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Abstract

Increasing demands on reliability for safety critical systems such as aircraft or spacecraft
require robust control and fault diagnosis capabilities as these systems are potentially
subjected to unexpected anomalies and faults in actuators, input-output sensors, com-
ponents, or subsystems. Consequently, fault diagnosis capabilities and requirements for
aerospace applications have recently been receiving a great deal of attention in the research
community.

A fault diagnosis system needs to detect and isolate the presence and location of the
faults, on the basis also of the control system architectures. Development of appropriate
techniques and solutions for these tasks are known as the fault detection and isolation
(FDI) problem. Several procedures for sensor FDI applied to a nonlinear simulated model
of a commercial aircraft, in the presence of wind gust disturbances and measurement
errors, are presented in this thesis.

The main contributions of this work are related to the design and the optimisation of
two FDI schemes based on a linear polynomial method (PM) and the nonlinear geometric
approach (NLGA). In the NLGA framework, two further FDI techniques are developed;
the first one relies on adaptive filters (NLGA–AF), whilst the second one exploits particle
filters (NLGA–PF).

The suggested design approaches leads to dynamic filters, the so–called residual gen-
erators, that achieve both disturbance decoupling and robustness properties with respect
to modelling errors and noise. Moreover, the obtained results highlight a good trade-off
between solution complexity and achieved performances.

The FDI strategies are applied to the aircraft model in flight conditions characterised
by tight–coupled longitudinal and lateral dynamics. The robustness and the reliability
properties of the residual generators related to the considered FDI techniques are inves-
tigated and verified by simulating a general aircraft reference trajectory.

Extensive simulations exploiting the Monte–Carlo analysis tool are also used for assess-
ing the overall performance capabilities of the developed FDI schemes in the presence of
both measurement and modelling errors. Comparisons with other disturbance–decoupling
methods for FDI based on neural networks (NN) and unknown input Kalman filter (UIKF)
are finally reported.
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Abstract (Italian)

Il bisogno crescente di affidabilità per sistemi critici dal punto di vista della sicurezza come
quelli aeronautici e aerospaziali ha richiesto lo sviluppo di sistemi di controllo robusto e
diagnosi dei guasti. Tali sistemi infatti sono potenzialmente soggetti a malfunzionamenti
improvvisi, come guasti sugli attuatori, sui sensori di ingresso–uscita e sui componenti
o sottosistemi. Di conseguenza, il problema della diagnosi dei guasti nell’ambito di ap-
plicazioni aeree e aerospaziali ha recentemente suscitato un notevole interesse nel settore
della ricerca.

Un sistema automatico per la diagnosi dei guasti deve rivelare ed isolare la presenza
dei guasti, anche sulla base della struttura del sistema di controllo. Lo sviluppo di tec-
niche e soluzioni adeguate per lo svolgimento di questi compiti rappresenta il problema
fondamentale della diagnosi e dell’isolamento dei guasti (FDI). In questa tesi vengono
presentate diverse procedure per la diagnosi dei sensori applicata a un modello simulato
non lineare di un velivolo commerciale, in presenza di disturbi dovuti a raffiche di vento
ed errori di misurazione.

I maggiori contributi di questo lavoro riguardano il progetto e l’ottimizzazione di due
schemi di diagnosi basati su un metodo lineare polinomiale (PM) e su un approccio non
lineare geometrico (NLGA). Nell’ambito del metodo NLGA, vengono successivamente
sviluppate due ulteriori tecniche per la diagnosi dei guasti, la prima basata su filtri adat-
tativi (NLGA–AF), mentre la seconda sfrutta i filtri particellari (NLGA–PF).

Le metodologie proposte hanno portato al progetto di filtri dinamici, i cosiddetti gen-
eratori di residuo, che permettono di ottenere sia il disaccoppiamento del disturbo, che
interessanti proprietà di robustezza nei confronti degli errori di modellazione e del ru-
more. Inoltre, i risultati ottenuti evidenziano un buon compromesso tra la complessità
della soluzione e le prestazioni ottenute.

Le strategie teoriche di diagnosi sono applicate al modello del velivolo in condizioni di
volo caratterizzate da forte accoppiamento tra dinamiche longitudinale e laterale. Succes-
sivamente, le proprietà di robustezza e di affidabilità dei generatori di residuo cos̀ı ottenuti
sono state analizzate e verificate simulando una generica traiettoria di volo.

Numerose simulazioni sono state esaminate anche mediante lo strumento dell’analisi
Monte–Carlo, necessario per valutare le prestazioni complessive delle tecniche di diag-
nosi proposte, in presenza di errori di misura e modellazione. Infine i metodi sviluppati
sono confrontati con altre strategie di diagnosi con disaccoppiamento del disturbo basate
sull’impiego di reti neurali (NN) e filtri di Kalman ad ingressi non noti (UIKF).
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Chapter 1

Introduction

The problem of Fault Detection and Isolation (FDI) in aircraft and aerospace systems has
attracted considerable attention world–wide and been theoretically and experimentally in-
vestigated with different types of approaches, as can be seen from the general survey works
(Gertler 1998, Chen and Patton 1999, Isermann 2005, Ding 2008). This development has
been mainly stimulated by the trend in automation toward systems with increasing com-
plexity and the growing demands for fault tolerance, cost efficiency, reliability, and safety
which constitute fundamental design features in modern control systems.

Sensors are the most important components for flight control and aircraft safety and,
as they work in a harsh environment, fault probabilities are high thus making these
devices the least reliable components of the system. In order to improve the reliability
of the system sensors hardware and software (analytical) redundancy schemes have been
investigated over the last twenty years (Chen and Patton 1999, Isermann 2005).

For small aircraft systems, as considered in this work, multiple hardware redundancy
is harder to achieve due to lack of operating space. Such schemes would also be costly and
very complex to engineer and maintain. Analytical redundancy makes use of a mathemat-
ical model of the monitored process and is therefore often referred to as the model–based
approach to FDI (Marcos et al. 2005, Amato et al. 2006). The model–based FDI is nor-
mally implemented as a computer software algorithm. The main problem of the model–
based approach regards the real complex systems, where modelling uncertainty arises
inevitably, because of process noise, parameter variations and modelling errors. The FDI
of incipient faults represents a challenge to model–based FDI techniques due to insepa-
rable mixture between fault effects and modelling uncertainty (Isermann 2005, Chen and
Patton 1999).

A common and important approach in model–based techniques is known as the residual–
based method. A number of researchers have developed residual–based methods for dy-
namic systems such as the parity space (Gertler 1998), state estimation (Basseville and
Nikiforov 1993), Unknown Input Observer (UIO) and Kalman Filters (KF) (Chen and
Patton 1999) and parameter identification (Basseville and Nikiforov 1993). Intelligent
techniques (Korbicz et al. 2004) can be also exploited. Furthermore, the Massoumnia’s
geometric method (Massoumnia 1986) was successfully extended to nonlinear systems

15



16 CHAPTER 1. INTRODUCTION

(Hammouri et al. 1999, De Persis and Isidori 2001).

A crucial issue with any FDI scheme is its robustness properties. The robustness
problem in FDI is defined as the maximisation of the detectability and isolability of faults
together with the minimisation of the effects of uncertainty and disturbances on the FDI
procedure (Chen and Patton 1999, Isermann 2005). However, many FDI techniques are
developed for linear systems. Unfortunately, practical models in real world are mostly
nonlinear. Therefore, a viable procedure for practical application of FDI techniques is
really necessary. Moreover, robust FDI for the case of aircraft systems and applications
is still an open problem for further research.

This work deals with the residual generator design for the FDI of input–output sen-
sors of a general aviation aircraft, subject to wind gust disturbances and measurement
noises. Two different FDI schemes are developed: the Polynomial Method (PM) and the
NonLinear Geometric Approach (NLGA).

The developed PM scheme belongs to the parity space approach (Gertler 1998, Gertler
and Singer 1990, Patton and Chen 1994) and it is based on an input–output polynomial
description of the system under diagnosis. In particular, the use of input–output forms
allows to easily obtain the analytical description for the disturbance decoupled residual
generators. An appropriate choice of their parameters allows to maximise a suitable fault
sensitivity function and to obtain desired transient properties in terms of a fault to residual
reference transfer function. These dynamic filters, organised into bank structures, are able
to achieve fault isolation properties.

The development of NLGA methodology is based on the works by De Persis and Isidori
(De Persis and Isidori 2001). It was shown that the problem of the FDI for nonlinear
systems is solvable if and only if there is an unobservability distribution that leads to
a quotient subsystem which is unaffected by all faults but one. If such a distribution
exists, an appropriate coordinate transformations in the state–space can be exploited for
designing a residual generator only for the observable subsystem. The NLGA residual
generators have been designed in order to be analytically decoupled from the vertical and
lateral components of the wind. Moreover, a full analytical developed mixed H−/H∞
optimisation is proposed, in order to design the NLGA residual generators so that a good
trade–off between the fault sensitivity and the robustness with respect to measurements
and model errors is achieved.

Two FDI techniques exploiting the NLGA coordinate transformations are also pro-
posed: the NLGA–AF (Adaptive Filter) and the NLGA–PF (Particle Filter). The first
one provides both FDI and the estimation of the fault size; it relies on the development
of adaptive filters, instead of residual generators, for the observable subsystem obtained
by the NLGA coordinate transformation. The second one, exploits particle filters to solve
the FDI problem for the nonlinear stochastic model of the system under diagnosis, which
is derived by following a NLGA strategy.

A very accurate flight simulator (simulation model) of the PIPER PA–30 aircraft,
implemented in the Matlab/Simulink R© environment, has been used to evaluate the effec-
tiveness of the proposed method. The simulation model is based on the classical nonlinear
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6 Degrees of Freedom (6 DoF) rigid body formulation (Stevens and Lewis 2003), whose mo-
tion occurs as a consequence of applied forces and moments (aerodynamic, propulsive and
gravitational). The overall simulation has been completed by means of the PIPER PA–30
propulsion system description as well as the models of atmosphere, servo–actuators and
input–output sensors. The description of the Navigation, Guidance and Control (NGC)
system has been also included.

The PM residual generators have been designed on the basis of the linearised aircraft
simulation model in different flight condition. Since the aircraft simulation model does
not match the hypothesis to apply the NLGA methodology, a simplified nonlinear model
has been developed for the purpose of the NLGA–based filters design.

The final performances have been evaluated by adopting a typical aircraft reference
trajectory embedding several steady–state flight conditions, such as straight flight phases
and coordinated turns. Comparisons with different disturbance decoupling methods for
FDI based on Neural Networks (NN) and Unknown Input Kalman Filter (UIKF) have
been also provided. Finally, extensive experiments exploiting Monte–Carlo analysis are
used for assessing the overall capabilities of the developed FDI methods, in the presence
of uncertainty, measurement and modelling errors.

The thesis is organised as follows. A description of the aircraft simulation model
is provided in Chapter 2. Chapter 3 presents the design details for the proposed PM
scheme, whilst in Chapter 4 a description of the NLGA–based design schemes is reported.
In Chapter 5 the effectiveness of the proposed residual generators applied to the aircraft
simulator and extensive simulation results are reported. Finally, Chapter 6 summarises
the contributions and the achievements of the thesis (Benini et al. 2008a, Castaldi et
al. 2009, Beghelli et al. 2007a, Beghelli et al. 2007b, Simani and Benini 2007, Benini et
al. 2008b, Bonfè et al. 2008, Benini et al. 2009, Bonfè et al. 2006, Bonfè et al. 2007b, Bonfè
et al. 2007a).

For the readers not familiar with the basic principles of fault diagnosis, a review of
model–based FDI is reported in Appendix A (Simani et al. 2002, Chen and Patton 1999).
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Chapter 2

Aircraft Simulation Model

This chapter provides a description of the PIPER PA–30 aircraft simulation model. The
6 DoF aircraft model is derived in Section 2.1. The description of the overall simulation
model is completed in Section 2.2. Finally, the mathematical models used for the FDI
purpose are developed in Section 2.3.

2.1 6 DoF Aircraft Model

The aircraft can be considered as a rigid body with a given mass and moments of inertia.
For a rigid body, the system undergoes no deformation and should possess only 6 degrees
of freedom, namely 3 translations and 3 rotations.

The following axes systems are considered:

• An Earth–fixed axes system OXY Z, such that the plane (X,Y ) coincides with the
Earth surface at the sea level and the axis Z represents the aircraft altitude H
changed of sign, i.e. H = −Z. This axes system is assumed to be an inertial frame
of reference.

• A body–fixed axes system O′xyz (the so–called body axes), whose origin O′ is
located identically at the aircraft center gravity C. For such a system, the axis x
points forward out of the nose of the aircraft; the axis y points out through the right
wing; and the axis z points down.

The motion of the aircraft can be described by:

1. Translation of the origin O′ of the body axes.

2. Rotation of the axes with respect to the inertial space.

19



20 CHAPTER 2. AIRCRAFT SIMULATION MODEL

2.1.1 Force Equations

Let us consider Newton laws applying to the linear momentum(
dp

dt

)
OXY Z

=

(
dp

dt

)
O′xyz

+ ω × p = F (2.1)

where F = [Fx Fy Fz]
T represents the external forces applied to the body and the linear

momentum is defined as
p = mVC (2.2)

where m is the total body mass and VC is the velocity of the center of mass. Hence (2.1)
becomes

m (V̇C + ω × VC) = F (2.3)

Let us point out the components along the body axes of the linear velocity VC and
angular velocity ω

VC =

⎡
⎣ u
v
w

⎤
⎦ ω =

⎡
⎣ pω

qω
rω

⎤
⎦ (2.4)

where pω, qω and rω are the roll, pitch and yaw rate, respectively. Then the force equations
of motion along the body axes are given by

m (u̇− rω v + qω w) = Fx

m (v̇ − pω w + rω u) = Fy

m (ẇ − qω u+ pω v) = Fz

(2.5)

where the force components Fx, Fy and Fz on the right–hand side of the above equations
are due to gravitational, aerodynamic and thrust forces.

2.1.2 Moment Equations

Let us consider Newton laws applying to the angular momentum(
dHC

dt

)
OXY Z

=

(
dHC

dt

)
O′xyz

+ ω ×HC = M (2.6)

where M = [Mx My Mz]
T represents the external moments applied to the body and the

angular momentum is defined as
HC = I ω (2.7)

where

I =

⎡
⎣ Ix 0 −Ixz

0 Iy 0
−Ixz 0 Iz

⎤
⎦ (2.8)
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is the inertia moment matrix of the body. Note that the form of I is due to the symmetry
properties of the considered aircraft. Hence (2.6) becomes

I ω̇ + ω × I ω = M (2.9)

Using the above definitions for ω and I, the moment equations of motion can be
written about the body axes in the following way

Ix ṗω − (Iy − Iz) qω rω − Ixz (ṙω + pω qω) = Mx

Iy q̇ω − (Iz − Ix) rω pω − Ixz (r2
ω − p2

ω) = My

Iz ṙω − (Ix − Iy) pω qω − Ixz (ṗω − qω rω) = Mz

(2.10)

where the moments components Mx, My and Mz on the right side of the above equations
are due to aerodynamic and propulsion forces. Note that there is no contribution from
the gravitational force since these moments are taken about the center of gravity.

2.1.3 Euler Angles

The angular velocity components pω, qω and rω about the body axes x, y and z cannot be
integrated to obtain the corresponding angular displacements about these axes. In other
words, the orientation of the aircraft in space is not known until we describe the three
rotational degrees of freedom in terms of a set of independent coordinates. Of course,
such a set is not necessarily unique. One useful set of angular displacements, the so–
called Euler angles, is obtained through successive rotations about three (not necessarily
orthogonal) axes as follows.

Let us start with a set of inertial axes OXY Z and perform the following rotations in
a particular order:

1. Rotation about the Z–axis (i.e. yaw) through an angle ψ. This rotation leads to
the new coordinates system (x1, y1, z1).

2. Rotation about the y1–axis (i.e. pitch) through an angle θ. This rotation leads to
the new coordinates system (x2, y2, z2).

3. Rotation about the x2-axis (i.e. roll) through an angle φ. This rotation leads to the
new coordinates system (x3, y3, z3).

The Euler angles for an aircraft are defined as above in terms of ψ, θ and φ. Those
angles are also known as the heading, elevation and bank angle, respectively. At each
rotation, components of a vector expressed in the coordinate frame before and after the
rotation are related through a rotation matrix. Namely:

1. ψ rotation ⎡
⎣ x1

y1

z1

⎤
⎦ =

⎡
⎣ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦
⎡
⎣ X
Y
Z

⎤
⎦ = Rz(ψ)

⎡
⎣ X
Y
Z

⎤
⎦ (2.11)
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2. θ rotation ⎡
⎣ x2

y2

z2

⎤
⎦ =

⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦
⎡
⎣ x1

y1

z1

⎤
⎦ = Ry(θ)

⎡
⎣ x1

y1

z1

⎤
⎦ (2.12)

3. φ rotation ⎡
⎣ x3

y3

z3

⎤
⎦ =

⎡
⎣ 1 0 0

0 cosφ sinφ
0 − sinφ cosφ

⎤
⎦
⎡
⎣ x2

y2

z2

⎤
⎦ = Rx(φ)

⎡
⎣ x2

y2

z2

⎤
⎦ (2.13)

It is worth observing that the rotation matrices defined above are orthogonal, hence
nonsingular and invertible.

The angular velocity ω can be expressed as a function of the Euler angles in the
following way ⎡

⎣ pω

qω
rω

⎤
⎦ = Rx(φ)Ry(θ)

⎡
⎣ 0

0

ψ̇

⎤
⎦+Rx(φ)

⎡
⎣ 0

θ̇
0

⎤
⎦+

⎡
⎣ φ̇

0
0

⎤
⎦ (2.14)

that is
pω = φ̇− ψ̇ sin θ

qω = θ̇ cosφ+ ψ̇ cos θ sinφ

rω = ψ̇ cos θ cosφ− θ̇ sinφ

(2.15)

Since a flat–Earth model is considered, the gravitational force is always pointed along
the Z–axis of the inertial frame of reference. Hence the components of the gravitational
forces along the body axes are obtained as follows⎡

⎣ FGRAx

FGRAy

FGRAz

⎤
⎦ = Rx(φ)Ry(θ)

⎡
⎣ 0

0
mg(H)

⎤
⎦ (2.16)

that is
FGRAx = −mg(H) sin θ

FGRAy = mg(H) cos θ sinφ

FGRAz = mg(H) cos θ cosφ

(2.17)

where g(H) represents the gravity acceleration at current altitude.
The rotational matrices defined above can be also exploited to determine the aircraft

position (in the inertial space) in terms of its linear velocity components u, v and w in
the body-fixed axes ⎡

⎣ Ẋ

Ẏ

Ż

⎤
⎦ = Rz(ψ)TRy(θ)

TRx(φ)T

⎡
⎣ u
v
w

⎤
⎦ (2.18)
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that is
Ẋ = u cosψ cos θ + v (− sinψ cos θ + cosψ sin θ sinφ)

+ w (sinψ sinφ+ cosψ sin θ cosφ)

Ẏ = u sinψ cos θ + v (cosψ cosφ+ sinψ sin θ sinφ)

+ w (− cosψ sinφ+ sinψ sin θ cosφ)

Ż = −u sin θ + v cos θ sinφ+ w cos θ cosφ

(2.19)

2.1.4 True Air Speed and Aerodynamic Angles

Major contributions to the forces and moments in a flight vehicle are coming from the
aerodynamics of wings, body and tail surfaces. It would be difficult to express these in
terms of the aircraft motion variables u, v and w. However it is much easier to express
them in terms of the true air speed V , angle of attack α and angle of sideslip β.

Figure 2.1: Aircraft axes and angles.

The true air speed is the speed of an aircraft relative to the airmass in which it flies,
i.e. the magnitude of the vector difference of the velocity of the aircraft and the velocity
of the air. The angles of attack and sideslip (said aerodynamic angles) are defined by
performing a plane rotation about the body y–axis, followed by a plane rotation about
the new z–axis, such that the final x–axis is aligned directly into the relative wind (i.e. the
direction of the air over the aircraft wings and control surfaces). The first rotation defines
the stability axes, and the angle of attack is the angle between the body–fixed x–axis and
the stability x–axis. The second rotation leads to a set of wind axes, and the sideslip
angle is the angle between the stability x–axis and the wind x–axis (see Figure 2.1).



24 CHAPTER 2. AIRCRAFT SIMULATION MODEL

The linear velocity components u, v and w can be expressed in terms of V , α and β
as follows

u = V cos β cosα

v = V sin β

w = V cos β sinα

(2.20)

Note that by substituting (2.20) into (2.5) the following equations are obtained

u̇ =
Fx

m
+ rω (V sin β)− qω (V cos β sinα)

v̇ =
Fy

m
+ pω (V cos β sinα)− rω (V cos β cosα)

ẇ =
Fz

m
+ qω (V cos β cosα)− pω (V sin β)

(2.21)

By differentiating the equations (2.20) with respect to time also the linear acceleration
components u̇, v̇ and ẇ can be derived in terms of V , α and β

⎡
⎣ u̇
v̇
ẇ

⎤
⎦ =

⎡
⎣ cosα −V sinα cos β −V cosα sin β

sin β 0 V cos β
sinα cos β V cosα cos β −V sinα sin β

⎤
⎦
⎡
⎣ V̇
α̇

β̇

⎤
⎦ (2.22)

Solving for V̇ , α̇ and β̇, the following linear system is obtained

⎡
⎣ V̇
α̇

β̇

⎤
⎦ =

⎡
⎣ cosα cos β sin β sinα cos β
− sinα/(V cos β) 0 cosα/(V cos β)
− cosα cos β/V cos β/V − sinα sin β/V

⎤
⎦
⎡
⎣ u̇
v̇
ẇ

⎤
⎦ (2.23)

2.1.5 Overall Model

The equations governing the motion of a rigid body aircraft are summarised in the fol-
lowing.

