergent

winds in the boundary layer. This makes simulation performed with BOLAM

nudged with CTBT a suitable instrument to study the vertical transport due to

deep convection. Thus, we investigate the role of convective uplift on trace gas

and aerosol concentrations over West Africa during August 2006, with the aid of

trajectories calculated from the mesoscale model BOLAM. The analysis is carried

out using M55 Geophysica measurements collected during the flights influenced by

recent convection on 7,8 and 11 August 2006 that have been presented in section

4.3.

Moreover, the mesoscale simulations are used to estimate the variability in

convective outflow through the use of the in-situ observations coupled to the

trajectory analysis. In order: (1) to evaluate the capability of the model
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to reproduce the vertical structure of convective outflow and the presence of

convectively processed layers above the level of average convective outflow and,

(2) to identify the extent of such layers and compare with the observed impact of

convection in the upper troposphere.

5.1 Mesoscale simulation

The BOLAM model (described in section 3.2) is been used to simulate the impact

of convection upper tropospheric air masses. The horizontal domain chosed has 235

x 235 grid points and 24 km horizontal resolution. Here, the simulation started

at 00 UTC on 4 August to 00 UTC on 14 August 2006, to cover all the local

flights performed by the M55 Geophysica. The model was continuously nudged

with brightness temperatures at 10.8 µm from Meteosat Second Generation (MSG)

satellite in order to accurately reproduce the evolution of mesoscale convective

systems as already described in chapter 3.

5.1.1 Validation

The nudged BOLAM simulation was evaluated by comparing model derived CTBT

and the satellite observations shown in Figure 4.8. Figure 5.1 shows CTBT

calculated using BOLAM water vapour, temperature and hydrometeors profiles.

Similarly to figure 4.8, only regions with CTBT < 210 K are plotted.

BOLAM CTBTs for August 7 (shown in top panel of figure 5.1) correctly

reproduce the observed evolution of MCSs labeled as 1 to 4 in figure 4.8, top

panel, and also the sparse deep convection upwind of measurement area which

developed 12 and 24 hours before the flight took place. On the 8 August, BOLAM

CTBTs (middle panel of figure 5.1) show the MCS (labeled as 1 in Figure 4.8)

dissolving over Niger, while MCS (2) is more scattered, particularly at the end

of its life cycle, 15 to 9 hours before the measurements. Furthermore, sparse and
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intense convection developing upwind of the flight area 20 hours before the flight

is also captured by BOLAM. Bottom panel of figure 5.1 shows CTBT on August

11. Both the position and life cycle of two MCSs are well reproduced by the model

even if they appear more scattered.

The nudging procedure improves the representation of convection compared

with the simulation without nudging (not shown). In general, BOLAM generates

less organized convective systems with respect to satellite observations but the

position and the temporal evolution of MCSs are well reproduced. Simulations

also show a coherent transport behavior in presence of MCSs generated by

nudging, with increased divergence in the upper troposphere (see section 3.6).

Therefore, the transport by convective uplift and outflow can be estimated from

the BOLAM simulation with an accuracy considered adequate enough to be used

in the interpretation of the M55 data.

5.1.2 Trajectories

In order to account for convective uplift, trajectories were calculated from BOLAM

using the on-line approach proposed by Gheusi and Stein (2002). The method is

based on the advection of air parcels positions treated as a passive tracer and

the subsequent off-line reconstruction of backward trajectories from position fields.

In addition to the three-dimensional transport calculated using explicitly resolved

winds, the position fields are also modified by the parametrized vertical diffusion

and the convective transport that uses a mass-flux method to re-adjust the vertical

displacements inside convective clouds.

Despite the uncertainties related to this approach, Gheusi and Stein (2002)

have demonstrated that the Lagrangian evolution can be studied on a qualitative

basis for relatively large trajectory clusters. In the present study, this method was

used off-line with a time interval of 3 hours to calculate the trajectories. Fierli

et al. (2008) have previously shown that BOLAM trajectories provide a realistic
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Figure 5.1: BOLAM cloud top brightness temperature time evolution during 24

hours prior to the M55 flight on August 7 2006 (top panel), August 8 2006 (middle

level), and August 11 2006 (lower panel). Clouds are shown as colored regions

where CTBT < 210 K. Colors indicates the time (in hours) prior to observations.
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description of the outflow originating from a vast convective region during the

HIBISCUS (Impact of tropical convection on the upper troposphere and lower

stratosphere at global scale) campaign over Brazil. Although the model vertical

resolution is still fairly coarse, mesoscale model simulations are likely to resolve

convective transport at altitudes ranging from the top of the mean convection

outflow and the tropopause.

Two trajectory clusters were calculated for each flight. (1) Backtrajectories

originating from model grid points within a region encompassing the flight path

with pressure levels ranging from 300 to 100 hPa in order to include the whole upper

troposphere. The overall number of trajectories varied from 6900 for 7 August 12

UTC to 10800 for 8 and 11 August. (2) Backtrajectories originating from the flight

path calculated from each observation point every 5 minutes, leading to an average

cluster of 1000 elements per each M55 flight. The results are used to identify which

convective systems have generated the outflow observed by M55, and the extent to

which convection might have influenced the region where observations were carried

out.

Based on this Lagrangian analysis, 2 different diagnostics were computed:

• The convective fraction, fc, (calculated from cluster (2) in 12 θ layers)

defined as the ratio between the number of parcels having been processed

by convective uplift and the total number of trajectories. This is analogous

to the model estimate of the probability that an air mass sampled by the

aircraft was processed and uplifted by deep convection within a θ layer. In

order to characterize the uplift, trajectories originating below 500 hPa, and

uplifted with a vertical speed larger than 50 hPa/h and crossing irreversibly

250 hPa level, were selected

• The convective age, tc, is the time elapsed between convective uplift and

observation. tc is defined for each parcel of cluster (1,2) as the earliest time
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when air masses uplifted by deep convection (using the same criteria as fc)

irreversibly crossed the 250 hPa level.

fc can be compared to similar diagnostics used to evaluate convective transport

from other modeling studies such as Mullendore et al. (2005)) and analysis in-situ

observations (Bertram et al., 2007).

Since modeled and observed ice particle presence can also provide useful

information, two additional diagnostics were defined to estimate model ice clouds

and the extent to which such clouds might have been influenced by deep convection.

• The ice fraction, fice, is the fraction of points from cluster (2) with values of

RHIice >100% at the final point along the flight

• The convective fraction of ice, ficec , is the fraction of air masses uplifted by

deep convection (calculated from cluster (2) using the same criteria as fc)

with values of RHIice >100% at the final point along the flight
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5.2 Convective outflow from BOLAM

trajectories

Figure 5.2 shows tc estimated from backtrajectory cluster (1) initialized on 7

August 12UTC for two θ layers (369 K and 353 K). The geographical points where

backtrajectories irreversibly cross the 250 hPa level are reported in the lower panel

of Figure 5.2 where tc values are indicated by the colors.

The number of trajectories uplifted by convection increases with decreasing

altitude and the region sampled by the aircraft is marginally influenced by

convection in the higher θ layer. The uplift occurred 48 to 50 hours before the

flight. Air masses from the lower troposphere crosses the 250 hPa level 20 to 50

hours prior to the measurement; this is visible in figure 5.2 (lower panel), where

it is shown that air masses irreversibly crossed 250 hPa near to deep convective

systems above southern Niger and northern Nigeria.