• Equations representing the time derivative of the linear momentum related to total
forces applied to the aircraft (obtained substituting (2.21) into (2.23))

V̇ = Fx

cosα cos β

m
+ Fy

sin β

m
+ Fz

sinα cos β

m

α̇ =
−Fx sinα+ Fz cosα

mV cos β
+ qω −

(
pω cosα+ rω sinα

)
tan β

β̇ =
−Fx cosα sin β + Fy cos β − Fz sinα sin β

mV
+ pω sinα− rω cosα

(2.24)
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• Equations representing the time derivative of the the angular momentum related to
total moments applied to the aircraft (obtained from (2.10))

ṗω =
Mx Iz +Mz Ixz + pω qω Ixz

(
Ix − Iy + Iz

)
+ qω rω

(
Iy Iz − Ixz

2 − Iz
2
)

Ix Iz − Ixz
2

q̇ω =
My + pω rω

(
Iz − Ix

)
− p2

ω Ixz + r2
ω Ixz

Iy

ṙω =
Mx Ixz +Mz Ix + pω qω

(
Ix

2 − Ix Iy + Ixz
2
)

+ qω rω Ixz

(
− Ix + Iy − Iz

)
Ix Iz − Ixz

2

(2.25)

• Equations representing the cinematic equations for the Euler angles propagation
(obtained from (2.15))

φ̇ = pω + qω sinφ tan θ + rω cosφ tan θ

θ̇ = qω cosφ− rω sinφ

ψ̇ =
qω sinφ+ rω cosφ

cos θ

(2.26)

• Equations relating the true air speed to the position coordinates respect to an in-
ertial reference frame with the origin at the sea level (obtained substituting (2.20)
into (2.19))

Ẋ = V cosψ
[
cosα cos β cos θ + sin θ

(
sin β sinφ+ sinα cos β cosφ

)]
− V sinψ

(
sin β cosφ− sinα cos β sinφ

)
+ VAx

Ẏ = V sinψ
[
cosα cos β cos θ + sin θ

(
sin β sinφ+ sinα cos β cosφ

)]
+ V cosψ

(
sin β cosφ− sinα cos β sinφ

)
+ VAy

Ḣ = V cosα cosβ sin θ − V cos θ
(
sin β sinφ+ sinα cos β cosφ

)
− VAz

(2.27)

Total force and moment components can be expressed by the combinations of aerody-
namic, thrust and gravitational contribution as follows

Fx = FAERx + Th −mg(H) sin θ

Fy = FAERy +mg(H) cos θ sinφ

Fz = FAERz +mg(H) cos θ cosφ

(2.28)

Mx = MAERx

My = MAERy + dT Th

Mz = MAERz

(2.29)

where Th is the thrust and dT is the distance between the aircraft center of gravity and the
thrust axis. Note that the gravitational contribution to total forces is obtained from (2.17).
Note also that there is not gravitational contribution to the total moments.
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As to the aerodynamic forces FAER(.) and moments MAER(.), a set of local approxi-
mations has been computed and scheduled depending on the values assumed by true air
speed, flap, altitude, curve radius, and flight path angle (i.e. the angle between veloc-
ity vector respect to air and its projection over the horizontal plane). In this way, it is
possible to obtain a mathematical model for each flight condition. This model is suitable
suitable for a state–space representation, as it can be made explicit.

The parameters in the analytic representation of the aerodynamic actions have been
obtained from wind tunnel experimental data, as reported in (Fink and Freeman 1969,
Koziol 1971), and the aerodynamic actions are expressed along the axes of the wind
reference system. It should be observed that aerodynamic forces and moments are not
implemented by the classical linearised expressions (stability derivatives) as reported in
Flight Dynamic textbook, (Etkin and Reid 1996). Aerodynamic actions, in fact, are
implemented by means of cubic splines approximating the non–linear experimental curves
given in (Fink and Freeman 1969).

Remark 1. The thrust term Th depends on the throttle aperture percentage δth (see Sec-
tion 2.2.1), whilst the aerodynamic action terms FAER(.) and MAER(.) depends on the
control surfaces deflection angles, i.e. δa, δe and δr that are the aileron, elevator and
rudder deflection angles, respectively. δth, δa, δe and δr represent the control inputs of the
monitored system for FDI purpose.

2.2 Simulation Model Subsystems

2.2.1 Engine Model

A first order dynamic model of a 4-pistons aspirated engine with the throttle aperture as
input and the thrust intensity as output has been considered. The propulsion system of
the PIPER PA–30 aircraft consists of two engines of this type.

The main advantage of this model consists in the fact that it is both simple and based
on the dynamic balance of the torques insisting on the propeller. The engine model can
be written as follows

ṅe =
(1− ηpr − ηair)

Ipr

(
60

2π

)2
ρ(H)

ρ(0)

√
T (H)

T (0)

δth
ne

Pc(ne)−
Jv

Ipr

(
2π

60

)2

n3
e (2.30)

with

Th =
2 ηpr

V cosα cos β

ρ(H)

ρ(0)

√
T (H)

T (0)
δth Pc(ne) (2.31)

where ne is the engine shaft angular rate, Jv is the viscous friction coefficient of the
transmission shaft, Ipr is the propeller moment of inertia, ηpr is the propeller efficiency,
ηair is the percentage loss of available power due to air, ρ(H) is the air density at current
altitude, T (H) is the air temperature at current altitude and Pc(ne) is the engine power
behaviour with respect to ne at full throttle.
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The model (2.30) is obtained by the equilibrium of torques (inertial, viscous friction,
load and driving torque Td) applied to the engine shaft with the assumption of a propeller
with constant efficiency

Ipr

2π

60
ṅe + Jv

(
2π

60
ne

)3

+ (ηpr + ηair)Td = Td (2.32)

with

Td =
60

2π

BP(H)

ne

(2.33)

where BP(H) is the brake power at current altitude (Ojha 1995)

BP(H) =
ρ(H)

ρ(0)

√
T (H)

T (0)
BP(0) BP(0) = δth Pc(ne) (2.34)

The nonlinear curve Pc(ne) has been approximated by means of a cubic spline derived
from (Koziol 1971).

2.2.2 Atmosphere Model

Air Temperature and Density

The atmoshpere model describes the behaviour of temperature and air density as a func-
tion of altitude above the mean sea level.

The temperature is considered a linear decreasing function of altitude with a constant
slope GT = 6.5 oK/Km up to a maximum altitude of 11 Km, starting with a value of T (0)
at the sea level.

The air is assumed to be a perfect gas, therefore the air density is related to the
altitude by the following differential equation

dρ

dH
= −ρ

g(H)M

RT (H)
(2.35)

with

g(H) = g(0)

(
r

r +H

)2

(2.36)

where M is the molar mass of the air mixture, R is the universal constant of perfect gases
and r is the mean earth radius. Solving the differential equation the following air density
model is obtained

ρ(H) = ρ(0)

[
T (0)

r

(
r +H

T (0)−GT H

)] Kρ GT
(r GT +T (0))2

e
Kρ H

r (r GT +T (0)) (r+H) (2.37)

where

Kρ = −
M g(0) r2

R
(2.38)
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Wind, Wind Shear and Wind Gusts

The atmosphere model embeds also a mathematical model description of the wind, wind
shear and wind gusts.

The wind is modeled as a constant velocity bias vector (whose components are VAx,
VAy and VAz) of the atmosphere respect to the ground.

The wind shear is a vertical gradient of the wind velocity. Its effects are relevant for
low altitude and it can be described by equations that represent a good approximation
of the wind shear model published in (Moorhouse and Woodcock 1980) by means of the
following smooth functions

VAx = cos(ψwind)Osat

(
1− e

− 5 H
Hlim

)
VAy = sin(ψwind)Osat

(
1− e

− 5 H
Hlim

)
(2.39)

VAz = Vsat

(
1− e

− 5 H
Hlim

)
where ψwind is the direction of the arrival of the wind, Osat is the wind maximum horizontal
ground speed, Vsat is the wind maximum vertical ground speed and Hlim is the reference
maximum altitude for wind shear. A suitable value for the reference maximum altitude is
Hlim = 60 m. The wind shear velocity gradient effect can be assimilated to a motion in a
non inertial reference frame and therefore causes the so–called apparent forces, extremely
dangerous during the approach phase.

While the wind consist in the atmosphere steady motion, the wind gusts represent an
air motion with zero mean velocity. Wind gusts are modeled as body axes air velocity
(wu, wv and ww) described by means of colored stochastic processes generated by first
order shaping filters with the correlation times and wind covariance (Moorhouse and
Woodcock 1980) specified in Table 2.1

Table 2.1: Wind gusts model parameters.
Correlation time Wind covariance

τu = 2.326 s E[w2
u] = 0.7 (m/s)2

τv = 7.143 s E[w2
v] = 0.7 (m/s)2

τw = 0.943 s E[w2
w] = 0.7 (m/s)2

Remark 2. The wind gusts represent the disturbances acting on the system. In the
residual generators design those disturbances must be decoupled in order to assure the
robustness of the proposed FDI techniques.

2.2.3 Servo–Actuators Model

The main task of the servo–actuators is to move the control surfaces: elevator, aileron
and rudder. Moreover, there is a forth servo–actuator that steers the throttle positioning.
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In the considered aircraft the servo–actuators are DC–motors. Therefore they are
modeled as second order dynamic systems without zeros. In order to avoid out of range of
the deflection surfaces, overshoots during transient responses are unwished. Consequently,
the loop controls of the actuators have been designed with gain constants assuring real
and coincident poles to the servos. The values of the poles of the transfer functions used
for each servo are shown in Table 2.2.

Table 2.2: Transfer function poles of the servos.
Elevator servo Aileron servo Rudder servo Throttle servo
−3.45 s−1 −3.45 s−1 −3.45 s−1 −8.26 s−1

2.2.4 Measurement Errors Description

In the following, a brief description of the measurement subsystems used by the simulation
model is provided. It is worth noting that the sensor models embed all the possible sources
of disturbance (calibration and alignment errors, scale factor, white and coloured noises,
limited bandwidth, g–sensitivity, gyro drift, etc.).

Command Surfaces Deflection Measurements

It is assumed that the deflection angles δe, δa, δr and δth are acquired with a sample rate of
100 Hz by means of potentiometers. These sensors are affected by errors modelled by two
additive components: bias and white noise. The bias values and the standard deviation
(std) of the noises are given in Table 2.3. The reported parameters have been obtained
by means of experimental tests performed at the aerospace engineering laboratory of the
University of Bologna.

Table 2.3: Input sensor errors parameters.
Input sensor Bias White Noise Std

Elevator deflection angle 0.0052 rad 0.0053 rad
Aileron deflection angle 0.0052 rad 0.0053 rad
Rudder deflection angle 0.0052 rad 0.0053 rad

Throttle aperture 1% 1%

Angular Rate Measurement

It is assumed that the angular rate measurements are given by a set of three gyroscopes
of an Inertial Measurement Unit (IMU) with a sample rate of 100 Hz. The errors affecting
this measurement unit can be classified as follows (Randle and Horton 1997):
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• Errors due to non–unitary scale factor, modelled by a multiplicative factor belonging
to the range [0.99, 1.01].

• Alignment error of spin axes with respect to body (reference) axes. These errors
can be modelled by considering each spin axis oriented in a 3D space by means of
an azimuth and elevation angle with respect to its reference axis. It this way, the
alignment errors can be described by six error angles up to 1o. It is worth observing
that the errors previously considered are generated by means of uniform random
variables updated every simulation.

• Limited bandwidth of the considered gyro (10 Hz).

• g–sensitivity (72o/(h g)).

• Additive white noise (216o/h).

• Gyro drift, described by a coloured stochastic process characterised by a standard
deviation of 1080o/h and a decay time of 20 min.

Attitude Angle Measurement

The angles are actually generated by a digital filtering system based on a DSP that
processes both the angular rate and the accelerations provided by the IMU with a sample
rate of 100 Hz.

The angle generation system has been considered equivalent to a mechanical verti-
cal gyro for aeronautical purposes (artificial horizon). As reported in ((Bryson 1994),
Chapter 11), the measurement errors are due to the sum of two causes:

• A systematic error generated by the apparent vertical. This effect cannot be ne-
glected because the fault diagnosis, as it will be shown in the following, has to be
performed in coordinated turn flight condition.

• A white noise modelling the imperfection of both the system and the environment
influences.

The behaviour of this angle measurement system is such that the previous two effects
are correlated by a first order filter system with time constant equal to 60 s (Bryson 1994).
Therefore, the resulting attitude angle measurements are affected by an additive coloured
noise characterised by a standard deviation of 1o.

The angular rate measurements exploited by the attitude angle estimation system are
provided by a gyroscope unit that is different from the gyroscope device estimating directly
the angular rates. In fact, the gyroscope unit adopted for attitude angle estimation must
guarantee a low drift, since the angular rate signals measured on this unit are integrated by
the system to obtain angles. On the other hand, the gyroscope device directly providing
the angular rate measurements requires larger bandwidths (Titterton and Weston 2005).
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Air Data System (ADS)

It is assumed that the ADS unit consists of an Air Data Computer (ADC) providing
measurements with a sample rate of 1 Hz. The errors affecting the true air speed can be
classified as follows:

• Calibration error affecting the differential pressure sensor. This error leads to a true
air speed computation systematic error, performed the ADC, fulfilling the ARINC
(Aeronautical Radio Inc.) (ARINC 1998) accuracy requirements (2 m/s) (Bryson
1994).

• Additive coloured noise induced by wind gusts and atmospheric turbulence (std
1 m/s and correlation time 2.3 s).

• Additive white noise (std 0.5 m/s) modelling the imperfection of the system and the
environment influences.

With regards to the altitude, errors can be classified as:

• Calibration error affecting the static pressure sensor. This error leads to an altitude
computation systematic error, performed the ADC, fulfilling the ARINC accuracy
requirements (5 m) (ARINC 1998).

• Additive white noise (std 1 m) modelling the imperfection of the system and the
environment influences.

With regards to the attack and sideslip angle, errors can be classified as:

• Calibration error affecting the wing boom sensors. This systematic error is 1o for
both angles.

• Additive white noise (std 2o) modelling the imperfection of the sensor and the wind
turbulence effects.

Heading Reference System (HRS)

This unit is assumed to consist of a magnetic compass coupled to a directional gyro. As
reported in (Bryson 1994) the measurement errors are due to the sum of two causes:

• A systematic error generated by a bias of the magnetic compass (1o).

• A white noise modelling the imperfection of the system and the environment influ-
ences.

The behaviour of the HRS system is such that the two previous effects are correlated
by a first order filter with time constant equal to 60 s (Bryson 1994). Hence, the resulting
heading measurement is affected by an additive coloured noise characterised by a std 1o.

Similar assumptions regarding the attitude angle and angular rate estimation hold for
the HRS system, where the directional gyro unit is different from the other measurement
subsystem components.
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Engine Shaft Rate Measurement

The engine shaft rate is measured by means of an incremental encoder whose errors are
modelled as a white noise. The quantisation error of the encoder is determined by a
resolution of 10000 pulse/rev.

2.2.5 NGC System

In Figure 2.2 the overall architecture is shown. The blocks corresponding to the naviga-
tion, guidance and control functions are highlighted with the processed information.

Figure 2.2: Overall architecture of the NGC system.

Navigation System

The aim of the navigation system is twofold:

1. To estimate the aircraft state, that is position, velocity and attitude.

2. To select the trajectory branch to be followed and to provide its parameters to
downstream blocks.

It is composed by three subsystems: the sensors and navigation filters, the navigation
selector and the trajectory data–base.

As to the first task, usually the estimate of the aircraft state is accomplished by
means of a data fusion, performed inside the sensors and navigation filters subsystem,
that processes the signals provided by the aircraft sensors: GPS, barometric altimeter,
Pitot tube, attitude and heading reference system, rate gyros.

The second task is performed by the navigation selector subsystem that interacts
with the trajectory data–base subsystem. Therefore the data-base has to contain the
characteristic parameters which describe the following trajectory branches:
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• The class of branches corresponding to leveled wing, straight and symmetric flight
conditions.

• The class of branches corresponding to horizontal coordinated turns.

These classes of trajectory branches correspond to standard steady flight conditions, so
that it is straightforward to determine the trim values for the control surfaces deflection,
throttle aperture, attitude angles, aerodynamic angles, angular rates and engine rpm.

Guidance System

The main task of the guidance system is to provide to the control block:

• The error on the velocity vector direction (∆ψ, ∆H) on the basis of the actual
values of inertial position and velocity.

• The reference values of true air speed (V ), aerodynamic angles (α, β), inertial
angular rates (pω, qω, rω), attitude angles (φ, θ) and engine angular rate (ne) directly
from the navigation selector.

Control System

The control system stabilises the aircraft around the selected stationary flight condition.
It is projected by means of classical LQ optimal law applied to attitude linearised models.

2.3 Aircraft FDI Model

This section describes the so–called aircraft FDI model, i.e. the model used to design the
residual generators, for both the PM and the NLGA–based techniques.

2.3.1 PM FDI Model

The proposed PM FDI scheme can be properly applied to a linear system. Hence the
aircraft simulation model presented in the previous section has to be linearised for different
flight condition. The linear model embeds the linearisation of both the 6–DoF model and
the propulsion system as follows

ẋ(t) = Ax(t) +B c(t) + E d(t) (2.40)

with
x(t) =

[
∆V (t) ∆α(t) ∆β(t) ∆pω(t) ∆qω(t) ∆rω(t)

. . . ∆φ(t) ∆θ(t) ∆ψ(t) ∆H(t) ∆ne(t)
]T

c(t) =
[

∆δe(t) ∆δa(t) ∆δr(t) ∆δth(t)
]T

d(t) =
[
wu(t) wv(t) ww(t)

]T
(2.41)
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where ∆ denotes the variations of the considered variables, while c(t) and d(t) are the
control inputs and the disturbances respectively. The disturbance contribution of the wind
gusts as air velocity components, wu, wv and ww, along body axes was also considered.
The output equation associated with the model (2.40) is of the type y(t) = C x(t), where
the rows of C correspond to rows of the identity matrix, depending on the measured
variables.

2.3.2 NLGA FDI Model

The NLGA FDI scheme requires a nonlinear input affine system (De Persis and Isidori
2001), but the adopted simulation model of the aircraft does not fulfil this requirement.
For this reason, the following simplified aircraft model is used

V̇ = −
(CD0 + CDαα+ CDα2α

2)

m
V 2 + g (sinα cos θ cosφ− cosα sin θ)

+
cosα

m

tp
V

(t0 + t1ne) δth + wv sinα

α̇ = −
(CL0 + CLαα)

m
V +

g

V
(cosα cos θ cosφ+ sinα sin θ) + qω

−
sinα

m

tp
V 2

(t0 + t1ne) δth +
cosα

V
wv

β̇ =
(CD0 + CDαα+ CDα2α

2) sin β + CY ββ cos β

m
V + g

cos θ sinφ

V

+ pω sinα− rω cosα−
cosα sin β

m

tp
V 2

(t0 + t1ne) δth +
1

V
w�

ṗω =
(Clββ + Clp pω)

Ix
V 2 +

(Iy − Iz)

Ix
qωrω +

Cδa

Ix
V 2δa

q̇ω =
(Cm0 + Cmαα+ Cmq qω)

Iy
V 2 +

(Iz − Ix)

Iy
pωrω +

Cδe

Iy
V 2δe

+
td
Iy

tp
V

(t0 + t1ne) δth

ṙω =
(Cnββ + Cnr rω)

Iz
V 2 +

(Ix − Iy)

Iz
pωqω +

Cδr

Iz
V 2δr

φ̇ = pω + (qω sinφ+ rω cosφ) tan θ

θ̇ = qω cosφ− rω sinφ

ψ̇ =
(qω sinφ+ rω cosφ)

cos θ

ṅe = tnn
3
e +

tf
ne

(t0 + t1ne) δth

(2.42)

where C(·) are the aerodynamic coefficients; t(·) are the engine parameters; wv, wl are the
vertical and lateral wind disturbance components. The model (2.42) has been obtained
on the basis of the following assumptions:
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• The expressions of aerodynamic forces and moments have been represented by means
of series expansions in the neighbourhood of the steady–state flight condition, then
only the main terms are considered.

• The engine model has been simplified by linearising the power with respect to the
angular rate behaviour in the neighbourhood of the trim point.

• The second order coupling between the longitudinal and lateral–directional dynam-
ics have been neglected.

• The x–body axis component of the wind has been neglected. In fact, the aircraft
behaviour is much more sensitive to the y–body and z–body axis wind components.

• The rudder effect in the equation describing the β dynamics has been neglected. It is
worth noting that the designs and the simulations of the NLGA residual generators
are robust with respect to this approximation. In fact, the model of the β dynamics
will never be used.
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Chapter 3

Polynomial Method

In this chapter the PM FDI scheme is presented. The general expression for the residual
generator is provided in Section 3.1. An optimisation procedure for the selection of the
residual generator parameters is developed in Section 3.2. Finally, a solution for the FDI
problem on input–output sensors is proposed in Section 3.3.

3.1 Residual Generation

Let us consider a linear, time-invariant, continuous-time system described by the following
input-output equation

P (s) y(t) = Qc(s) c(t) +Qd(s) d(t) +Qf (s) f(t) (3.1)

where y(t) is the m–dimensional output vector, c(t) is the c–dimensional known–input
vector, d(t) is the d–dimensional disturbance vector, f(t) is the f–dimensional monitored
fault vector. P (s), Qc(s), Qd(s), Qf (s) are polynomial matrices with dimension (m×m),
(m× c), (m× d), (m× f ), respectively; P (s) is nonsingular.

Remark 3. The input–output model (3.1) is obtained from the aircraft linearised state–
space model (2.40). Models of type (3.1) are a powerful tool in all fields where the knowl-
edge of the system state does not play a direct role, such as residual generator design,
identification, decoupling, output controllability, etc. Algorithms to transform state-space
models to equivalent input-output polynomial representations and vice–versa are reported
in (Guidorzi 1975).