It is important to note that BOLAM does not show air masses with low tc

uplifted in the western part of the domain in correspondance to the MCS closest

to the flight (MCS (1) in figure 4.8, top panel).

It is difficult to assess if this can be attributed to the fact that outflow of MCS

system (1) is not advected into the flight region or to the fact that BOLAM fails

to reproduce the intensity and extent of this MCS system as mentioned in section

5.1.1. BOLAM also shows the presence of saturated air (RHice >100%) in the lower

layer (yellow shaded area) corresponding to main outflow altitudes.

Figure 5.3 shows the same set of diagnostics for 8 August. Although a similar

picture to the previous event can be inferred, the number of trajectories uplifted

by deep convection is larger during this event. Moreover, the fraction of air masses

characterized by lower tc (16-24 hours) is larger in the lower θ layer. Saturated air

(yellow shade) is large and is present also in the upper layer but is located close to

the outflow in the lower layer only.
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Figure 5.2: Upper panels: maps of tc estimated from the BOLAM trajectories

(see text for definition) for two theta layers (368-369 K above the main convective

levels and at 353-355 K) for 7 August 2006. Yellow shaded area indicates where

BOLAM RHice exceeds 100 %. The flight path is also reported in the top left

panel. Lower panels: the position where air parcels crosses irreversibly the 250 hPa

surface. Dashed box indicate the horizontal domain shown above where trajectories

in cluster 1 (see text) originates. Colors indicate tc.
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Figure 5.3: As figure 5.2 but for the 8 August 2006 flight
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The results for 11 August (figure 5.4) show much larger convective impact in

both 354 and 367 K layers mostly related to uplift occuring in the large MCS

labeled by (1) in figure 4.8 that is correctly reproduced by BOLAM (figure 5.1,

lower panel). tc ranges between 12 and 24 hours at 354 K and has significantly

higher values at 367 K, with a non-negligible number of trajectories with tc ranging

between 30 and 80 hours. Both layers are characterized by large areas of saturated

air.

The aerosol backscatter data from the Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observation (CALIPSO) that sampled the region where

outflow occurred at longitude ranging between 3E and 5E on 11 August at 1h30

UTC (dashed line in figure 5.4, lower panel) are shown in figure 5.5. It shows a

deck of solid particles up to 17 km (380 K) between 7N and 18N and vast deep

convection area reaching up to 16 km (370 K) around 15N. BOLAM trajectories

give a coherent picture with regard to the convective ascent at the same time as the

CALIPSO overpass and the presence of ice clouds in the outflow region between

15 km and the tropopause (located at 17 km) in the model results.

Overall, the analysis of cluster (1) shows that modeled convection has an

important impact on the 353-355 K layer. At 363-366 K, convective transport

influence is visible to a small extent on 7 and 8 August while the impact is much

larger on 11 August. Moreover, the convective age (as given by tc values) is variable

showing that air masses influenced by very recent convection (tc < 24 hours) coexist

(especially at higher altitudes) with air masses influenced by older convection (tc >

48 hours) which formed to the east over central Sahelian region above northern

Nigeria and southern Chad.
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Figure 5.4: As figure 5.2 but for the 11 August 2006 flight. Dashed line indicates

CALIPSO overpass and blue color follows the tc scale (15 hours before the

measurement)
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Figure 5.5: CALIPSO aerosol backscatter observed on August 11 1h30 UTC.

Aerosol observations (not shown) shows that aerosol are in solid phase.
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5.3 Comparison with observations

We focus now on the vertical structure of convective outflow in the upper

troposphere. In order to perform a comparison of the modeled and the observed

vertical profiles, a set of diagnostics analogous to those described in section 5.1.2

are applied to measurements: (1) fBSR is the fraction of observations with BSR>

1.2 and describes the vertical distribution of ice clouds to be compared with fice;

(2) fCO2
is the fraction of observations with CO2 concentrations lower than the

average value minus its standard deviation and describes the possible impact of

deep convection on CO2 profiles. fBSR and fCO2
were averaged over the same 12

θ-levels used for the model-based diagnostics discussed in the previous section.

Vertical profiles of diagnostics are plotted in figure 5.6: model derived ones are

colored in blue and observation-derived in red.

The vertical profile of fBSR for 7 August flight (figure 5.6, upper panel, red

dotted line) shows the presence of two distinct layers (below 360 K and at 367 K)

as shown in figure 4.9. The model-derived vertical profiles of fice (left panel, solid

blue line) and fcice (left panel, dashed blue line) indicate that BOLAM predicts the

presence of ice clouds in the lower layer that are formed inside air masses uplifted by

deep convection. The BOLAM convective fraction, fc (solid blue line on the right

panel), decreases with height and is in acceptable agreement with fBSR below 355

K (reported also in the right panels) . Conversely, in the uppermost layer, where

enhanced depolarization was observed, BOLAM does not reproduce ice clouds and

reports a small (less than 3%) and old (up to 60 hours) convective uplift. As

discussed earlier, this could be due to the fact that BOLAM fails to fully reproduce

the dynamics of the closest MCS to the flight for this event.

On 8 August (middle panel) the vertical structure of fBSR is similar to the

previous day but, in this case, BOLAM shows a better agreement throughout the

entire vertical profile; enhanced fice is simulated in correspondance to ice particle

observations in the upper layer. fcice is equal to fice below 355 K indicating that
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modelled ice clouds were formed in the convective outflow whilst above 355 K, the

BOLAM model simulated ice particles in upper tropospheric air masses. Above

360 K tc is characterized by values (48 hours) larger than in the main outflow. In

the same layer low CO2 (shown in figure 4.10) was also observed and fCO2
(red

dashed line on the right panel) reaches 5%.

On 11 August (lower panel) the model shows two main ice cloud layers (below

360 K and at 370K) in agreement with the observations which show distinct thin

layers of ice particles. The trajectories overstimate fice with respect to fBSR. 75%

of model ice clouds are of recent convective origin in the lower layer (estimated

as the ratio between fcice and fice throughout the vertical range) whilst the fraction

is around 30% in the upper layer. fc shows a large convective fraction (up to 90

%) which decreases with altitude. Air masses with higher tc (72 to 90 hours) are

visible together with air masses originating from recent outflow (tc less than 20

hours) between 360 and 375 K. Within the same layer, fCO2
is large (up to 90 %)

and corresponds to regions where low CO2 was observed (see figure 4.10) .

The trajectory analysis shows that local convection hydrates the upper

troposphere over West Africa and in one case (11 August) there is a significant

impact up to 375 K. This recent convection is superimposed on older convection

which took place up to 4 days before the observations. Even if a detailed analysis

of cirrus formation mechanism is outside the scope of this chapter, it is worth to

noting that modelled and observed layers of ice particles are in good agreement,

despite the fact that for the 11 August, the model overestimates the amount of ice

clouds.

The analysis shows that ice particles are formed directly in the main outflow

below 360 K and their presence is correlated to the uplift seen by model. Above the

main outflow, trajectories indicates that ice clouds often form in the TTL at the

top of mesoscale convective systems . These results are in qualitative agreement

with a recent analysis of CALIPSO and CLOUDSAT observations which concluded
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that TTL cirrus are likely observed close to deep convective clouds (Sassen et al.,

2009).

Figure 5.6: Vertical profiles of the diagnostics described in the text. Model-derived

ones are plotted in blue, observation-derived in red. Left column: BOLAM ice

fraction fice (solid blue line) and convective ice fraction fcice (dashed blue line);

observed aerosol fraction fBSR (dotted red line), Right column: BOLAM convective

time tc (blue symbols), convective fraction fc(blueline); observed fraction of outliars

in CO2 fCO2
plotted as dashed red line; fBSR is also plotted to be compared with

fc. Top panels are for August 7 middle for August 8 and bottom for August 11.

In summary, the improvements achieved with the nudging scheme shown in

chapter 3, are used in this chapter to simulate tracer transport by deep convection.
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Beside the melioration of precipitation, an improvement of organised convection

position and evolution as well as the coherent modification of the divergent wind at

convection outflow level, is necessary for a correct description of the effect of deep

convection over trace gases transport. Thus we ran a simulation with BOLAM,

improved by the nudging scheme, over the period 4-14 August 2006 to help the

analysis of the measurements taken by the high altitude research aircraft M55 in

the frame of the AMMA-SCOUT campaign.

The comparison between CTBT from Meteosat and from the BOLAM model

showed that nudged mesoscale simulation correctly reproduce the general pattern

and the propagation of convection observed during the first 15 days of August 2006

and therefore can be used to estimate the convective outflow and to compare with

M55 measurements.

BOLAM shows good agreement with convective perturbation derived from

observations of aerosol and chemical tracers for the main convective outflow region

below 355 K and indicates that West Africa convection influences up to 50 % of

airmasses resulting in substantial hydration and formation of ice particles up to this

level. This result is in accord with the study of Bechara et al. (2009) which analysed

convective flights performed by the two research aircraft ATR-42 and Falcon-20

during the AMMA campaign in August 2006. They report for the fraction of low

tropospheric air in fresh convective outflow a mean value of 40 ± 15 %. BOLAM

also correctly reproduces the outflow of a recent MSC on 11 August and simulates

a large convective influence (up to 70 %) between 355-370 K in agreement with the

convective fraction estimated from observations of CO2 and of freshly nucleated

small particles.

Trajectories calculated from the mesoscale model simulation were used to

estimate the convective age in order to identify when and where uplift occured. The

time since convective uplift ranges between 18 and 24 hours in the main convective

layer but is more variable (between 20 and 96 hours) above 355 K showing that
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deep convection in the central Sahel has a non negligible role in the uppermost

troposphere, at least with respect to the formation of ice layers. The event of

recent deep convection is characterized by the coexistence of air masses uplifted by

recent and older convection; the last one being responsible of the presence of thin

ice clouds. This is confirmed, at least on qualitative basis, by in-situ observations of

CO2, water vapour and aerosol that show the presence in the upper troposphere of

perturbed trace gas concentrations, hydrated air, and particles that are not always

measured in the same air masses.
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Chapter 6

Transport of biomass burning

emissions

Biomass burning produces large quantities of pollutants which can be transported

many thousands of kilometres downwind. This includes trace gases such as CO2,

and precursors of O3 as well as aerosols which can also have an important impact on

radiative forcing. Inter-hemispheric transport of biomass burning plumes has been

reported by many authors (e.g. Mari et al. (2008) and Sauvage et al. (2005)).

They reported both (1) direct transport from emission region in the southern

hemisphere to the gulf of Guinea by means of a southern hemispheric easterly

jet blowing around 5S and 700hPa or, during the break phase of this jet, (2) north-

westerly transport over the continent into the ITCZ followed by convective uplift

and subsequent westward transport in the high troposphere due to the TEJ.

In this chapter we examine, using a BOLAM simulation including a biomass

burning passive tracer, the origin of two pollution plumes observed in the Mid

Troposphere (MT) and Upper Troposphere (UT) during August 2006 over the

southern coast of West Africa during the AMMA project.
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6.1 Observational evidence

Here, we focus on the analysis of plumes observed in the MT and also in the UT

on 13 August 2006 when 4 aircraft flew to the Gulf of Guinea (UK BAe-146 (B-

146), French Falcon-20 (FF20), DLR Falcon-20 (DF-20) and the M55-Geophysica

(M55)). Figure 6.1 shows horizontal and vertical sketch of the flight of the DF-20,

the B146 and M55 (see chapter 4) research flight together with measurements of

CO and CO2. Enhancements of CO and CO2 are visible between 2.5 and 4.5 km.

Figure 6.2 shows measurements taken by DF-20 (left panel) and Bae-146 (right

panel). Layers with high concentrations of CO, CO2, PAN, NOx, O3, VOCs and

aerosols were sampled between 2.5 and 4.5 km by the B-146, and 3 hours later

by the DF-20 below 5.5 km (500hPa) over southern West Africa and the Gulf of

Guinea. For example, the DF-20 measured up to 450 ppbv CO, 130 ppbv O3

and more than 8 ppbv NOy (see figure 6.2). The NO:NOy was rather low (0.04)

indicating that significant photochemical processing had taken place and therefore

discounting local anthropogenic emissions as the origin.

The FF-20 (measurements not shown), which flew to the same region, also

sampled air masses with elevated CO and O3 at around 8km at 6N on the same

day with an origin over the Gulf of Guinea according to Ancellet et al. (2009).

The B-146 observed rather similar CO and O3 concentrations especially in the

upper part of their plume sampling suggesting that both aircraft sampled the same

polluted air mass. The B-146 also sampled high levels of PAN (greater than 800

pptv) together with high acetonitrile, a strong indicator of BB emissions. The

DF-20 plume also had high CO2 concentrations up to 390 ppmv (mean value of

387 ppmv).

These observations strongly suggest the presence of a large BB plume over the

Gulf of Guinea extending between about 3 and 6km: denoted the MT plume in

the rest of the chapter. Interestingly, data collected on the 4 August 2006, when

a similar flight was made over this region, also showed evidence for BB plumes
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with elevated trace gas and aerosol concentrations, including CO2 up to 379 ppmv

Andrés-Hernández et al. (2009). This suggests that BB transport to West Africa

in August is episodic.

Figure 6.1: Flight path for 13 August 2006 flight. Colour scales represent the CO

concentrations from the DF-20 and the B-146 and CO2 concentrations for the M55

aircraft. See text for details.

The M55 aircraft flew on this day and figure 6.3 reports measurements of

NO, NOy, O3 and CO2 sampled by the high altitude research aircraft. A plume

was observed during a dive over the Gulf of Guinea down to 200 hPa (12 km):

denoted the UT plume in the rest of the chapter. Observations showed elevated

concentrations of trace gases and aerosols. Measurements of CO2 in the dive

(around 380 ppmv) were higher than measured at similar altitudes during the rest

of the campaign. Higher CO2 concentrations in the TTL are usually attributed to

uplift of mid-latitude air masses several months earlier when surface concentrations

are higher. However, CO2 concentrations are also elevated in BB air masses (as in

the MT plume observed by the DF-20 on the same day). O3 concentrations were

around 60 ppbv which is in the upper range of measurements collected at these

altitudes during the rest of the M55 campaign (see figure 4.5).