A general linear residual generator for the fault detection process of system (3.1) is a
filter of type

R(s) r(t) = Sy(s) y(t) + Sc(s) c(t) (3.2)

that processes the known input–output data and generates the residual r(t), i.e. a signal
which is “small” (ideally zero) in the fault–free case and is “large” when a fault is acting
on the system.

37
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Without loss of generality, r(t) can be assumed to be a scalar signal. In such condition
R(s) is a polynomial with degree greater than or equal to the row–degree of Sc(s) and
Sy(s), in order to guarantee the physical realisability of the filter.

An important aspect of the design concerns the de–coupling of the disturbance d(t) to
produce a correct diagnosis in all operating conditions. If L(s) is a row polynomial vector
belonging to N�(Qd(s)), i.e. the left null–space of the matrix Qd(s), it results

L(s)Qd(s) d(t) = 0 (3.3)

hence pre–multiplying all the terms in (3.1) by L(s), we obtain

L(s)P (s) y(t)− L(s)Qc(s) c(t) = L(s)Qf (s) f(t) (3.4)

Starting from (3.4) with f(t) = 0, it is possible to obtain a residual generator of
type (3.2) by setting

Sy(s) = L(s)P (s)

Sc(s) = −L(s)Qc(s)

R(s) = r1 s
nr + r2 s

nr−1 + . . .+ 1

(3.5)

where nr ≥ nf and nf is the maximal row–degree of the pair {L(s)P (s), L(s)Qc(s)}. The
polynomial R(s) can be arbitrarily selected. The choice of R(s) leads to an asymptotically
stable filter when the real parts of the nr roots are negative. In this way, in absence of
fault, relation (3.4) can be rewritten also in the form

R(s) r(t) = L(s)P (s) y(t)− L(s)Qc(s) c(t) = 0 (3.6)

whilst, when a fault is acting on the system, the residual generator is governed by the
relation

R(s) r(t) = L(s)Qf (s) f(t) (3.7)

and r(t) assumes values that are different from zero if L(s) does not belong to the left
null–space of the matrix Qf (s).

3.1.1 Polynomial Basis Computation

In order to determine all possible residual generators of minimal order, it is necessary to
transform model (3.1) into a minimal input-output polynomial representation, that is an
equivalent representation with the polynomial matrix P (s) row reduced (Kailath 1980)

P (s) = D(s)N + E(s) (3.8)

where D(s) = diag {sν1 , sν2 , . . . , sνm} and the highest–row–degree coefficient matrix N is
non–singular.

In this condition, the integers νi represent the set of the Kronecker output invariants
associated to the pair {A,C} of every observable realization of {P (s), Q(s)} in the state-
space. This step can be omitted if the designer is not interested in using minimal order
residual generators.
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Moreover, it is necessary to compute a minimal basis of N�(Qd(s)). Under the as-
sumption that matrix Qd(s) is of full normal rank, i.e. rankQd = d, N�(Qd(s)) has
dimension m− d and a minimal basis of such subspace can be computed as suggested in
(Kailath 1980).

It can be noted that in absence of disturbances d = 0 so that N�(Qd(s)) coincides
with the whole vector space. Consequently, a set of residual generators for system (3.1)
with f(t) = 0 can be expressed as

Rri(s) ri(t) = Pri(s) y(t)−Qcri
(s) c(t) i = 1, . . . ,m (3.9)

where Pri(s) and Qcri
(s) are the i–th rows of matrices P (s) and Qc(s) respectively, νi is

the degree of Pri(s) and Rri(s) is an arbitrary polynomial with degree equal to νi and
with all the roots with negative real part. Since Qcri

(s) cannot show a degree greater
than νi, the physical realisability of the residual generator is guaranteed.

In general, for 0 < d < m matrix Qd(s) can be partitioned in the following way

Qd(s) =

[
Qd1(s)
Qd2(s)

]
(3.10)

where matrices Qd1(s) and Qd2(s) have dimensions d× d and (m− d)× d respectively.
It can be assumed, without loss of generality, that matrix Qd1(s) is non singular. In this
case it can be easily verified that a basis of N�(Qd(s)) is given by the polynomial matrix 1

B(s) =
[
Qd2(s) adjQd1(s) −detQd1(s) Im−�d

]
(3.11)

by assuming adjQd1(s) = 1 for d = 1. Note that B(s) has dimension (m− d)×m. By
partitioning P (s) and Qc(s) as Qd(s)

P (s) =

[
P1(s)
P2(s)

]
Qc(s) =

[
Qc1(s)
Qc2(s)

]
(3.12)

a basis (not necessarily of minimal order) of the residual generator (3.2) for the sys-
tem (3.1) with f(t) = 0 is obtained by replacing in (3.5) the row polynomial vector L(s)
with the polynomial matrix B(s), i.e.

Sy(s) = Qd2(s) adjQd1(s)P1(s)− detQd1(s)P2(s)

Sc(s) = −Qd2(s) adjQd1(s)Qc1(s) + detQd1(s)Qc2(s)

R(s) = diag {R1(s), R2(s), . . . , Rm−�d
(s)}

(3.13)

where the degree of the polynomial Ri(s) is nfi
, that is the degree of the i–th row of the

matrix Sy(s).

1In this work In indicates the identity matrix of dimension n, whilst Im
n indicates the m–th column

of In.
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Remark 4. By denoting with n∗f the minimal value of the integers nfi
it is easy to prove

that the order n∗f of a minimal order residual generator for system (3.1) is constrained in
the following range

νmin ≤ n∗f ≤ (d + 1) νmax (3.14)

where νmin and νmax are the least and the greatest Kronecker invariant, respectively. The
lower bound can be obtained in the no–disturbance case (d = 0) from relation (3.9) by
selecting the row of P (s) associated to the least Kronecker invariant. The upper bound can
be obtained by taking into account the maximal degree of the polynomials of the matrices. A
similar result, obtained with a different approach can be found in (Frisk and Nyberg 2001).

3.1.2 Faults on the Input–Output Sensors

Equation (3.1) considers also the cases of additive faults on the input and output sensors,
fc(t) and fo(t), respectively. In this situation, only the measurements

c∗(t) = c(t) + fc(t)

y∗(t) = y(t) + fo(t)
(3.15)

are available for the residual generation so that the system (3.1) becomes

P (s) (y∗(t)− fo(t)) = Qc(s) (c∗(t)− fc(t)) +Qd(s) d(t) (3.16)

and the residual generator can be written in the following way

R(s) r(t) = L(s)P (s)y∗(t)− L(s)Qc(s) c
∗(t)

= L(s)Qc(s) fc(t)− L(s)P (s) fo(t)
(3.17)

Remark 5. The residual generator described by (3.17) can be seen as an Errors–In–
Variables (EIV) model (Van Huffel and Lemmerling 2002) with respect the input and
output variable, as the measurements that feed the residual function are affected by additive
faults. This description highlights the importance of the residual generator in the form
of (3.17)

3.2 Residual Optimisation

Let us consider the residual generator (3.2) with the positions (3.5) under the assumption
that f(t) is a scalar and, consequently, Qf (s) is a vector

R(s) r(t) = L(s)P (s) y(t)− L(s)Qc(s) c(t)

= L(s)Qf (s) f(t)
(3.18)

The diagnostic capabilities of the filter (3.18) strongly depend on the choice of the terms
L(s) and R(s). This section proposes a method for the design of these polynomials when
q = m− d ≥ 2.
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The design freedom in the selection of the polynomial row matrix L(s) can be used to
optimise the sensitivity properties of r(t) with respect to the fault f(t), for example by
maximising the steady–state gain of the transfer function

Gf (s) =
L(s)Qf (s)

R(s)
(3.19)

given in (3.18).
In particular, if the row vectors bi(s) (with i = 1, . . . , q) are the q rows of the basis

B(s), L(s) can be expressed as linear combination of these vectors

L(s) =

q∑
i=1

ki bi(s) (3.20)

where ki are real constants maximising the steady–state gain of the residual generator
with respect to the fault, that is

lim
s→0

1

R(s)

[
q∑

i=1

ki bi(s)

]
Qf (s) =

[
q∑

i=1

ki bi(0)

]
Qf (0) (3.21)

with the constraint
q∑

i=1

ki
2 = 1 (3.22)

In this way, when the fault f(t) is a step–function of magnitude F , the steady–state
residual value is

lim
t→∞

r(t) = lim
s→0

s
L(s)Qf (s)

R(s)

F

s
=

[
q∑

i=1

ki bi(0)

]
Qf (0)F (3.23)

Another design choice regards the location of the roots of the polynomial R(s) in the
left–half s–plane, i.e. the poles of Gf (s). Since the real coefficients ki are fixed maximising
the steady–state gain there are not design freedom to arbitrarily assign the zeros. In order
to solve this problem, in relation (3.20) polynomial coefficients ki(s) can be considered; in
fact, under this assumption, L(s) still belongs to the subspace N�(Qd(s)). Consequently,
in the selection of L(s), there are additional degrees of freedom that can be exploited in
order to locate the zeros of Gf (s).

The zeros and poles location influences the transient characteristics (maximum over-
shoot, delay time, rise time, settling time, etc.) of the residual generator. In many
applications, these characteristics must be kept within tolerable or prescribed limits, in
order to guarantee good performances of the filter in terms e.g. of fault detection times
and false alarm rates. This leads to define a poles reference polynomial U(s) and a zeros
reference polynomial H(s) whose roots are the poles and the zeros to be assigned, respec-
tively, in order to assure the desired transient characteristics. R(s) and L(s) have to be
determined in order to obtain

Gf (s) =
H(s)

U(s)
(3.24)
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3.2.1 Maximisation of the Steady–State Gain

In this section it is proved the existence and the uniqueness of the solution for the steady–
state gain maximisation problem previously formalised. Moreover the analytical compu-
tation of this solution is provided.

Since it is conventionally assumed R(0) = 1 (see Section 3.1), if the following real
vectors are defined

k =

⎡
⎢⎢⎢⎣
k1

k2
...
kq

⎤
⎥⎥⎥⎦ a = B(0)Qf (0) =

⎡
⎢⎢⎢⎣
a1

a2
...
aq

⎤
⎥⎥⎥⎦ (3.25)

the problem can be recasted as follows.

Problem 1. Given a, determine k that maximises the steady–state gain, that is, the
function Φ(k) given by the expression

Φ = kT a =

q∑
i=1

ai ki (3.26)

under the constraint (3.22).

The constraint (3.22) describes a hypersphere, whilst the function Φ represents a
hyperplane. The unknown coefficients ki must belong to both the hyperplane and the hy-
persphere. Therefore, the points of tangency between the hypersphere and the hyperplane
represents the solutions that maximise or minimise Φ.

Figure 3.1 illustrates the solution of Problem 1 when q = 2. In this case the con-
straint (3.22) is represented by a circle, whilst the expression of the function Φ is a
straight line. The unknown coefficients representing the solution must belong to both
the circle and the straight line. Since the coefficients a1 and a2 are fixed, the position of
the straight line is univocally determined by Φ. If Φ increases, the straight line moves to
the right, whilst if Φ decreases, the straight line moves to the left. Moreover, if Φ = 0,
the straight line passes through origin. Consequently, the point of tangency on the right
between the straight line and the circle represents the solution that maximise Φ, whilst
the point of tangency on the left represents the solution that minimise Φ. Φmax and Φmin,
represented in Figure 3.1, are the maximum and the minimum value of Φ.

In the following, an exact solution for Problem 1 is proposed. Starting from (3.22), k1

is expressed as a function of k2, k3, . . . , kq and it is substituted into (3.26)

Φ = a1

√
1− k2

2 − k3
2 − . . . − kq

2 + a2 k2 + . . . + aq kq (3.27)
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k1

k2

Φ ↓

Φ ↑

a1 k1 + a2 k2 = Φmin

a1 k1 + a2 k2 = 0

a1 k1 + a2 k2 = Φmax

Figure 3.1: Graphical solution of Problem 1 when q = 2.

By computing ∇Φ = 0, i.e.

∂Φ

∂k2

=
1

2
a1

−2 k2√
1− k2

2 − k3
2 − . . . − kq

2
+ a2 = 0

∂Φ

∂k3

=
1

2
a1

−2 k3√
1− k2

2 − k3
2 − . . . − kq

2
+ a3 = 0

...

∂Φ

∂kq

=
1

2
a1

−2 kq√
1− k2

2 − k3
2 − . . . − kq

2
+ aq = 0

(3.28)

and squaring the expression, after algebraic manipulation

a2
2 = (a2

2 + a1
2)k2

2 + a2
2 k3

2 + . . . + a2
2 kq

2

a3
2 = a3

2 k2
2 + (a3

2 + a1
2) k3

2 + . . .+ a3
2 kq

2

...

aq
2 = aq

2 k2
2 + aq

2 k3
2 + . . . + (aq

2 + a1
2) kq

2

(3.29)
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an expression in the form of Ax = b is obtained, where

A =

⎡
⎢⎢⎢⎣

(a2
2 + a1

2) a2
2 . . . a2

2

a3
2 (a3

2 + a1
2) . . . a3

2

...
...

. . .
...

aq
2 aq

2 . . . (aq
2 + a1

2)

⎤
⎥⎥⎥⎦

x =

⎡
⎢⎢⎢⎣
k2

2

k3
2

...
kq

2

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣
a2

2

a3
2

...
aq

2

⎤
⎥⎥⎥⎦ (3.30)

Under the assumption that the constraint (3.22) holds, the vector x̃, representing the
squares of the searched Problem 1 solutions, can be expressed as follows

x̃ =

[
1−

∑q−1
i=1 (A−1 b)i

A−1 b

]
(3.31)

where (A−1 b)i is the i–th element of the vector A−1 b.
Let us indicate Ω the set of the vectors k whose elements are the square roots of the

elements of x̃. As every element can be taken both with signs ‘+’ and ‘-’, such vectors
are 2q. Therefore, the solution k̃ of Problem 1 can be reformulated as

k̃ = arg max
k∈Ω

Φ (3.32)

In the following it is proposed a Matlab R© implementation of an algorithm to find the
searched solution k̃ among the 2q belonging to Ω.

function ktilde = fun(x2,a)

q=length(a)

PHImax=0

for l=0:(2^q-1)

%%% generates x

for h=1:q

if bitget(l,h)==0

x(h)=sqrt(x2(h))

else

x(h)=-sqrt(x2(h))

end

end

%%% maximises PHI

PHI=x*a

if PHI>PHImax



3.2. RESIDUAL OPTIMISATION 45

PHImax=PHI

ktilde=x

end

end

Remark 6. The matrix A can be expressed as A = E + a1
2 Iq−1, where E is a matrix

with equal columns. If a1 �= 0, this assumption guarantees the existence of A−1, and
consequently the existence and the uniqueness of the solution A−1 b. Obviously, if a1 = 0
and aj �= 0, it is sufficient to express kj as function of the remaining variables and reapply
the same procedure.

Remark 7. The same solution can be found by maximising the function |Φ|. In fact due
to the symmetry properties of the function Φ:

• Φ(k) = Φmax ⇔ Φ(−k) = Φmin

• Φmax = −Φmin

the maximisation of |Φ| admits two solutions corresponding to the maximum and the
minimum of the function Φ.

Remark 8. Problem 1 could have been solved also in a numerical way, i.e. by search-
ing k that maximises Φ on the surface of the q–dimensional hypersphere. However, the
computational cost of this numerical solution can be a drawback when q is big.

3.2.2 Poles and Zeros Assignment

Section 3.2.1 has shown how to maximise the steady–state gain of the transfer function
Gf (s) trough a suitable choice of the real vector k (i.e. k = k̃). The design of the
filter (3.18) has been completed here by introducing a method for assigning both the
poles and the zeros of Gf (s).

As it has been said in Section 3.1, R(s) can be arbitrarily selected among the poly-
nomials with degree greater than or equal to nf (realisability condition) and with all the
roots in the left–half s–plane (stability condition). Moreover, it is conventionally assumed
R(0) = 1. Consequently, if the poles reference polynomial U(s) satisfies these conditions,
the poles are assigned imposing R(s) = U(s).

Let us consider the zeros assignment problem. According to Section 3.2.1 the q–
dimensional polynomial vector a(s) = B(s)Qf (s) is defined. The i–th element of this
vector is a known polynomial of a certain degree called nai

. Note that if na is defined as
follows

na = max
i=1,...,q

nai
(3.33)

the i–th element of a(s) can be always written as a polynomial of degree na

ai(s) =
na∑
j=0

aj
i s

j (3.34)
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by imposing that aj
i = 0 when j > nai

. It is defined also the q–dimensional polynomial
vector k(s) whose i–th element has the form

ki(s) =

nk∑
j=0

kj
i s

j (3.35)

Since L(s) can be expressed as linear combination of the rows of B(s) with polynomial
coefficients ki(s), i.e. L(s) = kT(s)B(s), the degree nk and the q × (nk + 1) coefficients
kj

i are degrees of freedom that can be exploited by the designer in order to obtain desired
roots for L(s)Qf (s) = kT(s) a(s). However, in order to maximise the steady–state gain,
as shown in Section 3.2.1, the following constraint have to be satisfied

k(0) = k̃ =

⎡
⎢⎢⎢⎣
k̃1

k̃2
...

k̃q

⎤
⎥⎥⎥⎦ ⇐⇒ k0

i = k̃i i = 1, . . . , q (3.36)

It is worth noting that due to the constraint (3.36) the zeros reference polynomial,
defined as follows

H(s) =

nh∑
j=0

hj sj (3.37)

must satisfy the condition H(0) = k̃T a(0). Obviously this assumption does not provide
any restriction on the roots assignable.

Under the previous hypotheses the zeros assignment problem can be formulated in the
following way.

Problem 2. Given a(s) and H(s), find the degree nk and the coefficients kj
i , under the

constraint (3.36), in order to obtain kT(s) a(s) = H(s).

By multiplying (3.35) and (3.34), it results

kT(s) a(s) =

q∑
i=1

nk+na∑
j=0

( ∑
α+β=j

kα
i a

β
i

)
sj =

nk+na∑
j=0

ej sj (3.38)

where

ej =

q∑
i=1

∑
α+β=j

kα
i a

β
i (3.39)

In (3.38) and (3.39) it is assumed that kα
i = 0 when α > nk and aβ

i = 0 when β > na.
Note that the coefficients e1, . . . , enk+na depend on the freedom design k1

i , . . . , k
nk

i . On
the other hand, e0 is fixed as the coefficients k0

i are assigned by the constraint (3.36).
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Let us suppose nh ≤ nk + na. By imposing kT(s) a(s) = H(s), from (3.39) and (3.37),
the following expressions are computed

q∑
i=1

∑
α+β=j

kα
i a

β
i = hj j = 0, . . . , nk + na (3.40)

where it is supposed hj = 0 when j = nh + 1, . . . , nk + na. The relations of (3.36)
and (3.40) represent a linear system, with nk + na equations and q × nk unknowns, that
can be expressed in the classical form Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
1 . . . a0

q 0 . . . 0 0 . . . 0
...

. . .
... a0

1 . . . a0
q

ana

1 . . . ana
q

...
. . .

...

0 . . . 0 ana

1 . . . ana
q

...
. . .

...
0 . . . 0 0 . . . 0

. . .
...

. . .
...

...
. . .

... 0 . . . 0
a0

1 . . . a0
q

...
. . .

...
0 . . . 0 0 . . . 0 ana

1 . . . ana
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1
1
...
k1

q

k2
1
...
k2

q

...

...

knk

1
...
knk

q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 −
∑q

i=1 k
0
i a

1
i

...
hna −

∑q

i=1 k
0
i a

na

i

hna+1

...
hna+nk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.41)

The degree nk of the polynomials ki(s) has to be chosen in order to obtain a solvable
system (i.e. rankA = rank [A b]). An automatic procedure to properly choose nk and
consequently to solve Problem 2 is showed in Figure 3.2. To understand the proposed
procedure the following points should be considered:
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• The choice of nk must guarantee that the hypotheses nh ≤ nk + na is satisfied.

• When q ≥ 2, the difference between the number of unknown terms and the number
of equations, i.e. (q−1)×nk−na−1, is greater than zero if nk is selected sufficiently
large.

• Even if the system admits solutions, the inverse of the matrix A may not exist. In
such case there are infinite solutions and the one associated to the pseudo-inverse
of A, i.e. A+ b can be considered.

nh − na < 1

nk = 1 nk = nh − na

Compute A and b

rank A = rank [A b]

x = A+ b

nk = nk + 1

True

True

False

False

Figure 3.2: Automatic procedure to solve Problem 2.

Remark 9. The use of a polynomial vector k(s) instead of a real vector k has the drawback
of increasing the complexity of the residual generator. Many FDI applications require
nh = 0, i.e.

Gf (s) =
H(0)

U(s)
(3.42)

In such cases it is not needed to find k(s) such that kT(s) a(s) = H(0) but it is easier
considering k = k̃ and imposing

R(s) =
k̃T a(s)U(s)

H(0)
(3.43)
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Obviously, due to the realisability condition, it must be deg{U(s)} ≥ nf − deg{k̃T a(s)}.
Moreover the method cannot be applied if k̃T a(s) admits one or more roots in the right–half
s–plane, in fact the residual generator would result unstable. In such cases an approximate
solution can be developed (Beghelli et al. 2007a).

Remark 10. The problems (and the relative solution) discussed in this section in the
continuos–time domain, can be easily extended to the discrete–time domain (Simani and
Benini 2007). The main difference between the two approaches can be identified when the
polynomial k method is needed. In fact, in order to maximise the steady–state gain, in the
continuous–time case it is required k(s) = k̃ when s = 0, whilst in the discrete–time case
it is required k(z) = k̃ when z = 1. Obviously this is a consequence of the fact that the
final value theorem changes if the continuous–time domain or the discrete–time domain
is considered.