The M55 plume also showed slightly elevated concentrations (up to 10000
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Figure 6.2: Measurements taken on 13 August 2006 by the DLR Falcon aircraft

(left hand) and the Bae-146 (right hand).

Figure 6.3: Right hand figure: Measurements of NO, NOy and O3 taken on 13

August 2006 by the GeoPhysica. Left hand figure: Measurements of CO2 taken

during the whole campaign, CO2 measured during the dive on the 13 August is

highlighted in red.

108



6.1 Observational evidence 109

molecules per milligram of air) of fine-mode aerosol. This is in the upper range

of measurements collected at these altitudes during the rest of the campaign

(Borrmann et al., 2009). The fact that particle concentrations for sizes less than

6nm and less than 14nm are very similar indicates that no new nucleation had

recently taken place. Analysis of other flights (4 and 11 August, 2006) when

measurements of the non-volatile fraction are also available show that a significant

fraction (up to 60%) of particles in the lower TTL were non-volatile and contained

soot or non-volatile organic aerosols suggesting injection from a surface source such

as BB emissions could be influencing upper tropospheric aerosol composition over

West Africa (Borrmann et al., 2009). Finally, whilst CO was not measured on this

day by the M55, the DF-20 and the FF-20 (Ancellet et al., 2009) also sampled

plumes with elevated CO at around 11km over the southern coast of West Africa

(see figure 6.2). Analysis of MOZAIC data collected between 1 to 16 August 2006

in the upper troposphere also shows the existence of several plumes between the

Equator and 5N with CO concentrations above 150 ppbv and, in one case as high

as 230 ppbv in the upper troposphere (240 hPa) (J. P. Cammas., pers. comm.)

Examination of air mass origins in the TTL (350-380K, 250 to 50 hPa) for this

campaign using ensembles of back trajectories from both the M55 flight paths and

the TTL region over West Africa showed that 10 to 15% of the measured air masses

up to 150 hPa probably originate from central Africa during the period 13 to 16

August.

In summary, it appears that the MT plume(s) has the characteristics of a BB

origin with high concentrations of trace gases (including BB tracers) and aerosols.

Considering the UT plume, high CO2 concentrations and aerosols indicate a BB

origin and a low NO : NOy ratio (around 0.3) indicates that air mass may also have

been influenced by LiNOx emissions associated with deep convection.

So it is necessary to identify the transport processes influencing the plumes

positions in order to asses if BB emissions, located in the African southern
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hemisphere, could have been transported in the measurements area and which is

the age of such air masses. To do so, in the next section we present a simualation

performed with a new version of the BOLAM model that include the transport of

a CO like passive tracer.

6.2 Model description and simulation set up.

The objective is to quantify, using the BOLAM model, the relative fractions of BB

pollutants transported in the UT compared to the MT and to investigate how long

it took the pollutants to arrive over southern West Africa where the measurements

were taken. We also use the model results to estimate dilution rates for the UT

plume in the chemical trajectory model calculations.

The BOLAM model (section 3.2) simulations discussed here were run over the

domain shown in figure 6.4 with a horizontal resolution of 0.26◦×0.26◦ (24×24

km) and 38 hybrid sigma vertical levels from the ground to 10hPa. The model

was initialized using 0.5◦×0.5◦ European Centre for Medium Range Weather

Forecast (ECMWF) meteorological analyses at 00UT on 15 July 2006 and run

for 32 days until 00UT on 16 August 2006. ECMWF analyses were also used

to update the lateral boundary conditions every 6 hours. Time-varying CO-like

BB tracer emissions were introduced into the model for the duration of the run.

Daily fire emissions were interpolated from 5-day running-mean averaged emissions

taken from the AMMA African BB inventory compiled by Liousse (personal

communication), specifically for 2006. Separate tracers were injected daily for

24h up to an altitude of 1 km and then transported for the rest of the simulation,

in order to follow the fate of BB plumes emitted on each day of the run. Figure

6.5 shows the BB CO emissions averaged between 15 July and 15 August 2006

together with the ECMWF wind field at 750 hPa averaged over the same period.

Two transport pathways for the BB plumes in lower troposphere to the north-east
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Figure 6.4: Observed percentage of cloud cover for cloud top brightness

temperature less than 230K. Percentage is relative to the period 15 July - 15

August. Thin arrows are ECMWF wind field at 250 hPa averaged over the same

period.

over the continent and to the north-west toward the Gulf of Guinea are highlighted

by thick arrows.
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Figure 6.5: CO flux averaged between 15 July and 15 August. Thin arrows are

ECMWF wind field averaged between 15 July and 15 August at 750 hPa.
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6.3 Biomass burning transport

In this section the model capacity to reproduce convective activity was first

evaluated. Then the model time distribution of BB tracers was studied (from 15

July to 15 August), showing the episodic nature of transport in equatorial regions

both in the UT and the MT. Different pathways for UT and MT plumes were

simulated and the ratio of tracers transported in the UT to those transported in

the MT was evaluated and compared with measurements. Finally the plumes age

over West Africa was evaluated using modelled tracers.

The performance of the BOLAM model in reproducing convective activity

was evaluated, analogously to the previous chapter, using cloud top brightness

temperatures derived from the 10.8 micrometer channel of the SEVIRI radiometer,

on-board of MSG satellite. These values were compared with cloud top brightness

temperatures evaluated from BOLAM model and averaged over the whole

simulation (15 July - 15 August 2006). Figures 6.4 and 6.6 shows the regions were

convective activity at 18UTC, individuated by CTBT lower than 230 K, occurs

more than 10%, 20% and 40% of the times over the analysed period.

A comparison between a satellite and cloud derived percentage of cloud cover

shows that the model reproduces reasonably well the structure and intensity of

convective activity. The position of the intertropical convergence zone in West

Africa is displaced northward in the model by about 5 degrees between 10W and

10E while its northern extent between 10E and 40E is well simulated. However,

BOLAM simulates less convective activity in Democratic Republic of Congo,

Cameroon (around 13E-5N) and Nigeria (7W-5N) and overestimates occurrence of

convection in Central African Republic, Sudan and Chad (longitude 15-25 latitude

5-15).

Figure 6.7 shows the time evolution of tracer profiles averaged over three

different areas highlighted in figure 6.4. In these and subsequent figures we only

display CO tracers which are 20 days old or younger based on estimates of the
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Figure 6.6: Percentage of cloud cover for model-derived cloud top brightness

temperature less than 230K. Cloud Percentage is relative to the period 15 July

- 5 August. Squares indicate the averaging area used in Figure 6.7.

chemical of CO lifetime in the lower tropical troposphere Mauzerall et al. (1998).

Area A1 is located just to the north of the emission region and area A2 is located

further north, where convective uplift of polluted air masses from lower troposphere

could be active. Note that results are not shown below 900hPa over these regions

due to the presence of mountains. Area A3 is located in the region where the

aircraft observed the polluted plumes on 13 August.

Significant tracer arrives in A1 and A2 in the mid-troposphere starting on 17

July in the region A1, and later from 22 July in A2. There is significant variability

in the modelled tracer transport which depends on the daily position of fires and the

intensity of the low level winds. Three episodes of high BB tracer concentrations are

clearly visible in A1 in the lower troposphere. The first one between 3-11 August

2006 corresponds reasonably well with the break phase of the southern African

Easterly Jet (AEJ-S) described by Mari et al. (2008) when pollutants build up over
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the continent, even if the model has higher concentrations and simulated tracers for

longer over this region than simulated tracer by Mari et al. (2008). Injection into

the UT is also episodic and depends on the position of convective activity relative

to the availability of pollutants (tracer) at lower altitudes.