Remark 11. Section 3.2 is focused on the design of residual generators on the basis of
a given reference function with disturbance decoupling and fault sensitivity maximisation
properties. The pole location influences the transient dynamics of the designed residual
filters, while the steady–state properties depend on the PM residual design, as it maximises
the residual steady–state values with respect to step faults affecting input and output sen-
sors. The poles of the residual functions could be optimised with respect to both fault and
disturbance terms, as shown e.g. in (Bonfè et al. 2004).

3.3 FDI on Input–Output Sensors

This section addresses the problem of the design of a bank of residual generators for the
isolation of faults affecting the input and output sensors. The design is performed by
using the disturbance de–coupling method suggested in Section 3.1. In the following it is
assumed that m > d + 1.

3.3.1 Bank for Input Sensors FDI

To univocally isolate a fault concerning one of the input sensors, under the hypothesis
that the remaining input sensors and all output sensors are fault–free, a bank of residual
generator filters is used, according to Figure 3.3. The number of these generators is equal
to the number c of system control inputs, and the i–th device (i = 1, . . . , c) is driven by
all but the i–th input and all the outputs of the system. In this case, a fault on the i–th
input sensor affects all but the i–th residual generator.

With reference to Figure 3.3, c∗i(t) represents the (c−1)–dimensional vector obtained
by deleting from c∗(t) the i–th component, with

c∗(t) = c(t) + fci
(t) (3.44)

and
fci

(t) =
[

0 . . . 0 hci
(t) 0 . . . 0

]T
(3.45)
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System

Filter1

Filter2

Filter�c

c(t) y(t)

c∗(t) y(t)

c∗1(t)

c∗2(t)

c∗�c(t)

ro1(t)

ro2(t)

ro�c
(t)

Figure 3.3: Bank of filters for fault isolation on the input sensors.

When the fault on the i–th input sensor hci
(t) is considered, the system (3.1) can be

rewritten as follows

P (s) y(t) = Qc(s) c(t) +Qd(s) d(t) + qci
(s)hci

(t) (3.46)

where qci
(s) represents the i–th column of the matrix Qc(s).

Hence, by multiplying relation (3.46) by the matrix Lci
(s), where Lci

(s) is a row vector
belonging to the basis for the left null space of the matrix

[
Qd(s) | qci

(s)
]
, and Qi

c(s) is the
matrix obtained by deleting from Qc(s) the i–th column, the equation of the i–th filter
becomes

Rci
(s) rci

(t) = Lci
(s)P (s) y(t)− Lci

(s)Qi
c(s) c

∗i(t) = 0 (3.47)

whilst, for the j–th filter, with j �= i, it results

Rcj
(s) rcj

(t) = Lcj
(s)P (s) y(t)− Lcj

(s)Qj
c(s) c

∗j(t)

= Lcj
(s) qci

(s)hci
(t)

(3.48)

Rci
(s) and Rcj

(s) are arbitrary polynomials with all the roots with negative real part.

3.3.2 Bank for Output Sensors FDI

In order to univocally isolate a fault concerning one of the output sensors, under the
hypotheses that all the input sensors and the remaining output sensors are fault–free, a
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bank of residual generator filters is used, according to Figure 3.4. The number of these
generators is equal to the number m of system outputs, and the i–th device (i = 1, . . . ,m)
is driven by all but the i–th output and all the inputs of the system. In this case, a fault
on the i–th output sensor affects all but the i–th residual generator.

System

Filter1

Filter2

Filterm

c(t) y(t)

c(t) y∗(t)y∗1(t)

y∗2(t)

y∗m(t)

ro1(t)

ro2(t)

rom
(t)

Figure 3.4: Bank of filters for fault isolation on the output sensors.

With reference to Figure 3.4, y∗i(t) represents the (m−1)–dimensional vector obtained
by deleting from y∗(t) the i–th component, with

y∗(t) = y(t) + foi
(t) (3.49)

and
foi

(t) =
[

0 . . . 0 hoi
(t) 0 . . . 0

]T
(3.50)

When the fault on the i–th output sensor hoi
(t) is considered, the system (3.1) can be

rewritten as follows

P (s) y(t) = Qc(s) c(t) +Qd(s) d(t)− pi(s)hoi
(t) (3.51)

where pi(s) represents the i–th column of the matrix P (s).
Hence, by multiplying relation (3.51) by the matrix Loi

(s), where Loi
(s) is a row vector

belonging to the basis for the left null space of the matrix
[
Qd(s) | pi(s)

]
, and denoting

P i(s) the matrix obtained by deleting from P (s) the i–th column, the equation of the
i–th filter becomes

Roi
(s) roi

(t) = Loi
(s)P i(s) y∗i(t)− Loi

(s)Qc(s) c(t) = 0 (3.52)
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whilst, for the j–th filter, with j �= i, it results

Roj
(s) roj

(t) = Loj
(s)P j(s) y∗j(t)− Loj

(s)Qc(s) c(t)

= −Loj
(s) pi(s)hoi

(t)
(3.53)

Roi
(s) and Roj

(s) are arbitrary polynomials whose roots have negative real part.

3.3.3 Fault Signature

In order to summarise the FDI capabilities of the presented schemes, Table 3.1 shows the
fault signatures in case of a single fault in each input and output sensor.

Table 3.1: Fault signatures.
Residual / Fault fc1 fc2 . . . fc�c

fo1 fo2 . . . fom

rc1 0 1 . . . 1 1 1 . . . 1
rc2 1 0 . . . 1 1 1 . . . 1
...

...
...

...
...

...
...

...
...

rc�c
1 1 . . . 0 1 1 . . . 1

ro1 1 1 . . . 1 0 1 . . . 1
ro2 1 1 . . . 1 1 0 . . . 1
...

...
...

...
...

...
...

...
...

rom
1 1 . . . 1 1 1 . . . 0

The residuals which are affected by input and output faults are marked with the
presence of ‘1’ in the correspondent table entry, while an entry ‘0’ means that the input
or output fault does not affect the correspondent residual. All the elements out of the
main diagonal on Table 3.1 are ‘1’ when both the following conditions hold:

• For i = 1, . . . , c, the column vectors of the matrix Qi
c(s) and the column vectors of

the matrix P (s) are not orthogonal with the row vector Lci
(s).

• For j = 1, . . . ,m, the column vectors of the matrix P j(s) and the column vectors
of the matrix Qc(s) are not orthogonal with the row vector Loj

(s).

When not all the elements out of the main diagonal of the Table 3.1 are ‘1’s, the fault
isolation is still feasible if the columns of the fault signature table are all different from
each other.

Remark 12. From the comparison between the filter (3.18) and the generic filter of the
input bank given by (3.48), the following associations can be made

R(s) = Rcj
(s) L(s) = Lcj

(s) Qf (s) = qci
(s) f(t) = hci

(t) (3.54)
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whilst, from the comparison with the generic filter of the output bank given by (3.53), it
results

R(s) = Roj
(s) L(s) = Loj

(s) Qf (s) = pi(s) f(t) = hoi
(t) (3.55)

Hence if q = m − ld − 1 ≥ 2, the optimisation method shown in Section 3.2 and can be
exploited for the design of the j–th filter of the input or output bank. In particular, the
parameters of this filter can be properly chosen in order to optimise its performances when
a fault is acting on the i–th input or output sensor.
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Chapter 4

Nonlinear Geometric Approach

In this chapter the NLGA–based FDI schems are developed. The classical NLGA tech-
nique is proposed in Section 4.1. A procedure to improve the robustness of the NLGA
scheme is presented in Section 4.2. Finally, the NLGA–AF and the NLGA–PF techniques
are developed in Sections 4.3 and 4.4, respectively.

4.1 NLGA FDI Scheme

The NLGA approach to nonlinear FDI problem is suggested in (De Persis and Isidori 2000)
and formally developed in (De Persis and Isidori 2001). It consists in finding, by means of
a coordinate change in the state space and in the output space, an observable subsystem
which, if possible, is affected by the fault and not affected by disturbance. In this way,
necessary and sufficient conditions for the FDI problem to be solvable are given. Finally, a
residual generator can be designed on the basis of the model of the observable subsystem.
This technique was applied for the first time to a Vertical Take–Off and Landing (VTOL)
aircraft with reference to a reduced–order model (De Persis et al. 2001).

4.1.1 Coordinate Transformation

The approach consider a nonlinear system model in the form

ẋ = n(x) + g(x) c+ (x) f + p(x) d

y = h(x)
(4.1)

in which x ∈ X (an open subset of �n) is the state vector, c(t) ∈ ��c is the control input
vector, f(t) ∈ � is the fault, d(t) ∈ ��d the disturbance vector (embedding also the faults
which have to be decoupled) and y ∈ �m the output vector. n(x), (x), the columns of
g(x) and p(x) are smooth vector fields; and h(x) is a smooth map.

Therefore, if P represents the distribution spanned by the column of p(x), the NLGA
method can be stated as follows (De Persis and Isidori 2001):

55
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1. Determine the minimal conditioned invariant distribution containing P (denoted
with ΣP

∗ ).

2. By using (ΣP
∗ )⊥, i.e. the maximal conditioned invariant codistribution contained

in P⊥, determine the largest observability codistribution contained in P⊥, denoted
with Ω∗.

3. If (x) /∈ Ω∗ continue to the next step, otherwise the fault is not detectable.

4. If the condition of the previous step is satisfied, it can be found a surjection Ψ1 and
a function Φ1 fulfilling Ω∗ ∩ span{dh} = span{d(Ψ1 ◦ h)} and Ω∗ = span{d(Φ1)},
respectively. The functions Ψ(y) and Φ(x) defined as

Ψ(y) =

(
ȳ1

ȳ2

)
=

(
Ψ1(y)
H2 y

)
Φ(x) =

⎛
⎝ x̄1

x̄2

x̄3

⎞
⎠ =

⎛
⎝ Φ1(x)

H2 h(x)
Φ3(x)

⎞
⎠ (4.2)

are (local) diffeomorphisms, where H2 is a selection matrix (i.e. a matrix in which
any row has all 0 entries but one, which is equal to 1), Φ1(x) represents the measured
part of the state which is affected by f and not affected by d and Φ3(x) represents
the not measured part of the state which is affected by f and by d.

In the new (local) coordinate defined previously, the system (4.1) is described by the
relations in the form

˙̄x1 = n1(x̄1, x̄2) + g1(x̄1, x̄2) c+ 1(x̄1, x̄2, x̄3) f

˙̄x2 = n2(x̄1, x̄2, x̄3) + g2(x̄1, x̄2, x̄3) c+ 2(x̄1, x̄2, x̄3) f + p2(x̄1, x̄2, x̄3) d

˙̄x3 = n3(x̄1, x̄2, x̄3) + g3(x̄1, x̄2, x̄3) c+ 3(x̄1, x̄2, x̄3) f + p3(x̄1, x̄2, x̄3) d

ȳ1 = h(x̄1)

ȳ2 = x̄2

(4.3)

with 1(x̄1, x̄2, x̄3) not identically zero. Denoting x̄2 with ȳ2 and considering it as an
independent input, it can be singled out the x̄1–subsystem

˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2) c+ 1(x̄1, ȳ2, x̄3) f

ȳ1 = h(x̄1)
(4.4)

which is affected by the single fault f and decoupled from the disturbance vector. This
subsystem has been exploited for the design of the residual generator for the FDI of the
fault f .
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4.1.2 Residual Generators Design

As already described in Section 2.3.2, the proposed NLGA FDI scheme is designed on the
basis of model structure of the input affine type as expressed by (4.1). For this reason
the aircraft simulation model has been simplified and the nonlinear model (2.42) has been
considered for the NLGA design. From the comparison between (4.1) and (2.42), the
following positions hold

x = y =
[
V α β pω qω rω φ θ ψ ne

]T
c =

[
δe δa δr δth

]T (4.5)

hence h(x) = I10. Moreover

n(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(CD0+CDαα+CDα2

α2)
m

V 2 + g (sinα cos θ cosφ− cosα sin θ)

− (CL0+CLαα)
m

V + g

V
(cosα cos θ cosφ+ sinα sin θ) + qω

(CD0+CDαα+CDα2
α2) sin β+CY ββ cos β

m
V + g cos θ sin φ

V
+ pω sinα− rω cosα

(Clββ+Clp pω)
Ix

V 2 + (Iy−Iz)

Ix
qωrω

(Cm0+Cmαα+Cmq qω)

Iy
V 2 + (Iz−Ix)

Iy
pωrω

(Cnββ+Cnr rω)
Iz

V 2 + (Ix−Iy)

Iz
pωqω

pω + (qω sinφ+ rω cosφ) tan θ
qω cosφ− rω sinφ
(qω sin φ+rω cos φ)

cos θ

tnn
3
e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)

and

g(x) =
[
g1(x) g2(x) g3(x) g4(x)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 cos α
m

tp
V

(t0 + t1ne)

0 0 0 − sin α
m

tp
V 2 (t0 + t1ne)

0 0 0 − cos α sin β

m

tp
V 2 (t0 + t1ne)

0
Cδa

Ix
V 2 0 0

Cδe

Iy
V 2 0 0 td

Iy

tp
V

(t0 + t1ne)

0 0
Cδr

Iz
V 2 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
tf
ne

(t0 + t1ne)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

The distribution matrix pd(x) of the vertical and lateral wind disturbance components wv

and wl is also defined

pd(x) =

[
sinα cos α

V
0 0 0 0 0 0 0 0

0 0 1
V

0 0 0 0 0 0 0

]T

(4.8)
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In the following the residual generators for detecting the faults affecting the aircraft
input sensors are obtained.

Elevator Residual Generator Design

To decouple the elevator residual generator from the wind and faults on aileron, rudder
and throttle, the distribution P is defined as

p(x) =
[
pd(x) g2(x) g3(x) g4(x)

]
(4.9)

Hence, the closure of P is given by P̄ = [P I10
10 ]. Now, by recalling that Ker{dh} = ∅, it

follows that ΣP
∗ = P̄ . Hence (ΣP

∗ )⊥ = (P̄ )⊥ is given by

(P̄ )⊥ =

⎡
⎢⎢⎣

cosα −V sinα 0 0 − Iy

mtd
0 0 0 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎦ (4.10)

By observing that span{dh} = I10, it follows that Ω∗ = (ΣP
∗ )⊥ = (P̄ )⊥, hence (Ω∗)⊥ = P̄ .

Because (x) = g1(x) /∈ (Ω∗)⊥, the fault is detectable. The change of output coordinates
gives

Ψ1(x) = x̄1 =

⎡
⎢⎢⎣
V cosα− Iy

mtd
qω

φ
θ
ψ

⎤
⎥⎥⎦ H2x = x̄2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

V
α
β
pω

rω

ne

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.11)

Note that only the first component of the vector x̄1, i.e. x̄11, is directly affected by the
fault. In fact the other variables are not fed by the inputs. In order to design the residual
generator it is necessary to compute

˙̄x11 = V̇ cosα− V α̇ sinα−
Iy
mtd

q̇ω

=
V 2

m

[
−
(
CD0 + CDαα+ CDα2α

2
)
cosα

]
+
V 2

m
(CL0 + CLαα) sinα

− g sin θ − V qω sinα−
(Cm0 + Cmαα+ Cmqqω)

mtd
V 2 −

(Iz − Ix)

mtd
pωrω

−
Cδe

mtd
V 2δe

(4.12)
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Hence, with kδe
> 0, the elevator residual generator rδe

is given by

ξ̇1 =
V 2

m

[
−
(
CD0 + CDαα+ CDα2α

2
)
cosα

]
+
V 2

m
(CL0 + CLαα) sinα

− g sin θ − V qω sinα−
(Cm0 + Cmαα+ Cmqqω)

mtd
V 2 −

(Iz − Ix)

mtd
pωrω

−
Cδe

mtd
V 2δe + kδe

[(
V cosα−

Iy
mtd

qω

)
− ξ1

]

rδe
=

(
V cosα−

Iy
mtd

qω

)
− ξ1

(4.13)

Aileron Residual Generator Design

To decouple the aileron residual generator from the wind and faults on elevator, rudder
and throttle, the distribution P is defined as

p(x) =
[
pd(x) g1(x) g3(x) g4(x)

]
(4.14)

Hence, the closure of P is given by P̄ = [P I10
10 ]. Now, by recalling that Ker{dh} = ∅, it

follows that ΣP
∗ = P̄ . Hence (ΣP

∗ )⊥ = (P̄ )⊥ is given by

(P̄ )⊥ =

⎡
⎢⎢⎣

0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎦ (4.15)

By observing that span{dh} = I10, it follows that Ω∗ = (ΣP
∗ )⊥ = (P̄ )⊥, hence (Ω∗)⊥ = P̄ .

Because (x) = g2(x) /∈ (Ω∗)⊥, the fault is detectable. The change of output coordinates
gives

Ψ1(x) = x̄1 =

⎡
⎢⎢⎣
pω

φ
θ
ψ

⎤
⎥⎥⎦ H2x = x̄2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

V
α
β
qω
rω

ne

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.16)

Note that only x̄11 is directly affected by the fault. In fact the other variables are not fed
by the inputs. In order to design the residual generator it is necessary to compute

˙̄x11 = ṗω =
(Clββ + Clp pω)

Ix
V 2 +

(Iy − Iz)

Ix
qωrω +

Cδa

Ix
V 2δa (4.17)

Hence, with kδa
> 0, the aileron residual generator rδa

is given by

ξ̇2 =
(Clββ + Clppω)

Ix
V 2 +

(Iy − Iz)

Ix
qωrω +

Cδa

Ix
V 2δa + kδa

(pω − ξ2)

rδa
= pω − ξ2

(4.18)
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Rudder Residual Generator Design

To decouple the rudder residual generator from the wind and faults on elevator, aileron
and throttle, the distribution P is defined as

p(x) =
[
pd(x) g1(x) g2(x) g4(x)

]
(4.19)

Hence, the closure of P is given by P̄ = [P I10
10 ]. Now, by recalling that Ker{dh} = ∅, it

follows that ΣP
∗ = P̄ . Hence (ΣP

∗ )⊥ = (P̄ )⊥ is given by

(P̄ )⊥ =

⎡
⎢⎢⎣

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎦ (4.20)

By observing that span{dh} = I10, it follows that Ω∗ = (ΣP
∗ )⊥ = (P̄ )⊥, hence (Ω∗)⊥ = P̄ .

Because (x) = g3(x) /∈ (Ω∗)⊥, the fault is detectable. The change of output coordinates
gives

Ψ1(x) = x̄1 =

⎡
⎢⎢⎣
rω

φ
θ
ψ

⎤
⎥⎥⎦ H2x = x̄2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

V
α
β
pω

qω
ne

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.21)

Note that only x̄11 is directly affected by the fault. In fact the other variables are not fed
by the inputs. In order to design the residual generator it is necessary to compute

˙̄x11 = ṙω =
(Cnββ + Cnr rω)

Iz
V 2 +

(Ix − Iy)

Iz
pωqω +

Cδr

Iz
V 2δr (4.22)

Hence, with kδr
> 0, the rudder residual generator rδr

is given by

ξ̇3 =
(Cnββ + Cnrrω)

Iz
V 2 +

(Ix − Iy)

Iz
pωqω +

Cδr

Iz
V 2 δr + kδr

(rω − ξ3)

rδr
= rω − ξ3

(4.23)

Throttle Residual Generator Design

To decouple the throttle residual generator from the wind and faults on elevator, aileron
and rudder, the distribution P is defined as

p(x) =
[
pd(x) g1(x) g2(x) g3(x)

]
(4.24)
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Since P is an involutive distribution, it results P̄ = P . Now, by recalling that Ker{dh} =
∅, it follows that ΣP

∗ = P̄ . Hence (ΣP
∗ )⊥ = (P̄ )⊥ is given by

(P̄ )⊥ =

⎡
⎢⎢⎢⎢⎣

cosα −V sinα 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (4.25)

By observing that span{dh} = I10, it follows that Ω∗ = (ΣP
∗ )⊥ = (P̄ )⊥, hence (Ω∗)⊥ = P̄ .

Because (x) = g4(x) /∈ (Ω∗)⊥, the fault is detectable. The change of output coordinates
gives

Ψ1(x) = x̄1 =

⎡
⎢⎢⎢⎢⎣
V cosα
φ
θ
ψ
ne

⎤
⎥⎥⎥⎥⎦ H2x = x̄2 =

⎡
⎢⎢⎢⎢⎣
V sinα
β
pω

qω
rω

⎤
⎥⎥⎥⎥⎦ (4.26)

Note that both x̄15 and x̄11 are affected by the fault, leading to two throttle residual
generators:

• To design the residual generator related to x̄15, it is necessary to compute

˙̄x15 = ṅe = tnn
3
e +

tf
ne

(t0 + t1ne) δth (4.27)

Hence, with kδth
> 0, the rudder residual generator rδth

related to x̄15 is given by

ξ̇4 = tnn
3
e +

tf
ne

(t0 + t1ne) δth + kδth
(ne − ξ4)

rδth
= ne − ξ4

(4.28)

• To design the residual generator related to x̄11, it is necessary to compute

˙̄x11 = V̇ cosα− V α̇ sinα

= −
(Cd0 + Cdαα+ Cdα2α

2)

m
V 2 cosα+ V 2 sinα

(CL0 + CLαα)

m

− g sin θ − V qω sinα+
tp
mV

(t0 + t1ne) δth

(4.29)

Hence, with k′δth
> 0, the rudder residual generator r′δth

related to x̄11 is given by

ξ̇′4 = −
(Cd0 + Cdαα+ Cdα2α

2)

m
V 2 cosα+ V 2 sinα

(CL0 + CLαα)

m

− g sin θ − V qω sinα+
tp
mV

(t0 + t1ne) δth + k′δth
(V cosα− ξ′4)

r′δth
= (V cosα− ξ′4)

(4.30)
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The residual generator rδth
is characterised by a fewer number of parameters with respect

to r′δth
. Hence the choice of rδth

is preferable to cope with robustness requirements.
However it also possible to use jointly the two residual generator.

Remark 13. Each residual generator is affected by a single input sensor fault and is
decoupled from the wind components and the faults affecting the remaining input sensors.
In this way the tuning of the residual generator gains kδe

, kδa
, kδr

and kδth
can be carried

out independently. Finally, by a straightforward analysis, the positive sign of each gain is
a necessary and sufficient condition for the asymptotic stability of the designed residual
generators.

A procedure optimising the trade–off between the fault sensitivity and the robustness
to the modelling errors and disturbances of the generic residual generator is proposed in
the next section.

4.2 NLGA Robustness Improvements

The proposed NLGA FDI based scheme consists of two design steps:

1. The structural decoupling of critical disturbances and critical modelling errors can
be obtained as described in Section 4.1.

2. The nonlinear residual generators robustness is improved by minimising the effects
of both non critical disturbances and modelling errors, whilst maximising the fault
effects on the residual signals.

4.2.1 The x̄11–subsystem

In order to apply the robustness improvement procedure presented in this section, the con-
sidered framework is restricted to suitable scalar components of the x̄1–subsystem (4.4).
In particular, the vectors x̄1 and ȳ1 are decomposed as follows

x̄1 =

[
x̄11

x̄1c

]
ȳ1 =

[
ȳ11

ȳ1c

]
(4.31)

where x̄11 ∈ �, ȳ11 ∈ � and correspondingly it follows

n1(·) =

[
n11(·)
n1c(·)

]
g1(·) =

[
g11(·)
g1c(·)

]
1(·) =

[
11(·)
1c(·)

]
(4.32)

Let us consider the following conditions

ȳ11 = h11(x̄11) ȳ1c = h1c(x̄1c) 11(·) �= 0 (4.33)
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where h11(·) is a smooth map and h1c(·) is an invertible smooth map. It is important to
highlight that if the constraints (4.33) are satisfied, the decomposition (4.31)–(4.32) can
always be applied to obtain the following x̄11–subsystem

˙̄x11 = n11(x̄11, ȳ1c, ȳ2) + g11(x̄11, ȳ1c, ȳ2)c+ 11(x̄11, ȳ1c, ȳ2, x̄3)f

ȳ11 = h11(x̄11)
(4.34)

As can be seen in Section 4.1.2, the conditions (4.33) are satisfied for the considered
aircraft application, hence, from now on, the scalar x̄11–subsystem (4.34) is referred to in
place of the x̄1–subsystem (4.4).

It can be noted that the tuning of the residual generator gains, in the framework of
the x̄11–subsystem (4.34), cannot be properly carried out. In fact the critical disturbances
are structurally decoupled but the non critical ones are not considered. For this reason,
to achieve robustness of the residual generators, the tuning of the gains is performed by
embedding the description of the non critical disturbances in the x̄11–subsystem as follows

˙̄x11 = n11(x̄11, ȳ1c, ȳ2) + g11(x̄11, ȳ1c, ȳ2)c+ 11(x̄11, ȳ1c, ȳ2, x̄3)f

+ e(x̄11, ȳ1c, ȳ2, x̄3)ζ

ȳ11 = x̄11 + ν

(4.35)

where, to simplify the treatment without loss of generality (accordingly to the considered
aircraft application), the state variable x̄11 is supposed to be directly measured. Moreover,
the variable ν ∈ � is the measurement noise on x̄11. Finally, the variable ζ ∈ � and the
related scalar field e(·) represent the non critical effects which have not been considered
in the simplified aircraft model (2.42) used for the NLGA scheme.

4.2.2 Filter Form and Observer Form

The following system, which is referred to as filter form, represents a generic scalar residual
generator (based on the subsystem (4.35)) to which the residual generators designed in
Section 4.1.2 belong as a particular case

ξ̇f = n11(ȳ11, ȳ1c, ȳ2) + g11(ȳ11, ȳ1c, ȳ2)c+ kf (ȳ11 − ξf )

rf = ȳ11 − ξf
(4.36)

where the gain kf has to be tuned in order to minimise the effects of the disturbances ζ
and ν whilst maximise the effects of the fault f on the residual rf .

The quantification both of the disturbances and of the fault effects on the residual can
be obtained by defining the estimation error

x̃f = x̄11 − ξf (4.37)

which allows to write the following equivalent residual model

˙̃xf = n11(x̄11, ȳ1c, ȳ2)− n11(ȳ11, ȳ1c, ȳ2) + g11(x̄11, ȳ1c, ȳ2)c− g11(ȳ11, ȳ1c, ȳ2)c

+ 11(x̄11, ȳ1c, ȳ2, x̄3)f + e(x̄11, ȳ1c, ȳ2, x̄3)ζ − kf x̃f − kfν

rf = x̃f + ν

(4.38)
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In order to apply the effective mixed H−/H∞ approach (Chen and Patton 1999, Hou
and Patton 1996) to tune kf , the system (4.38) has to be linearised in the neighbourhood
of a stationary flight condition, as suggested in (Amato et al. 2006) with reference to
the H∞ optimisation of nonlinear unknown input observers. It is worth observing that
the considered aircraft application is characterised by small excursions of the state, input
and output variables with respect to their trim values x̄10, x̄30, c0, ȳ10 and ȳ20, hence the
robustness of the nonlinear residual generator is achieved. The linearisation of (4.38) is
the following

˙̃xf = −kf x̃f − kfν +mf + q̆ζ̆

rf = x̃f + ν
(4.39)

where

a′ =
∂n11(·)

∂x̄11

∣∣∣∣
(x̄10,ȳ20)

b = g11(·)|(x̄10,ȳ20)

m = 11(·)|(x̄10,ȳ20,x̄30) q = e(·)|(x̄10,ȳ20,x̄30)

(4.40)

and
q̆ζ̆ = qζ − a′ν (4.41)

Now, it is important to note that in place of the residual generators in the filter
form (4.36), the following observer form of the residual generators can be used

ξ̇o = n11(ξo, ȳ1c, ȳ2) + g11(ξo, ȳ1c, ȳ2)c+ ko (ȳ11 − ξo)

ro = ȳ11 − ξo
(4.42)

For the same reasons previously described, the estimation error x̃o is introduced

x̃o = x̄11 − ξo (4.43)

hence

˙̃xo = n11(x̄11, ȳ1c, ȳ2)− n11(ξo, ȳ1c, ȳ2) + g11(x̄11, ȳ1c, ȳ2)c− g11(ξo, ȳ1c, ȳ2)c

+ 11(x̄11, ȳ1c, ȳ2, x̄3)f + e(x̄11, ȳ1c, ȳ2, x̄3)ζ − kox̃o − koν

ro = x̃o + ν

(4.44)

and the linearisation of (4.44) is

˙̃xo = (a′ − ko) x̃o − koν +mf + qζ
ro = x̃o + ν

(4.45)

Both the linearised models (4.39) and (4.45) of the residual generators in the filter
form and observer form respectively can be represented by the following general form

˙̃x = (a− k) x̃+ (E1 − kE2) ε+mf

r = x̃+ E2ε
(4.46)
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with E1 = [e11 0] as well as the following positions

general form x̃ ε r a k e11 E2

filter form x̃f [ζ̆ ν]T rf 0 kf q̆ [0 1]

observer form x̃0 [ζ ν]T r0 a′ k0 q [0 1]

(4.47)

On the basis of (4.46) and (4.47), the mixed H−/H∞ (Chen and Patton 1999, Hou and
Patton 1996) procedure is developed for the robustness improvement of the residual gener-
ators both in the filter and observer form. Since the considered NLGA residual generators
are scalar, the H−/H∞ procedure leads to a new analytical solution.

4.2.3 Mixed H−/H∞ Optimisation

Let us define the norms H∞ and H− of a stable transfer function G as

‖G‖∞ = sup
ω≥0

σ̄ [G (j ω)] ‖G‖− = σ [G (j 0)] (4.48)

where σ̄ and σ represents the maximum and the minimum singular value, respectively.
The problem of the trade–off between disturbances robustness and fault sensitivity is
stated as follows.

Problem 3. Given two scalars β > 0 and γ > 0, find the set K defined as

K =
{
k ∈ � : (a− k) < 0, ‖Grε‖∞ < γ, ‖Grf‖− > β

}
(4.49)

where

Gr ε(s) = (s− a+ k)−1 (E1 − k E2) + E2 (4.50)

and

Grf (s) = (s− a+ k)−1 m (4.51)

In order to obtain the analytical solution of Problem 3, the following propositions are
given.

Proposition 1. ∀k ∈ �, (a− k) < 0, then

‖Grε‖
2
∞ = max

{
1,

(e211 + a2)

(k − a)2

}
(4.52)

and

sup
{k∈�: (a−k)<0}

‖Grε‖∞ = +∞ (4.53)
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Proof. From the definition (4.50)

Grε (s) =
[

e11

s−a+k
s−a

s−a+k

]
(4.54)

hence it is possible to write

{σ̄ [Grε (j ω)]}2 =
e211

(k − a)2 + ω2
+

a2 + ω2

(k − a)2 + ω2
=

(e211 + a2) + ω2

(k − a)2 + ω2
(4.55)

so that it follows

‖Grε‖
2
∞ = sup

ξ≥0

(e211 + a2) + ξ

(k − a)2 + ξ
(4.56)

From the last expression, it is straightforward to obtain (4.52) and (4.53).

Proposition 2. The set

Kγ = {k ∈ � : (a− k) < 0, ‖Grε‖∞ < γ, γ > 1} (4.57)

is given by

k > k with k = a+

√
e211 + a2

γ
(4.58)

Proof. By means of Proposition 1, it is possible to write

(e2
11 + a2)

(k − a)2 < γ2 (4.59)

which holds for

k > a+

√
e211 + a2

γ
(4.60)

Proposition 3. If γ > 1, then
{
‖Grf‖− : ‖Grε‖∞ < γ

}
is given by

0 < ‖Grf‖− < βmax (γ) with βmax (γ) =
mγ√
e211 + a2

(4.61)

Proof. From the definition (4.51), it results Grf (s) = m/(s−a+k) and assuming, without
loss of generality, that m > 0, it follows ‖Grf‖− = m/(k − a). By imposing ‖Grf‖− > β
with β > 0, the constraint k < a + (m/β) has to hold. Then, by recalling the result of
Proposition 2, the maximum feasible value of β fulfilling the constraint ‖Grε‖∞ < γ is
given by

k = a+
m

βmax (γ)
(4.62)

hence
βmax (γ) =

m

k − a
=

mγ√
e211 + a2

(4.63)
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Theorem 1. Given γ > 1 and β ∈ ]0, βmax (γ)[, the set K fulfilling the constraints of
Problem 3 is given by

K =

{
k ∈ R : k ∈

]
k, k

[
, k = a+

m

βmax (γ)
, k = a+

m

β

}
(4.64)

Proof. The proof of the theorem is not reported, as it is straightforward from Proposi-
tions 1, 2 and 3.

Remark 14. Let us consider the following performance index to maximise

J =
‖Grf‖−
‖Grε‖∞

(4.65)

From (4.52) it follows

‖Grε‖∞ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 k >

(
a+

√
e211 + a2

)
√
e211 + a2

k − a
a < k ≤

(
a+

√
e211 + a2

) (4.66)

hence

J =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

k − a
k >

(
a+

√
e211 + a2

)
m√

e211 + a2
a < k ≤

(
a+

√
e211 + a2

) (4.67)

From (4.67), it can be observed that

J =
m

k − a
<

m√
e211 + a2

, k >

(
a+

√
e211 + a2

)
(4.68)

In this way the maximum value of the performance index J is

Jmax =
m√

e211 + a2
∀k ∈ KJ =

{
k ∈ � : a < k ≤

(
a+

√
e211 + a2

)}
(4.69)

The method proposed in this work guarantees the maximum value of the performance
index J as well as the constraints ‖Grε‖∞ < γ and ‖Grf‖− > β, if β ≥ m/

√
e211 + a2. In

fact from β ≥ m/
√
e211 + a2 it follows

‖Grf‖− =
m

k − a
> β ≥

m√
e211 + a2

(4.70)

hence k <
(
a+

√
e211 + a2

)
. Finally, from (4.61) it is always possible to find a β such

that
m√

e211 + a2
≤ β ≤ βmax(γ) ∀γ > 1 (4.71)
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On the basis of Theorem 1, the residual generator gain k can be designed by means
of the following procedure:

1. Choose γ > 1 to obtain a desired level of disturbance attenuation.

2. Compute βmax (γ) and choose β ∈ ]0, βmax (γ)[ to obtain a desired level of fault
sensitivity.

3. Choose k ∈
]
k, k

[
, with k = a+m/βmax (γ) and k = a+m/β.

4. Apply the chosen gain k to the kf of (4.36) or to the ko of (4.42) if the NLGA
residual generator is in the filter form or in the observer form respectively.

4.3 NLGA–AF FDI Scheme

The NLGA–AF FDI scheme belongs to the NLGA framework, where the coordinate
transformation detailed in Section 4.1 is the starting point to design a set of adaptive
filters in order to detect an additive fault acting on a single input sensor and to estimate
the magnitude of the fault.

The information brought by the fault size estimation can be very useful for off–line
maintenance purposes and for on–line reconfiguration of the automatic flight control sys-
tem. It is worth observing that the basic NLGA scheme based on residual signals cannot
provide fault size estimation.

Nonlinear geometric approaches with estimation of the fault size can be found also in
(Kaboré et al. 2000, Kaboré and Wang 2001), in which the fault estimation method relies
on the successive derivatives of input/output signals. A drawback of this strategy is a
high sensitivity to measurement noise.

4.3.1 Adaptive Filtering Algorithm

In the following an adaptive nonlinear filter for the x̄1–subsystem, providing fault size
estimation, is developed. Moreover, the asymptotic convergence of the estimate to the
actual fault size is formally proven.

Remark 15. The NLGA–AF FDI scheme can be applied only if the fault detectability
condition presented in Section 4.1.1 holds and the following new constraints are satisfied:

• The x̄1–subsystem is independent from the x̄3 state components.

• The fault is a step function of the time, hence the parameter f is a constant to be
estimated.

• There exists a proper scalar component x̄1s of the state vector x̄1 such that the
corresponding scalar component of the output vector is ȳ1s = x̄1s and the following
relation holds

˙̄y1s(t) = M1(t) · f +M2(t) (4.72)
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where M1(t) �= 0,∀t ≥ 0. Moreover M1(t) and M2(t) can be computed for each
time instant, since they are functions just of input and output measurements. The
relation (4.72) describes the general form of the system under diagnosis.

Problem 4. The design of an adaptive filter is required, with reference to the system
model (4.72), in order to perform an estimation f̂(t), which asymptotically converges to
the magnitude of the fault f .

The proposed adaptive filter that solves the FDI Problem 4 is based on the least–
squares algorithm with forgetting factor and described by the following adaptation law

Ṗ = β P −
1

N2
P 2M̆2

1 P (0) = P0 > 0

˙̂
f = P ε M̆1 f̂ (0) = 0

(4.73)

with the following equations representing the output estimation and the corresponding
normalised estimation error

ˆ̄y1s = M̆1 f̂ + M̆2 + λ ˘̄y1s

ε =
1

N2

(
ȳ1s − ˆ̄y1s

) (4.74)

where all the involved variables of the adaptive filter are scalar. In particular, λ > 0 is
a parameter related to the bandwidth of the filter, β ≥ 0 is the forgetting factor and
N2 = 1 + M̆2

1 is the normalisation factor of the least–squares algorithm.
Moreover, the proposed adaptive filter adopts the signals M̆1, M̆2, ˘̄y1s which are ob-

tained by means of a low–pass filtering of the signals M1, M2, ȳ1s as follows

˙̆
M1 = −λ M̆1 +M1 M̆1(0) = 0

˙̆
M2 = −λ M̆2 +M2 M̆2(0) = 0

˙̄̆y1s = −λ ˘̄y1s + ȳ1s ˘̄y1s(0) = 0

(4.75)

Proposition 4. The considered adaptive filter is described by (4.73)–(4.75). The asymp-
totic relation between the normalised output estimation error ε(t) and the fault estimation
error f − f̂(t) is the following

lim
t→∞

ε(t) = lim
t→∞

M̆1(t)

N2(t)

(
f − f̂(t)

)
(4.76)

Proof. The following auxiliary system is defined in the form

ẏ′1 = −λ y′1 + ˙̄y1s y′1(0) = 0

ẏ′2 = −λ y′2 + λ ȳ1s y′2(0) = 0

y′ = y′1 + y′2

(4.77)
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By means of simple computations, it follows

y′(t) =

∫ t

0

e−λ(t−τ) ˙̄y1s(τ)dτ +

∫ t

0

e−λ(t−τ)λ ȳ1s(τ)dτ

=

∫ t

0

e−λ(t−τ)
(
M1(τ)f +M2(τ)

)
dτ + λ ˘̄y1s

= M̆1(t)f + M̆2(t) + λ ˘̄y1s(t)

(4.78)

Let us consider the following function

V =
1

2
(y′ − ȳ1s)

2
(4.79)

which is trivially positive definite and radially unbounded. Moreover, its first time deriva-
tive is

V̇ = (y′ − ȳ1s)(ẏ
′
1 + ẏ′2 − ˙̄y1s)

= (y′ − ȳ1s)(−λ y
′
1 − λ y′2 + λ ȳ1s)

= −λ (y′ − ȳ1s)
2

(4.80)

Since V̇ is trivially negative definite ∀ y′ �= ȳ1s, V is a Lyapunov function so that y′(t)
globally asymptotically tends to the output function ȳ1s(t) and from (4.78) the following
relation holds

lim
t→∞

ȳ1s(t) = M̆1(t)f + M̆2(t) + λ ˘̄y1s(t) (4.81)

From (4.74) and from the expression (4.81), the asymptotic behaviour of the normalised
output estimation error ε(t) can be straightforwardly obtained as follows

lim
t→∞

ε(t) = lim
t→∞

1

N2(t)

(
ȳ1s(t)− M̆1(t)f̂(t)− M̆2(t)− λ ˘̄y1s(t)

)
= lim

t→∞

1

N2(t)

(
M̆1(t)f − M̆1(t)f̂(t)

) (4.82)

Theorem 2. The adaptive filter described by (4.73)–(4.75) represents a solution to the
FDI Problem 4, so that f̂(t) provides an asymptotically convergent estimation of the mag-
nitude of the step fault f .

Proof. Let us consider the following function

W =
1

2

(
f̂ − f

)2

(4.83)

which is trivially positive definite and radially unbounded. Moreover, its first time deriva-
tive is

Ẇ =
(
f̂ − f

)(
P ε M̆1 − 0

)
(4.84)
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It is worth noting that the smoothness property of the involved functions allows to apply
the asymptotic approximation (4.76) to the expression (4.84). In fact, ∃ t� > 0 so that
the sign of Ẇ (t), ∀ t ≥ t� is not affected by the asymptotic approximation (4.76). Hence
it follows

Ẇ (t) = −P (t)
M̆2

1 (t)

N2(t)

(
f̂(t)− f

)2

∀ t ≥ t� (4.85)

which is negative definite ∀ f̂ �= f . In fact, M̆1(t) is a low–pass filtering of the signal
M1(t) which is a smooth function and always not null by hypothesis in the Remark 15.
Moreover N2(t) = 1 + M̆2

1 (t) > 0 and

P (t) =

(
e−β tP−1

0 +

∫ t

0

e−β (t−τ)M̆
2
1 (τ)

N2(τ)
dτ

)−1

> 0 (4.86)

Therefore, W is a Lyapunov function and f̂(t) globally asymptotically tends to f .

4.3.2 Adaptive Filters Design

Once the aircraft model (2.42) includes faults on the input sensors, namely on the elevator
fδe

, on the aileron fδa
, on the rudder fδr

and on the throttle fδth
sensors, it is possible to

split the overall model into 4 distinct subsystems that can be expressed in the form (4.1).
Each of the 4 aircraft models for FDI leads to the form (4.4) by means of a suitable co-
ordinate transformation, as presented in Section 4.1.2. Furthermore, it is straightforward
to verify that all the conditions required by Remark 15 are satisfied. Hence, a set of 4
NLGA adaptive filters is designed in the general form (4.73)–(4.75). This scheme allows
to estimate the magnitude of a step fault acting on a single input sensor.

Elevator Adaptive Filter

For the FDI aircraft model with the fault on the elevator, the state scalar component
x̄1s needed to detect fδe

is x̄11 expressed by (4.12). Hence, it is possible to specify the
particular expression of the faulty dynamics (4.72). The design of the NLGA adaptive
filter (4.73)–(4.75) for fδe

is based on these dynamics

˙̄y1s,e = M1e · fδe
+M2e

M1e = −
Cδe

mtd
V 2

M2e =
V 2

m

(
−
(
CD0 + CDαα+ CDα2α

2
)
cosα

+ (CL0 + CLαα) sinα−
(Cm0 + Cmαα+ Cmqqω)

td

)

− g sin θ − V sinα qω −
(Iz − Ix)

mtd
pωrω −

Cδe

mtd
V 2 δe

(4.87)

with M1e(t) �= 0, ∀ t ≥ 0.
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Aileron Adaptive Filter

For the FDI aircraft model with the fault on the aileron, the state scalar component
x̄1s needed to detect fδa

is x̄11 expressed by (4.17). Hence, it is possible to specify the
particular expression of the faulty dynamics (4.72). The design of the NLGA adaptive
filter (4.73)–(4.75) for fδa

is based on these dynamics

˙̄y1s,a = M1a · fδa
+M2a

M1a =
Cδa

Ix
V 2

M2a =
(Clββ + Clppω)

Ix
V 2 +

(Iy − Iz)

Ix
qωrω +

Cδa

Ix
V 2δa

(4.88)

with M1a(t) �= 0, ∀ t ≥ 0.