There is a clear increase in MT and UT tracer after the 5 August, especially in

A2 where the convection is active. At mid-levels (around 650 hPa) over West Africa

enhancements in A3 tracer concentration are seen between 27-29 July, 2-5 August

and after 14 August. In the UT tracer arrives, albeit with low values, around

1 August with a more intense peak after the 14 August. This later enhancement

corresponds well with the plume location measured by the M55 even if the modelled

plume arrives around 1 day later. The plume is quite dispersed in the vertical (200

hPa - 400 hPa), this may be supported by observations since the DF-20 may have

also sampled a BB plume around 11km (250 hPa) (see figure 6.2).

Examination of tracer concentrations at different altitudes shows that the MT

and UT BB tracer follow different pathways. During the break phase (e.g. 3-11

August in the model) what becomes UT tracer is uplifted by wet convection in the

area around the equator spanning in longitudes between 15 and 25E, and in the

area around 5N 22E. The MT tracer is transported into the mid-troposphere south

of the equator between 10 and 23S, where wet convection is absent according to

the model or less intense according to the satellite cloud measurements (see figure

6.6 and figure 6.4). Then, it can be transported vertically by dry convection and

the baroclinic circulation cell described by Sauvage et al. (2005).

The ratio of tracer in the MT versus UT ( TracerUT / TracerMT ) can be

estimated using observed CO2 enhancements above background in both plumes

and compared with results from the BOLAM model. Enhancements of about 11

ppmv and 4 ppmv are measured for the MT and UT plumes, respectively (see figure

6.2 and figure 6.3). The ratio between the deviations of measured concentration

from mean value in the UT and MT is around 0.36. Taking into account the 24
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Figure 6.7: Hovmoller plot of tracer concentration profiles (top and bottom left

panels). Limits of the three averaging areas are reported on the top of each panels

(see also figure 6.4). Tracer travel time for averaging area A3 is presented in bottom

right panel (colour scale indicates days from emission).
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hour delay in higher modelled concentrations reaching the measurement location,

we use model results on 14 and 15 August to estimate the same ratio of UT (200

hPa) to MT (650 hPa) tracer. The area selected to evaluate the ratio was chosen

to contain almost all the plumes and spans from 10S to 15N and 10Wto 10E. The

UT:MT ratio varies between 0.3 and 0.6 between 14-15 August, with an average of

0.42 over this period which is similar to that derived from the CO2 measurements.

Values inferred from Mari et al. (2008) suggest a lower fraction transported into

the upper troposphere (0.05-0.2) based on study using a Lagrangian trajectory

model driven with ECMWF winds over the region encompassing 30W-10E. The

UT:MT ratio was also calculated for a longer period from 1-15 August including

also wake phases of the AEJ-S. To take into account the variability of the vertical

position and thickness of the plumes, two pressure layers were used: [800 hPa -

500 hPa] and [500 hPa - 150 hPa]. 500 hPa was chosen since the model shows a

discontinuity in tracer concentration at this altitude which can be interpreted as

the transition between the UT and MT transport pathways. The ratio over this

period varies between 0.25 and 1, giving 0.6 on average. Therefore, according to the

model, a significant fraction (higher than previously reported) of BB emissions can

be transported into the UT but this fraction remains lower that those transported

in the MT.

These differences in tracer concentrations are due to in-mixing of non polluted

air masses during the deep convective uplift and due to dispersion by wind fields.

In fact, entrainment and detrainment of ambient air within the vertical column

is kept into account in the model convective parameterization leading to tracer

mixing with cleaner air masses. Dispersion also occurs in the outflow region due

to divergent winds that forms at the top of uplift column.

Since we emitted one tracer per day the results can also be used to estimate the

time since emission as a function of altitude. This time since emission is obtained

with a weighted mean of the tracers emitted on each days, weighted with their
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118 6. Transport of biomass burning emissions

concentrations. Results over A3 are shown in figure 6.7 averaged over the whole

simulation period. The time for tracer to arrive over West Africa with maximum

modelled concentrations in the UT (14 August) at 200hPa is 14 to 15 days whereas

the MT plume takes between 16 to 17 days.

An estimate of the time needed by pollutants to travel between areas A1/A2

and area A3 was also estimated by dividing the longitudinal distance between the

centres of areas A1 and A2 (20E) and the centre of area A3 (1E) by the zonal wind

speed averaged between 11-15 August and averaged over the region encompassing

areas A1, A2 and A3 (4S and 8N; 2W and 25E). We derive a transit time of 4-5

days for the MT plume and 1-2 days for the UT plume. This is faster than the

8 days reported by Sauvage et al. (2005). However, that study was based on a

climatological (1997-2003) analysis of MOZAIC profile data, and could be due to

differences in wind speeds between different years and our results suggest that this

transport can be much faster in certain cases.

In this chapter we analysed the inter-hemispheric transport of biomass burning

plumes coming from southern hemispheric wild fires occurring during the boreal

summer.

Pollutant plumes with enhanced concentrations of trace gases and aerosols were

observed over the southern coast of West Africa during August 2006. Plumes

were detected both in the mid and upper troposphere by 4 research aircraft.

We performed a simulation with a new version of the BOLAM mesoscale model

including a biomass burning tracer confirming that the origin of the plumes are

wild fires located in the southern hemisphere.

The plumes observed in the mid troposphere had significantly higher pollutant

concentrations than the plume observed in the upper troposphere. The mesocale

model reproduces these differences and shows two different pathways for the plumes
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6.3 Biomass burning transport 119

Figure 6.8: Tracer concentrations on 9 August 18UTC at 650 hPa and 200 hPa

(respectively upper left and right panel), 15 August 18UTC at 650 hPa and 200

hPa (respectively bottom left and right panel)
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120 6. Transport of biomass burning emissions

at the different altitudes: transport to the north-east of the fire region, moist

convective uplift and transport to West Africa driven by the tropical easterly jet

for the upper tropospheric plume; north-west transport from the emission region

to the Gulf of Guinea for the middle tropospheric plume.

The UT:MT ratio of tracer concentrations at 600hPa and 250hPa was estimated

to around 0.42 for the period 14-15 August in the region of the measurements

which agrees well with the ratio derived from observed CO2 enhancements in the

plumes. Lower pollutants concentrations in the UT are mainly due to more dilution

with cleaner air masses during upward transport. A mean UT:MT fraction of

0.6 was evaluated over the period 1-15 August showing that even if injection of

pollutants into the UT over West Africa is less frequent and plumes more diluted,

it is significant, at least in the studied period (August 2006).

Time since emission results showed that BB pollutants were confined over

central Africa for between 9-10 days (MT plume) and 12-13 days (UT plume)

before being transported to the measurement region 4 days (MT plume) and 2

days (UT plume) later. According to the model both plumes are about 14 days

old when measured over West Africa.
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Chapter 7

Seasonal scale re-analysis

This study has been put at the end of the thesis because it is somehow distinct and

represent a follow-up of the work carried out in the framework of the PhD. In the

rest of the manuscript the simulations were adapted to study processes with time

scales ranging from the single MCS event (1-2 days) up to the inter-hemispheric

transport of biomass burning plumes (around 15 days). In the following paragraph

two seasonal simulations, with and without assimilation, are presented to assess

the capability of the BOLAM model in reproducing the intra-seasonal variability

and total amount of precipitation in Africa during the whole 2006 wet season.