Rudder Adaptive Filter

For the FDI aircraft model with the fault on the rudder, the state scalar component
x̄1s needed to detect fδr

is x̄11 expressed by (4.22). Hence, it is possible to specify the
particular expression of the faulty dynamics (4.72). The design of the NLGA adaptive
filter (4.73)–(4.75) for fδr

is based on these dynamics

˙̄y1s,r = M1r · fδr
+M2r

M1r =
Cδr

Iz
V 2

M2r =
(Cnββ + Cnrrω)

Iz
V 2 +

(Ix − Iy)

Iz
pωqω +

Cδr

Iz
V 2δr

(4.89)

with M1r(t) �= 0, ∀ t ≥ 0.

Throttle Adaptive Filter

For the FDI aircraft model with the fault on the throttle, the state scalar component
x̄1s needed to detect fδth

is x̄15 expressed by (4.27). Hence, it is possible to specify the
particular expression of the faulty dynamics (4.72). The design of the NLGA adaptive
filter (4.73)–(4.75) for fδth

is based on these dynamics

˙̄y1s,th = M1th · fδth
+M2th

M1th =
tf
ne

(t0 + t1 ne)

M2th = tn n
3
e +

tf
ne

(t0 + t1 ne) δth

(4.90)

with M1th(t) �= 0, ∀ t ≥ 0.



4.4. NLGA–PF FDI SCHEME 73

Remark 16. The full structure of the NLGA–AF is obtained by replacing the specific
expressions of M1x, M2x and ȳ1s,x, for each subscript x ∈ {e, a, r, th}, given by (4.87),
(4.88), (4.89) and (4.90) into the general form of the adaptive filter described by the
equations (4.73), (4.74) and (4.75).

4.4 NLGA–PF FDI Scheme

This section addresses the FDI problem for a nonlinear stochastic dynamic system. When
stochastic systems are considered, much of the FDI schemes has relied on the system being
linear and the noise and disturbances being Gaussian. In such cases, the Kalman filter is
usually employed for state estimation and its innovation is then used as the residual (Chen
and Patton 1999). The idea used in the linear case mentioned above has been extended
to some nonlinear stochastic systems with additive Gaussian noise and disturbance by
employing the linearisation and Gaussianization techniques, and in this case, the Kalman
filter is usually replaced by the Extended Kalman Filter (EKF) (Doucet et al. 2001).
Although this EKF–based approach appears straightforward, there are no general results
to guarantee that such approximation will work well in most case. The FDI problems in
general nonlinear non–Gaussian stochastic systems are still open.

Recently, the Particle Filter (PF), a Monte Carlo based method for nonlinear non–
Gaussian state estimation, has attracted much attention (Doucet et al. 2001, Zhang et
al. 2005). Polynomial extended Kalman filters and Unscented Kalman Filters (UKF)
represent alternative techniques with performance superior to that of the EKF (Germani
et al. 2007). However, the interest for PF–based methods stems from their ability of
being able to handle any functional nonlinearity and system or measurement noise of
any probability distribution. As an example, the work (Zhang et al. 2005) represents
an attempt to introduce PF into the field of FDI. The fault isolation problem is also
investigated.

By combining PF with the NLGA design technique, a particle filtering based approach,
i.e. the NLGA–PF, to FDI is presented. In particular, the PF is employed to develop a
method for solving the FDI problem for the nonlinear stochastic model of the system under
diagnosis, which is derived by following a NLGA strategy. The use of the NLGA allows to
easily obtain disturbance decoupled residual generators in a stochastic framework. The
fault isolation and the disturbance decoupling suggested in this section is different from
the method presented in (Zhang et al. 2005), as achieved via the NLGA strategy.

4.4.1 Basic Particle Filter Theory

In the following, a short introduction to the basic particle filter theory, also known as
bootstrap filter, is provided. For more complete presentations and details, the readers are
referred to (Doucet et al. 2001).

The general nonlinear discrete–time system in the fault–free case is considered in the
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form

xk+1 = fd(xk, ck) + vx
k

yk = gd(xk, ck) + vy
k

(4.91)

where xk ∈ X ⊂ R
�n is the discrete–time state vector, ck ∈ R

�c is the sampled input vec-
tor, yk ∈ R

�m is the sampled output vector, vx
k ∈ R

�n and vy
k ∈ R

�m are state and output
noises. fd(x, c) and gd(x, c) are nonlinear functions. The noise processes vx

k and vy
k are

assumed to be white with known Probability Density Functions (PDF) px(v
x
k) and py(v

y
k).

The PDF of the initial state x0 is assumed to be p0 (x). Denote also by Dk the input–
output sampled data observed up to the time instant k, i.e. Dk = {(ci, yi) : i = 1, . . . , k}.

The filtering problem is to estimate the distribution of the state vector at each instant
k, based on the data observed up to instant k, or more precisely, to estimate the condi-
tional PDF p(xk|Dk). In general, no accurate finite dimensional filter exists for nonlinear
systems, even if the noises are assumed to be Gaussian. The basic idea of PF is to approx-
imate the PDF of the state vector xk at each instant k with the sum of (a large number
of) Dirac functions, and to make them evolve at each time instant based on the latest
observed data. Each Dirac function used in the PDF approximation is called a particle.

To start the particle filter at the initial instant k = 0, randomly draw M points in R�n

following the assumed PDF p0(.) of the initial state vector. These M points are denoted
with the vectors ηj

0 ∈ R
�n , j = 1, . . . ,M , then p0(.) is approximated by the relation

p (x0|D0) ≈
1

M

M∑
j=1

δ
(
x0 − ηj

0

)
(4.92)

Recursively, at each instant k ≥ 0, with

p (xk|Dk) ≈
1

M

M∑
j=1

δ
(
xk − ηj

k

)
(4.93)

already estimated, the distribution of xk+1 is first predicted with the state equation of
the system (4.91), leading to an approximation of the PDF p(xk+1|Dk). For this purpose,
each particle ηj

k, for j = 1, . . . ,M , is propagated following the state equation of the
system (4.91) to the position fd(η

j
k, ck) and perturbed by a random vector γj

k drawn
following the state noise PDF px(.), and allowing the computation of

ηj

k+1|k = fd(η
j
k, ck) + γj

k (4.94)

Then

p(xk+1|Dk) ≈
1

M

M∑
j=1

δ(xk+1 − ηj

k+1|k) (4.95)
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Now the data observed at instant k+ 1 are used to estimate p(xk+1|Dk+1). According
to the Bayes rule, each particle ηj

k+1|k is weighted by its likelihood wj
k+1 based on the

output equation of the system (4.91), the following relations hold

wj
k+1 = py

(
yk+1 − gd(η

j

k+1|k, ck)
)

Sk+1 =
M∑

j=1

wj
k+1

p(xk+1|Dk+1) ≈
1

Sk+1

M∑
j=1

wj
k+1δ(xk+1 − ηj

k+1|k)

(4.96)

In order to approximate p(xk+1|Dk+1) with M equally weighted particles, M points are
randomly drawn following the discrete probability distribution in the form

P (x = ηj

k+1|k) =
wj

k+1

Sk+1

, j = 1, . . . ,M (4.97)

The resulting points, noted as ηj
k+1 ∈ R

�n for j = 1, . . . ,M , are then used to make the
following approximation

p(xk+1|Dk+1) ≈
1

M

M∑
j=1

δ(xk+1 − ηj
k+1) (4.98)

The algorithm then goes to the next iteration with k increased by 1.
The software code for the implementation of the PF strategy (Doucet et al. 2001, Zhang

et al. 2005) is freely availabe at the website http://www.cs.ubc.ca/~nando/software.html.

4.4.2 Throttle Particle Filter Design

In the following the particle filter to detect the throttle sensor fault is designed. The
design of the particle filters related to the remaining input sensors is not presented in this
work.

As for the NLGA and the NLGA-AF, the NLGA–PF has to be designed from the
x̄1 subsystem (4.4). However, as the PF algorithm requires a discrete–time system, the
following model in the form (4.91) with n = c = m = 1 is derived by using the simple
Euler forward discretisation method, with a sampling time of 0.01 s

ξk+1 = ξk + 0.01

(
tnξ

3
k +

tf
ξk

(t0 + t1ξk)δthk

)
+ ζk

yk = ξk + νk

(4.99)

The scalar processes νk and ζk describe the measurement noise and the effect of the non
critical disturbances, respectively, whilst δthk and yk are the sampled input–output data
sequences. Finally, the FDI residuals of the NLGA–PF are computed as the difference
between the sampled data ne and its prediction provided by the PF.
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Remark 17. As shown in Section 4.2, the NLGA filters with robustness improvement
are structurally decoupled from critical disturbance and optimised in order to maximise
the fault sensitivity with respect to non critical disturbances. Thus, the NLGA filters are
suitable to be exploited in a stochastic framework and can be compared with the NLGA–PF.



Chapter 5

Simulation Results

The simulation results obtained by means of the Matlab/Simulink R© aircraft simulator are
summarised in this chapter. The adopted residual evaluation logic is explained in Sec-
tion 5.1. Section 5.2 describes the FDI problem for a complete aircraft trajectory formed
by a prescribed set of steady–state flight condition. Sections 5.3 show basic simulation re-
sults and performances evaluation. In Section 5.4 the proposed PM and NLGA techniques
are compared with other FDI schemes and the robustness with respect to a complete air-
craft trajectory is evaluated. Finally, in order to evaluate robustness with respect to
uncertainty acting on the system, a Monte–Carlo analysis is performed in Section 5.5.

5.1 Threshold Test

Once the residuals have been generated, the residual evaluation logic is used to detect
and isolate any fault occurrence. The residual processing methods can be based on simple
residual geometrical analysis or comparison with fixed thresholds (Chen and Patton 1999).
More complex residual evaluation can rely on statistical properties of the residual and
hypothesis testing (Basseville and Nikiforov 1993), or based on adaptive threshold, that
is, the so–called threshold selector (Emami-Naeini et al. 1988).

In general, in the absence of faults, the residual signals are approximately zero. In
practical situations, the residual is never zero, even if no faults occur. A threshold must
then be used and normally is set suitably larger than the largest magnitude of the residual
for the fault-free case. The smallest detectable fault is a fault which drives the residual
function to just exceed the threshold. Any fault producing a residual response smaller
than this magnitude is not detectable.

More in detail, the most widely used way to fault detection is achieved by directly
comparing residual signal r(t) or a residual function J(r(t)) with a fixed threshold ε or a
threshold function ε(t) as follows

J(r(t)) ≤ ε(t) for f(t) = 0

J(r(t)) > ε(t) for f(t) �= 0
(5.1)

77
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where f(t) is the general fault vector. If the residual exceeds the threshold, a fault may
be occurred. This test works especially well with fixed thresholds ε if the process operates
approximately in steady–state and it reacts after relatively large feature, i.e. after either
a large sudden or a long-lasting gradually increasing fault.

In practice, if the residual signal is represented by the stochastic variable r(t), mean
value and variance are computed as follows

r̄ = E{r(t)} =
1

N

N∑
t=1

r(t)

σ2
r = E{(r(t)− r̄)2} =

1

N

N∑
t=1

(r(t)− r̄2)

(5.2)

where r̄ and σ2
r are the normal values for the mean and variance of the fault-free residual,

respectively. N is the number of samples of the vector r(t). Therefore, the threshold test
for FDI of (5.1) is rewritten as

r̄ − ν σr ≤ r(t) ≤ r̄ + ν σr for f(t) = 0

r(t) < r̄ − ν σr or r(t) > r̄ + ν σr for f(t) �= 0
(5.3)

i.e. the comparison of r(t) with respect to its statistical normal values. In order to
separate normal from faulty behaviour, the tolerance parameter ν (normally ν ≥ 3) is
selected and properly tuned. Hence, by a proper choice of the parameter ν, a good
trade–off can be achieved between the maximisation of fault detection probability and
the minimisation of false alarm probability.

In practice, the threshold values depend on the residual error amount due to the
measurements errors, the model approximations and the disturbance signals that are not
completely decoupled.

5.2 FDI Procedure for a Complete Trajectory

The target of the proposed FDI schemes is to perform the aircraft fault diagnosis in
a prescribed set of steady–state flight conditions, which cover the largest part of the
complete trajectory. Each of these steady–state flight conditions can be described by
both its trim point and a mathematical model. Hence, it is possible to perform the
off–line design of a set of residual generators for each of these flight conditions.

In the considered framework, a simple FMS (Flight Management System) (Collinson
2002) is supposed installed on board, and its main tasks are:

• Scheduling the current reference flight condition, since the whole trajectory, defining
the flight plan, is described by a sequence of steady–state flight conditions.

• Computing an accurate navigation solution exploiting the sensor measurements.
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• Providing to the FDI subsystem the time intervals corresponding to an aircraft state
sufficiently near to the current reference flight condition, so that it is possible to
apply the proper residual generator filters.

Remark 18. The set of all the allowed steady–state flight conditions can be parameterised
(speed, radius of curvature and flight–path angle) on a manifold and there exist bijective
functions mapping both to the input trim manifold and to the output trim manifold. As
a consequence the FMS is able to determine when the aircraft motion can be considered
sufficiently near to the steady–state condition either by monitoring the input and the output
data independently, even if a single fault occurs.

On the basis of the previous considerations, a possible implementation of the FDI
procedure for a complete trajectory could consist of the following steps:

1. Off–line design and optimisation of the residual generators for each trajectory ele-
mentary path (high computational cost, but performed off–line).

2. On–line steady–state flight condition recognition by the FMS (task requiring a low
computational cost).

3. Switching to the corresponding stored residual generators on the basis of the current
working condition.

5.3 Simulations and Performances Evaluation

The chosen single steady–state flight condition for the design of both the PM and the
NLGA–based residual generators is a coordinated turn at constant altitude characterised
as follows:

• The true air speed is 50 m/s.

• The curvature radius is 1000 m.

• The flight–path angle is 0o.

• The altitude is 330 m.

• The flap deflection is 0o.

This represents one of most general flight condition due to the coupling of the longitudinal
and lateral dynamics. Moreover, it is used in simulation to highlight the performances of
the proposed methods in the nominal flight condition.
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5.3.1 PM

The PM residual generator filters are fed by the 4 component input vector c(t) and the
9 component output vector y(t) acquired from the nonlinear simulation aircraft model
described in Chapter 2. In particular, as presented in Section 3.3, a bank of 4 residual
generator filters has been used to detect input sensor faults regarding the 4 input variables

c(t) =
[
∆δe(t) ∆δa(t) ∆δr(t) ∆δth(t)

]T
. Moreover, in order to obtain the fault isolation

properties, each residual generator function of the input bank is fed by all but one the
4 input signals and by the 9 output variables y(t) =

[
∆V (t) ∆pω(t) ∆qω(t) ∆rω(t)

∆φ(t) ∆θ(t) ∆ψ(t) ∆H(t) ∆ne(t)
]T

.

Remark 19. The measurements of α(t) and β(t) have not been considered for FDI, be-
cause the structural detectability conditions are anyway fulfilled. Moreover, as described
in Section 2.2.4, the sensor package provides the value of the variables in y(t) by pro-
cessing several measurements. However, this situation is not critical for the residual
generators (3.2). In fact, due to the assumptions regarding the IMU and the HRS, a fault
regarding a single sensor affects only a component of the output vector y(t). Moreover,
thanks to the different features of the gyroscope units, system stability and performance
are not affected.

Each filter of the input bank is independent of one of the 4 input signals and then is
also insensitive to the corresponding fault signals. Obviously, the residual generator banks

have been designed to be decoupled from 3 wind gust signals d(t) =
[
wu(t)wv(t)ww(t)

]T
,

which represent disturbance terms acting on the aircraft system. The capabilities of the
FDI system are hence related to the properties of the residual generator functions in the
presence of measurement errors, modelling approximations and disturbance signals that
cannot be completely decoupled.

The robustness properties of the filters in terms of fault sensitivity and disturbance
insensitivity can be achieved according to Section 3.2. The synthesis of the dynamic
filters for FDI has been performed by choosing a suitable linear combination of residual
generator functions. This choice has to maximise the steady–state gain of the transfer
functions shown by (3.48) between input sensor fault signals fci

(t) and residual functions
rcj

(t). Moreover, for each residual generator, the roots of the polynomial matrix Rcj
(s)

have been optimised and placed in a range between −1 and −10−2 for maximising the
fault detection promptness, as well as to minimise the occurrence of false alarms.

In the same way, an appropriate filter bank for the output sensor fault isolation,
generating the 9 residual functions roj

(t), has been designed.

In order to assess the diagnosis technique, different fault sizes have been simulated on
each sensor. Single faults in the input–output sensors have been generated by producing
positive and negative abrupt (step) variations in the input–output signals c(t) and y(t).

The residual signals indicate fault occurrence according to whether their values are
lower or higher than the thresholds fixed in fault–free conditions. As described by (5.3),
the threshold values depend on the residual error amount due to measurement errors,
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linearised model approximations and disturbance signals that are not completely decou-
pled. A suitable value of ν = 4 for the computation of the positive and negative threshold
in (5.3) has been considered, in order to minimise the false alarm occurrence and to
maximise the fault sensitivity.

As an example, the 4 residual functions rcj
(t) generated by the filter bank for input

sensor fault isolation, under both fault–free and faulty condition are shown in Figure 5.1.
Continuous lines represent the fault–free residual functions, while the dotted lines depict
the faulty residual signals. Moreover horizontal lines represents the thresholds. The fault
has been generated on the 1–st input sensor of the considered aircraft, starting at time
t = 150 s.

The 1–st residual function of Figure 5.1 provides also the isolation of a fault regarding
the considered input sensor fc1(t). It does not depend on a fault affecting the input sensor
itself, as the corresponding residual rc1(t) filter has been designed to be sensitive to the
input signal c∗1(t).

In a similar way, Figure 5.2 shows the 9 residual functions roj
(t) generated by the filter

bank for output sensor fault isolation, under both fault–free and faulty conditions.
Figures 5.1 and 5.2 show also the ranges out of which the input and output sensor

faults are detectable. These maximal and minimal values assumed by the rcj
(t) and roj

(t)
functions in fault–free conditions must be computed with acceptable false–alarms rates.
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Figure 5.1: Bank residuals for the 1–st input sensor fault isolation.

To summarise the performance of the FDI technique, the minimal detectable step fault
amplitudes on the various input and output sensors with the related detection delay times
are collected in Table 5.1 and Table 5.2, respectively.
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Figure 5.2: Bank residuals for the 9–th output sensor fault isolation.

The minimal detectable fault values in Tables 5.1 and 5.2 are expressed in the unit
of measure of the sensor signals. The fault sizes are relative to the case in which the
occurrence of a fault is detected and isolated as soon as possible.

The detection delay times, reported in Tables 5.1 and 5.2 represent the worst case
results. They are evaluated on the basis of the time taken by the slowest residual function,
or by the estimation of a fault, to cross the settled threshold.

Table 5.1: PM minimal detectable step input sensor faults.
Sensor ci(t) Var. Fault Size Delay

Elevator deflection angle δe 2o 18 s
Aileron deflection angle δa 3o 6 s
Rudder deflection angle δr 4o 8 s

Throttle aperture % δth 2% 15 s
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Table 5.2: PM minimal detectable step output sensor faults.
Sensor yi(t) Var. Fault Size Delay

True Air Speed V 8 m/s 9 s
Pitch Rate qω 3o/s 22 s

Elevation Angle θ 5o 10 s
Altitude H 8 m 12 s
Roll Rate pω 2o/s 24 s
Yaw Rate rω 3o/s 29 s

Bank Angle φ 5o 5 s
Heading Angle ψ 6o 20 s
Engine Speed ne 20 rpm 25 s

Remark 20. With reference to the application domain of general aviation aircrafts, the
severity of each fault condition can be classified. The considered fault conditions can be
ordered as follows, from the most to the least critical variable:

• δe, δr, δa and δth.

• V , φ, θ and ne.

• ψ and H.

• pω, qω and rω.

The main criterion used to state the severity list is based on the dynamics of the monitored
variables. In particular, the faster the time scale of a variable, the greater the severity
of the associated fault. However, faults on the variables pω, qω and rω are the less criti-
cal, even if their time scales are not the slowest. In fact, classical autopilots for general
aviation aircrafts usually do not exploit these measurements very much. Moreover, feed-
back control schemes adopting high–gain with respect to the angular rate components are
typically used only if the modes of the aircraft dynamics need to be drastically changed in
order to fulfil the required flying qualities.

On the basis of the severity list, the FDI filter optimisation described here has been
hence performed in order to enhance the FDI of the most critical measurement sensors,
i.e. for optimising the related fault sensitivity and detection delay time.

5.3.2 NLGA

The NLGA–based FDI schemes presented in Chapter 4 have been designed as follows:

NLGA design. A bank of 4 filters has been used in order to perform the fault diag-
nosis and isolation on the input sensors. The filters are designed as described in
Section 4.1. The synthesis of the filters has been performed by using filter gains
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that optimise the fault sensitivity and reduce as much as possible the occurrence of
false alarms due to model uncertainties and to disturbances not completely decou-
pled. This robustness requirement has been fulfilled by designing the residual gains
according to the procedure described in Section 4.2. For example, with reference
to the fourth residual generator, this procedeure has led to kδth

= 1 which satisfies
the norm bounds γ = 1.2 and β = 400. This guarantees a good separation on the
residual signal with ‖f‖L2

≥ 0.05 and ‖d‖L2
≤ 10, where L2-norm is considered.

NLGA–AF design. A bank of 4 adaptive filters has been used in order to perform the
diagnosis and isolation as well as the estimation of the fδe

, fδa
, fδr

and fδth
fault

size. The adaptive filter designs have been carried out according to the procedure
described in Section 4.3.

NLGA–PF design. The filter for the FDI of throttle sensor is implemented via the
algorithm summarised in Section 4.4 with a number M = 200 particles and it
uses 20000 sampled data δthk and nek, acquired from the continuous–time aircraft
model (2.42). Moreover, the PDF for the stochastic processes affecting the sys-
tem (4.91) are easily estimated from the mathematical knowledge of the aircraft
flight simulator and its measurements (see Section 2.2.4). It is worth noting that
in this case the isolation of the throttle actuator fault is enhanced, since the scalar
x̄1–subsystem (4.4) is affected by a single sensor fault and it is decoupled from the
faults affecting the remaining sensors (elevator, aileron, and rudder). The scalar
structure of the x̄1–subsystem (4.4) facilitates also the optimal choice of the param-
eters for the construction of the PF (Zhang et al. 2005), and improves the Sampling
Importance Resampling (SIR) strategy selected for posterior PDF estimation and
the importance weights defined in Section 4.4 (Doucet et al. 2001).