The assimilation scheme is used and its ability in improving the precipitation is

evaluated in terms of total amount, spatial distribution and seasonal evolution over

sub-Saharan and Sahelian areas. Simulations cover a period of 79 days, starting

on the 15 June and ending on 31 August 2006. For the simulation named Nudg-

4h the nudging scheme has been used throughout the simulated period; a value

of 4 hours for the τ parameter has been used to apply a smooth nudging to the

model (see paragraph 3.4 for further details). The other simulation named Free-

run has been run without assimilation. Boundary and initial conditions for both

seasonal simulations are ECMWF AMMA reanalyses Agusti-Panareda et al. (2009),

they differ from operative analyses because radiosoundings and dropsondes data
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122 7. Seasonal scale re-analysis

collected during the AMMA field campaign have been assimilated into the ECMWF

model.

Seasonal simulations have been divided in 3 monthly simulations: June (15-

30 June), July (31 June-31July) and August (31 July-31 August). The BOLAM

model has been reinitialised each month and the first day of July and August

simulation are used to spin up the model and are not utilised for the comparison

with precipitation. Horizontal grid spacing is 0.22◦×0.22◦ (corresponding to 24

km × 24 km). 38 vertical levels (spanning from the ground to 1 hPa) are used

and vertical resolution varies from around 50 m close to ground and around 800 m

at the tropopause. Model domain has been extended further East to include the

whole African part of the ITCZ, it is shown by the black box in figure 7.1.

Firstly we compare mean precipitation from each monthly simulation with the

two rainfall product TRMM 3B42 and GPCP 1DD. In figure 7.2 averaged rainfall

rates (mm/day) for the period 15-30 June are shown. TRMM and GPCP rainfall

patterns and amount are similar over the Western part of the rainfall band but

disagree eastern than 10E. GPCP shows higher rainfall rates in the area around

10W 10N; furthermore, the rain band reproduced by GPCP is north displaced with

respect to the TRMM one. Those disagreements leads to a difference of 0.7 mm in

the mean rainfall rate (see table 7.2) over the area LON=[20W-40E] and LAT=[0-

18N], blue box in figure 7.1. A study of Nicholson et al. (2003) showed that GPCP

product has small seasonal bias (0.1 mm/day) in West Africa while TRMM merged

product doesn’t.

Adeyewa and Nakamura (2003) compared TRMM 3B42 product and GPCP

1DD over major climatic regions in Africa against precipitation analyses based

on rain gauges on a 3-year period (1998-2000). They found that both products

overestimates precipitation over the semiarid region (defined as LON=[11W-30E]

and LAT=[12N-15N]) and savanna region (LON=[11W-30E] and LAT=[8N-12N]).

Compared with rain gauges estimates, GPCP 1DD daily precipitation is 0.6
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mm/day higher over semiarid region and 1 mm/day higher over savanna region

on June-July-August period. While TRMM 3B42 product overestimates are 0.3

mm/day and 0.2 mm/day over savanna and semiarid region respectively.

The averaging area used in the present work includes those used by Adeyewa

and Nakamura (2003) and the difference in rainfall rate reported here are in good

accord with results obtained by Adeyewa and Nakamura (2003) for what concerns

TRMM versus GPCP comparison. Dinku et al. (2006) compared these rainfall

products over complex terrain in Ethiopian highlands for the period 1998-2004.

They also found that TRMM 3B42 precipitation better agrees with the rain gauges

network measurements than GPCP 1DD. So, we will consider TRMM precipitation

estimates as the reference value and use the GPCP 1DD product to have an

estimation of the variability of the blended satellite precipitation products.

Concerning the BOLAM model, Nudg-4h simulation is in agreement with

GPCP precipitation patterns; it overestimates TRMM precipitation eastern than

10E with too high rain-rates north of 10N. Nudg-4h rainfall rates are overestimated

with respect to both observational data-sets considered, leading to an overestimate

of the mean rainfall rate of 1.8 mm/day and 1.1 mm/day with respect to TRMM

and GPCP respectively. Free-run simulation largely overestimates (up to 5 times)

precipitation, in particular north of 10N. Mean rainfall rates are overestimated by

a factor of two with respect to TRMM. It is worth noting that nudging procedure

greatly improves precipitation patterns and reduce the rainfall overestimate north

of 10N.

Figure 7.3 shows July rainfall rates averaged over the blue box shown in figure

7.1. In July TRMM and GPCP precipitation patterns are more similar than in

June even if, in the area surrounding 10W 10N, GPCP still overestimates the rain-

rate. The latitudinal position of the rainfall band is the same for the two satellite

precipitation estimates. Concerning GPCP monthly mean rainfall rate, it is 0.7

mm/day higher than TRMM one. Also in July the Free-run simulation largely
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124 7. Seasonal scale re-analysis

overestimates precipitation, in particular in the latitudinal band spanning from

10N to 18N, with an average rainfall rate of 6.3 mm/day (2.2 mm/day higher than

TRMM). Nudg-4 simulation shows a better agreement with satellite precipitation

estimates. Rainfall patterns match with TRMM ones apart from an overestimation

on the Ethiopian highlands (38E 10N) and downwind from Guinea highlands (10W

10N). Assimilation of CTBT reduces the mean rainfall rate overestimation from

2.2 mm/day (Free-run) to 0.9 mm/day (Nudg-4h).

In August (figure 7.4) the comparison between the two satellite rainfall products

shows an overestimate of GPCP East of 20E and around 10W 10N, leading

to a mean rainfall difference of 1.1 mm/day. Free-run simulation presents the

same differences with respect to satellite precipitation products as in July and

overestimates TRMM mean rainfall by 2.2 mm/day. Nudged simulation presents

similar overestimates over Ethiopian highlands while underestimates rainfall rates

over the region around 10E 10N. The Nudg-4h mean rainfall rate is much closer to

the one evaluated using precipitation satellite estimates than Free-run one, lying

between GPCP and TRMM mean rainfall rates.

Table 7.1: Mean June July and August monthly precipitation (mm/day) for

TRMM, GPCP and the two BOLAM simulations averaged over LON [20W;40E]

LAT [0;18N], corrsponding to the blue box in 7.1 .

June July August

TRMM 2.9 4.1 4.2

GPCP 3.6 4.7 5.3

Nudg-4 4.7 5.0 4.9

Free-run 5.4 6.3 6.4
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Figure 7.1: Simulation domain and averaging boxes used in the text. Sub-Saharan

region (LON[10W,10E]; LAT[0,20N]) in red. ITCZ region (LON[20W,40E];

LAT[0,18N]) in blue. Sahel region (LON[10W,10E]; LAT[10N,15N]) in green.
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126 7. Seasonal scale re-analysis

Figure 7.2: Mean June 2006 rain-rate (mm/day) for GPCP [top left], TRMM [top

right], Nudg-4 simulation [bottom left] and Free-run simulation [bottom right].
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Figure 7.3: Mean July 2006 rain-rate (mm/day) for GPCP [top left], TRMM [top

right], Nudg-4 simulation [bottom left] and Free-run simulation [bottom right].
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Figure 7.4: Mean August 2006 rain-rate (mm/day) for GPCP [top left], TRMM

[top right], Nudg-4 simulation [bottom left] and Free-run simulation [bottom right].
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Figure 7.5 shows the Hovmoller (time vs. latitude) plot of precipitation averaged

over the longitudinal band 10W-10E (red box in figure 7.1) for TRMM, GPCP

and BOLAM simulations. This kind of plot is useful to evaluate the model

capability in reproducing the African summer monsoon onset, defined as the

abrupt latitudinal shift of the inter tropical convergence zone (ITCZ) from a quasi-

stationary location at 5N in May-June to a second quasi-stationary location at 10N

in July-August. Sultan and Janicot (2003) found that the transition phase between

the two stationary positions of ITCZ is accompanied by low convective activity over

West Africa. Janicot et al. (2008) locate this transition period between 25 June

and 10 July for summer 2006. This transition period is enclosed within the two

red vertical lines in figure 7.5.

It can be seen from the two upper panels in figure 7.5 that in the transition

period both satellite estimates report low precipitation north of 5N. This feature

is better caught by Nudg-4 simulation than Free-run that exhibits much higher

precipitation values north of 5N in that period. In the Sahelian region GPCP

and TRMM exhibits very similar time evolution of the rain band even if total

precipitation over the period under exam is still very different: 376 mm for TRMM

and 464 mm for GPCP, as riported in table 7.2.

Nudg-4h simulation correctly reproduces the latitudinal position of the rain

band in the Sahelian region, also rain maxima positions and timing is in accord

with TRMM and GPCP. A general tendency in generating too much low intensity

precipitation is notable, furthermore Nudg-4 simulation is not able to catch the

rain minima visible in both GPCP and TRMM. This because nudging procedure

is not activated if model or MSG cloud temperature is below 230 K, threshold

chosen to select only deep convection. Thus, when model rain is not due to deep

convection, the nudging procedure can’t help in improving model precipitation.

Free-run simulation tends to generate a too northward displaced rain band, in

particular during August, when almost all precipitation is between 10N and 20N.
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130 7. Seasonal scale re-analysis

Regarding the total precipitation, see table 7.2 Nudg-4 shows a much better accord

with TRMM while Free-run presents strong overestimation in the Sahelian region,

with a total precipitation around twice the TRMM one.
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Figure 7.5: Hovmoller plot of precipitation averaged over longitude bands ranging

from 10E to 10W. From top to bottom: GPCP, TRMM, Free-run and Nudg-4.

Red lines enclose the West African monsoon onset period. Pink lines indicate 1st

of July and 1st of August.
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Here we make a comparison between rain gauges measurements, satellite

products and model simulations. The comparison is restricted over two small areas

where numerous rain gauges measurements where conducted within the AMMA-

CATCH experiment. Among other goals, the AMMA-CATCH experiment focus

on measuring and understanding land surface properties and processes in West

Africa and the potential that surface hydrology may directly or indirectly affect

monsoon dynamics and rainfall in the region, see for further details Lebel et al.

(2009a). In the present work, rain gauge measurements were interpolated with an

inverse distance method over two boxes B1 (LON[1.5,3.5]; LAT[12.5,14.5]) and B2

(LON[1.2,3.2]; LAT[8.8,10.8]), highlighted by blue and red boxes in fig 7.6. Table

7.2 shows accumulated precipitation (mm) for the June-July-August period. In

area B1 TRMM shows a perfect agreement with gauge measurements while GPCP

slightly underestimates measurements. Nudg-4h performs clearly better than Free-

run. Free-run accumulated total precipitation over B1 is almost twice the gauges

value. In area B2 TRMM has again the best agreement, Free-run overestimates

gauge measurements. Nudg-4h slightly underestimates the reference value but gives

a better agreement than GPCP.

This comparison is far from being a comprehensive validation of GPCP and

TRMM precipitation satellite estimates because it is performed over a too small

area. It could be intended as a first test of precipitation downscaling over restricted

geographical areas. In a possible extension of this study we would make a rain-

gauge versus model comparison for gauges located in various longitude within the

Sahelian area and using a multi-year mesoscale simulation. This would be useful

to asses the capability of the model in reproducing the marked difference between

interannual variability of precipitation between western and eastern Sahel (Ali and

Lebel, 2009).
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Figure 7.6: Rain gauges position and averaging box B1 and B2. Only rain gauges

with all the daily precipitation values are used in the text and plotted here.

Table 7.2: Mean precipitation (mm) for TRMM, GPCP and the two BOLAM

simulations averaged over two areas: West Africa LON [10W;10E] LAT [0;20N]

and Sahel LON [10W;10E] LAT [10N;15N].

West Africa Sahel AREA1 AREA2

TRMM 281 376 398 452

GPCP 313 464 363 418

Nudg-4 322 399 358 435

Free-run 417 709 735 564

Rain gauges 396 491

Here we presented the validation of the nudging scheme, introduced in chapter

3, for a seasonal mesoscale simulation covering the whole West African area.

Therein the nudging scheme is used throughout the period to obtain a reanalysis

for the June-July-August 2006 period. The nudged and non-nudged simulations

are compared against satellite precipitation estimates to asses the capability of

nudging scheme in improving seasonal rainfall. The assimilation of cloud top

brightness temperature greatly improves the spatial patterns and the amount of

133



134 Conclusions

rainfall generated by the BOLAM model over a seasonal time-scale. This high

temporal (1 hour) and spatial (24 km) reanalysis would allows a detailed study

of the water fluxes between the atmosphere and the soil-vegetation or it could be

taken as an input for soil models studying the soil runoff and the discharge of river

basins.
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The dynamic of MCS during boreal summer African monsoon and their

predictability is a key issue for both precipitation forecast and atmospheric

composition. In this study we addressed this twofold issue using both mesoscale

modelling studies and a wide typology of measurements obtained during the

AMMA field campaign. The present research have been conduced in the frame

of the AMMA project and shares with it some of its main objectives as the

improvement of the forecast of the WAM over various time and spatial scales and

the assessment of the impact of regional circulation and local convection on climate.

The use of modelling studies coupled with measurements, came from the need of

models to be validated and improved in the region trough the use of measurements

and, on the other hand, the need to separate and identify various processes in

measurement due to atmospheric transport.

We started showing that regional meteorological models present severe

weaknesses over west Africa. Over the time scale of the single organised convective

event, mesoscale models are often not able to reproduce the exact location of MCSs’

initiation, their speed of propagation and the amount of precipitation. Unrealistic

initial and boundary conditions have a role in driving mesoscale models to incorrect

representation of convection.

We proposed a method to improve the performances of mesoscale models

in reproducing organised convective events through the implementation of a

nudging scheme that forces water vapour in the lower troposphere using satellite
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observations. We tested this assimilation scheme in a case of intense precipitation

due to the development of two intense MCSs occurring over West Africa during

the 2006 monsoon season. We estimated that the assimilation procedure (in

forecast set-up) has a positive impact in terms of the FSS score for 13 hours

after the end of the assimilation period and that the representation, position and

speed of propagation of the MCSs is driven closer to observations. Furthermore

the comparison of daily accumulated model and measured precipitation shows

a positive impact in reducing the overestimation of total precipitation and in

improving the spatial patterns.