Each filter obtained by the described design procedures is structurally decoupled from the
vertical and lateral wind disturbance components and is sensitive to a single input sensor
fault.

Remark 21. For the proposed application, the NLGA–based FDI schemes considers only
the faults on the inputs sensors. In fact, the output sensor faults cannot be directly mod-
elled by (4.1). On the other hand, a fault modelled by means of an augmented state, as
reported in (Massoumnia 1986, Zad and Massoumnia 1999), leads to a nonlinear system
which does not fulfill the structural fault detectability condition (x) /∈ Ω∗.

In order to asses the NLGA diagnosis techniques, in similar way to PM evaluation,
single steps faults have been used. Moreover, also in this case, the threshold values
have been experimentally chosen according to (5.3). A suitable value of ν = 8 for the
computation of the positive and negative threshold in (5.3) has been considered.

In Figures 5.3 and 5.4, the simulation results referring to a particular case are reported,
where a small step fault fδe

with size of 2o starting at time t = 150 s is added to the elevator
sensor. Figures 5.3 and 5.4 are referred to the NLGA and NLGA–AF, respectively. The
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behaviour of rδe
and f̂δe

highlights a better detection time than the corresponding one of
the PM. Moreover, the remaining residuals rδa

, rδr
, rδth

and estimates f̂δa
, f̂δr

, f̂δth
never

cross the corresponding thresholds, so that the fault isolation is achieved. Note that the
estimate f̂δe

is accurate, even with a small fault size.
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Figure 5.3: NLGA elevator sensor FDI.
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Figure 5.4: NLGA–AF elevator sensor FDI with fault size estimation.
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As an example, the residual generated by the NLGA and the NLGA–PF for the
δth sensor FDI, under both fault–free and faulty condition, are shown in Figure 5.5.
Continuous line represent the fault free residual functions, while the dotted lines depicts
the faulty residual signals. The fault has been generated on the throttle sensor of the
considered aircraft, starting at time t = 100 s.
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Figure 5.5: NLGA and NLGA–PF residuals for throttle sensor FDI.

In order to summarise the performance of the proposed NLGA, NLGA–AF and NLGA–
PF FDI schemes, the minimal detectable step fault amplitudes on the various input sensors
with the related detection delay time are collected in Tables 5.3, 5.4 and 5.5, respectively.

Table 5.3: NLGA minimal detectable step input sensor faults.
Sensor ci(t) Var. Fault Size Delay

Elevator deflection angle δe 2o 5 s
Aileron deflection angle δa 2o 3 s
Rudder deflection angle δr 2o 6 s

Throttle aperture % δth 6% 3 s
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Table 5.4: NLGA-AF minimal detectable step input sensor faults.
Sensor ci(t) Var. Fault Size Delay

Elevator deflection angle δe 2o 6 s
Aileron deflection angle δa 2.5o 4 s
Rudder deflection angle δr 4o 6 s

Throttle aperture % δth 5% 5 s

Table 5.5: NLGA-PF minimal detectable step throttle sensor fault.
Sensor ci(t) Var. Fault Size Delay

Throttle aperture % δth 3% 3 s

Remark 22. For the considered aircraft application, the computational burden of NLGA
and NLGA–AF is lower than that of NLGA–PF, so that they are suitable for low–cost
implementations. On the other hand, the NLGA–PF provides the minimal detectable fault
size.

Remark 23. A peculiarity of NLGA–AF is that it provides not only FDI but also a fault
estimate. For this reason, it is useful to evaluate it in comparison with the fault identifi-
cation scheme proposed in (Kaboré and Wang 2001, Kaboré et al. 2000). In particular,
in the considered aircraft application, a fault estimator for the aileron input sensor can be
easily derived according to the procedure described in (Kaboré and Wang 2001), exploiting
the expression of the roll rate pω dynamic equation. In Figure 5.6, it is shown the result of
a simulation in which a fault of 2.5o is affecting the aileron input sensor. As can be seen,
the proposed NLGA–AF is less sensitive to measurement noise, which allows to obtain
a smaller minimal detectable fault. On the other hand, the fault estimation technique of
(Kaboré and Wang 2001) provides a faster response and, therefore, a slower detection
time.

Advantages and drawbacks of the PM and the NLGA–based FDI methods developed
in this work can be summarised as follows:

• Both PM filters and NLGA perform low-pass filtering of input/output measure-
ments. PM by means of the poles of R(s), designed according to an off-line opti-
misation procedure; NLGA by means of first-order low pass filters. However, the
degree of R(s) is generally greater than 1, so the filtering action of PM can be more
efficient.

• For the considered aircraft application, the computational burden of polynomial
filters is lower than that of NLGA filters, so that they are suitable for low-cost
implementations.
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Figure 5.6: Comparison between NLGA–AF and fault estimator of Kaboré and Wang.

• NLGA can obtain smaller detection time, compared with PM filters, thanks to the
fact that they directly take into account nonlinear terms.

5.4 Comparative Studies and Robustness Evaluation

In this section, the robustness characteristics of the proposed PM and NLGA FDI schemes
have been evaluated and compared also with respect to the UIKF (Unknown Input
Kalman Filter) scheme (Chen and Patton 1999) and the NN (Neural Nets) technique
(Korbicz et al. 2004). The robustness is achieved by using the same residual generators
for a large set of flight condition. In the following a brief description of the adopted design
procedure for the UIKF and NN FDI schemes is provided:

UIKF desgin. A bank of UIKF has been exploited for diagnosing faults of the monitored
process. This technique seems to be robust with respect to the modelling uncer-
tainties, the system parameter variations and the measurement noise, which can
obscure the performance of a FDI system by acting as a source of false faults. The
procedure recalled here requires the design of an UIKF bank and the basic scheme
is the standard one: a set of measured variables of the system is compared with
the corresponding signals estimated by filters to generate residual functions. The
diagnosis has been performed by detecting the changes of UIKF residuals caused by
a fault. The FDI input sensor scheme exploits a number of KF equal to the number
of input variables. Each filter is designed to be insensitive to a different input sensor
of the process and its disturbances (the so–called unknown inputs). Moreover, the
considered UIKF bank was obtained by following the design technique described
in (Chen and Patton 1999) (Section 3.5, pp. 99–105), whilst the noise covariance
matrices were estimated as described in (Simani et al. 2002) (Section 3.3, pp. 70–74
and Section 4.6, pp. 130–131). Each of the 4 UIKF of the bank was de–coupled
from both one input sensor fault and the wind gust disturbance component, thus
providing the optimal filtering of the input–output measurement noise sequences.
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NN design. A dynamic NN bank has been exploited in order to find the dynamic con-
nection from a particular fault regarding the input sensors to a particular residual.
In this case, the learning capability of NN is used for identifying the nonlinear
dynamics of the monitored plant. The dynamic NN provides the prediction of the
process output with an arbitrary degree of accuracy, depending on the NN structure,
its parameters and a sufficient number of neurons. Once the NN has been properly
trained, the residuals have been computed as the difference between predicted and
measured process outputs. The FDI is therefore achieved by monitoring residual
changes. The NN learning is typically an off–line procedure. Normal operation
data are acquired from the monitored plant and are exploited for the NN training.
Regarding the NN FDI method, and according to a Generalised Observer Scheme
(GOS) (Chen and Patton 1999), a bank of 4 time–delayed three–layers Multi–Layer
Perceptron (MLP) NN with 15 neurons in the input layer, 25 neurons in the hidden
layer and 1 neuron in the output layer is implemented. Each NN was designed to
be insensitive to each input sensor fault, and the NN were trained in order to pro-
vide the optimal output prediction on the basis of the training pattern and target
sequences (Korbicz et al. 2004).

The performances of the different FDI schemes have been evaluated by considering a
more complex aircraft trajectory. This has been obtained by means of the guidance and
control functions of a standard autopilot, which stabilises the aircraft motion towards the
reference trajectory as depicted in Figure 5.7.
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Figure 5.7: Aircraft complete trajectory example.

The reference trajectory is made up of 4 branches (2 straight flights and 2 turn flights)
so that a closed path is obtained. It is worth observing that only 2 steady–state flight
conditions are used to follow alternatively the 4 branches of the reference trajectory:

• Straight flight condition (1–st and 3–rd path):

– true air speed = 50 m/s.
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– radius of curvature =∞.

– flight–path angle = 0o.

– altitude = 330 m.

– flap deflection = 0o.

• Turn flight condition (2–nd and 4–th path):

– true air speed = 50 m/s.

– radius of curvature = 1000 m.

– flight–path angle = 0o.

– altitude = 330 m.

– flap deflection = 0o.

Note that the reference turn flight condition is used to design the PM and the NLGA
filters in Section 5.3. The achieved results are reported in Tables 5.1 and 5.3, respectively.
The performed tests represent also a possible reliability evaluation of the considered FDI
techniques. In fact, in this case the diagnosis requires that the residual generators are
robust with respect to the flight conditions that do not match the nominal trajectory used
for the design.

Table 5.6 summarises the results obtained by considering the observers and filters (cor-
responding to the PM, NLGA, UIKF and NN) for the input sensor FDI, whose parameters
have been designed and optimised for the steady–state coordinated turn represented by
the 2–nd reference flight condition of the complete trajectory. Table 5.6 reports the per-
formances of the considered FDI techniques in terms of the minimal detectable step faults
on the various input sensors, as well as the corresponding parameters ν for the residual
evaluation of (5.3). The mean detection delay is also reported in Table 5.6 in order to
compare the effectiveness of the different FDI schemes.

Table 5.6: Performances for a complete aircraft trajectory.
Variable PM NLGA UIKF NN

ν 4 12 9 5
δe 4o 3o 4o 3o

δa 5o 3o 5o 4o

δr 5o 3o 4o 4o

δth 7 % 10 % 11 % 12 %
Mean Detection Delay 26 s 25 s 31 s 27 s

The choice of ν has been performed with reference to the particular flight conditions
involved in the complete trajectory following. In particular, the selected value of ν for each
FDI observer or filter represents a trade–off between two objectives, i.e. for increasing
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the residual fault sensitivity and promptness, as well as for minimising the occurrence of
false alarms due to the switching among the reference flight conditions needed to stabilise
the aircraft motion towards the reference trajectory. Table 5.6 shows how the proper
design of the parameter ν allows to obtain good performances with all the considered FDI
schemes, hence the robustness with respect to the proposed complete trajectory is always
achieved.

It is worth noting that the NLGA has a theoretical advantage by taking into account
the nonlinear dynamics of the aircraft. However the behaviour of the related nonlinear
residual generators is quite sensitive to the model uncertainties due to variation of the
flight condition. In fact, the NLGA requires high values of ν which have to be increased
(from 8 to 12 in this work) when the aircraft motion regarding the complete trajectory is
considered in place of the nominal flight condition. In particular, even though the analysis
was restricted just to the aircraft turn phase of the complete trajectory, a performance
worsening would happen, since the steady–state condition (nominal flight condition) is
quite far to be reached. However, the filter design based on the NLGA lead to a satisfac-
tory fault detection, above all in terms of promptness. On the other hand, regarding the
PM, it is rather simple to note the good FDI performances, even if optimisation stages
can be required. The ν values selected for the PM are lower, but the related residual
fault sensitivities are even smaller. Similar comments can be made for the UIKF and NN
techniques.

The simulation model applied to the complete trajectory is an effective way to test
the performances of the proposed FDI methods with respect to modelling mismatch and
measurement errors. The obtained results demonstrate the reliability of the PM, NLGA,
UIKF and NN based FDI schemes as long as proper design procedures are adopted.

5.5 Monte–Carlo Analysis

In this section, further experiment results have been reported. They regard the perfor-
mance evaluation of the developed FDI schemes with respect to uncertainty acting on
the system. Hence, the simulation of different fault–free and faulty data sequences was
performed by exploiting the aircraft Matlab/Simulink R© simulator and a Monte–Carlo
analysis implemented in the Matlab R© environment.

The Monte–Carlo tool is useful at this stage as the FDI performances depend on
the residual error magnitude due to the system uncertainty, as well as the signal c(t)
and y(t) measurement errors. It is worth noting how the Monte–Carlo simulations have
been achieved by perturbing the parameters of the PM filter residuals by additive white
Gaussian noises with standard deviation values equal to a fixed percentage p of the element
values. The same experiments have been performed by statistically varying the main
parameters of the NLGA filters. In these conditions, the Monte Carlo analysis represents
a further method for estimating the reliability and the robustness of the developed FDI
schemes, when applied to the considered aircraft.

For robustness and reliability experimental analysis of the FDI schemes, some perfor-
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mance indices have been used. The performances of the FDI method are then evaluated
on a number of Monte–Carlo runs equal to 1000. This number of simulations is carried
out to determine the indices listed below with a given degree of accuracy:

False Alarm Probability (rfa): the number of wrongly detected faults divided by total
fault cases.

Missed Fault Probability (rmf ): for each fault, the total number of undetected faults,
divided by the total number of times that the fault case occurs.

True Detection/Isolation Probability (rtd, rti): for a particular fault case, the num-
ber of times it is correctly detected/isolated, divided by total number of times that
the fault case occurs.

Mean Detection/Isolation Delay (τmd, τmi): for a particular fault case, the average
detection/isolation delay time.

These indices are hence computed for the number of Monte–Carlo simulations and for
each fault case. Tables 5.7 and 5.8 summarises the results obtained by considering the PM
and NLGA, dynamic filters for the input sensor FDI for a complete aircraft trajectory
and with p = 10%. The same analysis can be applied again to the residual generated
by means of the NN and UIKF FDI schemes, the results are summarised in Tables 5.9
and 5.10.

Table 5.7: PM Monte–Carlo analysis with ν = 4 and p = 10%.
Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.002 0.003 0.997 27 s
δa 0.001 0.001 0.999 18 s
δr 0.002 0.003 0.997 25 s
δth 0.003 0.002 0.998 35 s

Table 5.8: NLGA Monte–Carlo analysis with ν = 12 and p = 10%.
Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.003 0.004 0.996 30 s
δa 0.002 0.002 0.998 15 s
δr 0.001 0.001 0.999 23 s
δth 0.004 0.003 0.997 32 s

Tables 5.7–5.10 show how the proper design of the dynamic filters with a proper choice
of the FDI thresholds allow to achieve false alarm and missed fault probabilities less than
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Table 5.9: NN Monte–Carlo analysis with ν = 5.
Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.004 0.005 0.995 33 s
δa 0.003 0.003 0.997 23 s
δr 0.004 0.004 0.996 29 s
δth 0.005 0.003 0.997 38 s

Table 5.10: UIKF Monte–Carlo analysis with ν = 9.
Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.003 0.004 0.996 26 s
δa 0.002 0.002 0.998 17 s
δr 0.001 0.002 0.998 26 s
δth 0.004 0.003 0.997 37 s

0.6%, detection and isolation probabilities bigger than 99.4%, with minimal detection
and isolation delay times. The results demonstrate also that Monte–Carlo simulation is
an effective tool for testing and comparing the design robustness of the proposed FDI
methods with respect to modelling uncertainty (p = 10%) and fixed measurement errors.
This last simulation technique example hence facilitates an assessment of the reliability
of the developed, analysed and applied FDI methods.
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Chapter 6

Conclusion

The thesis provided theoretical and application results in the detection and isolation of
faults on the sensors of a nonlinear aircraft system by using two FDI schemes: the PM
and the NLGA. Moreover, two further FDI techniques belonging to the NLGA framework
have been developed: the NLGA–AF and the NLGA–PF.

In the following, the main topics and contributions presented in this thesis are sum-
marised chapter by chapter:

• Chapter 1 has presented an introduction to the fault diagnosis problem and the
most popular FDI approaches were briefly recalled. Moreover, the contents of the
thesis were outlined.

• Chapter 2 has presented the aircraft simulation model. The equations of motion of
the 6 DoF rigid body aircraft were obtained. The subsystems completing the overall
simulation model were described, in particular wind gust disturbances and input–
output measurement errors were taken into account. Finally, the simplified aircraft
models exploited to design the residual generators, the so–called FDI models, were
introduced.

• Chapter 3 has presented the PM FDI scheme. The residual generators were de-
signed from the input–output description of the linearised aircraft model and the
disturbance decoupling was obtained by computing a basis for the left null space of
the disturbance distribution matrix. The residual generators design was performed
in order to achieve both maximisation of a suitable fault sensitivity function and
desired transient properties in terms of a fault to residual reference transfer func-
tion. Finally, the residual generators were organised into a bank structure in order
to achieve fault isolation properties.

• Chapter 4 has presented the NLGA FDI scheme. The residual generators design
scheme, based on the structural decoupling of the disturbance obtained by means
of a coordinate transformation in the state space and in the output space, was
proposed. The developed theory was applied to a simplified input affine model of

95



96 CHAPTER 6. CONCLUSION

the aircraft and the residual generators for the input sensors FDI were obtained.
The NLGA robustness was improved by means of a procedure based on the mixed
H−/H∞ optimisation of the tradeoff between fault sensitivity, disturbances and
modelling. The NLGA scheme was modified in order to obtain an adaptive filters
scheme, i.e. the NLGA–AF. In particular, the least-squares algorithm with forget-
ting factor was used to develop the adaptive nonlinear filters providing both the
input sensors FDI and the estimation of the fault size. By combining the particle
filtering algorithm with the NLGA coordinate transformation, the NLGA–PF was
proposed. In particular, the basic particle filter theory was applied to obtain a
particle filter for throttle sensor FDI.

• Chapter 5 has presented the simulation results. The threshold evaluation logic and
the FDI procedure for a complete aircraft trajectory were described. The suggested
design strategies were tested by considering a flight condition characterised by tight–
coupled longitudinal and lateral dynamics. A typical aircraft reference trajectory
embedding several steady–state flight conditions, such as straight phases and coor-
dinated turns, was exploited in order to evaluate the robustness properties of the
proposed PM and NLGA. A comparison with widely used data–driven and model–
based FDI scheme with disturbance decoupling, such as NN and UIKF diagnosis
methods, was also provided. Finally, the reliability and the robustness properties
of the designed residual generators to model uncertainty, disturbances and mea-
surements noise for the aircraft nonlinear model were investigated via Monte–Carlo
simulations.

Some noticeable characteristics of FDI techniques developed in this thesis are recalled
in the following:

• Concerning the PM, an important aspect is the simplicity of the technique used
to generate the residuals when compared with different schemes. The algorithmic
simplicity is a very important aspect when considering the need for verification
and validation of a demonstrable scheme for air–worthiness certification. The more
complex the computations required to implement the scheme, the higher the cost
and complexity in terms of certification.

• Concerning the NLGA, the main advantage is represented by the fact that the model
nonlinearities are directly taken into account. As it was shown, this fact leads to
better performances in terms of fault detection promptness, with respect to other
schemes.

• Concerning the NLGA–AF, in addition to a proper detection and isolation, fault
size estimation is also provided. This feature is not usual for a FDI method and can
be very useful during an on–line automatic flight control system reconfiguration,
in order to recover a faulty operating condition. Compared with similar methods
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proposed in the literature, the NLGA–AF described here has the advantage of be-
ing applicable to more general classes of nonlinear systems and less sensitive to
measurement noise, since it does not use input/output signal derivatives.

• Concerning the NLGA–PF, the knowledge regarding the noise process acting on the
system under diagnosis is exploited. Hence the proposed scheme provides a possible
solution to nonlinear system FDI with non-Gaussian noise and disturbance.

As final remark it is worth noting that, the FDI schemes proposed in this work are
of a general nature and are applicable, not only to the particular system treated in this
thesis, i.e. the PIPER PA–30 aircraft, but to a wide class of nonlinear dynamic systems.
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Appendix A

Review of Model–Based FDI

A.1 Basic Definitions

A fault is to be understood as an expected change of system function, although it may not
represent physical failure or breakdown. Such a fault or malfunction hampers or disturbs
the normal operation of an automatic system, thus causing an unacceptable deterioration
of the performance of the system or even leading to dangerous situation. The term fault
is used rather than the term failure to denote a malfunction rather that a catastrophe.
The term failure suggests complete breakdown of a system component or function, whilst
the term fault may be used to indicate that a malfunction may be tolerable at its present
stage. A fault must be diagnosed as early as possible even it is tolerable at its early stage,
to prevent any serious consequences.

A monitoring system which is used to detect faults and diagnose their location and
significance in a system is called a fault diagnosis system. Such a system normally consists
of the following tasks:

Fault detection: to make a binary decision – either that something has gone wrong or
that everything is fine.

Fault isolation: to determine the location of the fault, e.g. which sensor or actuator
has become faulty.

Fault identification: to estimate the size and type or nature of the fault.

Since fault identification may not be essential (if no reconfiguration action is involved),
the fault diagnosis is very often considered as fault detection and isolation, abbreviated
as FDI, in the literature.

FDI can be achieved using a replication of hardware (e.g. computers, sensors, actuators
and others components) in what is known as hardware redundancy in which outputs from
identical components are compared for consistency. Alternatively, FDI can be carried out
using analytical or functional information about the system being monitored, i.e. based
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on a mathematical model of the system. The latter approach is known as analytical
redundancy, which is also known invariably as quantitative or model–based FDI.

The model–based FDI can be defined also as the detection, isolation and identification
of faults on a system by means of methods which extract features from measured signals
and use a priori information on the process available in term of a mathematical models.

Faults are thus detected by setting fixed or variable thresholds on residual signals
generated from the difference between actual measurements and their estimates obtained
by using the process model.

A number of residuals can be designed with each having sensitivity to individual
faults occurring in different locations of the system. The analysis of each residual, once
the threshold is exceeded, then leads to fault isolation.