In order to upscale the results obtained on a single event, we performed a

seasonal mesoscale simulation covering west Africa during the whole monsoon

season (presented in chapter 7). Therein the nudging scheme is used throughout

the period to obtain a reanalysis for the June-July-August 2006 period. The

assimilation of cloud top brightness temperature greatly improves the spatial

patterns and the amount of rainfall generated by the BOLAM model over a seasonal

time-scale.

The role of transport of chemicals and aerosols at local, regional and global

scale is then analysed. The improvements achieved with the nudging scheme are

used to characterise transport due to deep convection. Beside the amelioration of

precipitation, an improvement of organised convection position and evolution as

well as the coherent modification of the divergent wind above convective systems,

is necessary for a correct description of the effect of deep convection over trace

gases distribution.

Analysis of trajectories calculated with BOLAM model were used to calculate

both the fraction of lower tropospheric air present at the main convective outflow

level and the convective age of uplifted air masses. The fraction evaluated using

BOLAM in the region of the main convective outflow varies between 20% and

90% for the 3 flights, with a mean value of 50%. This is in good agreement
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with convective perturbation derived from observations of aerosol and chemical

tracers. The MCS outflow for the 11 August flight is particularly well reproduced

by BOLAM that gives a percentage of lower tropospheric air present in the 355-370

K layer up to 90%, in accord with observations of CO2 and freshly nucleated small

particles.

The impact on the atmospheric composition between the main outflow level

and the tropopause is more difficult to assess due to different sources and the role

of large-scale westerly transport processes. Nevertheless it is possibile to identify a

clear signature of local convection in observations; model aided analysis confirms

the presence of direct injection up to the tropical tropopause by intense convective

systems and indicates that composition is dependent on the residence time in the

TTL after convective uplift.

Together with deep convective impact on the upper tropospheric composition,

we studied the role of inter-hemispheric transport of biomass burning emissions. We

used BOLAM mesoscale model simulation to investigate whether the measurements

collected during the AMMA field campaign were influenced or not by biomass

burning emissions occurring in the southern hemisphere.

Pollutant plumes with enhanced concentrations of trace gases and aerosols were

observed over the southern coast of West Africa during August 2006. Plumes were

detected both in the mid and upper troposphere by research aircraft. We ran

the BOLAM mesoscale model including a biomass burning tracer to confirm that

the origin of the plumes are wild fires located in the southern hemisphere. Model

results showed BB pollutants confined over central Africa for between 9-13 days

before being transported to the measurement region. According to the model both

plumes are about 14 days old when measured over West Africa.

The plumes observed in the mid troposphere had significantly higher pollutant

concentrations than the plume observed in the upper troposphere. The mesocale

model reproduces these differences and shows two different pathways for the plumes
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at the different altitudes: transport to the north-east of the fire region, moist

convective uplift and transport to West Africa driven by the tropical easterly jet for

the upper tropospheric plume; north-west transport from the emission region to the

Gulf of Guinea for the middle tropospheric plume. Lower pollutants concentrations

simulated in the UT (in agreement with observations) are mainly due to more

dilution with cleaner air masses during upward transport.

The work presented here proposes a methodology to improve the models’ scores

and qualitatively identify several atmospheric key transport processes. The analysis

of the simulation with forecast set-up for the nudging scheme has shown that it is

possible to improve the forecasting capabilities on a time window of about 12 hours

after the end of the assimilation. Thus it can be used in an operational weather

forecast frame to improve at least short-range forecast of precipitation events. It

has been also shown that continuous nudging can simulate a correct distribution

and propagation of MCSs, also improving precipitation.

A general follow-up of this work would be to provide an upscaling over longer

time-scales (as done for precipitation in chapter 7) to asses the climatic relevance

of the reanalysis carried out assimilating satellite data. In particular this could be

useful for the detailed analysis of the water cycle and transport related to convection

in the Sahelian region, which requires a correct positioning of MCSs and an accurate

quantification of precipitation. This high temporal (1 hour) and spatial (24 km)

reanalysis would allows a detailed study of the water fluxes between the atmosphere

and the soil-vegetation or it could be taken as an input for soil models studying

the soil runoff and the discharge of river basins.

Furthermore we presented a detailed analysis of the impact of local

convection and biomass burning emissions transport over the African atmospheric

composition. The completion of this work would be the characterisation of the
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African contribution to global atmospheric composition and its radiative impact;

this could be achieved both estimating outward fluxes from regional scale model

seasonal simulations or using global chemistry transport models.
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Appendix A

List of acronyms

AMMA African Monsoon Multidisciplinary Analyses

AEJ African Easterly Jet

AEW African Easterly Wave

BOLAM BOlogna Limited Area Model

BSR aerosols Back-Scatter Ratio

CAPE Convective Available Potential Energy

CTBT Clout Top Brightness Temperature
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D aerosols Depolarization

ECMWF European Centre for Medium-range Weather Forecast

EOP Enhanced Observing Period

EPSAT Evaluation des Pluies par SATellite (satellite evaluation of precipitation)

GOES Geostationary Operational Environmental Satellite

GPCP Global Precipitation Climatology Project

GPI GOES Precipitation Index

ITCZ Inter Tropical Convergence Zone

IR Infra Red

LOP Long term Observing Period

MCS Mesoscale Convective System

MSG Meteosat Second Generation

MOZAIC Measurement of OZone on Airbus In-service aircraft

PM Passive Microwave

RHI Relative Humidity over Ice

RTTOV Radiative Transfer for TOV

SOP Special Observing Period

SSM/I Special Sensor Microwave Imager

SST Sea Surface Temperature

TEJ Tropical Easterly Jet

TRMM Tropical Rainfall Measuring Mission

TTL Tropical Tropopause Layer

VOC Volatile Organic Compound

WA West Africa

WAM West African Monsoon
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List of simulations
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144 B. List of simulations

Simulation Period Domain Resolution Nudging Notes

name beginning LON

end LAT

Chapter 2

BOLAM 00UTC 28/8/2005 [-8,24] 12km no

00UTC 30/8/2005 [0,23]

Chapter 3

Nudg-48H-2 00UTC 9/8/2006 [-8,24] 12km yes 48 hours

00UTC 12/8/2006 [0,23] nudging

Nudg-24H-2 00UTC 9/8/2006 [-8,24] 12km yes 24 hours

00UTC 12/8/2006 [0,23] nudging

Free-run 00UTC 9/8/2006 [-8,24] 12km no

00UTC 12/8/2006 [0,23]

Simulations performed for sensitivity test are reported in table 3.1

Chapter 5

BOLAM 00UTC 4/8/2006 [-10,40] 24km yes continuous

00UTC 14/8/2006 [-20,30] nudging

Chapter 6

BOLAM 00UTC 15/7/2006 [-10,40] 24km no

00UTC 15/8/2006 [-20,30]

Chapter 7

Nudging 00UTC 15/6/2006 [-22,40] 24km yes continuous

00UTC 1/9/2006 [-20,30] nudging

Free run 00UTC 15/6/2006 [-22,40] 24km no

00UTC 1/9/2006 [-20,30]

Simulations in this chapter have been reinitialized on 30/06/2006 and 30/07/2006
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