Process

Residual
generation

Residual
evaluation

Input Output

Measurements

Residuals

Fault information

Figure A.1: Structure of model–based FDI system.

Figure A.1 shows the general and logic block diagram of model–based FDI system. It
comprises two main stages of residual generation and residual evaluation. This structure
was first suggested by Chow and Willsky in (Chow and Willsky 1980) and now is widely
accepted by the fault diagnosis community. The two main blocks are described as follows:

Residual generation. This block generates residual signals using available inputs and
outputs from the monitored system. This residual (or fault symptom) should indi-
cate that a fault has occurred. It should normally be zero or close to zero under
no fault condition, whilst distinguishably different from zero when a fault occurs.
This means that the residual is characteristically independent of process inputs and
outputs, in ideal conditions. Referring to Figure A.1, this block is called residual
generation.

Residual evaluation. This block examines residuals for the likelihood of faults and a
decision rule is then applied to determine if any faults have occurred. The residual
evaluation block, shown in Figure A.1, may perform a simple threshold test (geo-
metrical methods) on the instantaneous values or moving averages of the residuals.
On the other hand, it may consist of statistical methods, e.g., generalised likelihood
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ratio testing or sequential probability ratio testing (Isermann 1997, Willsky 1976,
Basseville 1988, Patton et al. 2000).

Most contributions in the field of quantitative model–based FDI focus on the residual gen-
eration problem, since the decision–making problem can be considered relatively straight-
forward if residuals are well–designed.

A.2 Modelling of Faulty Systems

The first step in model–based FDI approach consists of providing a mathematical de-
scription of the system under investigation which shows all the possible fault cases, as
well.

The detailed scheme for FDI techniques here presented is depicted by Figure A.2. The
main component are the plant under investigation, the actuators and sensors, which can
be further sub–divided as input and output sensors, and finally the controller.

PlantActuators

Controller

Reference
signals

Input
sensors

Output
sensors

FDI system

u∗(t) y∗(t)

u(t) y(t)

uR(t)

Figure A.2: Fault diagnosis in a closed–loop system.

The FDI technique presented here considers open–loop system model. In fact, as
showed in Figure A.1, the information required by the FDI system is related to the open–
loop system even if the system is inserted in the control loop. Hence it is not necessary
to consider the controller in the design of a FDI scheme. The open–loop subsystem
considered for the FDI design is illustrated in Figure A.3, where also the faults acting on
the various subsystems are represented.

Under the hypothesis of linearity, process dynamics can be described by the following
continuos–time, time–invariant, linear dynamic system in the state–space form

ẋ(t) = Ax(t) +B u∗(t)

y∗(t) = C x(t)
(A.1)

where x(t) ∈ �n is the system state vector, u∗(t) ∈ �r is the input signal vector driven
by actuators, and y∗(t) ∈ �m is the real system output vector. A, B, and C are system
matrices with appropriate dimensions.
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PlantActuators
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u∗(t) y∗(t)
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Figure A.3: The monitored system and fault topology.

With reference to Figure A.3, a component fault vector fc(t) affects process dynamics
as follows

ẋ(t) = Ax(t) +B u∗(t) + fc(t) (A.2)

In some cases, component faults come from a change in the system parameters, e.g. a
change in entries of the A matrix. For example, a change in the i-th row and the j-th
column of the A matrix, leads to a fault vector fc(t) described as

fc(t) = I i
n ∆aij xj(t) (A.3)

where xj(t) in the j-th element of the vector x(t).
As the actual process output y∗(t) is not directly available, a sensor is used to acquire

a measure of the system outputs. Moreover, generally speaking, a sensor can be also
used to measure the system inputs u∗(t) (e.g. for uncontrolled system). By neglecting
sensor dynamics, faults on input and output sensors are modelled with additive signals,
respectively, as

u(t) = u∗(t) + fu(t)

y(t) = y∗(t) + fy(t)
(A.4)

where the vectors fu(t) = [fu1(t) . . . fur
(t)]T and fy(t) = [fy1(t) . . . fym

(t)]T are chosen to
describe a fault situation. Usually fault modes can be described by step and ramp signals
in order to model abrupt and incipient (hard to detect) faults, representing bias and drift,
respectively.

Moreover, for technical reasons, sensor output signals are generally affected by mea-
surement noise. In this case (A.4) has to be replaced by

u(t) = u∗(t) + ũ(t) + fu(t)

y(t) = y∗(t) + ỹ(t) + fy(t)
(A.5)

in which the sequences ũ(t) and ỹ(t) are usually described as white, zero–mean, uncorre-
lated Gaussian processes.

With reference to a controlled system, according to Figure A.3, signals u∗(t) are the
actuator response to the command signals uR(t). A purely algebraic actuator (i.e. with



A.2. MODELLING OF FAULTY SYSTEMS 103

gain equal to 1) can be described by

u∗(t) = uR(t) + fa(t) (A.6)

where, similarly to input-output sensor fault situation, fa(t) ∈ �
r is the actuator fault

vector.
In general, as shown in Figure A.3, if the actuation signals u∗(t) are assumed to be

measurable, by neglecting input and output sensor noises, the process model with fault
can be described by the following system equation

ẋ(t) = Ax(t) + fc(t)−B fu(t) +B u(t)

y(t) = Cx(t) + fy(t)
(A.7)

On the other hand, Figure A.4 represents the case where the uR(t) signals are measured
only by the input sensors. Such a configuration represents a critical situation with respect
to the input sensor connection depicted in Figure A.3.

PlantActuators

Output
sensors

Input
sensors

u∗(t) y∗(t)

u(t) y(t)

uR(t)

fu(t) fy(t)

fa(t) fc(t)

Figure A.4: Fault topology with actuator input signal measurement.

In this situation, actuator faults cannot be directly related to the input measurements
u(t) but their effects can only be detected by means of output signals y(t). By taking into
account also actuator faults fa(t), the description below is obtained

ẋ(t) = Ax(t) + fc(t) +B fa(t)−B fu(t) +B u(t)

y(t) = C x(t) + fy(t)
(A.8)

Moreover, considering the general case, a system affected by all possible faults can be
described by the the following state–space model

ẋ(t) = Ax(t) +B u(t) + L1f(t)

y(t) = C x(t) + L2 f(t)
(A.9)

where entries of the vector f(t) = [fT
a , f

T
u , f

T
c , f

T
y ]T correspond to specific faults. In

practice, it is reasonable to assume that the fault signals are described by unknown time
functions. The matrices L1, L2 are known as faulty entry matrices which describe how
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the faults enter the system. The vectors u(t) and y(t) are the available and measurable
inputs and outputs, respectively. Both vectors are supposed known for FDI purpose.

The state–space model (A.9) can be expressed also in the input–output transfer matrix
representation

y(t) = Gyu(s)u(t) +Gyf (s) f(t) (A.10)

where
Gyu(s) = C (s I − A)−1B

Gyf (s) = C (s I − A)−1 L1 + L2

(A.11)

Both the general models for FDI described by (A.9) and (A.10) in the time and
frequency domain, respectively, have been widely accepted in the fault diagnosis literature
(Patton et al. 1989, Patton et al. 2000, Chen and Patton 1999, Gertler 1998).

Under these assumptions, the general model–based FDI problem here treated can be
performed on the basis of the knowledge only of the measured sequences u(t) and y(t).

A.3 Residual Generator General Structure

The most frequently used FDI methods exploit the a priori knowledge of characteristics
of certain signals. As an example, the spectrum, the dynamic range of the signal and its
variations may be checked. However, the necessity of a priori information concerning the
monitored signals and the dependence of the signal characteristics on unknown working
conditions of the system under diagnosis are main drawbacks of such a class of methods.

The most significant contribution in modern model–based approaches is the introduc-
tion of the symptom or residual signals, which depend on faults and are independent
of system operating states. They represent the inconsistency between the actual system
measurements and the corresponding signals of the mathematical model.

The residual generator block introduced in Figure A.1 can be interpreted as illustrated
in Figure A.5 (Basseville 1988). The auxiliary redundant signal z(t) is generated by the
function W1

(
u(·), y(·)

)
and, together with the measurement y(t), the symptom signal r(t)

is computed by means of W2

(
z(·), y(·)

)
. In the fault–free case, the following relations are

satisfied
z(t) = W1

(
u(·), y(·)

)
r(t) = W2

(
z(·), y(·)

)
= 0

(A.12)

and, when a fault occurs in the plant, the residual r(t) will be different from zero.
The simplest residual generator is obtained when the system W1 is a plant identical

model z(t) = W1

(
u(·)

)
. The measurement y(t) is not required in W1 because it is a system

simulator. The signal z(t) represents the simulated output and the residual is computed
as r(t) = z(t)− y(t). Since it is an open–loop system, the process simulation may become
unstable.

An extension to the simplest residual generator is to replaceW1

(
u(·)

)
byW1

(
u(·), y(·)

)
,

i.e. an output estimator fed by both system input and output. In such a case, function W1

generates an estimation of a linear function of the output W1

(
u(·), y(·)

)
= My(t) whilst
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Figure A.5: Residual generator general structure.

function W2 can be defined as W2

(
z(·), y(·)

)
= W

(
z(t) −My(t)

)
, W being a weighting

matrix.
Figure A.6 represents a general structure for all residual generators using the input–

output transfer matrix description. With reference to (A.10) and (A.11), the residual
generator structure is expressed mathematically by the generalised representation

r(t) =
[
Hu(s) Hy(s)

] [ u(t)
y(t)

]
= Hu(s)u(t) +Hy(s) y(t) (A.13)

where Hu(s) and Hy(s) are transfer matrices which can be designed using stable linear
systems.

++

++

u(t) y(t)

y(t)

f(t)

Hu(s) Hy(s)

Gyf (s)

Gyu(s)

System

Residual Generator

Figure A.6: Residual generator using input–output description.
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According to the definition, the residual r(t) has to be designed to become zero for
fault–free case and different from zero in case of failures. This means that

r(t) = 0 if and only if f(t) = 0 (A.14)

In order to satisfy (A.14), the design of the transfer matrices Hu(s) and Hy(s) must satisfy
to the constraint conditions

Hu(s) +Hy(s)Gyu = 0 (A.15)

It is worth noting that different residual generators can be obtained by using different
parametrisations of Hu(s) and Hy(s) (Patton and Chen 1991a).

A.4 Fault Detectability and Isolability

By substituting (A.10) and (A.15) into (A.13), it results that, when faults occur in the
monitored system, the response of the residual vector is

r(t) = Hy(s)Gyf (s) f(t) (A.16)

To detect the i–th fault in the residual r(t), the i–th column [Hy(s)Gyf (s)]i of the
transfer matrix [Hy(s)Gyf (s)] should be nonzero, especially for steady values, i.e.

[Hy(s)Gyf (s)]i �= 0 and [Hy(0)Gyf (0)]i �= 0 (A.17)

If those conditions are satisfied, the i–th fault can be said to be detectable using the
residual.

The isolability of faults is also an important issue. In precise terms, isolability is the
ability of the procedure to distinguish (isolate) certain specific faults. Although a single
residual signal is sufficient to detect faults, a set of residuals (or a residual vector) is
required for fault isolation. To facilitate the isolation problem, residual sets are usually
generated in one of the following ways:

Structured residual set: to generate a set of residuals, each residual is designed to be
sensitive to a subset of faults while remaining insensitive to other faults (Chow and
Willsky 1984, Gertler 1998).

Directional residual vectors: to make the residual vector lie in fixed and fault–specific
directions (or subspaces) in the residual space in response to a specific fault (Gertler
1998, Beard 1971).

The basis for the isolation of a fault is the fault signature, i.e. a feature obtained from
a diagnostic model defining the effects associated with a fault (Beard 1971, Jones 1973).
Each signature must be uniquely related to one fault to accomplish fault isolation.
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In presence of faults on the input–output sensors of the monitored system the input–
output relation (A.10) can be rewritten as follows

y(t) = Gyu(s)u(t) +Gyfu
(s) fu(t) + fs(t) (A.18)

where the transfer matrix Gyfu
(s) represents the effect on the system of the input sensor

faults.
When output sensor faults occur, the residual vector becomes

r(t) = Hy(s) fs(t) (A.19)

Here the fault transfer matrix Hy(s) will be chosen according to specific requirements. For
the isolation purpose, we can make r(t) independent to the i–th sensor fault by simply
making the i–th column of Hy(s) equal to zero. If Hy(s) is a diagonal matrix, each
element of the residual is only affected by a specified sensor fault; this is very useful for
fault isolation. The only constraint on Hy(s) is that it be stable and implementable. Once
it has been chosen, Hu(s) can be determined by the constraint (A.15).

When input sensor faults occur, the residual vector becomes

r(t) = Hy(s)Gyfu
(s) fs(t) (A.20)

In this case, the fault transfer function matrix is Hy(s)Gyfu
(s). To make r(t) independent

of the i–th sensor fault, the choice of Hy(s) must ensure that the i–th column of matrix
Hy(s)Gyfu

(s) is equal to zero. For any given fault transfer matrix Hy(s)Gyfu
(s), the

stable and implementable Hy(s) does not always exist. That is to say, we do not have full
freedom to achieve required input sensor fault isolation.

A.5 Residual Generation Techniques

The generation of symptoms is the main issue in model–based fault diagnosis. A variety
of methods are available in literature for residual generation and the most common are
briefly summarised in the following:

Observer–based approaches. The basic idea within this approach is to estimate the
outputs of the system from the measurements or a subset of measurements by using
either Luenberger observers in a deterministic setting or Kalman filters in stochastic
setting. Then, the output estimation error or innovations in the stochastic case, is
used as a residual. The flexibility in selecting observer gains has been fully exploited
in the literature yielding a rich variety of fault detection schemes (Beard 1971, Frank
1993, Frank and Ding 1997, Patton and Chen 1997, Willsky 1976, Basseville 1988).

Parity vector (relation) methods. This approach is based on checking the consis-
tency of the mathematical relations between the outputs (or a subset of outputs)
and inputs. These relations may lead to direct redundancy, which gives the static



108 APPENDIX A. REVIEW OF MODEL–BASED FDI

algebraic relations between the sensor outputs or they may be lead to temporal
redundancy, which gives the dynamic relations between inputs and outputs (Chow
and Willsky 1984, Gertler and Singer 1990, Patton and Chen 1991a, Gertler and
Monajemy 1993, Delmaire et al. 1999).

Fault detection via parameter estimation. This approach is based on the assump-
tion that the faults are reflected in the physical system parameters and the basic
idea is that the parameters of the actual process are estimated on–line using well–
known parameter estimations methods. The results are thus compared with the
parameters of the reference model; obtained initially under fault–free assumptions.
Any discrepancy can indicate that a fault may have occurred (Isermann 1984, Is-
ermann and Freyermuth 1992, Isermann 1993, Isermann and Ballé 1997, Patton et
al. 2000).

Though conceptually different, it has been shown that there are close relationships
among these approaches. It is easy to see that the parity space approach leads to a
parallel model which can be interpreted as a special class of observer, namely the so–
called dead–beat observer with all poles at the origin (Massoumnia 1986, Frank 1990).
This means that the residual generator resulting from the parity equation approach can
be subsumed, as a special case, under the group of diagnostic observers.

A.6 Residual Evaluation

When the residual generation stage has been performed, the second step requires the
examination of symptoms in order to determine if any faults have occurred.

The simplest and most widely used way to fault detection is achieved by directly
comparing residual signal r(t) or a residual function J (r(t)) with a fixed threshold ε or a
threshold function ε(t) as follows

J (r(t)) ≤ ε(t) for f(t) = 0
J (r(t)) > ε(t) for f(t) �= 0

(A.21)

where f(t) is the general fault vector defined in (A.9). If the residual exceeds the threshold,
a fault may be occurred. This test works especially well with fixed thresholds ε if the
process operates approximately in a steady state and it reacts after relatively large feature,
i.e. after either a large sudden or a long-lasting gradually increasing fault. On the
other hand, adaptive thresholds ε(t) can be exploited which depend on plant operating
conditions, for example when ε(t) is expressed as a function of plant inputs (Clark 1989,
Chen and Patton 1999).

Because of the presence of noise, disturbances and other unknown signals acting upon
the monitored system, the decision making process can exploits statistical methods. In
this case, the measured or estimated quantities, such as signals, parameters, state variables
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or residuals are usually represented by stochastic variables r(t) = {ri(t)}
q

i , with mean
value and variance (Willsky 1976)

r̄i = E{ri(t)} σ̄2
i = E{[ri(t)− r̄i]

2} (A.22)

as normal values for the fault-free process. Analytic symptoms are then obtained as
changes

∆ri = E{ri(t)− r̄i} ∆σi = E{σi(t)− σ̄i} (A.23)

with reference to the normal values. In order to separate normal from faulty behaviour,
usually a fixed threshold ∆rtol defined as

∆rtol = εσ̄r ε ≥ 2 (A.24)

has to be selected. By a proper choice of ε, a compromise has to be made between the
detection of small faults and false alarms.

Another class of methods can be exploited for detecting residual changes due to faults.
Therefore, techniques of change detection, e.g. as a likelihood–ratio–test or Bayes decision,
a run–sum test are commonly used (Isermann 1984, Basseville and Benveniste 1986, Bas-
seville and Nikiforov 1993). Moreover, fuzzy or adaptive thresholds may improve the
binary decision (Chen and Patton 1999, Patton et al. 2000).

A.7 Robustness Problem

The model–based FDI uses a mathematical system model. The better the model rep-
resents the system, the better will be the reliability and performance in FDI. However,
modelling errors and disturbances are inevitable, and hence there is a need to develop
robust FDI algorithm.

A robust FDI system is sensitive only to faults, even in the presence of a model–
reality mismatch. To achieve robustness in FDI, the residual should be insensitive to
uncertainty, whilst sensitive to faults, and therefore robust (Chow and Willsky 1984, Ding
and Frank 1990, Frank 1994, Frank and Ding 1997, Patton and Chen 1994).

In order to summarise the approach to the robustness problem, the state–space model
of the monitored system should be considered (Patton and Chen 1993)

ẋ(t) = (A+ ∆A)x(t) + (B + ∆B)u(t) + E1 d(t) + L1 f(t)

y(t) = C x(t) + E2 d(t) + L2 f(t)
(A.25)

where d(t) is the disturbance vector; E1 and E2 are the known input distribution matrices;
the matrices ∆A and ∆B are the parameter errors or variations which represent modelling
errors.

The transfer matrix description between the output y(t) and input u(t) of the sys-
tem (A.25) is then

y(t) = (Gyu(s) + ∆Gyu(s))u(t) +Gyd(s) d(t) +Gyf f(t) (A.26)
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where ∆Gyu(s) is used to describe modelling errors, whilst Gyd(s) describes the distur-
bance.

With reference to the residual generator of Figure A.6 and described by (A.13), the
residual vector has to be rewritten as

r(t) = Hy Gyf (s) f(t) +Hy ∆Gyu(s) +Hy(s)Gyd d(t) (A.27)

With respect to (A.13), the terms Hy(s)Gyd(s) and Hy(s) ∆Gyu(s) cannot be deleted.
Both faults and modelling uncertainty (disturbance and modelling error) affect the resid-
ual and hence discrimination between these two effects is difficult.

The principle of disturbance de–coupling for robust residual generation requires that
the residual generator satisfies

Hy(s)Gyd(s) = 0 (A.28)

in order to achieve total de–coupling between residual r(t) and disturbance d(t). This
property can be achieved by using the unknown input observer (Watanabe and Himmelblau
1982, Wünnenberg and Frank 1987, Chen et al. 1996, Frank et al. 2000), optimal (robust)
parity relations (Chow and Willsky 1984, Lou et al. 1986, Wünnenberg 1990, Wünnenberg
and Frank 1990, Frank et al. 2000) or alternatively the eigenstructure assignment ap-
proach (Patton et al. 1986, Patton and Chen 1991b, Liu and Patton 1998, Patton and
Chen 2000, Duan et al. 2002).

If condition (A.28) does not hold, perfect (accurate) de–coupling is not achievable.
One can consider an optimal or approximate de–coupling by minimising the following
performance index over a specified frequency range (Frank et al. 2000)

J =
‖Hy(jω)Gyd(jω)‖

‖Hy(jω)Gyf (jω)‖
(A.29)

On the other hand, with reference to the modelling errors in (A.27), represented by
the term ∆Gyu(z) the robust problem is more difficult to solve. Two main techniques
have been described by Patton and Chen. In the first case, the uncertainty is taken into
account at the residual design stage (Chen et al. 1996); this is known as active robustness
in fault diagnosis (Patton and Chen 1994).

The active way of achieving a robust solution is to approximate uncertainties, i.e.
representing approximately modelling errors as disturbances (Chen and Patton 1999)

∆Gyu(s)u(t) ≈ Gyd1(s) d1(t) (A.30)

where d1(t) is an unknown vector and Gyd1(s) is an estimated transfer function. When this
approximate structure is exploited to design disturbance de–coupling residual generators,
robust FDI can be achieved.

The second approach called passive robustness makes use of a residual evaluator with
adaptive threshold. As a simple example, it is assumed that the residual generation
uncertainty (A.27) is only represented by modelling errors. The fault–free residual r(t) is

r(t) = Hy(s) ∆Gyu(s)u(t) (A.31)
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Under the assumption that the modelling errors are bounded by a value δ, such that

‖ ∆Gyu(w) ‖≤ δ (A.32)

an adaptive threshold ε(t) can be generated by a linear system

ε(t) = δ Hy(s)u(t) (A.33)

In such case, the threshold ε(t) is no longer fixed but depend on the input u(t), thus being
adaptive to the system operating point. A fault is then detected if

‖ r(t) ‖>‖ ε(t) ‖ (A.34)

A robust FDI technique with the threshold adaptor or selector is therefore briefly recalled
(Clark 1989, Emami-Naeini et al. 1988, Ding and Frank 1991). This method represents a
passive approach since no effort is made to design a robust residual.
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